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I. INTRODUCTION

This talk is dealing with the nuclear low energy collective motion as de-
scribed in the context of microscopic versions of the Bohr Hamiltonian 1) Two

different ways of building microscopically Both" collective Hamiltonians will be
sketched in Section II: one within the framework of the Generator Coordi-

nate Method, the other using the Adiabatic Time-Dependent Hartree-Fock-

Bogolyubov apl)roximation. A seanple of recent results will be presented in
Section III which pertains to the description of transitional even nucl(,i aild to

tl_e llcwh' revisited phenomenon of SUl)erdeformation at low spin.

\Ve will only consider here tlle five quadrupole degrees of freedom wtlicll aro
i after a well-known transformation from th.o lab frame to a body fixed i_lerti_,t

frame ) three }-uler mJgle.s and tlle usual 3 alld 5 l)ara_neters 1)

" ¢ Labcu'atoire prOl)re du C.NRS
: La l_ratoire associ(: au ('.'x-RS
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Tile ('l_u_sical Bohr Hamiltonian M i.s t.h,, stun of a l)Otc_ltial (.'n('Igy \7 _m(1

of a kinetic energy T splitt.ed into two parts , a vil)ra.tio_ml energy T,, a1_(1a
rota, tional en .&v Tr defined wit.li obvious notation a,s:

, ,..
II' •

. ( with ql, q2 standing for ft, 7 ) rold

In order to get a quantal do_criI)tinn of the nuclear collective 1nodes. one

should quantize H, a task for which there m-e no well-defined prescriptions in

the most general case. Using for instance the Pauli prescription, one would get

for the vibrational kinetic energy operator acting on a collective wavefunction:

whereas the rotational kinetic energy would be simply given as

\Vhen actually dealing with tt_e Bohr Hamiltonian, one h_usto take proper
cm'e of the symmetries inherent to the problem 1'_-)and then one merely considers

one se>:t,ant in the (/3,7) plane.
The diagonalization of the most general Bohr Hamiltonian is currently per-

formed either 1)y a :finite difference treatment of the derivatives which arc asso-

ciat, ed t.o T,. __,a) or t)3, projection onto a suitably chosen ( and symn_c't.rized )
basis 4)

Apart from the quantization problem, the main theoretical task will con-

sist in evaluating microscopically the ingredients of the classical/quantal Bohr

Hamiltonian. There are indeed, seven scalar functions of fl and 7 which need to

be determined: the potential V, three moments of inertia (_ 1, --q2,_a ) and three

m a.ss parameters (B a,/_, B q,.r,/_',, _ ).

II. MICROSCOPIC DERIVATIONS OF BOHR COLLECTI\:E HAhIILTONIANS

II.1 DERIVATION FROM THE GENERATOR COORDINATE .'METHOD

Tt_e Generator Coordinate Method ( GC.M ) starts from a s(el of Slater

• det.erminailts or BCS wavefunctions ] q,q > depellding o_l a coordinate, q ( in

wl_at follows we will restrict for the sake of clarity, to the simple case of a si_glc,
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sucll coordinate). The trial wavefunction [ q,_> to t)e llsed in a. variational

;q:)proacl_ is built as a. linear combination of s11cll v,'avef,.lncl, iolls

The mixing amplitudes .fo (q) are determin,'d th,ough the varia.t, io_m.1pri1>

, ciple by the following Hill-Wheeler s) equation

f.,'< gr,',=0
or in a condensed vector form as

\v]lore

Whereas fa. represents in some way the mnount of correlations associated

with the degree of freedom which the set (I <I)q >) is supposed to describe, its

interpretation as a collective wavefunction suffers from the fact that eqs. (,6-7)

are not standard eigenvalue equations clue to the use of non-orthogon'_l I 4) q >
states. One therefore currently switches to an alternate representation c') For

that p_lrpose, one ma.y notice that the matrix Ay being real ( if the ] <I.)q> states

a.re even wilh respect to time-reversal ) and symmetrical, it can 1)e diagonalized.

