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Abstract

Natural convection along vertical surfaces occurs in the oil filled 
caverns in the Strategic Petroleum Reserve (SPR). These caverns are 
located in large salt domes where the geothermal temperature difference 
over the cavern height of up to 2000 feet can be 30°F with the hotter salt 
at the bottom of the cavern. Due to the coupling of the heat transfer 
between the salt and the fluids in the cavern, heat transfer to the oil and 
the resulting natural convection can occur during the entire anticipated 
storage period of up to 30 years. The wall and fluid conditions are 
spatially nonuniform due to the geothermal temperature difference and fluid 
temperature stratification.

The Modified Local Similarity (MLS) method has been developed and 
applied to natural convection along a vertical flat plate with variable 
surface conditions and temperature stratification for application to 
natural convection in SPR caverns. The MLS method explicitly conserves 
energy along the plate. The boundary layer velocity and temperature 
profiles are evaluated by the local similarity method with appropriate 
values of the similarity parameters. The MLS method is a significant 
improvement to the local similarity approach and is a useful approximate 
tool for analyzing natural convection on vertical surfaces for nonsimilar 
conditions.
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I. Introduction

» Natural convection along vertical surfaces occurs in the oil filled
caverns in the Strategic Petroleum Reserve (SPR). These caverns are 
located in large salt domes where the geothermal temperature difference 

» over the cavern height of up to 2000 feet can be 30°F or more. The hotter
salt is located at the bottom of the cavern; this configuration will cause 
natural convection in the enclosed fluids as a result of buoyancy forces. 
Since the heat transfer between the salt and the fluids in the cavern is 
coupled, heat transfer to the oil and the resulting natural convection can 
occur during the entire anticipated storage period of up to 30 years. SPR 
cavern wall conditions are nonuniform due to the geothermal temperature 
difference. In addition, the fluid temperature is nonuniform owing to the 
thermal stratification of the oil. Thus, the wall conditions and the 
ambient fluid temperature are both variable.

The methods in general use for the analysis of natural convection are 
the integral, similarity, local nonsimilarity, and finite difference 
approaches. In addition, approximate methods have been developed by 
Raithby, et al. (1975, 1977, 1978) and by Lee and Yovanovich (1987, 1988). 
Each of these methods is discussed below.

The integral method has been used by Sparrow (1955) for certain 
prescribed variations of wall temperature and wall heat flux. While the 
results compare well to similarity solutions for constant wall heat flux, 
no comparison for nonuniform wall temperature or heat flux is known. The 
integral results reported by Sparrow (1955) will be compared to the results 
of other methods in this report for the applicable cases. In general, the 
weakness of the integral approach is that the velocity and temperature 
profiles have to be assumed. While the assumed profiles may be adequate 
for normal conditions, the effect of changes in the boundary conditions are 
not reflected in the profiles. In addition, acceptable profiles for 
turbulent flow conditions are not available.

The similarity method is a powerful boundary layer approach. In this 
method, the boundary layer partial differential equations (PDEs) are 
reduced to ordinary differential equations (DDEs) through the introduction 
of similarity variables. Unlike the PDE set which has to be solved for 
each location along the plate, the ODE set only has to be solved once for a 
given set of parameters. The resulting solution is valid along the entire 
plate. Unfortunately, similarity solutions only exist for a restricted 
number of wall temperature variations and fluid temperature stratification.

As an approximate solution to other wall and fluid temperature 
variations, the similarity method can be applied locally; this approach is 

^ called the local similarity approach. The approach allows for rapid,
though approximate, evaluation of natural convection phenomena. However, 
the values of the similarity variables are chosen based on the type of 

„ boundary conditions imposed without regard to the variation of these
conditions along the plate. As shown by Sparrow and Gregg (1958), this 
technique may give poor results. They applied similarity results from an

1



isothermal wall to a variable wall temperature case. The resulting total 
heat transfer for the plate was significantly in error including cases 
where the direction of heat transfer was incorrect. Other applications of 4
the local similarity approach (Kao, et al. (1977)) have shown large errors 
in certain cases.

»

Local nonsimilarity methods based on the work of Sparrow, et al.
(1970, 1971) and Minkowycz and Sparrow (1974) have been used for natural 
convection as presented by Kao (1976) for variable wall conditions. Chen 
and Eichhorn (1976) used this approach for a constant temperature wall in a 
variable temperature fluid. In general, the local nonsimilarity results 
compare well with data and with the results from numerical calculations.

Finite difference procedures are also available as exemplified by the 
methods presented by Cebeci and Bradshaw (1984). Results from a numerical 
approach using finite differences have been given by Kao, et al. (1977) for 
variable wall temperature and wall heat flux cases. The finite difference 
approach is considered to be the most accurate technique for the analysis 
of natural convection boundary layer flow.

Approximate methods have been proposed by Raithby, et al. (1975, 1977,
1978) and by Lee and Yovanovich (1987, 1988). Neither of these methods 
were considered for use in SPR since neither method reduces the similarity 
solutions for similar boundary conditions. Differences of up to 20% are 
noted by Raithby and Hollands (1978) when their method is compared to 
similarity solutions. The method of Lee and Yovanovich (1987, 1988) shows 
similar differences and has the added disadvantage of a complicated form.

Analysis of natural convection in SPR caverns involves highly 
turbulent conditions with Rayleigh numbers of up to 1016 and long transient 
times of up to 30 years (Webb (1988)). Therefore, finite difference and 
local nonsimilarity methods are impractical due to long estimated computing 
times which result from the need to recalculate the boundary layer results 
each time step. The integral method could be used for SPR, although the 
assumed profiles are a problem, especially for turbulent flow conditions.
The wall and fluid temperature variations preclude direct use of the 
similarity solutions. The local similarity method would be appropriate for 
SPR in that the boundary layer results can be tabulated for use at each 
time step; therefore, the answers do not need to be redone each time step 
and the resulting calculations would be fast. The problem, however, is 
that the errors in heat transfer rates, including the direction of heat 
flow, can be significant even for simple cases.

If the heat flow or energy conservation problems noted for the local 
similarity approach can be corrected, the method would be ideal for SPR 
use. The present study corrects this problem by modifying the local f
similarity approach to explicitly conserve energy as the boundary layer 
develops along the surface. This Modified Local Similarity (MLS) approach 
is developed and compared to results from other methods in this report. •
The method has been used in the development of the SPR velocity model as 
summarized by Webb (1988).
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II. Formulation

Consider natural convection boundary layer flow along a flat plate as 
depicted in Figure 1. The boundary layer energy equation can be integrated 
along the plate using the local boundary layer velocity and temperature 
profiles. For the present study, the boundary layer profiles are 
calculated by the local similarity method. The local similarity method has 
two parameters which are mathematical descriptions of the temperature 
variation along the plate and in the surrounding fluid. In addition to 
being mathematical parameters, these variables have physical significance 
in the boundary layer problem with regard to overall conservation of 
energy. The global energy conservation equation can be written in terms of 
the local similarity parameters to ascertain their equivalent values for 
nonsimilar conditions. The global energy equation and the evaluation of 
the boundary layer profiles are detailed below.

