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DOMAIN AND SURFACE STRUCTURES OF
SODIUM TUNGSTEN BRONZES,
Na,WO, (0.4 < x< 1)

by

Masao Atoji

ABSTRACT

The domain and surface structures of metallic sodium
tungsten bronzés, NaxWO;, 0.4 < x < 1, have been studied
using mostly optical microscopy, supplemented by chemical
methods, photoelectron spectroscopy, electron microscopy,
etc. The birefringent, multidomain structure of the bronze is
exhibited by a sodium-deficient, epitaxial surface film and
hence is not, as reported elsewhere, a bulkproperty. The film
can be synthesized by anodic electrolysis in alkaline solution
and can exist only epitaxially with the substrate. It is chem-
ically inert, translucent, and often laminated to a multilayered
film. The film domain is hyper'sensitive to lateral stress and
to thermal change, and appears to be modulated by minute
structural changes of the substrate. This epitaxial modulation
of the film is strikingly large at the phase transitions of the

-substrate induced by slightly different tiltings of the oxygen

octahedra. The domain-wall movement is often slow enough to
be visible, and that by thermal effect is occasionally accom-
panied by an audible, high-pitched, snapping sound.

The substrate exhibits pseudoperiodic subboundaries
that are probably caused by growth defects and by the segrega-
tion of the sodiurm atoms in the bulk structure. The sodium
segregation occurs also on the surface of the substrate and
tends to precipitate in a variety of periodic patterns, Electron-
scanning microscopy revealed an interesting example of a
compositional segregation accompanying a morphological seg-
regation. These bulk and surface structures of the substrate
are nonbirefringent and indicate neither optical nor morpho-
logical changes at the phase transitions. Argon-ion sputtering
on the surface creates nonbirefringent, multistriped domains
that are not mechanical twins but are alternatingarrays of two
different decomposed species.




I. INTRODUCTION

A, General

This work is part of our study on inorganic metals, which are defined as
metallic substances consisting of metallic and nonmetallic elements. Exem-
plary inorganic metals are inorganic bronzes, metal carbides, metal nitrides,
etc., many of which exhibit challenging physical, chemical, and technological
properties. For example, in most inorganic metals, the conduction-wave
function enhances the valency bonding, leading to a substantial increase in con-
ductivity, melting point, and hardness. Typically, the electrical conductivity of
ZrN is twice that of zirconium metal. Some rare-earth carbides are much
better conductors than rare-earth metals. Carbides and nitrides of titanium,
zirconium, and hafnium melt 1000-2000°C. higher than thc rcapective parent
metals., TiC, ZrC, TaC, and WC exhibit very high hardness, which clagaifies
them in the group second to diamonds. Some inorganic metals possess high
superconduction transition temperatures, e.g., Nby 3Ny 5 (17.5 K), T, ,Thy C,
(17 K), NaCl-type MoC (12 K), and -WC (10 K). The technological application
is promising in electrochemical, catalytic, and related developments.

Similarly, the inorganic bronzes exhibit fascinating properties. The
bronze comprises the metal-oxide lattice as the host matrix, the positive ions
as the interstitial guests, and an equivalent number of conduction electrons,
The oxides of high-valency metals such as tungsten, vanadium, molybdenum,
tantalum, and titanium accommodate the guest ions such as alkalis, alkaline
earths, rare earths, copper, silver, uranium, hydrogen, and ammonium. The
inorganic bronzes have beenreviewed by Higg and Magnéli (1954), Sienko (1963),
Shanks et al. (1963), Ribnick et al. (1963), Wadsley (1964), Dickens and
Whittingham (1968), Galasso (1969), Hagenmuller (1971), Bevan and Hagenmuller
(1975), and Gamble and Geballe (1976). Clnsely related subjects are iuelallic
metal oxides, which have been reviewed by Goodenough (1971).

The most extensively studied inorganic bronzes are sodium tungsten
bronzes, NayWO; with 0.45 < x < 1, which are metallic and exhibit perovskite or
ils modifled structure (see Figs. 1 and 2). The electronic formla of NaxWQ; rriay
be written as xNa' + WO, + xe™, wherc W is hexavalent and e~ io a quasi-(ree
conduction electron (Kupka and Sienko, 1950; Gardner and Danielson, 1954;
Greiner et al., 1962; Shanks et al., 1963; Sienko, 1963; and Zumsteg, 1976).
The electronic energy levels and wave functions of thc bronze liave been dis-
cussed by Keller (1960), Vest et al. (1958), Jones et al. (1962), Mackintosh
(1963), Giuliani et al. (1972), and Kopp et al. (1977). The lattice energy and the
thermodynamic data have been studied by Smith (1954), Ramanarayanan and
Worrell (1974), and Whittingham (1975).

The present report emphasizes that inhomogeneities in bulk and sur-
face structures play important roles in the bronze study. Elaborate theories
have been formulated for the bronze properties, butthese theories are often based
on experimental data that are erroneous because of the sample inhomogeneity.
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ABOg3 Compound. ANL Neg.
No. 122-78-632.
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An instructive case in this aspect is the electrical-resistivity study of
sodium tungsten bronzes carried out by G. C. Danielson's group. Their first
resistivity measurement (Gardner and Danielson, 1954) indicated a minimum
near x = 0.75 which was interpreted as a nearly complete ordering of the sodium
atoms. Their second study (Ellerbeck et al., 1961) found that the resistivity
minimum at x = 0.75 is caused by sample inhomogeneity and that homogeneous
crystals showed no minimum and hence no sodium ordering. The third study
(Muhlestein and Danielson, 1967b) found that highly homogeneous crystals ex-
hibit a different, smaller anomaly near x = 0.75, meaning a partial sodium
ordering.

The electronic transport properties of the bronzes were interpreted
based onvarious clustering models regarding the sodiumdistribution: a linear-
polymer-like clustering (Fuchs, 1965), a randomly linked clustering (Lightsey,
1973), and .NaWO; globules surrounded by WO, (Fromhold and Narath, 1964;
Roper and Knowles, 1972; Webman et al., 1976). However, these clustering
models ascribing microscopic inhomogeneity have been rejected by Tunstall
(1976), Crandall and Faughnan (1977), and Weinberger (1978). This perplexity
is largely attributed to macroscopic inhomogeneity in the bronze specimen.

The optical reflectance spectra of sodium tungsten bronzes have been
measured repeatedly to obtain congruous electronic energy values (Brown and
Banks, 1954; Dickens et al.,.1968; Lynch et al., 1973; Camagni and Manara, 1977a

~and 1977b). There are still vital inconsistencies among these measurements.
Inhomogeneities in the surface structure should be largely responsible for this.
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The X-ray photoelectron spectra of the bronzes indicated satellitic en-
ergy levels, which were explained in terms of a plasmon excitation (Campagna
et al., 1975). This was rebuked by DeAngelis and Schiavello (1976), who inter-
preted the satellites by assuming the coexistence of W6+, W5+, and W*t. ‘The
multivalency model was immediately discarded by Campagna's group(Wertheim
et al., 1976), cautioning that the bronze surface and hence the satellitic spectra
are very sensitive to oxygen and water in the environment. However, the re-
fined spectra of Campagna's group (Chazalviel et al., 1977) are inconsistent
with the plasmanon model and call for new concepts.

