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I. INTRODUCTION

This talk is dealing with the nuclear low energy collective motion as de-
scribed in the context of microscopic versions of the Bohr Hamiltonian!). Two
different ways of building microscopically Bohr collective Hamiltonians will be
sketched in Section II: one within the framework of the Generator Coordi-
nate Method, the other using the Adiabatic Time-Dependent Hartree-Fock-
Bogolyubov approximation. A sample of recent results will be presented in
Section III which pertains to the description of transitional even nuclei and to
the newly revisited phenomenca of superdeformation at low spin.

We will only consider here the five quadrupole degrees of freedom whicli are
( after a well-known transformation frem the lab frame to a body fixed inertial
frame ) three Euler angles and the usual # and - parameters?).
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The classical Bohr Hamiltonian H is the sum of a potential energy Voand
of a kinetic energy T splitted into two parts , a vibrational energy T, and a
rotational en . gv Ty defined with obvious notation as:

2 .
T27 Ba 9 ()

( with ¢;, g2 standing for 8,v ) and

3
Z: 2
j{ Py} qi we (z)‘

In order to get a quantal description of the nuclear collective modes. one
should quantize H, a task for which there are no well-defined prescriptions in
the most general case. Using for instance the Pauli prescription, cne would get
for the \1b1amonal kinetic energ,v operator acting on a collective wavefunction:

% z: (ko) ™ 3 (e (&), 3 @

w hereas the rotatlonal kinetic energy would be simply given as

T, = % t :?::'/'3; (4)

Lz )

When actually dealing with the Bohr Hamiltonian, one has to take proper
care of the symmetries inherent to the problem?'?) and then one merely considers
one sextant in the (5,~) plane.

The diagonalization of the most general Bohr Hamiltonian is currently per-
formed either by a finite difference treatment of the derivatives which are asso-
ciated to T, 2¥) or by projection onto a suitably chosen ( and symmetrized )
basis?),

Apart from the quantization problem., the main theoretical task will con-
sist in evaluating microscopically the ingredients of the classical/quantal Bohr
Hamiltonian. There are indeed, seven scalar functions of # and  which need to
be determined: the potential V, three moments of inertia (S, 82, S3) and three
mass parameters (Bg g, Bs o, B~ +).

II. MICROSCOPIC DERIVATIONS OF BOHR COLLECTIVE HAMILTONIANS

II.1 DERIVATION FROM THE GENERATOR COORDINATE METHOD
The Generator Coordinate Method ( GCM ) starts from a set of Slater

determinants or BCS wavefunctions | ¢, > depending on a coordinate ¢ ( in
what follows we will restrict for the sake of clarity, to the simple case of a single
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such (‘oordinnte) The trial wavefunction | ¥, > to be used in a variational
approach 1s built as a linear combination of such wavefunctions

| §u7 = qu é’i‘l) | $q > (s).

The mixing amplitudes fo(¢) are determined through the variational prin-
ciple by the following Hill-Wheeler®) equation

fdq'< &, IH-E 3> f (4020 (7

or in a condensed vector form as

?(X« = E« \/f“ (?)

where

¥ (2.9') = <§1| H '%‘lo | (2) .
N (94 = &Pyl Pqr >

Whereas f, represents in some way the amount of correlations associated
>) is supposed to describe, its
interpretation as a collective wavefunction suffers from the fact that egs. (6-7)
are not standard eigenvalue equations due to the use of non-orthogonal | ¢, >
states. One therefore currently switches to an alternate representationc). For
that purpose, one may notice that the matrix A" being real ( if the | ¢, > states
are even with respect to time-reversal ) and symmetrical, it can be dlag()lld,]MCd.
As a norm matrix moreover, it has non-negative eigenvalues. One first rejects

elgenvectors with zero eigenvalues whose existence reflects the non-linearly in-
dependent character of the initial set of | &, > states. This allows one therefore,
to consider A”~!. One also can evaluate A''/? and A'=1/? in a straightforward
fashion from the so-restricted eigensolutions of A’

The collective wavefunction will then be defined as

?a = ‘Mﬂm 5« )

or more explicitly
%‘(r)- J'Jq (\/( It)"r g (9 @")-

tas then possible to orthonormalize the ¢, functions and the Hill- Wheeler
cquation (7) will become

2“3« = Eu e @)

where the Hamiltonian matrix fi is given in terms of the original H by

Lo YN " (“2).
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Now starting from the modified Hill-Wheeler equation (11) we will sketch
the derivation of the underlying Bolir hamiltonian cigenvalue equation. There
exists quite a broad litterature on this subject? 1) Here we will rather follow
the presentation of reference (11).