A. Global Energy Equation

The boundary layer velocity and temperature profiles along a plate 
will vary with distance x. Considering conservation of energy per unit 
width of the plate as depicted in Figure 2,

or

m. c i. + q Ax +1 p 1
- m2 cP T2

V cp Tf
(1)

*1 cp (T1 Tf) + q2 Ax ™2 Cp (t2 ' V

where

(2)

tt II
q dx (3)

and TJ is the average temperature of the fluid entrained into or ejected 
from the boundary layer. Note that the fluid specific heat, cp, is assumed 
to be constant.

The average temperature of the entrained or ejected fluid will be 
assumed to be equal to the local environmental fluid temperature for this 
analysis. The velocity boundary layer thickness is larger than the thermal 
boundary layer for Prandtl number fluids of order 1.0 and higher, so any 
fluid exchange will be at the environmental temperature if local similarity

3
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Figure 1. Boundary layer coordinates.
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Figure 2. Boundary layer global energy conservation.
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is assumed. This assumption breaks down for low Prandtl number fluids such 
as liquid metals where the similarity solution gives a larger thermal 
boundary layer than velocity boundary layer (Gebhart (1985)). «

The average boundary layer temperature, T, is the fluid temperature at 
that location plus the average difference in temperature of the convected 
fluid over the environmental value, or

u (T - T (x)) dy
T - T (x) + -J------r--- --------- . (4)J u dy

Combining the above equations results in

®1 cp - Tf) + q2 Ax

m2 Cp (Tf2 ' Tf +
[ u (T - Tf(x)) dy

Iu ^
-)• (5)

The above equation is general; any restrictions as to the orientation, 
etc. are from evaluation of the boundary layer parameters. Knowing the 
conditions at location 1, the wall heat flux, and the environmental fluid 
temperature, the above expression can be easily evaluated if the boundary 
layer velocity and temperature profiles are known. For this study, these 
profiles will be based on local similarity as discussed in the next 
section.
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B. Boundary Layer Profiles

The boundary layer profiles for use in the global energy equation will 
be evaluated for laminar natural convection over a nonisothermal vertical 
flat plate in a variable temperature fluid medium. Invoking the Boussinesq 
approximation with otherwise constant properties and neglecting viscous 
dissipation and the pressure-work term, the steady-state conservation 
equations are (Jaluria (1980))

Continuity

3u 3v
dx dy 0

x-Momentum

u 3u
dx + v *3u

dy g fi (T - T (x)) + 1/
dy

Energy

u 3T
ax + V ar

dy

(6)

(7)

(8)

The above conservation equations can be integrated across the boundary 
layer from y-0 (wall) to y-® (environment). Since the velocity v is 0. at 
y-0. and at y-®, the integration results in the following (Jaluria (1980))

Momentum

-I- J u2 dy - g „ J <T - Tf(x» dy - , -§^

Energy

-|r J u <t - Tf<’t>) dy + J u dy " ' “ T7

(9)

(10)

where the second term on the LHS of the energy equation accounts for 
temperature stratification of the environmental fluid. The continuity 
equation has been used in the development of the above integrated 
equations.

Two energy equations are considered in the present analysis. The 
first energy equation is the global energy equation (5), which is concerned 
with the energy in the boundary layer as it grows along the plate with 
respect to x. The second energy equation is the local energy equation (10)

7



which is related to the energy in the boundary layer at location x only. 
For energy conservation, both equations must be satisfied. The global 
energy equation must conserve all the energy added to the boundary layer up 
to the location x, and the local energy equation must conserve the energy 
added to the fluid from the wall at location x.

In the present analysis, similarity variables will be used to rewrite 
the two energy equations. These equations will then be combined to lead to 
relationships for the similarity variables that must be satisfied for 
global and local energy conservation.

According to Sparrow and Gregg (1958) and Yang (1960), similarity only 
exists for two specific distributions of the temperature difference between 
the wall and the fluid: the power-law and the exponential distributions. 
In each case, any variation in the fluid temperature must be of the same 
form as the wall to fluid temperature difference. Since the two 
distributions lead to different results, each will be discussed separately.
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1. Power-Law Distribution

For the power-law distribution, the temperature difference between the 
wall and fluid is a function of the distance x to a power, or

AT(x) - T (x) - T.(x) - N xn. (11)w r

For similarity, the fluid temperature variation must be of the same form, 
or (Jaluria (1980))

Tf(x) Tr
J N 
4 n

nx J
4 n AT(x) (12)

where the reference temperature, Tr, is the fluid temperature at x - 0. If 
the fluid temperature is constant, J is equal to 0.

The stream function and similarity variables for this case are 
(Gebhart and Mollendorf (1969))

1

Gr i n
4 (—2r~)1/4 ^ f(,?)

Gr i ///____JL^ 4 ; X

*(f?)
T - Tf(x)

T (x) - T (x) w r

where

Grx
g /3 x3 (Tw(x) - Tf(x)) 

2

(13)

(14)

(15)

(16)

and the fluid velocity in the x direction becomes

dif> di> dn
n ~ 8y “ dri dy

- -^-Gr1/2f'. (17)x x

The boundary layer partial differential equations (6)-(8) reduce to a 
set of coupled ordinary differential equations when the above similarity 
variables are imposed. For the power-law distribution, the local 
similarity form of these equations is (Jaluria (1980))

9



t t t 2 (n + 1) f +0-0
,2

(18)f + (n + 3) f f
t t

pr + (n + 3) f 0' - 4 n f* 0 - J f* - 0 (19)

with the appropriate boundary conditions. These equations have been solved 
in the present study by the finite difference method since the traditional 
shooting method was unreliable. This method is summarized by Webb (1989).

The first term to be evaluated for substitution into the global energy 
equation (5) is the difference between the fluid temperature at location 2 
and TJ. Expressing the fluid temperature difference in terms of the 
similarity parameter J gives

T J N 
4 n (20)

N can be evaluated at location x2, and the above equation can be rewritten 
as

* J AT2- T,---- ; ~f2 f 4 n
*

(1 - <-7->n> X2
(21)

Using the similarity parameters defined above along with equation (21) , the 
global energy equation (5) becomes

“l Cp (T1 * Tf^ + **2 Ax

m0 c (7^- (1 - (— 2 p v4 n ' x,
f [ f 0 drj
->n> + -4-4—> 
! J f d»j

(22)

Expressions for the mass flow rate and the temperature difference at 
location 2 will now be developed. The mass flow rate per unit width can be 
expressed in terms of the local similarity variables as

m-puA/W-pu5

- P Ll Grl/2 f f **
XX T)

00

-1/4 t

10



dfj (-^-)1/4 x3^ ATV4
kv

The heat flux relationship

(23)

tt

q
w

k B (-^f )1/4 AT5/4 x-1/4
4i/

(24)

can be used to get the temperature difference as a function of x, or

AT5/4 - (-
- k 8

-) <-H-)-1/4 x1/4 (25)