1
Sepa et al. (1967) first reported a strong electrocatalytic activity of

the tungsten bronze in the cathodic reduction of oxygen (see also Sec. I.D below).

Bockris and McHardy (1973) have shown that this catalytic activity exists only
with the trace amaount of platinum contaminaut that was introduced during the
electrolytic synthesis of the hronze crystal using the platinum electrodes.
However, Randin (1974d and 1975) asserted that his bronze crystals showed
no catalytic activity, despite the platinum contaminant. This topic indicates
the intricacy of the surface property. Similarly complex problems persist in
the bulk crystal structure as described in the following sections,

This report characterizes structural and compositional inhomogeneities
by revealing a variety of twinnings, domains, and compositional segregations
in the surface and bulk structures. The major finding is that the BaTiO;-like
multiple twin structure of the bronze is not a bulk property, but a surface
phenomenon exhibited by an epitaxial film. A unique technique was also dis-
covered for creating unprecedently wcll-crystallized twinned film. This pro-
cess has facilitated an extensive exploration of domain properties such as
remarkable pyro- and piezostrictive phenomena. Other physical and chemical
properties of the film and the suhstrate are also presented. The surface and
bulk properties reported here should be of considerable value in electrode,
catalysis, and superconductivity applications (see Sec. 1.D).

B. Crystal Structure

The sodium tungsten bronzes were first prepared by Wohler (1824).
The X-ray structure study of the bronze was initiated by de Jong (1932). He
assigned the bronze structure to the ideal perovskite type on the basis of the
cubic sublattice of tungsten and the assumed positions of oxygen and sodium
(shown in Fig. 1). Until rccently, the X-ray structure was refined only on
the cubic unit-cell dimension a4 at various x values (Hagg, 1935; Brown and
Banks, 1954; Wechter et al., 1968). A representative result is a; (A) =
0.0819x + 3.7846 of Brown and Banks (1954).

By polarizing microscopy measurements, Ingold and DeVries (1958)
discovered that the bronze single crystal exhibits birefringent, twin domains
at room temperature. The optical characteristics were interpreted in terms
of a tetragonal cell with c/a slightly less than one (between 0.990 and 1.000)



and twinning on {101}. They also found that the domain boundaries can be
modulated by the bending stress and that the tetragonal phase transforms to
the cubic structure on cooling and also on heating, e.g., at -13°C and 146°C for
x = 0.75, respectively. Ingold and DeVries interpreted all these observations
as the bulk properties.

Atoji and Rundle (1960) have reported the first neutron-diffraction
study of the bronze. The results were as follows: The bronze structure is
a distorted perovskite type at 296-77 K

4° (as shown in Fig. 2); the X-ray unit-
”_/, cell dimension has to be doubled; the
\\\ " sublattice symmetryis Op-m3m for
>3 . s ote s -
T T - R tungsten and sodium; it is Td-43m or
/ N\ ) / / its twinned group for oxygen; the oxy-
\\‘ I N ,\ , gen octahedra are tilted alternatively
NN /\/ . about 4° in the <110> directions;
\‘L \ % and the sodium atoms are not nec-

o o= .13K

- [y 0. : . -
/‘I\ % ANAV A e.ssax"ﬂy all.equlval.ent and can b.e
\ Ry / : distributed in two different atomic
N \\/ /\ . / \\ sites.

' / ~ | o |/ - The sodium assignment is
// ’-’:\\ / la'rgelybased on space-group consider-
) : q ations. Various order-disorder distri-
9.354% L butions of the sodium atoms yield hardly

2 different intensity values. Atoji and
Rundle (1960) presented the most prob-
able distribution of the sodium atoms,

but did not elaborate on the intrinsi-

Fig. 2. A Slightly Distorted Perovskite Structue of
Nag,75W03. The small arrow indicates the
direction and the magnitude of the displace~

ment of the oxygen atoms in T-Im3 from the cally large uncertainty involved due
perovskite position Oﬁ—Pmsm. The tilting to the space limitation of short com-
angle is about 4° along(l}O). The result- munication. Notwithstanding, several
ing displacement is 0.13 A, which is compa- authors have misinterpreted the sodium

rable to the root-mean-square displacement ot distribution of Atoji and Rundle (1960)

0.1 Ain thermal vibration at room as conclusive evidence of the ordering
temperature, ANL Neg. No. 122-78-633. at x = 0.75

The neutron reflections of Atoji and Rundle (1960) showed abnormal
peak broadening in some zones, indicating a complex admixing of growth defects
and certain twinnings. The peak profile analysis was difficult; hence overall
integrated intensities were used to obtain an averaged structure.

‘A recent neutron study at room temperature (Wiseman and Dickens, 1976)
was based solely on powder data. More recently, by means of single-crystal
X-ray lattice-parameter measurements, Clarke (1977) found an additional
transformation within the tetragonal region, leading to four known structure
phases. They are designated here as Cubic I, Tetragonal I, Tetragonal II, and

11
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Cubic II. The transition temperatures are successively, e.g., T, = -8, T, =

54, and T; = 147°C for x = 0.75 (see Sec. IV.D). The tetragonality c/a is in
the range of 1 to 0.998, the median value being about 0.9987. The above sym-

metry assignments and the proposed structures of Clarke (1977) (see Sec. IV.D)
have not been established unambiguously. A Raman scattering study (Flynn

et al., 1978) also found these four phases using the samples obtained from the
same batch as Clarke's (1977). These samples had been heated in air, but the
resulting surface oxidation was assumed to be insignificant.

During the past 20 years, although intermittently, we have carried out
many X-ray diffraction experiments at room temperature in order to detect
the noncubic lattice distortion and the superlattice reflection. In the single-
crystal study, we have used back-reflection-Laue, rotation-oscillation, and
zero- and upper-level precession methads, all with exceedingly long exposurc
time. The reflection profiles were carefully studied to detect any abhnormal
features. Numerous powder-diffraction experiments have been similarly car-
ried out. These X-ray experiments detected neither noncubic lattice distortion
of c/a > 0.9996 nor superlattice reflection,

Wiseman and Dickens (1976) detected c/a = 0.9992 on their bronze
samples but have nevertheless proceeded with the structure analysis based on
cubic symmetry.

