

MASTER

POSITRON ANNIHILATION MEASUREMENT OF THE VACANCY
FORMATION ENTHALPY IN COPPER

by

Michael J. Fluss, Lars C. Smedskjaer, R. W. Siegel,
D. G. Legnini and M. K. Chason

Prepared for

Fifth International Conference

on

Positron Annihilation

Lake Yamanaka, Japan

April 8-11, 1979

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

**Operated under Contract W-31-109-Eng-38 for the
U. S. DEPARTMENT OF ENERGY**

fey
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona	Kansas State University	The Ohio State University
Carnegie-Mellon University	The University of Kansas	Ohio University
Case Western Reserve University	Loyola University	The Pennsylvania State University
The University of Chicago	Marquette University	Purdue University
University of Cincinnati	Michigan State University	Saint Louis University
Illinois Institute of Technology	The University of Michigan	Southern Illinois University
University of Illinois	University of Minnesota	The University of Texas at Austin
Indiana University	University of Missouri	Washington University
Iowa State University	Northwestern University	Wayne State University
The University of Iowa	University of Notre Dame	The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U. S. Department of Energy.

Positron Annihilation Measurement of the Vacancy Formation Enthalpy in Copper*

Michael J. Fluss, Lars C. Smedskjaer, R. W. Siegel,
D. G. Legnini, and M. K. Chason

Materials Science Division, Argonne National Laboratory
Argonne, Illinois 60439, USA

Doppler-broadening and lifetime data obtained for Cu in the temperature region \sim 25 to 1040°C are presented. The experiment utilized a new source-implantation technique. The value of the deduced vacancy formation enthalpy is 1.31 ± 0.05 eV. Since the Doppler-broadening data were the primary source for the determination of the vacancy formation enthalpy, the analysis of these data are discussed. The suitability of introducing divacancies into the analysis is also considered. It is concluded that the measured formation enthalpy is that for monovacancies.

The present work on Cu [1,2] highlights three important aspects of the interpretation of Doppler-broadening data as they are generally applied to the thermal equilibrium determination of the vacancy formation enthalpy in metals. First, the vacancy formation enthalpy for Cu is determined using the two-state trapping model (TSTM). Second, a quantitative evaluation is made of the unequal contributions of information from the different temperature regions of the data to the determination of the vacancy formation enthalpy. Third, the question of the suitability of including the presence of divacancies in the TSTM analysis of the data for Cu is considered.

A new technique, that of ion-implantation of Na^{22} [3,4], was used to fabricate an annealed [5] sample-source package of Cu (99.999 wt.% nominal purity) which exhibited a "source component" of $\sim 1\%$ intensity and ~ 470 ps lifetime. The Cu sample package was annealed *in situ*, prior to the start of the experiment, for $\sim 6 \times 10^3$ s at 1035°C in a vacuum of 10^{-7} to 10^{-6} Torr. The sample was held in a loose fitting 99.999 wt.% nominal purity Cu jacket, which served as a sacrificial source of copper to protect the sample weld. The temperature was measured to a precision of $\sim 1\%$.

The model expression for the TSTM monovacancy analysis of the Doppler-broadening data is $F = [1/(1+Q)]F_b(T) + [Q/(1+Q)]F_v(T)$, where the subscripts *b* and *v* refer to the bulk and vacancy-trapped states of the positron, respectively. In this expression, $Q = Q_0(1 + \gamma T)\exp(-H_{1v}^F/kT)$, where $Q_0 = (\mu_{1v} \tau_b)_{T=0} \exp(S_{1v}^F/k)$. The temperature coefficient γ of the bulk lifetime, τ_b , has been taken as $\gamma = 7.6 \times 10^{-5} \text{ K}^{-1}$ [6]. The quantities S_{1v}^F , H_{1v}^F , and μ_{1v} are the monovacancy formation entropy, monovacancy formation enthalpy, and the specific trapping rate for a positron at a monovacancy, respectively. The functions $F_b(T)$ and $F_v(T)$ were assumed to be linear in temperature, $F_b(T) = F_{b0}(1 + \alpha T)$ and $F_v(T) = F_{v0}(1 + \beta T)$, where F_{b0} , α , F_{v0} , and β are determined from the least-squares fitting procedure of the data along with Q_0 and H_{1v}^F .

* Work supported by the U.S. Department of Energy.