Note that for a similarity solution, the dimensionless wall temperature 
gradient, 0*, is constant for all x values, and the heat flux variation can 
be written as

" 5/4 -1/4 5n/4 -1/4 (5n-l)/4
qaATx axx ax (26)

Using equation (25), the mass flow rate equation can be rewritten as

f , n 0 ,0.2 0.8 ,m - 4 m f d»J (-*"■%-) x (-J /.*j - k 8
(27)

and the global energy equation (22) then becomes

*1 Cp (fl • V + ^2 Ax

- 4 Pr -)

w

J
4 n (1

*
‘) +

f 6 drf

T ' ^J f a. (28)

The same similarity variables can be used in the integrated local 
boundary layer equations (9) and (10) resulting in the following equations 
for the boundary layer quantities

11
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Momentum

(5 + 3n) Jf dij - J tf dij - f (29)

Energy

(5n + 3) F tf drj - J F dr). (30)

These relationships are a measure of the shape of the velocity and 
temperature boundary layer profiles and are useful for checking the 
accuracy of the numerical solution of the local similarity equations. They 
are also helpful if numerical fits are generated to some of the boundary 
layer integrals as these expressions can be used to ensure consistency 
among the various parameters.

Rearranging the local boundary layer energy equation (30) and 
substituting it into the global energy equation (28) results in

(*1 c (T^ - Tf) + q2 Ax) / (q2 x2)
★

— (1 - (—)n) + 4 n x2 ' F'*'F
J + (5n + 3) jf tf dr; / jf

(31)

The ratio of the first terms in the numerator and denominator on the 
RHS and of the second terms on the RHS must both be equal to the LHS. For 
the second terms,

5n + 3 (lhl Cp ' Tf) + ^2 Ax) / (q2 X2) (32)

or,

-J- t4 q2 x2/ (n^ cp (^ - T*) + q2 Ax) (33)

Similarly, making use of equation (32), the first terms give

x2 [1 (5n + 3)
1/n (34)

If xx is taken to be at the leading edge of the plate (xj-O.) with no 
initial mass flow rate, then Ax-x2, and the above equation set simplifies 
considerably to

12
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i

\
n---[4 q2 / q2 - 3] . (35)

The value of the similarity parameter n is just a function of the 
ratio of the local to the average heat flux up to that point. The fluid 
temperature evaluated at x* is that required for energy conservation.

Surprisingly, the stratification parameter, J, is independent of 
global conservation of energy. Instead, the value of J is determined by 
the local value of the heat flux, q2. Equating the conservation of energy 
equations (2) and (33) gives

*2 cp
*

T,> 4
(5n + 3) q2 X2 (36)

where the values on the RHS are known. Expanding the LHS of the above 
equation results in the expression

*2 %
[ f 0 d»;

Jf AT2 + Tf2 - V “ (5n + 3) q2 X2‘ (37)

This equation includes the effect of temperature stratification on the 
local energy balance. Using the equations developed above for m and AT, 
the above equation can be written as

Ll i±_ 8 dr?

1 (- 0')°-2 2 w
+ T,

J f’ d, (■ /)0-8 ‘f2
*

Tf)

where

A, - , g /3 ,0.2 0.8 , h2 ,0.2
4 °p " <72 > x2 <—>

.-0.2 0.2 , q2 ,0.8(or)
4,?
4

x2 <—>
It

"3 " (5n + 3) q2 X2'

(38)

(39)

(40)

(41)

For uniform fluid conditions, T£2 is equal to T£, and the above expression 
reduces to the local integrated energy equation with J equal to zero.
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The boundary layer integrals in the above expression are dependent on 
the similarity parameters n and J. Since the value of n is determined by 
equation (33) or (35), the only adjustable parameter is J.

Solution of the above expression for J initially looks difficult. In 
practice, however, solution is straightforward and, for the present 
investigation, has been accomplished by iterating on the form

l f 8 drf

- 9

A3 ‘ ‘a'1 CP (Tf2 ' TJ> 

* Pr q2 x2 (42)

where m^ is the value of m2 from the previous iteration. The ratio of 
the LHS of the equation is a strong function of J for a given value of n as 
depicted in Figure 3 for a Prandtl number of 0.7, and convergence of the 
above procedure has not been a problem.

In summary, for a specified heat flux problem, the similarity 
parameter n is determined directly from equation (33) or (35). For a 
uniform environmental fluid temperature, the similarity parameter J is 
equal to 0. Otherwise, the value of J is determined by iterating on 
equation (42). All the boundary layer parameters are uniquely determined 
by these values of n and J. For situations where similarity conditions are 
imposed, the similarity solutions are obtained. This is not the case for 
the method developed by Raithby, et al. (1975, 1977, 1978). For variable 
conditions where an exact similarity solution does not exist, the MLS 
method provides an estimate of "equivalent" similarity conditions including 
velocity and temperature profiles. This estimate is achieved by requiring 
conservation of energy and the same local heat flux at position x2.

In the above development, the heat flux variation was assumed to be 
specified. This situation is not always the case, as the temperature 
distribution is sometimes given. In order to calculate the similarity 
parameters, energy consistency between the specified problem and the MLS 
method is required. The heat flux as given by equation (24) is

ft

q k s'w
(^|_)1/4 at5/4 x*1/4 (24)

so the integrated heat flux for constant properties is proportional to the 
following integral

Q J q" dx oc J / AT5//4 x'1/4 dx

and the expression for n becomes

(43)
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Figure 3. Variation of heat flux parameter with n and J.
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(44)n - [4 x2 7 cp - T*) + Q) - 3]

which, for xx and m! equal to 0. can be written as

4 0 ATw (45)
J 'v 415/4 -1/4.' x ' dx

The difficulty in evaluating the above expression is in the temperature 
gradient term which is a function of x. The temperature gradient for a 
given Prandtl number is only a function of n and J, so iteration is 
required on this equation and the equation given above for J.

Technically, for specified surface temperatures, the MLS method is not 
a local similarity approach since the answer at x depends on the results at 
the upstream locations. Iteration is required for the variation of the 
similarity parameters with x. However, this iteration is easily 
accomplished since the only term that depends on n and J is 0^, and 
convergence is rapid for the cases analyzed in this report.

While specified temperatures are a convenient analytical case, the 
wall temperature and wall heat fluxes are usually coupled to each other 
through heat conduction, and either the wall temperature or the heat flux 
can be used in the solution scheme. For the present method, heat fluxes 
are considerably more convenient than temperatures since no iteration in 
the MLS method is involved.

f
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2. Exponential Distribution

For the exponential distribution, the temperature difference between 
the wall and the fluid is given by

AT(x) - T (x) - T_(x) - M e"*. (46) w r

For similarity, the fluid temperature variation must be of the same form, 
or (Jaluria (1980))

Tf(x) - Tr----— (e - 1) (47)

where the reference temperature Tr is the fluid temperature at x - 0. As 
for the power-law profile, a uniform temperature fluid results in a J value 
equal to 0. Note that the similarity variable m is dimensional and has 
units of inverse distance.