In conjunction with our neutron study, I have examined untreated and
treated surfaces of numerous bronze samples using polarized-light microscopy.
I confirmed most of the Ingold-DeVries (1958) ohservations, but found some
inexplicable aspects. My subsequent experiments indicated that the Ingold-
DeVries observations were most likely made on sodium-deficient, expitaxial
surface films. The explanation of this conclusion is a major subject of this
report;

C. Surface Properties

The surface-related properties of the bronzes have been reported in
a number of publications. Spitzin and Kaschtanoff (1928) stated that the bronze
powders (1-20 p.rn) contain adsorbed water to the extent of about 0.4 wt %
(6 mol %), which can be driven off by heating at 200-300°C. Straumanis and
Dravnieks (1949) observed that, when the sintered bronze is exposed to moist
air, the electrical resistivity increases with time, probably owing to the forma-
tion of a surface layer at the intergrain boundaries.
' A preliminary electron-diffraction work of Muldawer (1962) indicated -
that the surface of a Nay ;WO; single crystal immersed in HF and/or exposed
to moist air was converted partly to the tetragonal bronzes (x =~ 0.1) and partly
to tungsten oxides such as WOy, (tetragonal). Consadori and Stella {(1970) ob- ~
served that bronze exposed to air exhibits time-dependent optical-reflectivity
spectra, indicative of a film growing on the surface.



Vojnovic et al. (1972) proposed a structure model of a hydrated layer
of nonstoichiometric oxide, which is presumably formed electrochemically on
the surface of the bronze electrode in acidic solution. This aspect was studied
more quantitatively by McHardy and Bockris (1973) using optical-reflectance
spectroscopy and ion-probe mass spectroscopy. They found that the bronze
surface is partly depleted in sodium, typically from 0.7 to 0.25 in x, to a
depth of about 500-2000 A, and exhibits n-type semiconducting characteristics.
Likewise, §epa et al, (1974) have proposed that the bronze surface in contact
with aqueous media hydrates spontaneously, followed by a depletion of sodium
through the irreversible exchange with hydrogen ions. This process occurs.
more readily in alkaline solution. Similarly, Vondrak and Balej (1973 and
1975) have studied the hydrogenation process yielding a sodium-deficient, hy-
drated layer on the bronze surface.

Wertheim et al. (1976) have demonstrated that the X-ray photoelectron
spectra of the vacuum-cleaved surface of the bronze crystal change consider-
ably by mere 10 min exposure to air. Preliminary work on the Auger spectrum
" and low-energy electron diffraction (Langell and Bernasek, 1977) revealed
some unexplainable features of the bronze surface.

Unfortunately, none of these surface-related studies carried out the
polarized-light microscopic observations.

For introductive reviews on physical and chemical techniciues for sur-
face study, see Kane and Larrabee (1974). Oxide and oxide films of metal have

been reviewed by Diggle (1972 and 1973).

D. Applications

Technological applications of the bronzes appear very promising. The
bronze possesses high electrical conductivity (comparable to graphite) and is
very inert in acid media. Hence, the bronze can be an economical substitute
for noble metals, particularly as electrode materials in acidic environments.
Extensive studies have hence been pursued on the bronze electrodes in a wide
range of electrochemical systems. Typical applications are indicating elec-
trodes in analytical and synthetic reactionsufor acid-base, oxidation-reduction,
metal-complexing, metal-chelating, etc. (Sepa et al., 1967, 1972, and 1974;
Vojnovic and §epa, 1969; Vojnovic et al., 1972; Wechter et al., 1972 and 1973;
Vondrak and Balej, 1973 and 1975; Randin et al., 1973; Randin, 1973, 1974a,
and 1974c; Randin and Vijh, 1975; Amjad and Pletcher, 1975; Dickens, 1977).
In a recent application, the bronze and the reference electrodes in water gen-
erate an electric potential which is a sensitive function of the dissolved oxygen;
this assembly can be conveniently used for monitoring the oxygen level in
water -pollution control (Hahn et al., 1973).

The bronzes are also invaluable in catalysis and related applications.
The bronzes can catalyze the ortho-para conversion of hydrogen and the .

13
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hydrogen-deuterium exchange reaction in the gas phase (Jones, 1960). The
bronze doped with platinum is as effective an electrocatalyst as the best known
catalyst,platinum, in the electrochemical reduction of oxygen to water in acidic
media (Sepa et al., 1967; Fishman et al., 1969; McHardy and Bockris, 1973;
Bockris and McHardy, 1973; Moody and Taylor, 1973; Appleby and van Drunen,
1976). However, some platinum-doped bronzes showed weak activity (Randin,
1974d and 1975; Weber and Shanks, 1976). The bronze electrode catalyzes
evolution and dissolution of hydrogen in acid solution (Bockris et al., 1968;
§epa et al., 1972). The bronze containing a trace of platinum enhances the cat-
alytic oxidation of hydrogen, hydrocarbons, carbon monoxide, and reformer
gas in fuel cells (Broyde, 1968; Niedrach and Zeliger, 1969; Armstrong et al.,
1971). The surface characteristics play a vital role in these catalytic reactions
and have been discussed often in these publications. However, none of these
studies examined the bronze surface by polarized-light microscopy.

Other potentially useful properties and exploratory subjects for devel-

- opment applications are as follows: A bronze that is oxidized electrolytically

in a mixed solution of lead nitrate and nitric acid can be used as a ractifier

that is operable at temperatures as high as 200°C (Kopelman, 1956). Super- -
conductivity has been found in NayWO,; with 0.2 < x < 0.4, where the obviously
important role of the surface layer is yet to be explored (Shanks, 1974; Ngai
and Silberglitt, 1976). A thin-film electrochromic display haf been developed
based onthe electrochemically reversible reaction, WO; + xNa + xe® 7 Na WO,
(Green et al., 1976). The surface film of the bronze is also chemically inert,
and .its role in catalysis should be studied more extensively.

E. Definitions, Provisions, and Terminologies

The metallographic microscope used was the Carl Zeiss Ultrapot II
with attachments for polarized-light and Nomarski interference-contrast tech-
niques. Also used was an E. Leitz Ortholux microscope with a polarized-light
attachment. All observations were made using reflected light in a bright field
with a 10X eyepiece and a set of low-power objectives to minimize refractive
convergency. The polarized-light photomicrographs were taken with slightly
uncrossed (about 2°) Nicols. The scattering of polarized light in the reflecting
specimen accompanies various modulations of the plane of polarization. This
modulation is assumed to be linear or circular, but not elliptic.

Regarding the optical procedurc and interpretation, see Ingold and
DeVries (1958) for specific discussions related to the bronzes. For general
treaties, see Gifkins (1970), Phillips (1971), Chadwick (1972), and McCall and
Mueller (1973).

The bronze samples used in this study were the single crystals grown
by the cathodic electrolytic reduction of a molten mixture of Na,WO, and WO, -
(Shanks, 1972; Whittingham and Huggins, 1972; Weller and Grandits, 1972;
DeMattel et al. 1976). The colors of the bronzes are purple, brick-red, orange,



“and yellow at approximately x = 0.5, 0.6, 0.7 and 0.8, respectively (Dickens
and Whittingham, 1968). Concerning terminologies, the reduced unit cell is
meant to indicate the perovskite-based structure containing one Na WO,. The
surface film or simply the film is an abbreviation for the sodium-deficient,
epitaxial surface film.