Figure 1 shows the Doppler-broadening lineshape-parameter F as a function of temperature for Cu. The curve shown in Fig. 1 for $F(T)$ is the six-parameter model least-squares fit ($\chi^2 = 1.1$ for 90 degrees of freedom) to the data, while the dashed lines are the simultaneously determined values for $F_b(T)$ and $F_v(T)$. Figure 2 shows the corresponding Arrhenius plot. The values of $\ln \{[F(T) - F_b(T)] / [F_v(T) - F(T)] (1 + \gamma T)\}$ shown in Fig. 2 are derived from the experimental data $F(T)$, as well as the fitted model parameters α , β , F_{b0} , and F_{v0} . It should therefore be emphasized that the values of the points shown in Fig. 2 depend upon these fitted parameters and, hence, the model used to obtain them. The solid line is the best model fit to the data of Fig. 1 and is given by the expression $\ln [Q_0 \exp(-H_{1v}^F/kT)]$. The vacancy formation enthalpy determined in this way, ignoring any possible divacancy contribution, is 1.31 ± 0.05 eV.

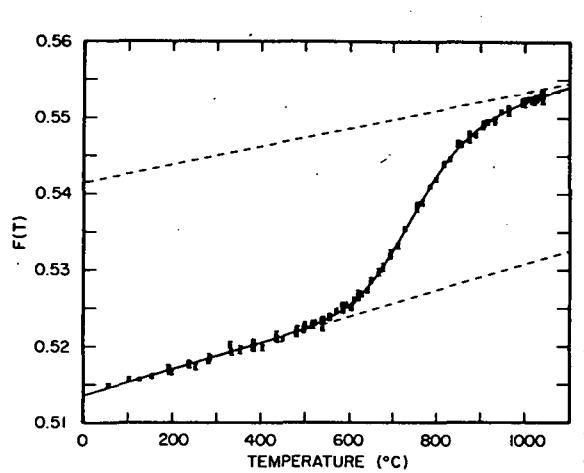


Fig. 1. The experimental Doppler-broadening lineshape parameter $F(T)$ vs. T and the TSTM fit to the data.

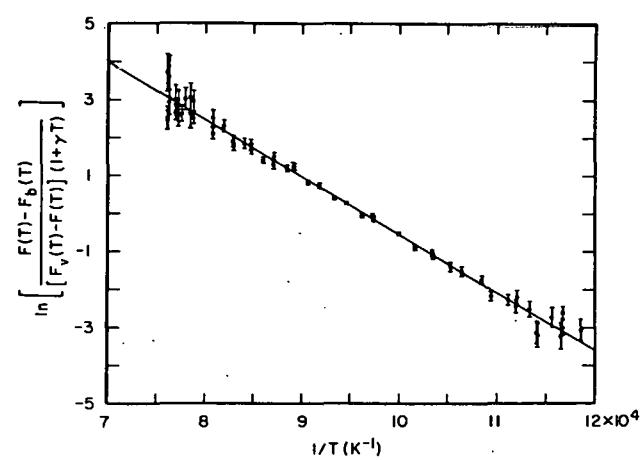


Fig. 2. The Arrhenius plot of the data and fit shown in Fig. 1.

We now turn to a quantitative consideration of how the different temperature regions of the sigmoidal curve shown in Fig. 1 contribute to the determination of H_{1v}^F . Displacing one of the data points (i) of Fig. 1 by one standard deviation from its position would change H_{1v}^F by a small amount δH_i . The relative sensitivity, $(\delta H_i)^2 / \sum_i (\delta H_i)^2$, of H_{1v}^F to such a displacement is shown in Fig. 3 for the actual temperatures of the data set, which is represented by the superimposed fitted values (arbitrarily normalized) of $F(T)$. The four maxima and two end-point extrema represent the determination of three, effectively straight-line regions, which approximate the sigmoidal curve. Since the two central peaks constitute $\sim 50\%$ of the area under the relative sensitivity function, it can be concluded that the major part of the information about H_{1v}^F in this determination is derived from the temperature region 630 to 800°C.

