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0, Introduction and Overview 

The following report describes the activities carried out at 
D̂ .!.:1 '̂-'.. U ,!' I QT contract with Lawrence Livermore Laboratory in the 
area of compact torus applications studies. 

The compact torus (CT) device has been proposed for use in 
some applications which are of interest in Laboratory programs in 
the areas of pulsed power and inertial confinement fusion. These 
applications involve compression and acceleration of CT plasmas. 
The RACE (Ring Accelerator Experiment) experimental program at 
Liverraore has been initiated to study these applications. 

The work reported here involves studies of plasma physics 
and other aspects of these compact torus applications. The 
studies conducted identify specific problem areas associated with 
the CT device and examine these areas in some detail. 

This report contains studies of three particular problem 
areas of the CT applications. These three areas are: (1) the 
general nonlinear properties of the CT as a magnetohydrodynamic 
(MHD) equilibrium, (2) particle simulation of the compression of 
the C>\ with a focus on the non-MHD effects, and (3) nonlinear RF 
intei •T.tion problems in the CT. 

This report is organised into three sections. Each section 
contains the most important results in each of the three areas 
outlined above. A section of comments and conclusions follows. 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United Sui ts 
Government. Neither the United Stales Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents thai ils use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark 
manufacturer, or otherwise docs not necessarily constitute or imply its endorsement, recom-
mendalion, or favoring by the United States Government or any agency thereof. The views 
and opinions or authors expressed herein do not necessarily slate or reflect those of the 
United States Govern,ncnt or any agency thereof. 
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1, Nonlinear Properties of Compact Toroids 

The most interesting aspect of existing CT plasma 
experiments is the observed longevity of the CT plasmas. The 
plasmas are known to exist for periods which are long compared to 
Alfven times, which is indicative of absence or suppression of 
MHD instability (Ref. 1). CT plasmas have also shown stability to 
translation through a magnetized cylinder, as was demonstrated in 
the FRX-C experiment at Los Alamos. 

Two aspects of the physics of the CT device that support the 
experimental observations should be mentioned here. First, the CT 
plasma state represents a Taylor minimum state. This means that 
the CT plasma configuration is one which has minimum magnetic 
energy for a given value of the so-called magnetic helicity, K, 
which is defined as: 

K = Jd'xt-B (1) 

Here A is the vector potential, definedj so} that t *y*t . The 
minimization of the magnetic energy W*jd xB /2 with constant K 
results in an Euler equation of the form: 

•+• •+ + 
7* B - XB 

where is the helicity constant such that 

/ d'xJ-ft 2W 

The solution to this eigenvalue problem for boundary 
conditions such that the magnetic poloidal flux vanishes on a 
sphere of radius a is given by: 

B = VVJJ x v<p +a.m , ill. <|)0sin36 /r7a~ J 3( ^r) 

Here the helicity eigenvalue Xic chosen such that Xa is a root 
of the Bessel function, and the first nontrivial root is at 
A9 =4.49. 
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This solution has been analyzed theoretically by Bussac and 
Rosenbluth (Ref. 2), who showed that internal MHD modes are not 
unstable in this configuration, and that only singular modes at 
the plasma edge are unstable. These modes are presumably 
stabilized by such non-MHD features as finite ion Larmor radius 
and by line-tying. 

Another aspect of the physics of the CT device which may 
account for its longevity is the similarity of its structure to 
known vortex soliton states in plasma (Ref. 3). These states are 
cases where the dispersive properties of the Alfvenic medium are 
balanced by the nonlinear terms in the MHD equations. In Ref. 3, 
the authors use a special hybrid model of the plasma response 
that retains the dielectric terms responsible for ion-acoustic 
waves as well as the usual MHD flow-like terms giving Alfven wave 
roots. They then analyze these equations in a strictly two-
dimensional coordinate system (i. e. infinite in one dimension) 
and find that with a simplifying assumption (with one component 
of the A-potential stream function negligible comapred to 
another) that the equation set then is an exact duplicate of the 
two-dimensional Rossby wave equation arising in oceanography 
(Ref. 4). 