As a norm matrix moreover, it Ims p.on-negative eigenvalues. One first rejects

eiger, vectors with zero eigenvalues whose existence reflects the non-linearly in-

dependent character oi the initial set of [ (I_q > states. This allows o11e therefore,

to consider Ar-I . One also can evaluate A/'_/2 and .,V'-1 le ill a str_.dghtforward
fashion from the so-restricted eigensolutions of .,\".

The col).ective wavefunction will then be defined as

or more e:<plicitly

a c,,=,fe eo).
I'_,is tiron possible to orti_<,_ormalize the .q. functions a_<t the Hill-XVheeler

, (:(lU_tio]} (7) will t)ecome

g,3= E.,_.,.. 0,_)
where: _l_o Hmniltonian ma.trix h is p;iven in tm'n}s <)f ii}(7 ()ri_;i}_al "H bv

t =/.,,u gM"" (_*_.
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Now st,a,rti_lg froln the m_difiect Hill-Wheeler cq_mt, i_l (11) we will sketcll

the derivation of th_; undcr!ying Bollr halnilt,ollia.n cigcllx'alm-' equa,tio11. There

c×ists quit, c a t)roa,d lit,terature (ni t,llis s_lbject 7-12) Here we will rather follow

t.]l¢' 1)l'('scqltatioi_ of rcfclence ( ] ] ).

Let. us first Wigncr-trmmforlll t,tlc Halnilt()lliall ll_airix D(r,r') (h"tinr.'d il_

cqu;ttiosl (12), int,o h,,, nalncly

g. (e, t,l,)= ,#,(e+ ,
where

R-__,-+-'_/t 0<,).
Then, one can expand 1,,_, up to second order in I_I,', whicli corresponds to

an expansion on the range of the 11on locality ( ratlw.r tlmn to a semiclassical

expansion ):

where

I": t::I, F(_ = ._'g,- 0_).' "oI"_ (_,o')
Upon inverse \'Vigner-transformi_g li ,,,

f,t(,,,') - _ ,xr,,-
onegets with t,he trunca.t, ed D,,, of equati(_li (15):

where V(r) is the diagonal matrix element D(r, r).

Inserting the matrix h(r,r') of equation (18) into equation (11) ( tt_e eigen-

\;alu(._ equation for 9o), one gets the SchrSdinger equation:

,., =a,=
Ii. clearly corresponds to a qUa.l_tizc<l version (_f t.lie B(>hr collective Hamil-

ll(>t,ic(_s til(-, existelice of a ccirrccti\'t_ t,crln to the ]>(_i(.'lll,iitl. prop()rti(mal to til('
• se('o_ld derivative of B(r). Tlie ];itl.er is ll.qtlallv rt'f(Tl(?d 1(;)a.S a Zero Point E_l-

<'ray ( ZPE ) corrective ,_:'r_n. Now tiffs B<,lii li;liiiill(i]liaii ('igenxal_le eqtvttion is
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_lciiliu<t ill _<_rnl_ c_fh ! or h,,, ). T__c_,_iic:r't t lii_ <,cl_latioIl wit, li wllat is l_riIll..ril\"

<;llcul_.il<'d ( i. c. tt_c Ilu:rix 7--() (me _e,lm';,liv ,clip's o_l t}_.' Gaussiull Ox,,:rl;tI_

Appr_::inl;t_i_ll ( (4()A)<_f Ill," G(...'I \\7o will ,l<_t t,r(,at t.llat, poillt lloro aI_¢l

To >_n_arizc tl_is S_l_-Scction, o_,e s]_o_l<l m_t_tio,_ t,]lat with tlu" l)r_,c<t_ti_g

_tl:_10roacl_.o_**'g,ets a _l_antized Bol_r Hamilto_ian v,,itl.t well defined ZPE q_al:tt._t]

' c_rrections. ()n tlm otlmr h_md o_._eshould also add tl_at a part of the al_proach

relies on t,l_e validity of the GOA t,o tl_e GCM, for which some elem<.'_ts of
;_ssesslnent arc now availal_le _'). Moro.ovcr, tlm GC;\I is known TM to yield mass

l)arameters thai arc not <'orrcct unless doul_le GCM calc_latio_s arc' p,_rforme<l.