If divacancies contribute significantly to the temperature dependence of $F(T)$, then the previously determined value of 1.31 eV is an apparent vacancy formation enthalpy, H_v^F , rather than the monovacancy formation enthalpy H_{1v}^F [7]. A monovacancy-divacancy trapping model requires the introduction of the additional parameters μ_{2v} , S_{2v}^B , H_{2v}^B and $F_{2v}(T)$, which are the specific trapping rate of the positron at a divacancy, the divacancy binding entropy,

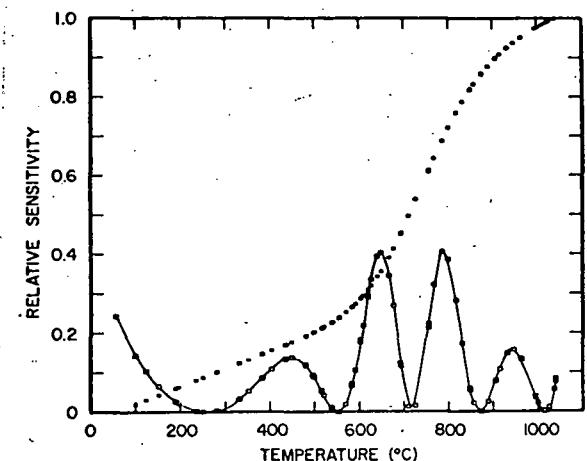


Fig. 3. The relative sensitivity (see text) of the deduced value of H_{1v}^F to the individual data points. The arbitrarily-normalized fitted values of $F(T)$ are superimposed for comparison.

F_{v0} , α , β , Q_0 , and S_0 were least-squares fitted at each node. The nodes were located at $H_{2v}^B = 0.1, 0.3, 0.5$, and 0.7 eV and $H_{1v}^F = 1.30, 1.27, 1.20, 1.10, 1.00$, and 0.90 eV. Values of $H_{1v}^F = 1.31, 1.33$ and 1.35 eV were also examined. For $H_{1v}^F > 1.31$ eV a significant increase in the χ^2 sum was observed, while for $H_{1v}^F \geq 1.31$ eV the fitted value for the divacancy term in the expression for Q became zero. Figure 4 shows three of these fits in the form of Arrhenius plots for the nodal points denoted by $H_{2v}^B = 0.3$ eV and $H_{1v}^F = 1.27, 1.10$, and 0.90 eV, corresponding to curves b, c, and d, respectively. As stated with regard to Fig. 2, the values of the points on this plot, if they were shown, are model dependent and thus vary with the monovacancy-divacancy parameters. The actual model-dependent values of the points have been eliminated from the figure to avoid confusion and only the smooth fits to the data are shown. The χ^2 sums of these fits were all indistinguishable from the monovacancy fit (the straight line "a") in Fig. 4. From Fig. 4 it can be seen that the various monovacancy-divacancy (b, c, and d) model fits and the monovacancy model (a) fit result in the same effective slope in the temperature region of maximum sensitivity, 630 to 800°C. One can therefore conclude that the present data determine an apparent formation enthalpy, $H_v^F = 1.31$ eV, over the region of maximum sensitivity, which is independent of whether a monovacancy-divacancy or simple monovacancy TSTM is applied to the analysis. Attention should be drawn to the large differences seen at high temperatures in the monovacancy-divacancy model fits (b, c, and d) of Fig. 4. Remembering that all of these fits are of equivalent statistical significance with respect to the present data, the statement can be made that with data of the present type alone it is not possible to deduce any unique, model-independent information about divacancies in Cu. This can be more fully appreciated by examining Fig. 5.

The sigmoidal curves shown in Fig. 5 correspond to the cases a, b, c, and d in Fig. 4, which cannot be resolved on this plot, thereby reflecting the statistical indistinguishability of the cases. The least-squares fitted temperature dependence of the $F_b(T)$ lines are also indistinguishable. The differences in a, b, c, and d manifest themselves in the least-squares fits

the divacancy binding enthalpy and the positron annihilation lineshape parameter for a divacancy, respectively. This increases substantially the number of parameters to be fitted. The situation is simplified by considering only one lineshape parameter, $F_v(T)$, for the trapped states, where $F_v(T)$ is thus a suitably weighted average of the actual lineshape parameters for the monovacancy and divacancy [7]. The previous model expression for the TSTM can now be used when Q is redefined as

$$Q_1 = Q_0 (1 + \gamma T) \exp(-H_{1v}^F/kT) \times \{1 + 6 \exp(S_0) \exp[-(H_{1v}^F + H_{2v}^B)/kT]\},$$

where $S_0 = (S_{1v}^F - S_{2v}^B)/k + \ln(\mu_{2v}/\mu_{1v})$. Rather than introduce an eight-parameter least-squares analysis, a grid search in (H_{2v}^B, H_{1v}^F) space was performed where the six parameters F_{b0} ,