As can be seen from equation (46), the temperature difference at the 
leading edge can not be equal to 0. Additional problems with the 
exponential distribution, such as non-zero momentum and heat flow at the 
leading edge, are discussed by Gebhart and Mollendorf (1969). In practice, 
these difficulties make the exponential distribution much less useful than 
the power-law distribution. These problems will also be evident in the 
evaluation of the exponential distribution later on in this report.

The stream function and similarity variables for this case are the 
same as for the power-law distribution with x replaced by (1/m), or 
(Gebhart and Mollendorf (1969))

i> - 4
Gr i //, m v 1/4 j., x

( 4 > ^ (48)

Gr , ,,
n - (- m xl/44 > y m (49)

T - T„(x)
6(n) - T - T_(x)Xji rx'

(50)

where

g 0 (b 3<T (x) - T (x))
Gr-------- 2-----«_----- ?----- (51)m zv

and the fluid velocity in the x direction becomes
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u dip
dy

(52)

dip dr)
dy

- 2 v Gr1/2 m f'.
m

The boundary layer partial differential equations (6)-(8) reduce to a 
set of coupled ordinary differential equations when the similarity 
variables are imposed. For the exponential distribution, the local 
similarity form of these equations is (Jaluria (1980))

f + ff - 2 f +9-0

4--- + f / - 4 f’ 0 - J f’ - 0Pr

(53)

(54)

with the appropriate boundary conditions. These equations have been solved 
in the present study by the finite difference method as summarized by Webb 
(1989).

The first term to be evaluated for substitution into the global energy 
equation (5) is the difference between the fluid temperature at location 2 
and TJ. Expressing the fluid temperature difference in terms of the 
similarity parameter J,

T J M 
4

mx.
(e (55)

M can be evaluated at location x2, and the above equation can be rewritten 
as

T
*J AT2 m(x - x2)

—------ d * e >• (56)

Using the similarity parameters defined above along with equation (56), the 
global energy equation (5) becomes

^ cp (Tt - Tf) + q2 Ax

’ ”2 Cp <— t1 - e
m(x - x2)

) +
[ f'0 dtj

Jf *> ) at2. (57)
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Expressions for the mass flow rate and the temperature difference at 
location 2 will now be developed. The mass flow rate per unit width can be 
expressed in terms of the local similarity variables as

m-pVA/W-pVS

- * ^ f f’ a, (^-f)1/4 A3/4 at1'4 
J -w2 '*

The heat flux relationship
n

q k / (^f)1/4 AT^4 (i)-1^4

(58)

(59)

can be used to get the temperature difference as a function of (1/m), or
,5/4

- k e
-) <-Hb-1/4 <:>1/4, z m (60)

Note that for a similarity solution, the temperature gradient at the wall 
and m are both constant, and the heat flux variation can be written as

" *™5/4 5mx/4q a AT ' a e ' . (61)

Using equation (60), the mass flow rate equation can be rewritten as

■ - A (* J f'dii (-^ 0.2 A 0.8 ^v-)0-2
- k 9

(62)

and the global energy equation (57) then becomes

A1 cp (*1 - V + ^2 Ax

4 Pr dn (—V)
- 9

m(x - x,)
(-f (1 - e 2 ) +

f 8 dij

V > -V- (63)

The same similarity variables can be used in the integrated local 
boundary layer equations (9) and (10) resulting in the following equations 
for the boundary layer quantities
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Momentum

3 JV d,-J e drj - f
w

t I
(64)

Energy

0w (65)Pr

where the parameter m does not appear.

These relationships are a measure of the shape of the velocity and 
temperature boundary layer profiles and are useful for checking the 
accuracy of the numerical solution of the local similarity equations. They 
are also helpful if numerical fits are generated to some of the boundary 
layer integrals as these expressions can be used to ensure consistency 
among the various parameters.

Rearranging the local boundary layer energy equation (65) and 
substituting it into the global energy equation (63) results in

The ratio of the first terms in the numerator and denominator on the 
RHS and of the second terms on the RHS must both be equal to the LHS. For 
the second terms,

(»]_ cp <TX - Tf) + q2 Ax) / q2
*m(x

(66)
J + 5

fr - i<*i CP (ii - Tf) * *2ix) /121 (67)

or,

m---[q2 / (m1 cp (^ - T*) + q2 Ax)]. (68)

Similarly, making use of equation (67), the first terms give

x - x2 - 1.609 / m. (69)
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If xt is taken to be at the leading edge of the plate (x^O.) with no 
initial mass flow rate, then Ax-x2, and the above equation for mx2 
simplifies considerably to

mx2 (70)

The value of the similarity parameter m is just a function of the 
ratio of the local to the average heat flux up to that point and x2. The 
fluid temperature evaluated at x* is that required for global energy 
conservation.

Surprisingly, the stratification parameter, J, is independent of 
global conservation of energy. Instead, the value of J is determined by 
the local value of the heat flux, q". Equating the conservation of energy 
equations (2) and (68) gives

‘2 Cp (*2 ' V
4
5m q2 (71)

where the values on the RHS are known. Expanding the LHS of the above 
equation results in the expression

"2 % <li 9 drj

F iX2 + T£2 ' ^
4
5m q2' (72)

This equation includes the effect of temperature stratification on the 
local energy balance. This equation is of the same form as equation (38) 
derived for the power-law distribution. The same techniques outlined for 
the solution of equation (38) have been used for equation (72) above.

In summary, for a specified heat flux problem, the similarity 
parameter m is determined directly from equation (70) or (72). For a 
uniform environmental fluid temperature, the similarity parameter J is 
equal to 0. Otherwise, the value of J is determined by iterating on 
equation (72). All the boundary layer parameters are uniquely determined 
by these values of m and J. For situations where similarity conditions are 
imposed, the similarity solutions are obtained. This is not the case for 
the method developed by Raithby, et al. (1975, 1977, 1978). For variable 
conditions where an exact similarity solution does not exist, the MLS 
method provides an estimate of "equivalent" similarity conditions including 
velocity and temperature profiles. This estimate is achieved by requiring 
conservation of energy and the same local heat flux at position x2.
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In the above development, the heat flux variation was assumed to be 
specified. This situation is not always the case, as the temperature 
difference is sometimes given. In order to calculate the similarity 
exponent on the temperature distribution, energy consistency between the 
specified problem and the MLS method is required. The heat flux as given 
by equation (59) is

If

q k $'w AT5'4 »1/4 (59)

so the integrated heat flux for constant properties is proportional to the 
following integral

Q - | q dx a J *w AT5/4 1/4

and the expression for m becomes

(73)

“-[q2 x2 / cp - T*) + Q)]

which, for xx and % equal to 0. can be written as

(74)

m
_4_
5

*; ”l/4
AT5''4 .V*K

(75)

The difficulty in evaluating the above expression is that m is a function 
of x, so iteration is required on this one equation. Note that 0* is not a 
function of m or x but is simply a function of J and the Prandtl number.