There are several problems in the direct comparison of the 
vortex soliton found in Ref. 3 and the case with the propagation 
of the CT. The most obvious is that the solution in Ref. 3 is a 
two-dimensional vortex, with a stream function expressed in terms 
of first-order Bessel function in radius and a term linear in 
radius: 

f 8-Uk'i 
x * a sine A^fltr) ^(-j^ -) " si- (2) 

The comparison with (1) is interesting, however, in spite of 
the different geometry, A more significant difference is the 
requirement that the z-component of the vector potential is 
negligible compared to the perpendicular components. Secondly, 
the soliton of Ref. 3 must propagate obliquely to the magnetic 
field, and that propagation at angles small with the magnetic 
field requires that the perturbation is very samll. Thus the 
solution is evidence of solitonic states for closed plasma 
vortices, but does not represent the CT state very well. 

In an attempt to find more general solutions in the MHD 
domain, we expand on the original method used by Larichev, et. 
al. (Ref. 4) for derivation of the Rossby soliton. 
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Starting with the Navier-Stokes equation in cylindrical 
coordinates, assuming cylindrical symmetry and no fluid velocity 
in the azimuthal direction (ug =0): 

R - R R Z~R -"* • JB 71 
R e Z 

\ + U U R + u u z 

(3) 
Z R Z Z Z 

u t + a u R + u u z 
^K + ¥ R 

We now substitute the potential functions %ani i|i for the 
velocity stream functions and poloidal magnetic flux functions, 
respectively. The basic velocities and fields are then defined in 
terras of these potentials by: 

A A 

t ~ ~ - 2 

~R XZ + I h 

B **z + R*R (4) 

We then substitute these into the Navier-Stokes equation, 
first imposing the requirement that solutions carry time 
dependence only in the form f(r,z,t)*f(r,z-Ut). The resulatnt 
equations are: 

ura + rz rz 
T}Z lR ' T'B 

x 7 x. 

-vh 
Tl ' Z 

WW 
WW. * M 

R ' l R >Z 

•R ' 'R ' R 
t 

•R ' l R ~ ' Z 

PR 

-i(fc 

i M * * ! 

(5) 

r) (6) 

We now transform away the time-like terms by forming an 
2 

effective stream function x'(R.Z)= X(R.Z) + 1/2UR . With this 
substitution, we now obtain the more balanced form: 

pRlx'.a] - ^ + R'PR 

ptUx'.2!1 -<I>JA*I> R'P, 
(7) 
(8) 

Here the bracket operator [A,B] is a Lie commutator or Poisson 
bracket on the space R,Z, defined by: 

[A,B] = A R B Z - A Z B R (9) 
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Differentiating Eq.(7) by Z and equation (8) by R and then 
adding the two equations, we arrive at the following form: 

F x ' - F l Jz + (R[X',/] ] R = [iM«1i] -2RPZ (10) 

We now simplify Eq, (10) by the observation of another 
bracket equation, namely: 

i 

] = 0 
R . R (11) 

With this substitution, we have the suprisingly simple form: 

p[x'.A*xl = t * .A** ] -2RP* Z (12) 
or alternatively 

P[ X , _ 1 ] n [ UJ .__] 
R' R 1 

This equation forms the basic Lie group of solutions to the 
nonlinear cylindrical MHD equations shown above. For exanple, 
notice how the Hill's vortex solution forms a solution for both 
the stream function, when no magnetic terms are present, or as a 
stationary HHD equilibrium, when no flow terras are present. This 
solution is given by: 

X 2 2 2 
4 - bS ( 1 - R - Z ) (13) 

Here b is a constant determined by the flow velocity at 
infinity for the one solution or by the magnetic field at 
infinity in the other. General classes of solucions are formed by 
finding particular forms from the bracket equations and 
superposing homogeneous forms from the roots of the brackets, 
such as: 

A*<Dj= tylJj ij) = % +11)! 