Let us first Wigner-transform the Hamiltonian matrix Li(r,r") defined in

cquation (12), into i, namely &
ARs <
Po(REk)= [dse” " A(ReE, -9 (W
where

R. (rer')/2 ().

Then, one can expand /iy, up to second order in itk, which corresponds to
an expansion on the range of the non locality ( rather than to a semiclassical

expansion ).
R(RAK: A, (R,0)+ Eh'Far @)

where
p=fk , Flr)= 28y (e).

.3"& (RIO)

Upon inverse V\’ignm transforming hé.
Ay = o (ke A, (2l @)

one gets with the truncated Iy, of equation (15):
? tl » "
L) = V(2) SO -v)- B F (rar) $7C- e (18)
P

where V(r) is the diagonal matrix element h(r,r).
Inserting the matrix h(r,r') of equation (18) into equation (11) ( the eigen-
value cquaﬁon for g, ), one gets the Schrodinger equation:

{ x 2r F(r)a
c(vo-E T]-Ef g =0 @y

wv

It clearly corresl.)onds to a quantized version of the Bohr collective Hamil-
toman upon considering F(7) as an imverse mass and V(r) as a potential. One
notices the existence of a corrective term to the potential. proportional to the
second derivative of B(r). The latter is usually referred to as a Zero Point En-
ergy (( ZPE ) corrective term. Now this Bolir hamiltonian eigenvalue equation is
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defined 1 terms of li 6 or Iy, ). To connect this equation with what is primarily
calculated (10 e the matrix H ) one generaliv relies on the Gaussian Overlap
Approximation ( GOA ) of the GCM. We will not treat that pomnt here and
merely refer to the previously guoted hitterature.

To sununarize this Sub-Section, one shiould mention that with the preceding
approach. one gets a quantized Bohr Hamiltonian with well defined ZPE guantal
corrections. On the other hand one should also add that a part of the approach
relies on the validity of the GOA to the GCM, for which some elements of
12 Moreover, the GCA is known'®) to vield mass
parameters that arc not correct unless double GCNM calculations are performed.

assessment are now available

11.2 DERIVATION FROM THE ATDHFB METHOD

Among the many derivations of a Bohr collective Hamiltoman from the
Adiabatic Time-Dependent Hartree-Fock-Bogolyubov ( ATDHFB ) method we
will concentate on the approach initiated by Baranger and Vénéroni'*1%). Here
also for the sake of clarnty we will consider only one single collective variable
even though it i1s easily extended to more. Similarly we will skip the pairing cor-
relations and briefly present merely the ATDHF version ( no pairing included )
of this derivation. A generalisation in order to treat these correlations is possible
and has indeed been achieved!®),

One starts from the TDHE equation of motion

[£.¢] = <%¢ (%)

where the one-body Hamiltonian /i is understood as hi(p), i.e. defined in
terms of the one-body reduced density matrix p. Now one makes an expansion
1 some veloceities ( see references (14.15) for more details ):

(=0 0t @,

Conversely one can make the same expansion for i(p) and get:

All quantities with an even ( odd resp. ) subscript are even ( odd resp. )
with respect to the thine-reversal operator. Separating the time-even and time-
odd parts of the equation of motion (20} one gets two equations. The first (
the even one ) s usnally referred to as the path equation. Irs solution will be
assumed to be well represented Ly maling the following approximations:

1) all the time-dependence of p s contained o single collective variable .
e

; n 9 ’
el®) = e[q('ﬂ , e=9q 2¢ (23)
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and therefore one has
2 ® - . 24
6=3% ea=i", b= @),

1) the family po(q) is defined from Constrained Hartree-Fock ( CHF ) cal-
culations, namely

{i,—‘AQ,(.}:O , 9c= Q(C,Q) (2s).

Then it can be shown!® that the time-odd equation takes the form of a
doubly Constrained Hartree-Fock equation

(8.+8,-AQ-4€,0, +¢,1=0 (2¢)

where one adds to the constraint on < ¢ >, a constraint on the expectation
value of an operator P which is univocally defined in terms of py(¢) ( and its
derivative with respect to ¢ ) and which can be shown to be conjugate ( in a
classical sense ) of the operator Q:

t(p [@e]) = F ‘ (23).

