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ABSTRACT

1 present a Lagrangian which deseribes the spontaneous breaking of chiral
symmetries i strongly interacting supersymmetric Yang-Mills theory with mat-
ter fields. This Lagrangian predicts that supersymmetry is spontaneously broken

if the matter flelds have precisely zero mass.
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Over the past few years, as our understanding of weskly coupled supersym-
metric theories hzas steadily increased, the dynamics of strongly coupled super-
symmetric Yang-Mills theory has come to appear more and more mysterious.
Initially, it was {empting to regard these theories as having qualitatively the
same behavior as ordinary gauge theories of fermions. Using this hypoihesis,
Diue, Fischler, and Srednicki! and Dimopoulos and Raby? argued that these
theories should show spontaneocus supersymmetry breaking. This conclusion,
however, was apparently contradicted when Witten derived a striking constraint
on dynamical supersymmetry breaking.3 This contradiction has left workers in
this field more than a little puzzled and has led to a consensus that the pattern
of chiral symmetry breaking in supersymmetric Yang-Mills theory must be an
unusual one. However, it need not be so. In this lecture, I will demonstrate
this by exhibiting an eflective Lagrangian describing the spontaneoys breaking
of chiral symmetry in supersymmetric Yang-Mills theory which is consistent both
with the physical picture of Dine, Fischler, Srednicki, Dimopoulos and Raby and
with the constraints proved by Witten. This conclusion differs from that of a re-
cent paper by Taylor, Veneziano, and Yankielowicz;* I will clarify the difference
between my analysis and theirs as I proceed.

I will restrict my attention in this lecture to theories in which a gauge super-
multiplet (A, X, D) couples to matter felds which belong to a real representation
of the gauge group. For most of the analysis of this paper, I will take this repre-
sentation to comprise n copies each of a complex representation r and its complex

conjugate . The matter supermultiplets are, then, of the form:

(Ag;, Yy Fri) + (A, Yy )

;;vfe?e T =dy..,n v denotes a left-harded fermion; the other fields are complex
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bosons. These models are essentially supersymmetric versions of QCD with n
fiavors; 1 will refer to them as SSQCD. They are the r.odels to which Witten's
theorem applies most direetly.

At the classical level, for zero matter fields, SSQCD bas the global
symmetry U(n) X U{(n) X U(1), where the last U(1) corresponds to R-invariance.
In the quantum theory, one U(1) symmetry is destroyed by anomalies; the full
global symmetry is, then, U(n) X U(n). One can give mass to the matter fields
by adding to the Lagrangian a superpotential of the form:

w(A) = f:l m Ay Ap; (2)

This poteatial breaks U{n) X U(n) explicitly to (vectorial) {/{n). In ordinary
QCD, the formation of fermion pair condensates causes a spontaneous breaking of
the chiral symmetry of the zerc-mass theory; I see no good reason why this same
physics should not appear also in the supersymmetric theary. Such fermion-pair
condensates would give rise in SSQCD to the pattern of spontaneous symmetry-

breaking:

Uln) X U(n) — U(n) . 3

I wili argue that the symmetry-breakieg pattern (3} is consistent with the
constraints of supersymmetry by exhibiting a supersymmetrie effective Lagran-
gian which gives a low-energy phenomenological deseription of this symmetry
breaking. This Lagraagian should be the appropriate generalization to SSQCD
of the description of the low-energy dynamics of QCD by a nonimear sigma
model.? More specifically, this Lagrangian has the following properties: First, it
obeys a number of requirements which follow from exact properties of SSQCD:



L The Lagrangian has the form
L=Lo+trmA ]

where Lg is invariant to U(n) x U(n) and A , which represents the matter-
field mass term, transforms as an (1, n) under U(n) X U{n).

2. The Lagrangian is manifestly supersymmetrie.

3. Supersymmetry is not spontaneously broken for any value of m 3£ 0.
Requirement (3) follows from Witten's theorem.® Secondly, the Lagrangian is
congistent with a number of intuitive requirements of the physical picture of
chiral symmetry breaking by fermion pair condensates:

4. The pattern of spontaneous symmetry breaking is

U(n) X Uln) = U{n) ;

the associated Goldstone bosons appeay as elementary fields of the phe-
nomenological Lagrangian.

5. The gluino is heavy and irrelevant to low-energy physics; the gluino field
does pot appear in the Lagrangian.

8. The Lagrangian implies that < ¢y >7£ 0 by insuring that, in the
presence of the symmetry-breaking perturbation ir ma, the Goldstone
bosons receive (mass)? propertional to m.