A*Xi= A xXj , X = Xo +Xi 
(14) 
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We note the interesting result that the "homogeneous" terms 
in the solution are the force-free Taylor solution j, for both the 
stream function and for the flux function. Thus the Taylor 
solutions in this geometry form the basis for the transformation 
of a solution to the coupled equations into another solution 
using the Lie method. 

All allowed solutions of this type must also solve the 
magnetic diffusion equation, which can also be written in Lie 
form by the commutator relation: 

t X, *] = BR 
(15) 

Solutions admitted by this bracket equation have the form: 

if) = «X + YR' 
(16) 

We can now form self-consistent flow equilibria by solving 
the coupled set of bracket equations. Equally importantly, we can 
identify the transformation properties of the solutions through 
the identification of the Lie brackets involved. 

At the time of this report, a thorough study of the 
solitonlike solutions to equations (13) and (15) of relevance to 
the moving compact toroid problem has not been undertaken. 
However, the mathematical technique outline here certainly will 
aid in the development of a full mathematical model of the motion 
of solitonlike, 3-dijnensional vortex states. 
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(18) 

(19) 

g2 J e c 2 i e 

The particle • positions and velocities are advanced by a 
leapfrog technique, using a second-order accurate Boris 
integrator. The field equations are developed from.the particle 
velocity and position data using a predictor-corrector technique. 
The algorithm is vectorized only in the outer loops, and the 
block structuring is not as elegant as some newer codes. As a 
result, the run3 take typically twenty minutes of C-machine time 
for 1000 timesteps. 

The compression was simulated by modifying Freidman's 
original algorithm by the inclusion of movable boundary 
conditions in the fieldsolve package, The A-theta laplacian 
inversion routine is done using a successive over-relaxation 
technique in subroutine S0R9. Here the boundary condition at the 
wall (E-tan=0) was enforced by setting the vector potential in 
the cell just outside the wall equal to the inverse of the A-
potential in the cell just inside the wall. In this way, matrix 
inversion could be effected in a nonsingular way, By changing the 
cell at which this calculation is done, the boundary can be 
causes to effectively move. In order to retain Gallilean 
invariance, however, the new boundary condition must be set as 

E + v xB -0. 
where v is the velocity of the wall. However, in the parameter 
range of interest in this problem, the difference between this 
boundary condition and the simpler one E~tan*0 is negligible, and 
the simpler boundary condition was rsed in the code. 

A more important restriction in the accuracy of the 
simulation is the requirement of resistivity in the algorithm. If 
the resistive term in the Maxwell equation above is turned off, 
anomalously large electric fields will be generated in the code. 
This is due to th> predictor-corrector algorithm, which is not 
stable against high-frequency perturbations in the ion current.If 
the wall motion generates high-frequency pulses or current 
spikes, the predictor-corrector algorithm may not converge 
correctly, and the result is a massive dump of particles and 
field energy. The inclusion of a small amount of resistivity can 
overcome this problem, since it tends to make the dielectric 
constant resistive on a short timescale, while retaining the 
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overcome this problem, since it tends to make the dielectric 
constant resistive on a short timescale, while retaining the 
basic magnetoinductive character of the dynamics on the longer 
timescale. 