The twinned domain configuration is specified as follows: For example,
the [001]-[010]-[100] domain denotes that the a, b, and ¢ axes of the domain
dre parallel to [001], [010], and [100] of the reference coordinates as desig-
nated by the bulk crystal. The notation [001]-[010]-[100]:(011):[001]-[100]
[010] represents a twinned system consisting of the [001]-[010]-[100] and
[001]-[100]-[010] domains with the twin plane of (011) of the domain structure.
For brevity, we may omit (011) in the above notation. Similarly, in a uniaxial
domain structure, we can define the domain orientation by the direction of its
optic axis (the c axis). For example, the [100] domain has its ¢ axis aligned
parallel to [100] of the bulk crystal. The twin notation given above then be-
comes [100]:(011):[010], or a simpler form of [100]:[010].

- The symbols, pa and pe, abbreviating parallel and perpendicular, re-
spectively, indicate the relationship between the ¢ axis of the domain and a
specific plane of the bulk crystal. For example, the c axis of the pa domain
is parallel to the plane of the bulk crystal under observation. The pa-pa twins
comprise two different pa domains, and the pa-pe twins consist of pa and pe
domains. In lieu of pa and pe, a and ¢ are used elsewhere (Jona and Shirane,
1962). For example, when the (010).plane of the bulk crystal is under ex-
amination, the pa-pa twins consist of the [100] and [001] domains, while the "
pa-pe twins comprise the [100] and [010] or the [010] and [001] domains. A
similar convention used is, for example, the [110] stripes, meaning the stripes
running parallel to the [110] axes.

As stated in Sec. I.B, the crystal symmetries and structures of four
different phases proposed by Clarke (1977) have not been confirmed unambigu-
ously. Nevertheless, Clarke's data are most comprehensive regarding the
phase transitions and hence are often taken as standards for descriptive
convenience.

The optical anisotropy of the film can be described as being due to a
tetragonal symmetry. We choose the [001]axis as an optic axis. In a given
twinned structure, the direction of the [100] domain may coincide with the di-
rection of [001] of another domain. Likewise, the [100] axis of a domain may
become the [001] axis after a phase transition. Therefore, when the reference
coordinates cannot be uniquely specified, we conveniently designate the {010}
plane of the substrate as (010) and select [100] and [001] accordingly.
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II. CHEMICAL PROPERTIES AND ETCHING

Since no specific chemical etchant for the bronze is given in the
literature, many reagents were tested; the effects of each were examined
by means of optical microscopy. In some cases, the sample was weighed
before and after etching to estimate the rate of the reaction.

Straumanis (1949) stated that the high-x bronzes are decomposed to
Na,WO, by strong alkaline solution in the presence of oxidizing agents. He
continued that the rate of the decomposition is slow with NaOH solution in
the presence of oxygen, but fast with Na,0,. We found that all these reactions
are exceedingly slow (less than 0.05% in weight loss per hour) and sometimes
produce a surface film, in accordance with §epa et al. (1974).

Straumanis (1949) also reported that the high-x bronzes are decom-
posed rather quickly by a mixture of nitric and hydrofluoric acids. Our test
showed that this process is slow, the weight loss being about 0.5-2% per hour
initially and much less subsequently. The reaction leaves a dark green de-
posit (probably WO;) on the yellow bronze and a gray-tinted metallic-lustre
film (probably tungsten oxides and tungsten metal) on the red bronze. These
reaction products can be removed by hot NaOH solution, and this process
produces certain film on the surface. To recapitulate, all these decomposi-
tion reactions are unsuitable for etching.

According to Brunncr (see Magneli, 1949a), the bronzes are readily
decomposed by a concentrated solution of ammonium peroxy-disulfate
(NH4)25208. On the contrary, this reaction with or without the oxidizing
catalyst AgNO, was found to be exceedingly slow (less than 0.1% weight loss
per hour). Likewise, thc fused (NH4)257_OR did not erode the bronzes. These
processes are thus also inappropriate for the etching praocedure.

The bronze is quite inert to acids. However, the inertness may be
due to an exceedingly slow rate of reaction, which nevertheless may still be
usable for etching. Accordingly, the bronze specimens were treated with
commonly used etchants consisting of various acids (sulfuric, nitric, hydro-
fluoric, hydrochloric, perchloric. phosphoric, chromic, aretic, citric, picric,
oxalic, etc.) (Kehl, 1949; Tegart, 1959). Similar trials were performed with
typical bases (NaOH, KOH, NH,OH, etc.). The bronze surface was not etched
suitably by any of these reagents. In all cases, the weight loss was less than
0.1% per hour. Ingold and DeVries (1958) stated that they employed an etch-
polishing method using HCI1 solution and 0.3 pm Al,O, for revealing the domain
structure. The bronze is inert to HC1; hence this process is actually just a
mechanical polishing with the Al,0; powder,

The bronze can be dissolved by an alkaline solution of potassium
ferricyanide, K3Fe(CN), (Phillip and Schwebel, 1879; van Duyn, 1942). This
reagent was found to be the only suitable etchant for the bronze. A solution



of 10% KOH and 10% K;Fe(CN)g, known as Murakami's reagent, is used for
etching tungsten metal and carbide and other metal carbides and nitrides
(Kehl, 1949; Tegart, 1959). For the bronze, we use oxygen-free solutions
of 10-20% KOH or NaOH and 10-20% K;Fe(CN),, which are termed modified
Murakami reagents. The oxygen in the solution is readily removed by evacu-
ating a flask container via rubber tubing (to permit manual agitation) in a
mechanical-pump vacuum line. The etching was always performed while
stirring the etchant vigorously and shaking the specimen very rapidly to
attain a uniform reaction (Tegart, 1959). The presence of oxygen induces
the formation of the surface film on the etched surface. The rate of the
etching reaction with the modified Murakami reagent is faster for higher x.

III. SUBSTRATE

During the preparation of the metallographic specimen, some regions
of the mechanically polished surface of the high-x bronze (x > 0.7, orange to
yellow color) are tinted with brick-red color. The tinted area (darker in
black-white photograph) varies from quite irregular to remarkably regular
in shape (see Fig. 3). The reddish tinting implies a partial depletion of so-
dium that has taken place during the mechanical polishing. The X-ray
microprobe analysis indicated that the sodium content in the red-tinted area
is about 5 at. % less than that in the orange-yellow area. The color contrast
is most effectively observed with unpolarized light and can be seen with or
without the surface film. The color change is less noticeable in the lower-x
bronzes.

The type and the degree of ordering in the segregation of the sodium
atoms are to some extent dependent on the polishing procedure. The lesser
strain (induced by polishing) appears to result in higher ordering in the segre-
gation. A vibratory polishing, causing probably the least strain, yields the
most regular pattern. Metallographic polishing by mechanical methods has
been reviewed by Samuels (1971) and by McCall and Mueller (1973). Typical
forms of the segregation are linear, rectangular, and crosshatched striations
as shown in Figs. 3A, 3B, and 3C, respectively. The directions of these stri-
ations are always parallel to the (100) axes. The crosshatched or rice-field
pattern as shown in Fig. 3C can also be produced on the polished {100} surface
by anodic electrolysis in H,0,.