Technically, for specified surface temperatures, the MLS method is not 
a local similarity approach since the answer at x depends on the results at 
the upstream locations. Iteration is required for the variation of the 
similarity parameters with x. However, this iteration is easily 
accomplished since the only term that depends on m is m itself, and 
convergence is rapid for the cases analyzed in this report.

While specified temperatures are a convenient analytical case, the 
wall temperature and wall heat fluxes are usually coupled to each other 
through heat conduction, and either the wall temperature or the heat flux 
can be used in the solution scheme. For the present method, heat fluxes 
are considerably more convenient than temperatures since no iteration in 
the MLS method is involved.
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Ill. Evaluation

The Modified Local Similarity (MLS) method derived above has been 
applied to a number of nonsimilar wall temperature and heat flux cases with 
uniform fluid temperature and to an isothermal plate in a stratified fluid 
environment. In each case, the power-law and exponential distributions 
have been evaluated. Variation of the similarity variables and of the 
predicted surface behavior is presented.

The results in this section compare the predictions from the MLS 
method with those from other approaches and, for the case of an isothermal 
plate in a stratified fluid, to experimental data. The results from 
another possible implementation of the local similarity approach in 
addition to the MLS method are also given. While the MLS method is based 
on conservation of energy as the boundary layer develops and matching the 
local heat flux, another reasonable approach would be matching the local 
value of the specified parameter (temperature difference or heat flux) as 
well as the local slope of that parameter.

For example, consider the power-law distribution as applied to an 
exponential variation of the temperature difference. Equating the local 
temperature difference as well as the slope of the temperature difference 
at any point x with the similarity distribution,

A _ x „ nAT - e - N x (76)

d(AT)/dx - eX - N n x”'1 (77)

in the requirement that

n - x. (78)

As another example, consider the power-law distribution for an 
exponential variation of the heat flux. Equating the local value and the 
slope

q"/k - e -Ax(5n - l)/4 (79)

d(q"/k)/dx - eX 5n - 1 A x5(n - l)/4 (80)

gives the result that

n - 0.8x + 0.2. (81)

The predictions from this application of the local similarity approach 
will be presented in the results that follow and will be referred to as the 
LS* method.
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A. Uniform Fluid Temperature

For uniform fluid temperature conditions, the MLS and LS* methods have 
been applied to specified wall temperature and specified heat flux cases. 
Results to these cases for a number of other methods are summarized by 
Yang, et al. (1982) for a Prandtl number of 0.7 where the property term is 
assumed equal to 1.0, or

- 1.0. (82)
Uv

In all these cases, the stratification parameter, J, is equal to 0. since 
the fluid temperature is uniform. The power-law and exponential 
distributions will be discussed for each case.

The results presented by Yang, et al. (1982) are in terms of 
transformed surface conditions as given by Kao, et al. (1977); these
transformations are summarized in the appendix. The use of these 
transformed variables can distort the surface condition variation, and this 
method of presentation will not be used. The results that are given in 
this section are in terms of physical variables, i.e., the variation of the 
temperature difference or the temperature gradient at the surface, not the 
variation of the transformed variable.

The results from the MLS method and the LS* approach will be compared
to the following predictions. Note that the MLS and LS* methods solve two
coupled ODE's.

1. Numerical - as given by Kao, et al. (1977).
2. Kao LS - Kao, et al. (1977) presents local similarity results in

terms of his transformed coordinates. This approach solves two
coupled ODE's similar to the MLS and LS* methods. The equations 
are given in the appendix.

3. Kao method - The method developed by Kao, et al. (1977) uses 
transformed coordinates and is basically a perturbation approach. 
Four coupled ODE's are solved in this approach.

4. Yang method - Yang, et al. (1982) uses the transformed coordinates 
developed by Kao with a series expansion of the similarity 
parameters. Six coupled ODE's are solved in this method.

The Kao and Yang methods are more complicated than the MLS method or Kao LS 
approach since more ODEs are involved. In addition to the above results, 
predictions from other methods, such as the integral approach, will be 
included where available.
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1. Specified Surface Temperature

Since the surface temperature is known, the comparisons are based on 
the temperature gradient at the surface which is related to the local heat 
transfer coefficient. The values of the similarity parameters are used to 
compare the MLS and LS* temperature variation with the desired behavior.

a. AT - ex

Power-Law Distribution The variation of the similarity variable n 
with x is shown in Figure 4a for the MLS and LS* approaches. In both 
cases, the value of n increases considerably with increasing x. Figure 4b 
shows the desired temperature difference as well as the variation predicted 
by both approaches. The predictions from the methods depend on n which 
itself is a function of x as given in Figure 4a. Therefore, in Figure 4b, 
two curves corresponding to the two x values of 0.5 and 2.0 are shown for 
each approach. In general, the variation of the temperature difference is 
reasonably close to the desired behavior. The temperature difference 
variation is well represented by the power-law distribution in both 
methods.

The surface temperature gradient as a function of x is depicted in 
Figure 5 . The gradient is underpredicted by the MLS method by 
approximately 5%. While the error is larger than the other methods, the 
magnitude is still relatively small. For the LS* approach, a slight 
overprediction of the gradient, especially near the front of the plate, is 
noted. This behavior is also seen for the Kao LS method. Predictions for 
the Kao and Yang methods are not shown in this figure since both approaches 
yield predictions indistinguishable from the numerical results.

Exponential Distribution For the exponential distribution, the MLS 
and LS* approaches yield the similarity solution with m equal to 1.0. Even 
with this ideal comparison case, the wall temperature gradient shown in 
Figure 6 is overpredicted, especially at small x values. The reason for 
this difference is the non-zero momentum and heat flow at the leading edge 
as alluded to earlier. According to Gebhart and Mollendorf (1969), the 
exponential distribution results are reasonable only if mx is much greater 
than 1.0. The results given in Figure 6 are consistent with this criteria.
b. AT - sin x

Power-T-aw nistribution Figure 7a shows the behavior of the similarity 
variable n with x. For the MLS method, n decreases with distance up the 
plate and changes sign at an x of about 2.15. For the LS* approach, n also 
decreases with distance up the plate and changes sign at an x value of x/2. 
The temperature difference is given in Figure 7b for x of 1.0 and 2.5. For 
small x values (< -n/2), both methods give a good approximation of the 
sinusoidal temperature difference. For larger x values, the MLS 
distribution becomes increasingly poor, especially when n becomes negative.
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Figure 5. Surface temperature gradient for AT - ex.
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27



AT=e
NUMERICAL
MLS-EXP
LS*-EXP
SIMILARITY
KAO LS

0 AT

X

Figure 6. Surface temperature gradient for AT - ex.
Exp Distribution.

28



1.0

C 0.0

-1.0 L

MLS

1.0
N V-V\ 2.0

\
H x\ 3.0ir

Figure 7a. Variation of n for AT - sin x. 
PL Distribution.

