skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laboratory test results on the thermal resistance of polyisocyanurate foamboard insulation blown with CFC-11 substitutes: A cooperative industry/government project

Technical Report ·
DOI:https://doi.org/10.2172/6232228· OSTI ID:6232228

The fully halogenated chlorofluorocarbon gases (CFC-11 and CFC-12) are used as blowing agents for foam insulations for building and appliance applications. The thermal resistance per unit thickness of these insulations is greater than that of other commercially available insulations. Mandated reductions in the production of these chemicals may lead to less efficient substitutes and increase US energy consumption by one quad or more. This report describes laboratory thermal and aging tests on a set of industry-produced, experimental polyisocyanurate (PIR) laminate boardstock to evaluate the viability of hydrochlorofluorocarbons (HCFSs) as alternative blowing agents to chlorofluorcarbon-11 (CFC-11). The PIR boards were blown with five gases: CFC-11, HCFC- 123, HCFC-141b, and 50/50 and 65/35 blends of HCFC-123/HCFC-141b. These HCFC gases have a lower ozone depletion potential than CFC-11 or CFC-12. Apparent thermal conductivity (k) was determined from 0 to 50{degrees}C. Results on the laminate boards provide an independent laboratory check on the increase in k observed for field exposure in the Roof Thermal Research Apparatus (RTRA). The measured laboratory increase in k was between 8 and 11% after a 240-d field exposure in the RTRA. Results are reported on a thin-specimen, aging procedure to establish the long-term thermal resistance of gas-filled foams. These thin specimens were planed from the industry-produced boardstock foams and aged at 75 and 150{degrees}F for up to 300 d. The resulting k-values were correlated with an exponential dependency on (diffusion coefficient {times} time){sup {1/2}}/thickness and provided diffusion coefficients for air components into, and blowing agent out of, the foam. This aging procedure was used to predict the five-year thermal resistivity of the foams. The thin-specimen aging procedure is supported with calculations by a computer model for aging of foams. 43 refs., 33 figs., 25 tabs.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
6232228
Report Number(s):
ORNL-TM-11645; ON: DE92003011
Country of Publication:
United States
Language:
English