As described above, a given surface exhibits different types of the
sodium segregation, depending on the surface treatment. Moreover, the so-
dium segregation of the surface is entirely different from the etch pattern of
the same surface. Hence, the sodium segregation mentioned above probably
occurs on the outermost layer of the unetched flat surface and is unrelated
to the mechanical twinning. The diffusive migration of the sodium atoms is
unlikely to occur in the bulk structure (Smith and Danielson, 1954), but may
take place quite readily on the surface.

L7
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A

Fig. 3. Unpolarized-light Photomicrographs Showing Sodium Segregation on

Mechanically Polished (010) Suifaves of Nag7WUg and Nag,75WOg3.

Linear, rectangular and crosshatched segregations of the sodium atoms

are shown in A, B, and C, respectively. Dark and light regions repre~
sent reddish and orange colors, respectively. The sodium content in
the former is about 5 at, % less than that in the latter., Weak optical
birefringence, probably due to lattice strains, is observed along part of
the narrow light band adjacent to the dark striation. The polishing was
carried out using 0.25-pm diamond paste or water slurry of 0.3-0.5-pum
AlgOg powder. Samples A and B were polished using a uniform polishing
technique; sample C was polished using an automartic vibratory—polishing

machine. ANL Neg. Nos. (A) 306-78-10A, (B) 122-78-31A, and

(L) 122~'18-153 Rev.



Fig. 3 (Contd.)
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The sodium segregation is seen preferentially in the vicinity of surface
blemishes such as pits, crevices, and cracks. Conversely, these macrodefects
tend to occur along the segregation boundaries.

When the polished surface was etched slightly using the modified
Murakami reagent, the treated surface showed a variety of etch patterns.
Examples of the random and regular patterns are shown in Figs. 4 and 5,
respectively. These observations imply that the sodium atoms near the

surface also tend to segregate, frequently in striations parallel to the {100)
axes.

Fig. 4. Unpolarized-light Photomicrograph of Slightly Etched (010) Surface of Nagy ggWOg,
Showing Random Segregation of Sodium Atoms near Surface of Substrate. The sur-
face was polished mechanically and then etched by a solution of 10% KgFe(CN)g
and 10% NaOH at room temperature for a few seconds. The light areas were un-
etched, and the dark areas were etched out slightly. The sodium content of the
dark area is higher than that of the light area. No optical birefringence was
observed. ANL Neg. No. 122-78-392.
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Fig. 5. Unpolarized-light Photomicrograph of Slightly Etched (010) Surface of Nag 75WOg,
Showing Sodium Segregation in a Venetian-blind Pattern. The sodium content is
higher in the darker area. The striations are parallel to the {100) axes. This sur-
face showed no optical birefringence. The surface was mechanically polished and

then etched using the modified Murakami reagent at room temperature. ANL Neg.
No. 122-78-393.

The surface representing the bulk structure can be obtained by etching
the surface deeply or by cleaving or crushing the crystal in vacuum. The
deeply etched surface exhibits repetitive subboundaries, some of which show
pseudodomain appearance (Figs. 6 and 7). The subboundaries are usually
parallel to the (100) axes. Such pseudodomain modulations could be induced
during the crystal growth.

The crystal growth by electrolytic reduction of molten mixtures of
Na,WO, and WO; undergoes several transient reactions at the solid-liquid
interface (Brimm et al., 1951; Banks et al., 1970; Fredlein and Damjanovic,
1972; Whittingham and Huggins, 1972; Randin, 1974b). The crystallization is

21
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regulated through the intercorrelation among supersaturation, nucleation,
and diffusion, each of which has different temperature and potential depen-
dencies. Under certain conditions, an integrated effect of these processes
may generate a sinusoidal perturbation to the crystal growth, resulting in the
pseudodomain morphology and the periodic segregation of the sodium atoms.
A periodic perturbation arises when the nucleation takes place faster than the
diffusion of the solutes in achieving critical supersaturation.

Fig. 6. Nomarski Interference-contrast Photomicrograph of Frched (010) Surface of
Nag 75WO3, Showing Pseudoperiodic Segregation of Sodium Atoms. The
parallel subboundary lines are slightly protruded. The diffusely bright bands
adjacent to the striations show weak birefringence, which is probably indnced
by lattice strains. The etch pits could be end-on images of dislocations.
Etching was performecd using the modified Murakami reagent at room tem-—
perature for about 10 s. ANL Neg. No. 306-78-4A.



Fig. 7. Nomarski Interference-contrast Photomicrograph of Deeply Etched (010)
Surface of Nag 7WOg, Showing Parallel Subgrain Boundaries. No optical
hirefringence was observed. The etching was performed using a boiling
solution of 10% KOH and 10% KgFe(CN)g for about 10 s. ANL Neg.
No. 122-78-444.

A similar effect can be produced by the commonly used automatic
temperature controller with variable time constants, which gives rise to a
small, periodic temperature fluctuation. If the temperature during growth is
varied in steps, a periodic precipitation of impurities can occur in sectors.
The impurity tends to precipitate preferentially on the {100} planes, creating
readily cleavable planes (see Sec. LV.C).

The deeply etched substrates are shown in Fig. 8. These substrates
are quite homogeneous in the sodium concentration. The etched figures on
the {100} planes are characterized by the square pyramid having either
Op-m3m or Tp-m3 symmetry. The Ty symmetry is not necessarily intrinsic
and may be attributed to the growth anisotropy. We have never observed the
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morphological symmetries, Tg-43m, 0-43, or T-23. This is also the case
in the {100} and {111} studies (see Sec. IV.A). The substrate surface was
also examined by Taylor (1969) from a different point of view.

Fig. 8,

Nomarski Interference-contrast Photomicrographs of Deeply Etched (010)
Sutfaces of Nag n5WUg Crystals, ‘I'he etched tigures show morphological
symmetries, Op—mam and T;~m3. In Fig. 8B, some pyramid-figurcs have
stepping striations which are always parallel to {100)». A square diamond-
shaped shadow, seen on the apex of the pyramid (one in Fig. 8B and many
in Fig. 8C), is analyzed by scanning-electron microscopy in Figs. 23 and
24 (later). No optical birefringence was exhibited by these patterns.
Etching was carried out using a boiling solution ot 20% KgFe(CN)g and
20% NaOH for about 10s. ANL Neg. Nos. (A) 122-T7-945A,

(B) 122-77-946A, and (C) 122-77-933A.



Fig. 8 (Contd.)
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Regarding the optical birefringence of the substrate, weak optical
extinctions were observed in some portions of a narrow line adjacent to the
striation line (see Fig. 3). The optic axis is parallel to the reddish striation,
and the optical extinction varies from vague to somewhat distinct. The ex-
tinction axis lies 45° from the [100] axis. Some striations are nonbirefringent,
but become birefringent after being treated by NHO, and/or HCl. The bire-
fringence is probably due to the local lattice strain caused by the sodium
segregation.

Besides the above strain-induced effect, the surface, the near surface,
and the deeply etched surface of the substrate show no significant birefringence
and no change in optical and morphological properties at the phase transitions
reported by Clarke (1977). Similarly, external stress on the substrate in-
duced no measurable effect.
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IV. SURFACE FILM

A. Characterization and Formation

We have observed the birefringent twin structure of the Ingold-DeVries
type (1958) on some bronze single crystals and have verified most of their
optical and related observations. However, there were some very puzzling
aspects which could only be resolved by assuming that the Ingold-DeVries
observations were specifically due to certain surface films.