With these caveats, the sample results of the simulation for 
two different compression rates are shown here as Figs. 1 through 
C1J. From these simulations, one can notice some qualitative 
features tnhat differ from the previous MHD simulations by 
Eddleman (Ref. 6). In both cases, the compression of the plasma 
caused it to lengthen. The five-to-one compression in wall radius 
caused a three-to-one increase in the aspect ratio. In the MHD 
studies, the compressions were nearly self-similar, and the 
aspect ratio stayed relatively constant. We interpret this to be 
caused by some non-adiabatic effects in the compressions applied 
here. For the two cases h e r e ^ J «1.5 and \/J(,Z »7.8. While this 
may seem long enough to retain good conservation of the magnetic 
moment invariant, it is probably sufficient to destroy the 
bounce-averaged flux invariant, since the compression time is 
short compared to ion bounce times. It remains to be seen, 
however, if the other components of the magnetic field would 
change this, since in general the RACE compact toroids carry some 
toroidal fields as well. This invites the possibility that 
poloidal electric fields would be present. However, a high-beta 
MHD equilibrium such as Hill's vortex also shows self-similarity 
during compression, and that is the MHD fluid analog of the 
particle equilibrium used in our EINGHYBRID simulations. Thus the 
self-similarity seen in Eddleman's runs may be due to their MHD-
like properties rather than their inclusion of toroidal field. 

As another observation on the two simulation runs shown 
here, note that the faster of the two compression runs shows some 
signs of doublet formation. The particle density clearly peaks 
off the midplane ir this run. There is some evidence of two 
separate 0-points at the two density peaks in the poloidal plane, 

This is a behavior that is not allowed in ideal MHD, as it 
implies a magnetic reconnection., It is perhaps significant that 
this process only happens in the faster compresssion, for this 
run contains dynamical frequencies well above the Alfven time. 
Since the particle simulation codes of this type have shown 
topological changes of a type seen only in resistive MHD, they 
frequently carry similar physics. In the particle simulation, the 
virtually infinite degrees of freedom accompanying the coupled 
set of ion equations of motion and Maxwell's equations can break 
the symmetry of MHD in a way resembling resistive MHD. Thus the 
reconnection process here proceeds in a way similar to the 
classic Kadomstev reconnection process that is frequently 
employed im resistive MHD theory. 

On a practical note, the occurence of doublet formation in 
the accelerated compact torus studies could be very detrimental. 
Since the presence of two 0-points implies that fieldlines at the 
radius of ^he null but on the raidplane now connect to flux 
surfaces on the outside of the null, particle energy now has a 
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shorter trip to make before it is transported to the wall. Thus 
doublet formation is likely to be accompanied by increased energy 
loss to the wall. This in turn implies that resistive losses will 
be higher, and thus the effective L/R time is shortened. Thus 
experimentally, doublet formation vould appear a9 anomalously 
fast ring decay. This may place an upper bound on the compression 
rate, and thus the velocity at which the CT plasma enters the 
conical flux conserver. 
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3. Nonlinear RF Properties of Compact Toroids 

In one of the applications of.the compact torus planned in 
the RACE experiment, the CT is to be used as a moving piston to 
pulse the RF energy out of a microwave resonant cavity charged 
with large amplitude RF fields. In this scheme, the CI is 
expected to move into the cavity with a velocity on the order of 
0.1c. The resulatnt J-conservation of the photon continuum in the 
cavity will cause the RF frequency to be upshifted, and the 
stored energy increased. As the frequency is raised a coupling 
waveguide becomes p.opagative rather than evanescent, and the 
cavity's RF energy is quickly transferred into the waveguide. In 
this manner, kilojoules of stored RF energy can hopefully be 
pulsed in a few oscillation periods, which results in power 
levels in the hundreds of gigawatts. 

It is crucial in this scheme that the CT plasma remains 
relatively impenetrable to the RF energy stored in the cavity. 
The linear coupling relations determine that the CT plasma will 
not couple well to the RF if there is an unmagnetized sheath in 
front of the equilibrium with a sufficiently high density to 
provide a plsama-frequency cutoff. However, some tunnelling may 
occur, due to the finite sheath thickness, and it remains to be 
seen whether the CT device is absorptive to the leakage RF 
fields. 