II.2 DERI\:ATiON FROM THE ATDHFB METHOD

Amo_lg the niany derivations of a Bohr collective Hamiltonian from tlm

Adiabatic Time-Depc_dent Hartree-Fock-Bogolyubov ( ATDHFB ) method we

will conccntate c.ui t.hc approach initiated by Baranger and V6n_)roni 14,15) Here

also for _l_c sake of clarity we will cow,sider only one single collective variaMe

even though it is easily extended to more. Similarly we will sMp the pairing cor-

relations arid briefly present merely the ATDHF version ( no pairing included )

of tl_is derivation. A generalisation iri order to treat these correlations is possible
a_d l_as indeed 1)ce:.nachieved 1G)

One: st.act._; from tt_e TDHF equation of motion

v'l_er<.' tlu: o_u,-to<)dv tlanfilto_lian h is understood as h(p). i.e. defined i_

,(ern_s of t l_e onu-l_ody reduced density matrix p. Now one makes an c'xpansion

i_ ><._mc'velocities ( s,..'c'rcferences(14.1_o) for more dct.ails )"

Co_\ersely one cm_ make tlm same expansion for h(p) and get:

All quantitio.._ wi*l_ a_ ovc,._, ( odd resp. ) subscript arc eve__ ( odd resp. )

witt_ resp(tct t.o tlv, ti_nc-r,.tvcrsal Ol)c'rator. S-.parating tl_e time-e\'c_ a_d timc-

{,:id parts of tl_u ,.,tuatio_ ,_f _r_r_Ii()_ (20) ¢,_(,_. ,._,r,ets.. two _e<t_ations. Tlu.. first (

usr<unu>rt tr_, l_,<,w,,ll rcln'(:_._:_cd 1)\ _al:ing t l_e followi_g apln'oxin_;_ti<,_s

• i) ,11 '_,.,_oti_,,'-d-1),_de_u.:c........ of/': is co_ai_>'(l i_ _, si,_gle (:oll<_cli\'(' v;,ri;,blo, q.
i. i[-_ '
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_.lld tlmreforc (nra Ims

i0 q,_ _]o 4 L
i

a

ii) tlm family P0(q) is defined from Constrained ]tartree-Fock ( CHF ) cal-

culations, namely
t

[,f,.- _Q,_.1--o , _--e_(¢.c_) (zs?
Then it can be shown is) that the time-odd equation takes the form of a

doubly Constrained Hartree-Fock equation

[_,.._, -ao- _e, (,.,. e,] =o (zt)
where one adds to the constraint on < Q >,, a constraint on the expectation

value of an operator P which is univocally defined in terms of/)0(q) ( and its

derivative with respect to q ) and which can be shown to be conjugate ( in a

classical sense ) of the oI)erator Q:

Having solved the double CHF problem, one may compute tile energy as-

sociated with the solution p = po + pl +/)2 as mi expansi()n a,ga,in in r_

e[t3 : eK ,,M(9 (zr
In tlie above equation E[p0] is the poteiitial energy, as resulting fronl the

simI)le CHF equation ( i.e. with a mere c(m.;traint on < Q > ) and 3t(q) is ;,

mass parameter which in general depends on q and is proportional to trl,/)P/o)
It is therefore clear that we have bee_ able to yield a classical Bollr Hamil-

tonian. TILe derivation which we have sketched here. pre rides a generalization of

the Thouless-Valatin formalism 17}( or routhian fc_:'malism ) to collective modes

other that. pure rotations. As opposed to the GC2,I. one obtaiT:s here good ma:._

parame;ers J4) and furthermore full self, consistency corrections ( beyond tlm

Inglis cremking formulalS}' ) are approI)riately incorl)orat cd.

On the other hand this classical Hamiltonian n:,,,ust obviously be quantized

and a choice has to be made on the ZPE corrective term._. For tl_ose operations.