First, the twinned surface layer is translucent to varying extents as
evidenced below (see Figs. 9-12). The twin domain is unperturbed by minor
surface blemishes (scratches, pits, and the like) which are visible through the
twinned surface layer at both maximum and minimum contrasts in the bire-
fringence. Also, it was observed, by virtue of translucency, that the blemishes
are situated at a deeper focal plane. The differential focal depth indicated that
a film thickness is about 107%-107° mm, or too thin to be measurable by an
optical microscope. Simultaneously, the surface film was found to be single-
or multilayered.

Second, using naturally occurring and artificially formed rectangular
{100} prism crystals, we have tried to find any rational, coherent correlation
among the twins of the orthogonal {100} faces. The Ingold-DeVries bulk-
structure model should show, for example, the pa-pa twin on (010) and the
pa-pe twin on both (100) and (001). So far, our effort at finding such a twin
relation has been fruitless. This is also true for the synthetic film described
below.

Third, and perhaps most important, we found that the twins of the
Ingold-DeVries type can be synthesized on the untwinned surface by electrolytic
anodization in alkaline solution. Typically, the bronze anode and the noble-
metal cathode are placed in 10% NaOH or KOH aqueous solution. The electrol-
ysis is performed at about 0.1-0.2 A/cm?, 3-9 V dc for several seconds while
stirring the electrolytic solution vigorously. In certain cases, the KOH solution
gave a better result. A crystal, which is too small to be held by a clip, is
placed in a platinum boat. A similar, but poor, yielding process is to wet the
bronze surface with an alkaline solution in the presence of oxygen (see Sec. II).

The twinned films synthesized electrolytically over the etched surface
are shown in Figs. 9 and 10, which demonstrate the enwrapping appearance of
the surface film. 'The best twins can be created electrolytically on the polished
{100} surface (see Figs. 11 and 12). The electrolytic synthesis suggests that
the Ingold-DeVries twins are exhibited by a hydrated, sodium-deficient surface
film (§epa et al., 1974). This interpretation is supported by X-ray photoelectron
and Auger Spectroscopic measurements (see Sec. V.A).



Fig. 9.

Polarized-light Photomicrograph of an Electrolytically Synthesized Film Covering
a Deeply Etched (010) Plane of Nay 75WO5. The morphological features of the
etched substrate are visible because the film is translucent. The domain walls of
the outermost film run parallel to the [110] axis. The surface was etched by the
modified Murakami reagent and then subjected to anodic electrolysis in 10% NaOH
solution for a few seconds at 0.1 mA/cm? and 5 V dc. ANL Neg. No. 122-78-274.
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Fig. 10. Polarized-light Photomicrographs of Deeply Etched (010) Surface cf Nap ggWOg Covered with Surfzce F.Im. The birefringeat cor.trast is mini~
mum and maximum in (A) and (A'), respectively. In both (A) and (A'), the morphological features >f substrate is clearly se=n, becausz of the
transiucency of the film. The etching and the electrolysis procedures are the sam.2 as those in Fig. 9. ANL Neg. No. 122-7€-342,
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Fig. 11. Polarized-light Photomicrograph at Maximum Birefringent Contrast of Electrolytically
Synthesized Surface Films on Polished (010) Plane of Nay 7;WOg3. Some surface blem-~
ishes are visible through the films. Several {101) stripes of the innermost film are
vaguely seen. Detectability and contrast increase progressively for the outer films,
namely, the {100 stripes of the second innermost film, the {101 stripes of the third
film, the €100 stripes of the fourth film, and finally <110 stripes of the fifth and
outermost film. Note that the domain stripes exhibit the needle-shaped ends and a
bead-loop modulating width. ANL Neg. No. 122-78-271.
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Fig. 12. Polarized-light Photomicrograph of Flectralytically Synthesized Surface Films,
on Polished (010) Plane of Nap 75WOg. Besides the domain characteristics
similar to Fig. 11, broad twin bands show wedged and forklike domains. ANL

Neg. No. 122-T76-317A.
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In the electrolytic synthesis of the film, the domain formation sometimes
takes place a few minutes after the electrolytically treated surface is exposedto
air. The domain formation is often slow enough to be perceived visually under
the polarizing microscope. In some cases, the domains can be seen to form at
one edge and then migrate to another edge of the surface. The propagation speed
is about 0.1-1 m/s. Such a domain-forming process is also observed when the
surface is wetted with alkaline solution in air. A similar process occurs on
certain cleaved surface; that is, a freshly cleaved surface in moist air initially
shows no domains, but develops the domained surface film a few seconds later.

During the preparation of the bronze crystals, the excess sodium tung-
state in the final product is leached off in boiling water or hot NaOH solution.
The sodium tungstate solution is strongly alkaline; hence the leaching process
creates the film layer on the bronze surface as well as on the planar defects
at which the cleavage may take place readily. The so-called freshly cleaved
surface is often such a film-covered interface (see Sec. IV.C). Also, the virgin
surface of the bronze has considerable affinity for water and probably also
for oxygen (Wertheim et al., 1976), leading to the formation of the surface
film.

An epitaxial correlation between the surface film and the substrate is
shown by the following experiment. The bronze surface was polished and then
electrolytically treated in an NaOH solution. The domain pattern of the sur-
face film was photographed. A diamond paste was then used to polish the
surface to remove the film. Then the surface was washed and electrolytically
treated again. The main features of the domain pattern persisted (roughly 75%).
The process was repeated three times on two different samples, with about
the same results.

The (110) and (111) surfaces were also studied rather extensively. The
electrolytic treatment and the etching processes yield neither well-crystallized
surface film nor clearly definable morphological features. These aspects are
represented by Figs. 13 and 14.

B. Structural Aspects

The twins form a variety of multiple stripes (as shown in Figs. 11 and
12). The single-domain width is roughly 0.001-0.01 mm in the orderly narrow
stripes and as wide as 0.1 mm in the irregular broad ones. The narrow do-
mains have been similarly observed in some ferroelectrics, e.g., BaTiO,,
Rochelle salt, and WO; (Jona and Shirane, 1962; Fatuzzo and Mets, 1967). As
an illustration, we choose the substrate surface to be (010) and assume that
the film is strain-free. In Tetragonal I, the median direction of the stripes
in the first (innermost) film is parallel to either [101] or [101] of the substrate.
The stripes in the second film are parallel to either [100] or [001]. The stripes
in the third film are the same as those in the first film, etc. Hence, the angle
between the stripes in the neighboring film is 45 or 135°, while the stripes
within a film can be mutually orthogonal.
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Fig. 13. Nomarski Interference-contrast Photomicrograph of Etched (110) Surface of
Nag,75W03. The striations are approximately parallel to [120], but gave no
conclusive evidence for the possible [120] twinning. This surface shows

vague birefringence. The etchant was a solution of 10% NaOH and 10%
KyFe(CN)g. ANL Neg. No. 122-TT-963A.