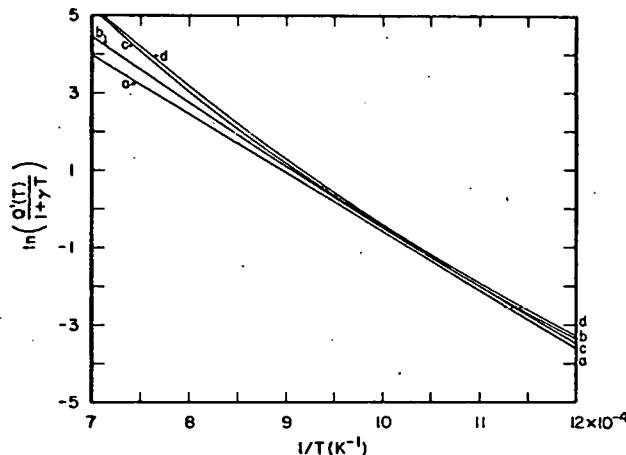


Fig. 4. Arrhenius plots of the mono-vacancy (a) and monovacancy-divacancy (b, c, and d) model analysis of the Cu data (see text).

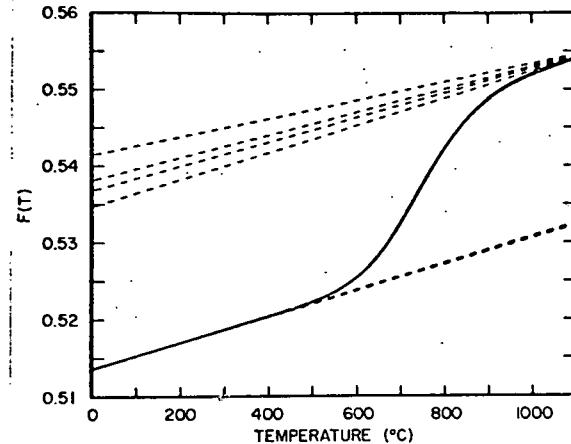


Fig. 5. Sigmoidal plots of the monovacancy and monovacancy-divacancy model analyses for the Cu data.

of the $F_v(T)$ lines, although even at high temperatures they too converge. From Fig. 5, one can conclude that the ability to obtain information about divacancies from this type of experiment depends on the knowledge one possesses about the monovacancy- (F_{1v}) and the divacancy- (F_{2v}) trapped states of the positron. Conversely, any divacancy parameter (e.g., H_{2v}^B , S_{2v}^B) obtained from such data alone will depend strongly on the assumptions made about $F_{1v}(T)$ and $F_{2v}(T)$.

The apparent vacancy formation enthalpy, $H_v^F = 1.31 \pm 0.05$ eV, determined in the temperature range 630 to 800°C, is in excellent agreement with the monovacancy formation enthalpy measured in the loss-free quenching experiments of Berger et al. [8] for the temperature region 525 to 650°C in which a value of $H_{1v}^F = 1.30 \pm 0.05$ eV was reported. Together, these two experiments establish a single-exponential Arrhenius plot of vacancy concentration against inverse temperature for Cu over a combined temperature range of 525 to 800°C. A comparison of the present results with other PAS experiments on vacancy formation in Cu is presented elsewhere [2].

References

- [1] M. J. Fluss, L. C. Smedskjaer, R. W. Siegel, D. G. Legnini, and M. K. Chason: Bull. Am. Phys. Soc. 24 (1979) 271.
- [2] M. J. Fluss, L. C. Smedskjaer, R. W. Siegel, D. G. Legnini, and M. K. Chason: to be published.
- [3] M. J. Fluss and L. C. Smedskjaer: Appl. Phys. 18 (1979) 305.
- [4] M. J. Fluss and L. C. Smedskjaer: this Conference.
- [5] L. C. Smedskjaer, M. J. Fluss, R. W. Siegel, M. K. Chason, and D. G. Legnini: this Conference.
- [6] L. C. Smedskjaer, M. J. Fluss, D. G. Legnini, M. K. Chason, and R. W. Siegel: J. Phys. F: Metal Phys. 1 (1977) 1715.
- [7] R. W. Siegel: J. Nucl. Mat. 69 & 70 (1978) 117.
- [8] A. S. Berger, S. T. Ockers, and R. W. Siegel: J. Phys. F: Metal Phys. 9 (1979) in press.