7. ‘The bosonfe variables of the model live on a compact space,

B. The Lagraagian satisfies decoupling: sending one eigenvalues of m to in-
finity reduces the U{n) X U(n) version of the Lagrangian to the U{n—1) X
U(n — 1) version.
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Since the requirements (6} and (7) are not completely obvious, and since they
will play & crucial role in my analysic, | comment on them briefly. The authors of
Refs. 1 and 2 argue that my assumption (6) already implies that supersymmetry
is spontaneously broken. Their argument makes use of the Ward identity, valid
if sepessymmetry is manifest:

(394 A-F}=0
If one eliminates I using the equations of motion, one finds

—% <Yr-gr>=m< AP > (5)

it < {A|? > is regular as m — 0, supersymmetry implies < ¢ptp >=0. But
such regularity is not necessary, or even to be expected. In ordinary QCD one

can cast < ¢4 > into the form

<P >= "‘("(-02 ¥ ,,,z:. ga,,yrw» ()

where the expectation value is to be taken over configurations of the gauge fleld.®
The object inside the trace is formally quite similar to the 4, propagator, u the
right-kand side of (6) can remain nonzero as m — 0, why should the right-hand
side of {5} not also show this behavior? * I feel that the assumption (8} does not
unduly prejudice the theory I will construet toward spontaneous supersymmetry
breaking.

My assumption (7) would not be a strong assumption in ordinary field theories
with global symmetries. However, in supersymwaetric theories it is a very strong

assumption, because supersymm-trie nonliner sigma models with variables on

*{ thank Giorgio Parisi for this observation.




compact spaces are not obtainable as limits of linear sigma models”® I will simply
assume that the nonperturbative dynamies of SSQCD gives rise to a compact
manifold of possible vacuum states. It is here that my analysis differs from that
of Taylor, Veneziano, and Yankielowicz®; those authors chose a set of dynamical
variables which could be obtained from a supersymmetrie linear sigma model,

The formulation of a supersymmetric nonlinear sigma model with the sym-
metry-breaking pattern (3) appears st first sight problematical, for the follow-
ing reason: Nonlinear sigms models describing the spontaneous breakdown of a
symmetry gronp G to H normally have variables which Bve on the coset space
G/H. Such a model can be made sypersymmetric only if this space is a Kihler
manifold.? However, the space suggested by (3) is

G _ U{n) X Uln)

i Tim) s U{n) (N

which is not even a complex manifold, and therefore is not Kihler. I choose
to interpret this difficulty as a requirement from supersymmetry that there be
additional light bosons in the theory beyond the required Goldstone bosons. The
spectrum of these particles should be determined by embedding (7) in a larger
space which is a Kihler manifold.? The smallest such homogeneous space with
{7) as a subspace is

oruol @
There are many embeddings of (7) into (8); for the purpose of this lecture, I will
choose cae aud work out its implications. Let me, then, label the U(n) X U(n)
subgroup of U(2n) appearing in (8) as {U(n) X Uin)]|p and the somorphic group
appearing in (7) as [U(n) X U(n)]y. I I take U/(2n) in (8) to be generated by
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arbitrary Hermitian 2n X 2 matrices, I can represent aa embedding of (7} into (8)
by identifying as the generators of the various subgroups of this U(2n) matrices
of the following forms:10

[U(z) X Unlip : ( ‘; : )

[U(n) X Uln)ly : V(" °) vl ©)
0 i>

Uln) : (‘1 °)
L] &

where {1, {2 are rn X n Hermitian matrices and

_1f1 ] .
V_ﬁ(_1 l)ssuu) (10)

Uz} X Uln)lp and [U(n) X U(n))y coincide precisely on the U(n) subgroup
generated by the last line of (9); this group will play the role of the conserved
vector U(n) of SSQCD. .

The manifold (8) has 2n? dimensions, so the number of light bosons in the
model is doubled from the number of Goldstone bosons sesocizted with the
symmetry-breaking (3). The 2n? coordinates form two adjoint representations of
the vectorial U(n). The particle spectrum of this model may be given a plausible
physical interpretation as follows: Since the theory with fermionic matter felds
alone must contain Goldstone bosons composed of two fermions and the theory
with bosonic matter fields only should contsin Goldstone bosons composed of
two bosons, the full SSQCD should contain two light pseudosealar mesons, both
of which supersymmetry could well require to be massless. These mesons, with



the quantum numbers of
(Pri- b)) and  (A-Apy), ()

do form two adjoint representations of U(n).
The most general U(2n})-invariant Lagrangian with coordinates in (8) has

been consiructed some time ago by Zumino® and Aoyama!l ; it may be written:
L .—.=/ 29 f2tr log (14 AQ) (12)

where A is an n X n complex matrix. Under an infinitesimal U/(2n) transformation
|

U=14+iT, r=(L|J.) . (13)
4 () .

A transforms according to
6A = i{Aly — HA)+ 14+ ATA. (14)

In principle, one could add terms t.o .(iz) to break its symmeiry explicitly to
[U(n) X U{n)]v; however, i will study only the simplest kinetic energy term (12)
here. S