;,_s_dready pointed out , one lacks a priori ttl(.,Ol"elical guidance within the mer,.e
ATD H FB fl'ameworl¢.

i

III. A SAMPLE OF RESVLTS

, , r,

Page6,,'
{



III.1 TIIANSITIO?_AL NUCLEI

The calculations reported in tlfis Sub-Section ha.re been 1)erformed within
tile ATDI'IF'B fran:ework desctlb .xi in Sub-Sec_,ion II.2. The Bohr Hamiltonian

' l:a.s been quantized according to the Pauli prescription with no ZPE corrections

included. The CHF calculations have used the Skyrme SIII effective nucleon-

, ::ucleon interaction 19) Pairing correla.tions have been taken care of by means of

a BCS apI.)roactl with constant 1)airing matrix elements. \,Vhereas seif-c.onsistent

1? operators have been computed and used, one has merely here evaluated Inglis

cranking mass parameters. Moreover the so-called Expectation Value Metkod

has been substituted to the full HF plus BCS al)proach for the static calcula.tions,

making use of self-consistent semiclassical solutions ( including terms up to the

fourth order in h in an expansion k la \Vigner- Kirkwood ) associated with the

considered two-body force. Some of the results discussed here, have already

l:)eell 1)ublished elsewhere 21)

Two different regions of transitional nuclei will be considered here ( .4 _-,70

a.nd A ,-_ 1S0 ).

The low-lying experi" :rental spectra of r4 Ge and 7_Se are qualitatively well-

reproduced ( see reference (21), figure 2 ). A.n interesting output of such calcu-

lations is obtained when plotting the probability density in the collective plane

(/3,7), namely plotting I I h: that respect, one should bear in mind

that in order to have directly interpretable density plots, one generally consid-

ers cartesian integration measures for the density funet.ions. To that effect the

eigenfunctions must be multiplied by a factor proportional to (_::__9_a) 1/2 which

identically vanishes for 7 = nrc/3 , (n = 1, ...,6). Therefore, a nucleus which

should be considered as ratlmr prolate ( oblate resp. ) will have a maximum of

tlm de:lsit.y near the 7 = 0 axis ( 7 = 7/3 resp. ) but will of course never have
such a m:L,:in:un:,:m thisaxis.

In the r4Ge nucleus, one has obtained ( see reference (21), figure 3 ) density

distril)utions ah:iost unaltered at low sl)in within the ground-state band ( no

centrifugal stretching or anti-stretching ) and a one-phonon state in the so-called

/.Lband which exhibits the expected feature of a single node near the 7 = 0 axis.

( In the absence of results on transition probabilities, band assignments have

been :nad(.' by mere energy considerations confirmed, if needed, by a comparison

of the I,:-component content.)

Systematical calculations in the r)latinum region are currently perf_rmed.

The excellent result, obt_dned for the lsGPt has been already reported ( see

reference (21). figure 2 ). \,Ve have extended such calculations to the l("°Pt a.:l(t
I76pt nuclei. ; .... - ,,:" gre.n:e:::witl:\\ l:ele,:s for the former as seen :m rio: :e 1 - the a

experiment al energies is very satisfactory, it. is ft)und to be hardly tlm c_use for the

" I:';Pt \vllc:'o the first ?+ level is significal:lly t(_o low. lnissil:g thus tlm occurm:ce

r)f a :lew tr;lnsit.i(-)llal region below lr_Pt as suggested by the data.

Tlm density prol)ability contours of the ls:_Pt exhibit a very ir:teresting

l)l:enon-lc'n(_:l. \\:ll(:re.a.s tl_e yrast band. start, s with a rat.ll(.'r ol)latc sllalm f,_,
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i= (), 2, tiffs shal:)e becomes prolat<: for I > 4. Coil'.,ersely, tl).e so-called/._-band

starts as a one-phonon state for I = 0 alld gradually corresponds to an oblate

solution similm" to wha.t had bee_a obtained for the ground state. This is thus a

, quantitative illustration of th_.• sh_q)e trmasition often _tdvocated i_l this region.

III.2 SUPERDEFO12MATION AT LOW SPIN

The calculations whicll will be briefly reported lmre, have been obtained by

two of us ( I. D. m_d a. L. ) in collaboration with J.P. Delaroche and M. Girod.
The results at spin zero have been already published 2_) They correspond to the

apl)roach discussed in Sub-Section II.1. Static calcula.tions have been performed

within the HFB framework using tlle D1S Gogny efl'cctive force TM which is not a

correctJed zero-range force as ,_he Skyrme force and repro&rees well at t'ne same

time HF-like and BCS-like ma.trix elements. To approxima.tely take care of the

problem of the GCM masses, the mass parameters which have been included,

are of the Inglis type ( making use however of simplified non self-consistent P

operators ).