AT = sin x
MLS APPROXIMATION 
LS* APPROXIMATION

3.0ir
X
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PL Distribution.
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The surface temperature gradient as a function of x is depicted in 
Figure 8 for a number of other methods. The Yang method gives excellent 
results up to an x value of 2.2 after which the method is no longer 
applicable due to convergence problems. The Kao method also gives good 
results out to an x value of 2.3; after this point, the Kao method no 
longer converges. The Kao local nonsimilarity (LNS) results are 
surprisingly poor; only results out to an x value of 2.0 are given by Kao 
(1976). Finally, the Kao LS results show reasonable agreement for the 
entire problem, although a systematic underprediction is evident.

Results for the MLS and LS* power-law approaches are shown in Figure 
9. For small x values, the gradient is well predicted. For large x 
values, the MLS method overpredicts the temperature gradient and the 
location of zero heat flux, while the LS* approach underpredicts the 
results. While not as good as some of the other methods, the MLS approach 
is better than the LS* method and about the same as the Kao LS approach. 
This discrepancy is not unexpected due to the poor approximation of the 
temperature difference behavior by the MLS method at large x values.

Exponential Distribution For an exponential distribution, the 
variation of mx with x is shown in Figure 10a. The value of mx goes to 0. 
at x values of x and jt/2 for the MLS and LS* approaches, respectively. The 
temperature difference comparison is given in Figure 10b. The exponential 
distribution has a very difficult time matching the required temperature 
difference variation except for small x values. Note that the value of m 
cannot be negative or zero, so the temperature difference must always 
increase with x. This situation leads to reasonable temperature variations 
for small x values, but very poor distributions for larger x values. For 
the MLS method, the value of mx is less than or equal to 1.0 for x values 
greater than about 1.7; for the LS* approximation, mx is always less than
I. 0. Therefore, the results from the exponential distribution are expected 
to be poor due to the small mx values.

The results for the temperature gradient variation are shown in Figure
II. The MLS approach significantly overpredicts the wall temperature 
gradient, while the LS* method does just the opposite. Both methods give 
poor results as anticipated.
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Figure 9. Surface temperature gradient for AT - sin x.
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2. Specified Wall Heat Flux

Since the surface heat flux is specified, the comparisons between the 
various methods are based on the wall to fluid temperature difference. The 
values of the similarity parameters are used to compare the MLS and LS* 
similarity heat flux variation with the desired behavior.

a. q"/k - ex

Power-Law Distribution Figure 12a shows the variation of the 
similarity variable n with x for the MLS and LS* methods which shows that n 
increases considerably as one goes up the plate. The rate of increase is 
higher for the LS* approach than for the MLS method. The heat flux 
distribution is given in Figure 12b for x values of 0.5 and 2.0. In 
general, for both cases, the heat flux variation is well represented by the 
power-law distribution in both methods. These conclusions are similar to 
those for the exponential temperature difference case discussed earlier.

The surface temperature as a function of x is depicted in Figure 13. 
The MLS and LS* methods both successfully predict the surface temperature 
variation with x. The predictions of the Kao and the Yang methods are not 
shown since they are indistinguishable from the numerical results. All the 
methods perform well for this case.

Exponential Distribution Figure 14a depicts the variation in the 
similarity variable mx with x. In the MLS method, the value of mx slowly 
increases with x. The LS* approach reduces to the similarity results since 
m is a constant equal to 0.8; this result is not obvious from Figure 14a 
since mx is not constant. The heat flux variation for these approaches is 
compared to the desired variation in Figure 14b for x values of 0.5 and 
2.0. The exponential distribution is an excellent approximation to the 
desired behavior.

The surface temperature behavior, which is given in Figure 15, is well 
predicted by the exponential distribution except near the leading edge. 
This behavior coincides well with values of mx greater than 1.0 as 
discussed earlier.

b. q"/k - 1 + x

Power-Law Distribution Figure 16a shows the variation of n with x for 
both the MLS and LS* methods. The value of n increases with x in both 
cases. Figure 16b compares the heat flux variation for the power-law 
distribution to the desired variation for x values of 0.5 and 3.0. As with 
a number of the previous cases, the heat flux behavior is reasonably well 
represented by the power-law distribution in both cases.
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Figure 14b. Approximation of q"/k for q"/k - ex.
Exp distribution.
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PL distribution.
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Figure 17 shows the temperature difference variation along the plate. 
The answers from the Kao method and the Yang method are not given since 
they essentially coincide with the numerical results. The results from the 
integral analysis as given by Sparrow (1955) are also shown. All methods 
give good predictions for this case including the integral method.

Exponential Distribution The variation of mx with x is depicted in 
Figure 18a. The value of mx increases slowly for both the MLS and LS* 
approaches. However, for the LS* approach, the value of mx will never 
exceed 1.0 no matter how long the plate. Figure 18b shows the heat flux 
profiles for x values of 0.5 and 3.0. Neither method does a good job of 
matching the heat flux variation with the exponential distribution.

Figure 19 shows the temperature difference predictions for this case. 
Neither method does a very good job of predicting the temperature 
difference, especially compared to the other methods. This trend is 
expected due to the poor representation of the heat flux variation given 
earlier.

c. q"/k - 1 - x

Power-Law Distribution Figure 20a shows the variation of n with x for 
both the MLS and LS* methods. For the MLS approach, the value of n 
decreases slightly with x. The value of n in the LS* approximation 
decreases much faster than for the MLS approach. The heat flux variation 
is given in Figure 20b. The behavior of both methods is not unreasonable, 
although significant differences can be seen between the approximation and 
the desired variation.

Figure 21 gives the temperature difference variation along the plate 
for a number of different methods. The Kao and Yang methods diverge from 
the numerical solution at x values of 0.6. The Kao LS method gives widely 
different results. The integral results from Sparrow (1955) seem to be the 
best behaved, although the results could only be provided out to an x value 
of 0.5 due to the limited results presented by Sparrow. Figure 22 gives 
the MLS and LS* predictions. The MLS method provides a reasonable 
prediction for the surface temperature behavior; the results are superior 
to all the other methods based on the numerical predictions. Note that the 
MLS calculations have been performed out to an x value of 1.0 with no 
problems. The LS* predictions tend to blow up like the Kao LS results.

Exponential Distribution The variation of mx with x is depicted in 
Figure 23a. The value of mx decreases slowly for both the MLS and LS* 
approaches and is always less than 1.0. The heat flux profiles are given 
in Figure 23b. The MLS approximation is unreasonable for this case. The 
LS* heat flux variation is much closer, although this method has other 
problems for this case.
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Exp distribution.
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Figure 21. Temperature difference for q"/k - 1 - x. 
Results from other methods.
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Figure 22. Temperature difference for q"/k - 1 - x.
PL distribution.
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Figure 24 shows the temperature difference predictions for this case. 
No predictions are available for the LS* approach since the value of mx is 
less than 0. which, in turn, leads to the fourth root of a negative number. 
The MLS predictions for this case are surprisingly reasonable, especially 
considering the poor wall heat flux distribution behavior.
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B. Stratified Fluid Temperature

The problem under consideration is an isothermal plate in a linearly 
stratified fluid as shown in Figure 25. The temperature difference between 
the plate and the fluid decreases linearly with increasing distance up the 
plate. A similar solution is not available for this problem. Chen and 
Eichhorn (1976) present a detailed analysis of this problem using local 
similarity and local nonsimilarity methods for their specific coordinate 
transformation. Raithby and Hollands (1978) have applied their approximate 
technique (Raithby, et al. (1975, 1977)) to this problem with good results.