Fig. 14. Nomarski Interference-contrast Photomicrograph of Etched (111) Surface of
Nag 75WOs3. The morphology and the surface-film domains indicate the
intersecting angles of 60 and 120°. The film shows a weak birefringence.

The etching was performed using a solution of 10% NaOH and 10% KgFe(CN)g.
ANL Neg. No. 122-77-951A.
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At the domain boundary, the optic axis of the domain rotates 90° about
the axis perpendicular to the film layer. The angle between the stripes and
the optic axis of the domain is 45 or 135° in the odd-number films and 0 or
90° in the even-number films. The film structure is probably pseudocubic
tetragonal with the layer plane (010) and the optic axis [001]. The twinning
plane is then {101} in the odd-number films and (100) or (001) in the even-
number films.

The pseudocubic tetragonal structure of the film is further supported
by the following observations:

1. The angle between the [100] and [001] domain walls is 90° (+0.1°).
The terminal angle of the needlelike domain gives 2 tan"!(c/a) >~ 89.9° hence,
c/a= 0.997.

2. If the structural anisotropy in the (101) plane is large, then the
energy of formation ol the (100) plane is significantly different from that of
the (001) domain. Hence, the population difference between the (100) and (001)
domains should be readily detectable. This appears contrary to observation;
therefore the tetragonal anisotropy should be very small.

3. The strain energy associated with the simultaneous cxistence of
the (100) and (001) domains is reduced by the formation of the wedge-shaped
domains. However, if these two types of domains cannot be made to fit tightly
in the wedge formation, then microcracks would have developed betwecn the
domain blocks (each of which contains one type of domain). No such interblock
microcrack has been observed, implying that the domain-wall formation is
subjected to a very small anisotropy.

The film structure is further characterized as a pseudocubic perovskite
type having various tilting modes of oxygen octahedra. A displacement of
sodium from the corner of the pseudocubic cell is also possible. These dis-
tortions and displacements should be very small, comparable to the amupliludes
of thermal vibration. In other words, the energy required for distorting the
perovskite structure is roughly equal to the phonon excitation energy in ther-
mal vibration. This is a major reason for instability of the domain configura-
tion of the film (see Secs. IV.D and IV.E below).

The thickness of the domain wall is presumably of the order of the
lattice constant as found in ferroelectrics (Jona and Shirane, 1962) and hence
is much thinner than the ferromagnetic domain wall, whose thickness is several
hundred lattice constants.

Selected references regarding the film structure are as follows: For
a review on the tungsten compounds, see Rieck (1967). For general discussions
on the mechanical twinning, see Hall (1954), Reed-Hill et al. (1964), Klassen-
Neklyudova (1964), and Reid (1965). Regarding the perovskite and its modified



structures, see Galasso (1969), Hyde and O'Keeffe (1973), Polaczkowa and
Polaczek (1974), Glazer (1975), and Hussain and Kihlborg (1976). The lattice
vibration in the bronze has been discussed by Scott and Leheny (1970),
Kamitakahara et al. (1976), and Flynn et al. (1978).

Representative studies on WO;, reduced WO;, and their crystallographic-
shear structures are by Ebert and Flasch (1934 and 1935), Glemser and Sauer
(1943), Ueda and Ichinokawa (1951), Nakamura (1956b), Sawada (1956a and
1956b), Sawada and Danielson (1959a, 1959b, and 1959c), Tanisaki (1959a and
1959b), Gaddé (1965), Spyridelis et al. (1967), Amelinckx and Van Landuyt
(1970), and Loopstra and Boldrini (1966).

For the tetragonal structure of Na, WO; with small x, see Magnéli
(1949b) and Takusagawa and Jacobson (1976). Concerning the hydrogenated
bronze structure, see Glemser and Naumann (1951), Mitchell (1963), Wiseman
and Dickens (1973), and Hoppmann and Salje (1976). In this context, it is of
interest to quote the crystal data of two representative hydrated tungsten
oxides: tetragonal W, O,,(OH),(= 4 Hy.sWO;) with a = 3.79 and ¢ = 3.74; tetra-
gonal W,;,0;,(OH),(= 12 Hy.14WO; g33) with a = 3.85 and ¢ = 3.65 A (Glemser
and Naumann, 1951). For comparison, the reduced-unit-cell dimensions of
Nag.50WO3, Naj ;5WO;3, and the hypothetical NaWO; are 3.826, 3.846, and
3.867 A, respectively.

C. Properties

The surface film is chemically more inert than the bulk crystal. The
domain structure was uninfluenced by hot concentrated HCIl, HNO;, HF,
H,0,, and various admixtures thereof. Concentrated H,SO, did modify the
domain structure about 30%, probably due to a dehydration of the film, since
various mixed solutions of H,SO,, HC1, HNO;, and H,0, showed no such effect.
In these experiments, the samples had to be handled carefully, since the do-
main is modulated by slight pressure such as gentle priming with the finger
(see Sec. IV.D).

The film, unlike WO3;, is inert to boiling NaOH, KOH, NH,OH, Na,0,,
H,0,, and various admixtures thereof. A similar inertness was observed
with reducing reagents, such as sodium sulfite and hydroxylamine hydro-
chloride. Liquid metal polishes of commercial sources were also ineffective.

The domain is uninfluenced by anodic and cathodic electrolyses in acids
and by cathodic electrolysis in alkaline solutions. The anodic electrolysis in
alkaline solution dissolves the bronze continuously, maintaining an equilibrium
thickness of the surface film (§epa et al., 1974). Electron diffraction in the
bronze foil prepared by this method indicated that the outer atomic layers of
the surface film are largely dielectric, thereby deflecting away most electrons.
Probably the only way to remove the film is by mechanical polishing. A
0.25-um diamond paste (Tegart, 1959) was used routinely for this purpose.
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Note that the surface film can exist only epitaxially (or parasitically)
and cannot be isolated from the substrate. The equilibrium thickness of the
film would become dependent on the size and the shape of the substrate when
the substrate is smaller than a certain critical size. The unmodulated surface
of the bulk crystal should be considerably reactive because of the sodium atoms
being exposed to the surface. This high reactivity is suppressed greatly by
forming the surface film. The reactivity can also be suppressed by a succes-
sive degression of the sodium concentration in the outer-surface layers of
the substrate.

The bronze single crystal exhibits the cleavage parallel to the {100}
planes. As pointed out in Secs. III and IV.A, the cleavage may not be an in-
trinsic bulk property. This view is further supported by the domain structure
of the film covering the cleaved surface. Figure 15 shows the matched pair
ot the cleaved surfaces. The film domains of the as-cleaved pair, A,-A],
are not well crystallized. The anodic electrolysis in 10% NaOH solution
purified and recrystallized the film as indicated by well-defined domain
pattern in the A,-A; pair. In both cases, roughly 60-75% of the domain pat-
terns of the matched pair are identical. Both faces exhibit the double-layer
films. The cohesive stacking is realized between the film with the (100)
domains and the film with the (110) domains. However, the domains of the
outermost film of A, and those of A are the same (110) types, resulting in
the repulsion between A and A}, hence the cleavage.