For the parameters of the experiment,with densities on ti ; 
order of 1,0 E 23 per cubic meter, and temperatures on the orde. 
of 100 eV, with magnetic fields on the order of 150 Tesla, the 
pump frequency chosen (10,0 GHz) falls within the device's lower 
hybrid resonance at some point in the interior of the CT. Thus we 
have commenced a study of nonlinear RF effects at the lower 
hybrid frequency in the CT, A linear ray tracing study of the 
lower hybrid wave propagation in the CT was done several years 
ago by the investigator (Ref. 7), and the RF waves are found to 
propagate to a lower hybrid resonance inside the device. The 
analysis did not include the absorption mechanism at resonance, 
which is a rather complicated process at lower hybrid resonance. 
However, the study did show the accessibility of the lower hybrid 
energy to the resonance in the CT geometry. 

In the present study, we present some details of the 
nonlinear processes in the lower hybrid band in the CT plasma. 
The description of the nonlinearity ia done by identifying the 
coupling modes for parametric decay instabilities in terras of 
the parent and daughter waves, and to calculate the threshold 
electric fields required for excitation of these parametric 
decays. This section of the report was done with the assistance 
of garduate student Iyad Dajani. 
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A wave in a plasma can be thought of as a time-dependent 
equilibrium state, II such a system is unstable, it is called 
parametrically unstable, the "parameter" being the amplitude of 
the single wave. Parametric excitation of coupled waves can be 
described as follows: Consider two waves with frequenciesiui,a)2 . 
Consider the interaction of these two waves with a third one of 
frequency too such thatcuo*^™. Then energy can be converted from 
the third wave ( u.) to the other two. 

In order to analyze possible coupling schemes, we first 
construct Stokes diagrams , showing vs. k for the initial pum 
wave. These diagrams are shown as Figures IS and 19 for the cold 
propagation case and the warm propagation case. In both cases, 
the digrams are plotted for three values of the propagation 
angle expressed as cos^Q, Note that only for rather small angles 
relative to normal, i. e.O^a) ,are the lower hybrid waves 
propagative. x 

Here we consider decay into quasi-ion modes. These are wave 
modes analogous to ion Bernstein waves, but they are waves that 
do no exist without the perturbing electric field from the pump 
wave. The perturbing electric field, in effect, causes the ion 
"temperature" required to excite the BernsteJ.n-like waves, The 
waves are analyzed in the domain where T,. < T_ and where i e The threshold condition for decay of the pump wave 

dipole approximation has been into quasi-ion modes in the 
obtained by Porkolab (Ref. 8): 

^o 
pi 

1 + 
ce 

(21) 

where 

E 0 
u = — 

and 

\ -
kT„ K) un v 2 (22) 

E (w ) = (-; . cose 
lm L \$l 

1 

"Pi 
2 

0) y. + J _ sin 6 )Ii+ Pi 1 + 3" w2 A D k l 1 

exp 
tb' 

2 
-*2 
•k * 2 ce -« 2 

Here vthe = ^fa is the electron thermal velocity, and \ is the 
Debye length 
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We now investigate the matching conditions required for 
coupling of the lower hybrid wava to the quasi-ion modes. Using 
the warm-plasma dispersion relation for lower hybrid waves as 
derived by Stix (Ref. 8): 

e H b + A N * + BN - 0 , < 2 4 ) 

where the coefficients A, B, and C are: 
A = l + X ( y - a ) , B- -UX M*< l - ( A + XY) K " ), 

^ i H e • y ' K X i 

II 
(25) 

We can now proceed to obtain a numerical estimate for the 
electric field amplitude given by Porkolab's estimate for the 
parameters of the 1WCE experiment. For hydrogen ions and a 
propagation angle cos g- 1.0 E-5, we obtain Sj • 2.0 kV/m, This 
results in a threshold power density of 5 megawatts per square 
meter. As the electric field amplitudes in the proposed RF 
compressor experiment are on the order of 1.0 E8 volt per meter, 
we see that isolation better than 100 dB between the plasma 
interior anc the RF compression fields would be required in order 
to negate the effects of parametric instability. 
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