The answers to this problem are given in terms of the ratio of Nusselt 
numbers for the stratified fluid to that for an isothermal fluid as a 
function of the stratification parameter S, which is

When S<2, the entire plate is hotter than the fluid. For S>2, the bottom 
portion of the plate is hotter than the fluid while the top is colder.

The MLS and LS* approaches have been used to analyze this case for 
Prandtl numbers of 0.7 and 6.0. For the LS* approach, the value of n is 
determined by matching the local temperature difference value and the local 
slope; the value of J was calculated by the appropriate fluid temperature 
variation equation.

Power-Law Distribution Figure 26 shows the variation of the 
similarity parameters n and J along the plate for the MLS and LS* methods 
and a Prandtl number of 6.0. The results for a Prandtl number of 0.7 are 
not significantly different and are not shown. For both methods, the value 
of n decreases with increasing distance along the plate. The change is 
much faster for the LS* case. The value of J increases along the plate in 
the MLS method. In contrast, J decreases with increasing distance in the 
LS* approach.

Figure 27 gives the variation of the temperatures for an x value of 
0.5. For both methods, the reference value of the fluid temperature, Tr, 
is calculated by matching the temperatures at an x value of 0.5. The 
temperature variation for the MLS method seems a little more reasonable 
than for the LS* approach in that the temperature difference behavior is 
closer to the desired variation.

Figure 28 shows the predicted value of the average Nusselt number for 
a stratified fluid over that for an isothermal fluid with the same average 
temperature difference for a Prandtl number of 6.0. The MLS predictions are
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Figure 26a. Variation of n for Stratified Fluid Case. 
PL distribution ( S-2).
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Figure 26b. Variation of J for Stratified Fluid Case.
PL distribution (S-2).
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Figure 27a. Approximation of AT for Stratified Fluid Case. 
PL distribution (S-2).

Figure 27b. Approximation of T* and Tf for Stratified Fluid Case.
PL distribution (S-2).
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shown on this figure; results from the LS* method are not included as 
discussed below. The local similarity and local non-similarity (LNS) 
results are shown as well as the experimental data from Chen and Eichhorn >
(1976). The predictions by Raithby and Hollands (1978) are also included 
in the figure.

The MLS results were calculated for a number of discrete S values out 
to 2.0. For S>2, the predictions are based on an S1/4 dependence as used 
by Chen and Eichhorn (1976) and Raithby and Hollands (1978). The MLS
predictions show reasonable agreement with the data with a consistent 
overprediction of about 4%. The local similarity results by Chen and 
Eichhorn (1976) are much higher than the data with an error of about 16%.
The Raithby and Hollands predictions go right through the data, although 
their results are for a Prandtl number of 5.0, not 6.0. The LNS results 
show good agreement with the data with a small consistent underprediction. 
Overall, the MLS, Raithby and Hollands, and LNS results are in good 
agreement with the data. The maximum difference between these methods is 
about 5%, while the uncertainty in the data is of this order, or ±3.2% for 
Nu and ±3.5% for S (Chen and Eichhorn (1976)).

The LS* method performs poorly for this case. For a Prandtl number of 
6.0 and an S value of 2., the wall is always as hot or hotter than the 
fluid. The LS* method predicts that the wall temperature gradient will 
change sign about 1/4 up the plate. For the first 1/4 of the plate, heat 
is transferred from the hotter wall to the fluid. However, for the last 
3/4 of the plate, heat is predicted to flow from the colder fluid to the 
hotter plate, which is unreasonable. Therefore, the LS* predictions are 
not shown on the figure.

The predictions from the various methods for a Prandtl number of 0.7 
are given in Figure 29; no data are available for this case. The MLS 
method predicts a small decrease (-1%) in the Nusselt number ratio when the 
Prandtl number is decreased from 6.0 to 0.7. The other methods predict an 
increase in the ratio of about 5% for Raithby and Hollands to 10% for the 
LNS approach. Unfortunately, no data are available for this case.

Since the MLS method and the Raithby and Hollands approach are 
approximations, the LNS results are probably the most accurate. However, 
some discrepancies have been noted in the Chen and Eichhorn predictions for 
a Prandtl number of 0.7. Specifically, the numerical results given by Chen 
and Eichhorn (1976) do not match the values plotted by Raithby and Hollands 
(1978) or by Chen and Eichhorn (1979). The results used in this report are 
from Chen and Eichhorn (1979).

I
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Exponential Distribution Figure 30 shows the variation of the 
similarity parameters mx/L and J along the plate for the MLS and LS* 
approaches for a Prandtl number of 6.0. As for the power-law distribution, 
the results for a Prandtl number of 0.7 are not shown since the results are 
similar. For both approaches, the value of mx/L decreases along the plate, 
while the J value increases. However, the values and the signs of both 
similarity parameters are significantly different for the two approaches as 
can be seen from the figure.

The variations of the various temperatures are shown in Figure 31 for 
both methods for an x value of 0.5. The trends exhibited by the LS* 
approach seem to be superior to those given by the MLS method. The MLS 
method gives a poor variation of the temperature difference since an 
increasing temperature difference is predicted while the actual temperature 
difference decreases along the plate. In contrast to the power-law LS* 
results, the wall temperature could not be held constant due to the form of 
the fluid temperature variation equation.

The average Nusselt number variation is depicted in Figure 32 for a 
Prandtl number of 6.0. For a Prandtl number of 6.0, the MLS results are 
significantly below the data by about 6%. Results from the LS* method are 
not shown since, as in the case of a linearly decreasing heat flux, the 
model blows up for negative values of mx/L. The LNS and the Raithby and 
Hollands predictions are superior to the MLS approach with the exponential 
distribution. Figure 33 shows the same results for a Prandtl number of 
0.7. The trends are the same as for the higher Prandtl number in that the 
MLS results are much lower than the other two methods. However, unlike the 
power-law MLS results, the predicted Prandtl number dependence is similar 
for all three approaches.

*
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Figure 30b. Variation of J for Stratified Fluid Case.
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Figure 31a. Approximation of AT for Stratified Fluid Case. 
Exp distribution (S-2).

Figure 31b. Approximation of T£ and Tw for Stratified Fluid Case.
Exp distribution (S-2).

60



N
u/

N
u 

IS
O

TH
ER

M
A

L
l

LOCAL SIMILARITY

MODIFIED
LOCAL
SIMILARITY
(MLS)

RAITHBY AND 
HOLLANDS 
(Pr = 5.0)

O EXPERIMENTAL DATA

o _ L dToo
5 “ AT0 dx

*

Figure 32. Variation of Nusselt Number with Stratification for Pr-6.0. 
Exp distribution.