Equation (12} describes a theory with manifest supersymmetry and 2n? mass-
less boson-fermion pairs. However, this theory is not yet an acceptable one, be-
eause it does not satisly the requirement {6) above. Otz migh* try to give masses
to the particles of this theory by adding to (12) 2 symmetry-breaking F term of

the form

[ A2 tr(mA(a)) . (15)

ey
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However, this term produces (mass)? for the Guldstone bosors proportional to
m?, a signal that < ¢, - ¢¥p >= 0. This problem ¢an only be remedied by
addiag to (12) an F term of zeroth order in m. Thege is no such term invariant
under all of U(2n), but one can find an F term invariant tc [U{n) X U(n)]n. The

generators of this subgroup can be rewritten from (8) in the form
rx(" “) , (16)
tb ‘a
where {5 apd {; are Hermitian. For these generators, (14) specializes to
SA=i[Alg] + i+ AlA . (17)
There is a unique F term constructed from A which is invariant to (17):
[ 826 hfy - tr (tan—14) (18)

where A is a constant. In addition, there is a unique structure which transforms

linearly as za (&, n]'t_lnder U(n) X Un)|n-
[ ot m(i:'ﬁ) . (19)

The bosonic part of (18) plus {19) has the following form:

1P e Xy gt w2 (20)
where F is the auxiliary field associated with A and the X}, span a complete set
of n X n matrices.

Let us Brst study the Lagrangian (12) plus (18), with m = 0. Eliminating F
vields the potential energy:

= 42 1 1
V(A)y=h*tr (m (1+ AA) m (1 +AA)) - (21}



H A is Hermitian, this V{4) = &? this choice gives the minimum of (21). That
fact poses s severe problem for the theory: Sapersymmetry is spontaneously
broken. The minimum, though, does have some redeeming features. First, the
space of minima of V{A) is isomorphic to U{n), so the vacuum degeneracy is that
expected from (3). Secondly, if one attempts to give the Goldstore besons mass
by adding the mass term (18) and treatiny it only as a first-order perturbation
of this theory, one finds a correction to the potential (for Hermitian A)

AV =1r (mA%) (22)

which, properly, gives the Goldstone bosons (mass)? proportional to m.

The problem I have noted is, however, neatly resolved by a more careful
examination of the full theory. If one takes m 3£ 0, in {20), one can find a point
at which the coefficient of F' in this term vanishes by setting

k 1 1

Y= far T—a™i—ia
. (23)
__h_(l_—_"é_ﬂ‘ L
T 1—-iA\L+iA RS 1-¢A
Thus, by setting
fl—mfh
A= (l + m/h) (24)

one finds a supersymmetric vacuum state. Note that if m is a matrix with ope
large cigenvalue, the corresponding eigenvalue of A is drawn to the value (24);
this verifies the decoupling requirement (8) above.

This supersymmetric vacuum states exists for any m 32 0, but asm — G it is
separated from the set of states with A Hermitian by a potential energy barrier
whose height grows as m~1. If we speak in terms of the index of Witten3,

10




the model I have consitucted has index equal to 1 ior any nonzero value of m
but a zero index st m = 0. This discontinnons change in the index at m =
0, or, equivalently, the inacce:sibility of the supersymmetrie state as m — 0,
violates an explicit assumption made by Witten in extending his proof the absence
of spontaneous sypersymmetry bresking in SSQCD to the massless case.® This
method of evading Witten's conclusion was suggested earlier by Srednicki;12 1
ticught at Jhe time that it could never be realized in an explicit model of SSQCD.

I have, then, presented an effective Lagrangian which deseribes the low-energy
of dynamics of supersymmetric Yaug-Mills theory with matter fields in complex-
conjugate-pair reprosentations, assuming that the patters. of chiral symmetry
breaking is that observed in the familiar strong interactions. This Lageazgian has
a supersymmetriec vacuum state foy any nonzero value of the matter field mass,
but it has spontaneously broken supersymmetry for matter fields of precisely
Zero mass.

One can straightforwardly extend the analysis of this paper to more general
forms of the non-linear sigma model action and to the case of matter fields in real
representations. In all cases, the physics of the generalized models is qualitatively
the same as that described here.1®

1 am grateful to Chong-Leong Ong, Giorgio Parisi, Gabriele Veneziano, Ed-
ward Witten, and Shimor Yankielowicz, for discussions of the propertics of
S8QCD, to 1. M. Singer for valuable advice on geometry, and, especially, to
Joe Polchinski, for asking all the right questions. I thank Glennys Farrar and
Frank Heuyey for organizing this stimulaling conference.

11

-



endt

el o -

"SI

e o =N o=

10.

11.
12,
13.

M. Dine, W. Fischler, and M. Srednicki, Nucl. Phys. B180, 5§75 (1081).
S. Dimopoulos 2nd S. Raby, Nucl. Phys. B192, 353 (1081).

E. Witten, Nuel. Phys. B202, 513 (1981).

T. R. Taylor, G. Veneziano, and S. Yankielowicz, CERN preprint TH

3460 (1980).
S. Weinberg, Phys. Rev. Lett. 20, 1608 (1887), Phya. Rev, 188, 1568
(1968).

T. Banks and A. Casher, Nucl. Phys. B168, 102 (1980).
B. A. Ovrut and J. Wess, Phys. Rev. D25, 400 (1982).
C.-L. Ong, SLAC preprint SLAC-PUB-2056 (1082).

B. Zumino, Phys. Lett. 87B, 203 {1979).

I. M. Singer, personal communication.

S. Aoyama, Nuov. Cim. 57A, 176 (1980).

M. Sreduicki, personal communication.

M. E. Peskin, in preparation.