Having solved the double CHF problem, one may compute the energy as-
sociated with the solution p = pg + p; + p2 as an expansion again in ¢

Efe] - 0T+ £ M) q* (28).

In the above equation E[pg] is the potential energy, as resulting from the
simple CHF equation ( 1.e. with a mere constraint on < Q > ) and M(g) is «
mass parameter which in general depends on ¢ and is proportional to tr(pP/q)

It 1s therefore clear that we have been able to vield a classical Bolir Hamil-
tonian. The derivation which we have sketched here, prevides a generalization of
the Thouless-Valatin formalism!™ ( or routhian fermalism ) to collective modes
other thar. pure rotations. As opposed to the GCLI. one obtairs here good ma: 3
pararmecters '1) and furthermore full self-consistency corrections ( beyvond the
Inglis ecranking formula!®’ ) are appropriately incorporated.

On the other hand this classical Hamiltonian must obviously be quantized
and a choice has to be made on the ZPE corrective terms. For those operations.
ws already pointed out | one lacks a priori theoretical guidance within the mere

ATDHFEFD framework.

IT1. A SAMPLE OF RESULTS
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[11.1 TRANSITIONAL NUCLEI

The calculations reported in this Sub-Section have been performed within
the ATDHFB framework described in Sub-Seciion II.2. The Bohr Hamiltonian
has been quantized according to the Pauli prescription with no ZPE corrections
included. The CHF calculations have used the Skyrme SIII effective nucleon-
nucleon interaction'?). Pairing correlations have been taken care of by means of
a BCS approach with constant pairing matrix elements. Whereas scif-consistent
P opcrators have been computed and used, one has merely here evaluated Inglis
cranking mass parameters. Moreover the so-called Expectation Value Method
has been substituted to the full HF plus BCS approach for the static calculations,
making use of self-consistent semiclassical solutions ( including terms up to the
fourth order in % in an expansion a la Wigner- Kirkwood ) associated with the
considered two-body force. Some of the results discussed here, have already
been published elsewhere?!).

Two different regions of transitional nuclei will be considered here ( A ~ 70
and A ~ 180 ).

The low-lying experi-1ental spectra of "*Ge and "°Se are qualitatively well-
reproduced ( see reference (21), figure 2 ). An interesting output of such calcu-
lations is obtained when plotting the probability density in the collective plane
(8,7), namely plotting | ¢o(B,7) |*. In that respect, one should bear in mind
that in order to have directly interpretable density plots, one generally consid-
ers cartesian integration measures for the density functions. To that effect the
eigenfunctions must be multiplied by a factor proportional to (3;3233)!/? which
identically vanishes for v = nn/3 , (n = 1,...,6). Therefore, a nucleus which
should be considered as rather prolate ( oblate resp. ) will have a maximum of
the density near the v = 0 axis ( v = 7 /3 resp. ) but will of course never have
such a maximuin on this axis.

In the "*Ge nucleus, one has obtained ( see reference (21), figure 3 ) density
distributions almost unaltered at low spin within the ground-state band ( no
centrifugal stretching or anti-stretching ) and a one-phonon state in the so-called
B-band which exhibits the expected feature of a single node near the v = 0 axis.
( In the absence of results on transition probabilities, band assignments have
been made by mere energy considerations confirmed, if needed, by a comparison
of the IX-component content.)

Systematical calculations in the platinum region arve currently performed.
The excellent result obtained for the 6Pt has been aiready reported ( sce
reference (21), figure 2 ). We have extended such calculations to the 1*°Pt and
16t nuclei. Whereas for the former - as seen on figure 1 - the agrement with
experimental energies is very satisfactory. it 1s found to be hardly the case for the
0Pt where the first 2% level is significantly too low. missing thus the occurence
of & new transitional region below Py as suggested by the data.

The density probability contours of the /Pt exhibit a very interesting
plhenomenon. Wlereas the yrast bhand. starts with a rather oblate shape for
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I = 0,2, this shape becomes prolate for I > 4. Conversely, the so-called f#-band
starts as a one-phonon state for I = 0 and gradually corresponds to an oblate
solution similar to what had been obtained for the ground state. This is thus a
quantitative illustration of the shape transition often advocated in this region.