The existence of superdeformed local minima in the potential energ3, sur-

faces in the region A _ 190 has been predicted long ago both in Strutinsky -like

calculations 24) or in HF plus BCS calculations 2s) 11.has been recently revisited

theoretically 26-28) and the theoretical predictions have been confirmed after-

wards experimentally TM ( see the contribution of E. Henry to this Coifference

fo:" an update of this fast growing experimental domain a0)).

The characteristic feature of potential energy curves (for axially symmet-

rical shapes ) in tim region of nuclei with A rv 190 is the existence of a pocket

in the ascending part of the fission barrier which corresponds roughly to a mass

quadrupole moment of about 45 barns. Tho_ i(.1",o:.\,allt.,ener-;v, parmneters are the

e::citation ( in a purely static sense here, with the inclltsion of ZPE corrective

terms though ) energy E* and the inner barrier cllergy E t_ ( me;_sured from the

ground state ). Upon including ZPE corrective terms these energies have been

calculated tc., be ( see reference (22), figure 1 ) in _°Hg, _-Hg and _4t_Ig:

E" _ 1.5, 3.0, 5.0 (MEV)

EI_ --_ 5.5, 7.0, 9.5 (MEV).

Inserting full potential energy surfaces as well as tle calculated mass pa-

ranmters and moments of inertia, one gets eigensolutions of tlm corresponding

Bohr Hamiltonians which present the following features for e. g. the 0-t states"

i) ground states _ypieal of transitional ( slightly ) oMate nuclei, ii) at values of

excitation energies of 4.4, 5.4, 6.9 .MeV for the 19°Hg, 19-_Hg and l"_4Hg iluclei.
one gets states that are mostly located in tll(: is(mlcric well ( see reference (22):

, _igure 4 ). To be specific, if one considers tllc part of tl_e l)robal)ility in the col-

lcctiv:_ space corresponding to .,'?3> ().4. oilc. gct.s 91%, 9S% and 96% for each of

the above listed nuclei in this particlllar state. Tllesc conclusions llave recent.ly

" 1)ee1_ ext, r_nded to ii_ite sl)ins. I_ct_._ed rotational lmn<ls b_filt o_ tl_e previous 6 +

states arc found. Iii _:)°HK, tl_(: corrcsl)O_l<tin,g :;X_l)crd_formcd l>and Cl'<_sses th(_
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yrast ( nornm.1 ) band around I = 10,12. This spin value seems to l_e too low
in view of recent experimental data 3°) and can reflect tlle fact, that, the static
excitation energy (. E* ) values in these calculations are found significantly lower
tha,n in other dynamical calculations 12'311

v

0

IV. CONCLUSION

Two different derivations in a microscopic fashion of collective Bohr Hamil-
tonians have been recalled. None of them is without problems. It is convenient
at tkis point to mlswer the following question: m'ter all why not go on and per-
form double GCM calculations which would be purely quantal and free from
some mass problems? It is unfortunate that at this time, one is at best. a.ble
to make two dimensional GCM calculations 12) On the other 'hand, to treat

correctly the quadrupole motion which carries most of the low-energy collective
motion, one needs, as it is well known and recalled here, to consider five degrees
of freedom. This is the reason why we must go through the above mentionned
difficulties.

It is however clear that in the present status such calculations are able
to yield a very good qualitative reproduction of data. How quantitative the
qualitative agreement is indeed, time will tell. It is particularly appropriate in
this context to emphazise the crucial role played by pairing correlations for which
such calculations constitute a very demanding test. The obtained reproduc'Aon
of experimental spectra for rough that it may be deemed, is nevertheless very
significant in view of the absence of any ad-hoc paramet.er fittino4 except for the
force parameters chosen many years ago in a different context, i. e. to rq_roduce
essentially saturation properties ( let us also recall that apart from two pairing
parameters, the Skyrme SIII force has only six parameters for the whole chart
of puclides ). Finally, the obvious point where some effort should be devoted is
undoubtedly an improvement of the mass parameters in use which a.re presently
somewhat too crude.

6

I
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