61



N
u/

N
u 

|S0
TH

ER
M

A
L

MODIFIED
LOCAL
SIMILARITY
(MLS)

RAITHBY AND 
HOLLANDS

q _ _L_ dToo
® " AT0 dx

i

4
Figure 33. Variation of Nusselt Number with Stratification for Pr-0.7. 

Exp distribution.

62



IV. Discussion

The MLS method has been developed and evaluated for a number of 
nonsimilar temperature and heat flux cases for the power-law and 
exponential similarity distributions. For variable conditions where an 
exact similarity solution does not exist, the MLS method provides an 
estimate of "equivalent" similarity conditions including velocity and 
temperature profiles. This estimate is achieved by requiring conservation 
of energy and the same local heat flux at position x2. In addition, 
another possible application of the local similarity approach has been 
evaluated. The MLS and LS* results have been compared to those from a 
number of other methods, including a numerical approach. In general, the 
power-law distribution performs much better than the exponential 
distribution. The exponential distribution cannot adequately simulate a 
decreasing temperature difference case, and the non-zero temperature 
difference at the leading edge is a problem as noted in the disagreement in 
all cases at x-0., even for those which result in the similarity solution.

This problem with the exponential distribution is not unexpected. As 
discussed by Sparrow and Gregg (1958) and evaluated by Gebhart and 
Mollendorf (1969), the results for the exponential distribution are only 
reasonable if mx2 is much greater than 1. The reason for this limitation 
is that the exponential distribution has non-zero values of the boundary 
layer thickness, momentum, and energy flow at x-0., or at the leading edge 
of the plate, so the results will only be reasonable if the leading edge 
contributions are small. In the present case, the values of mx2 range from 
much less than 1. to slightly greater than 1. Therefore, in addition to 
problems in approximating the heat flux profiles, the small mx2 values are 
expected to lead to poor comparisons with the correct solutions.

The predictions from the LS* approach vary from reasonable to absurd, 
so the LS* method is not a reliable technique. In contrast, all the MLS 
predictions are reasonable even where the more complex methods fail or no 
longer apply. Through the introduction of global conservation of energy, 
the MLS method has significantly improved the predictive capability of the 
local similarity approach.

The MLS method is not without its problems. For specified temperature 
cases, iteration is required which violates the local similarity 
assumption. However, in most practical cases, temperatures and heat fluxes 
are related through heat conduction in the wall, and the more convenient 
variable can be used. Use of the heat flux information permits use of the 
MLS method on a local basis consistent with the local similarity approach. 
The MLS method is not the most accurate approach as expected. However, the 
method is superior to the traditional local similarity approach. Many of 
the other more complex approaches, such as the methods of Kao, et al. 
(1977) and of Yang, et al. (1982), have problems with certain cases such as 
the linearly decreasing heat flux situation and have not been applied to a 
nonuniform fluid temperature case. In contrast, the MLS method gives 
reasonable predictions for all the cases considered. The MLS method is a 
useful approximate tool for natural convection analysis for analyzing 
vertical plates for nonsimilar conditions.
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V. Summary and Conclusions

The Modified Local Similarity (MLS) method has been developed and 
applied to natural convection along a vertical flat plate with varying 
surface conditions and stratification. The MLS approach combines global 
conservation of energy with the traditional local similarity method for 
boundary layer profiles. The power-law distribution MLS results are 
reasonable in all cases evaluated, even where other more complex analytical 
methods fail or no longer apply. In conclusion, the MLS method is a useful 
approximate tool for analyzing natural convection on vertical plates for 
nonsimilar conditions.

Where computing times are a major constraint, such as in the analysis 
of natural convection in SPR caverns, standard techniques such as finite 
differences and local nonsimilarity are impractical. In this case, the 
approximate results provided by the MLS method should provide reasonable 
results within the computing time constraints. The method has been used in 
the development of the SPR velocity model as summarized by Webb (1988).

64



^ 
t 

-3
 -
6-
 O
' 
"C
D 
'C
ol
 0
 ‘xj

 X
 >

*:
<

VI. Nomenclature

cp specific heat
Exp Exponential Distribution
f local similarity variable in the stream function
g gravitational constant
Grm Grashof number based on m
Grz Grashof number based on x
J stratification similarity parameter
LS local similarity
m temperature difference similarity parameter
m mass flow rate
n temperature difference similarity parameter
N temperature difference constant
Na stratification constant
PL Power Law Distribution
Pr Prandtl number
q" heat flux
Q integrated heat flux
AT temperature difference, T„ - Tf
T temperature
u x-direction velocity

y-direction velocity 
width of plate 
difference in x, x2 - Xi 
distance along plate surface 
distance normal to plate surface

thermal diffusivity 
Kao parameter (see appendix) 
coefficient of thermal expansion 
boundary layer thickness 
stream function 
dimensionless coordinate 
viscosity
kinematic viscosity 
density
dimensionless temperature
dimensionless distance for stratified fluid case
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Subscripts
1 value at position x:
2 value at position x2
f fluid
r reference
w wall
co value at edge of boundary layer

Superscripts
average value

' derivative with respect to ri
* entrainment or ejected value

x
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Appendix 

Kao Method\

The Kao (1976,1977) approach for natural convection is based on a 
coordinate transformation to lessen the dependence on the streamwise 
coordinate. The stream function and similarity variables are

- ----1 1/9 f(£,*)
P(x)i/Z

(A-1)

T - T_
3 ' P(x) (A-2)

£ - J P(x) dx (A-3)

* - ci p(*)1/2 -^74 (A-4)

Cl - (-Mr)1'4 (A-5)

and, for specified wall temperature variation,

P(x) - T (x) - T_ (A-6)w t

while for specified heat flux conditions,

P(x) - Q2/3 (-|- I Q2/3 dx)1/5 (A-7)

Q(x) - (A-8)

Kao, et al. (1977) state that, for power-law distributions of wall 
temperature or heat flux, the above transformations reduce to the 
similarity cases presented by Sparrow and Gregg (1958). However, for the 
exponential distribution, the two forms are not equivalent. The similarity 
solution shown by Kao, et al. (1977) for the exponential wall temperature 
and heat flux cases is just an asymptotic value applicable as x-«°.

>

A-1



The transformed boundary layer equations are (Kao, et al. (1977))

where

f + (3 - 2/9)ff
,2

f

+ (3 - 2^) f«' - W*

+ 9 - 4^ (f'
t i

- f ’ af (A- 9)

- 4? (f' 86 ' 
H ' 6

«) (A-10)

3 g
P(x)2 dP(x)/dx

(A-11)

and ’ denotes differentiation with respect to k.

For local similarity, the RHS of the equations are set equal to 0., 
and the equations become

i2
f’' ' + (3 - 2j3)ff' ' - f' +9-0

|^- + (3 - 23) f9' - 43f9 - 0.

(A-12) 
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