II1.2 SUPERDEFORMATION AT LOW SPIN

The calculations which will be briefly reported here, have been obtained by
two of us ( I. D. and J. L. ) in collaboration with J.P. Delaroche and M. Girod.
The results at spin zero have been already published??). They correspond to the
approach discussed in Sub-Section II.1. Static calculations have been performed
within the HFB framework using the D1S Gogny effective force?®) which is not a
corrected zero-range force as the Skyrme force and reproduces well at the same
time HF-like and BCS-like matrix elements. To approximately take care of the
problem of the GCM masses, the mass parameters which have been included,
are of the Inglis type ( making use however of simplificd non self-consistent P
operators ). ‘

The existence of superdeformed local minima in the potential energy sur-
faces in the region A ~ 190 has been predicted long ago both in Strutinsky -like
calculations?®) or in HF plus BCS calculations®®). i has been recently revisited
theoretically?6=28) and the theoretical predictions have been confirmed after-
wards experimentally?®) ( see the contribution of E. Henry to this Conference
for an update of this fast growing experimental domain3®)).

The characteristic feature of potential energy curves (for axially symmet-
rical shapes ) in tihe region of nuclei with 4 ~ 190 is the existence of a pocket
in the ascending part of the fission barrier which corresponds roughly to a mass
quadrupole moment of about 45 barns. The relevant enerqy parameters are the
e.citation (in a purely static sense here, with the inclusion of ZPE corrective
terms though ) energy E* and the inner barrier energy Ep ( measured from the
ground state ). Upon including ZPE corrective terms these energies have been
calculated to be ( see reference (22), figure 1 ) in '%%Hg, '92Hg and '?4Hg:

E* ~ 1.5, 3.0, 5.0 (MeV)

Ep ~ 95.5,7.0,95 (MeV).

Inserting full potential energy surfaces as well as the calculated mass pa-
rameters and moments of inertia, one gets eigensolutions of the corresponding
Bohr Hamiltonians which present the following features for ¢, g. the 07 states:
1) ground states «ypical of transitional ( slightly ) oblate nuclei, 11) at values of
excitation energies of 4.4, 5.4, 6.9 MeV for the 99Hg, ?Hg and '""*Hg nuclei,
one gets states that are mostly located in the isomeric well ( see reference (22),
figure 4 ). To be specific, if one considers the part of thie probability in the col-
lective space corresponding to 3 > 0.4, one gets 91%, 98% and 96% for cach of
the above listed nuclei in this particular state. These conclusions have recently
been extended to finite spins. Indeed rotational hands built on the previous ¢+
states are found. In "99Hg. the corresponding superdeformed band crosses the
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yrast ( normal ) band around I = 10,12. This spin value seems to be too low
in view of recent experimental data®®) and can reflect the fact that the static
excitation energy ( E* ) values in these calculations are found significantly lower
than in other dynamical calculations!2:31),

IV. CONCLUSION

Two different derivations in a microscopic fashion of collective Bohr Hamil-
tonians have been recalled. None of them is without problems. It is convenient
at this point to answer the following question: arter all why not go on and per-
form double GCM calculations which would be purely quantal and free from
some mass problems? It is unfortunate that at this time, one is at best able
to make two dimensional GCM calculations!?). On the other hand, to treat
correctly the quadrupole motion which carries most of the low-energy collective
motion, one needs, as it is well known and recalled here, to consider five degrees
of freedom. This is the reason why we must go through the above mentionned
difficulties.

It is however clear that in the present status such calculations are able
to yield a very good qualitative reproduction of data. How quantitative the
qualitative agreement is indeed, time will tell. It is particularly appropriate in
this context to emphazise the crucial role played by pairing correlations for which
such calculations constitute a very demanding test. The obtained reproduction
of experimental spectra for rough that it may be deemed, is nevertheless very
significant in view of the absence of anv ad-hoc parameter fitting except for the
torce parameters chosen many years ago in a different context, i. e. to reproduce
essentially saturation properties ( let us also recall that apart from two pairing
parameters, the Skyrme SIII force has only six parameters for the whole chart
of ruclides ). Finally, the obvious point where some effort should be devoted is
undoubtedly an improvement of the mass parameters in use which are presently
somewhat too crude.
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