The cleaved surface is generally expected to be smoothly flat, not as
jagged as shown in Fig. 16. This observation presents additional support to
the proposition that the cleavage of the bronze is caused by structural
imperfection.

The effect of hydration in the film was examined as follows. The do-
main pattern of the wet film is fuzzy, but becomes sharply defined when the
film is dried at about 60°C. This means that some water molecules are so
loosely bound to the film that they can be driven off at about 60°C. The repro-
ducibility of the domain configuration of the film in the pyrostrictive modula-
tion (see Sec. IV.D) is higher for the higher temperature used for drying the
film. When the film is dried at 60 and 300°C, the reproducibility is about 75
and 95% in the first-cycle pyrostrictive modulation below 60 and 300°C, re-
spectively. When the dried film is wetted with water, the water molecules are
absorbed and the domain pattern becomes fuzzy. When the film is heated
above 350°C, oxidation becomes appreciable. Above 400°C, the surface is
covered with blue metallic-lustre film (WO;). In all cases mentioned above,
heating was performed in air for about 1 min.

The electrical conductivity of the bulk crystal is not significantly in-
fluenced by the formation of the surface film. This resembles Al,0; on alu-
minum metal, exhibiting a fast electronic tunneling through the oxide layer
in the electric conduction (Diggle, 1972 and 1973).
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0.75WO , 294 °K

Fig. 15. Polarized-light Photomicrographs of Matched Pair of Cleaved (010) Surfaces of Nap 75WOg. The as-cleaved (010) faces are shown in Aq and
Ai. The same pair after being treated electrolytically are displayed in Ao and Aé . The crossed arrows indicate the directions of the polariza-
tion vectors of the polarizing and analyzing Nicols. The film domains on these cleavage surfaces suggest that the cleavage is due to a growth

imperfection and is not an intrinsic bulk property. ANL Neg. No. 122-78-508A.
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Fig. 16. Unpolarized-light Photomicrographs of Matched Pair of Cleaved Surfaces
of Nag 75WOg. The substrate is covered with the surface film, which is
not scen because of nonbirefringency in nnpolarized Tight. The surface. is
too jagged to be the usual cleavage plane. ANL Neg. No. 122-78-509.
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D. Effect of Temperature

Table I summarizes the temperature-dependent physical properties
governing the phase-transition region (from about -50 to 300°C). Figure 17
‘shows the transition temperatures reported in the literature. Figure 18 dis-
plays the temperature dependency of the lattice parameters of a representative
bronze (Nao_81W03) and the proposed crystal-structure data, all reported by '
Clarke (1977). The phase-transition data obtained by the recent Raman scat-
tering experiment (Flynn et al., 1978) are almost identical to Clarke's data(1977).

The T, transition was detected in optical, X-ray, and Raman measure-
ments, but was undetected in more than a dozen other physical measurements,
The discrepancy between Ingold and DeVries (1958) and Clarke (1977) is larger
at lower values of x, e.g., as much as 20°C at x = 0.8. Optical measurements
of Atoji (1978) agree with Clarke's data (1977). Our recent neutron-diffraction
data indicated a larger tilting of oxygen octahedra at lower temperatures, but
no detectable change at T,. The heat-capacity curve (Inaba and Naito, 1975)
shows a small slope change at T;.

The T, transition discovered by Clarke was confirmed by Flynn et al.
(1978) and also by Atoji:(1978). Ingold and DeVries (1958), as well as many
other investigators, did not detect the T, transition.

Unlike T; and T,, the T, transition was found by almost all methods.
The T, values obtained by Ingold and DeVries (1958) agree with those of Clarke
(1977), butdiffer as much as 30-80°C fromthose reported by Rosen et al. (1956b)
and Shanks and Redin (1966). .

Clarke (1977) postulated that, on the basis of his proposed space groups,
T, and T, are of first order because of the transition between the nonsubspace
groups, while T, is of second order because of the transition between the sub-
space groups. Note that all these space groups are centrosymmetric and are
not piezo- or pyroactive. Although these postulations have been neither fully
confirmed nor eliminated, the available data so far do not contradict the tran-
sition schemes proposed by Clarke (1977). For example, the lattice parameters
change discontinuously at T, and T,, but continuously at T;. On the other hand,
the thermal-expansion coefficient hardly changes at T, and T,, but significantly
at T,, in agreement with other thermal properties. :

X-ray(Clarke, 1977), Raman (Flynnet al., 1978), and NMR (Bonera et al.,
1971) measurements indicate that T, is a second-order transition inducing a
noncubic distortion to the perovskite structure which is stable above T;. On
the contrary, the heat-capacity data (Inaba and Naito, 1975) imply the higher-
temperature phase to be more disordered.

The T, transition was observed in the thermal conductivity (Shanks and
Redin, 1966) but not in the electric resistivity (El}erbeck’ et al., 1961), although
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TABLE I. A Survey of Temperature-dependency Measurements on Various Physical
Properties of the Sodium-Tungsten Bronzes. Quoted are the data in the temperature range
from about -40 to 250°C governing the transition temperatures,

T,, T,, and T, (Clarke, 1977).

Transition
: Temperature
Temp: i Detected
Method and Range, X in

Crystal Form °C Na,WO, T, T, T, Reference
X-ray lattice param- 20-600 7 x's, ‘No No Yes Rosen et al.
eter: powder 0.300-0.845 (1956b)
X-ray lattice param- -30-230 0.62, 0.81, Yes Yes Yes Clarke (1977)
eter: single crystal 0.94
Dilatometry: powder 20-600 0.8 No Yes Takamori and

Tomozawa (1964)

Oprical microscopy: -40-200 16 x's, Yes No Yes Ingold and DeVrieg¥*
single crystal 0.52-0.93 {1958)
Optical microscopy: -40-200 5 x's Yes Yes Yes, Atoji (1978)*
single erystal 0.06-0.9
Raman s'pectroscopy: -269-227 5 x's Ycs Yes Yes Flynn et al.
single crystal ~ 0.51-0.94 (1978)
Heat capacity: ~258-37 0.679 No Gerstein et al.
powder (1964)
Heat capacity: 27-627 0.485, 0.698,  *x No Yes Inaba and Naito
powder 0.794 (1975)
Differential thermal 27-497 0.8 No Yes Taylor and Weller
analysis: powder ) _ (1970)
Thermal conductivity: 77-527 0.513, 0.804 Yes Shanks and Redin
single crystal (1966)
Magnetic susceptibility: ~-203-27 0.49, 0.76, No Greiner et al,
single crystal 0,86 {19¢2)
NMR: -173-427 0.517,0.72, No' No Yes Bonera et al.
single crystal 0.855 (1971)
Seebeck cffect: -269-27 7x's No Muhlestein and
oingle erystal U.512-0.875 Danielson (1967a)
Hall effect: -196-96 13 x's, No No Gardner and
single crystal 0.605-N RAR Danlelson (19y54)
Hall cffect: -2by-2'1 1(x's No Muhlestein and
single crystal 0.4-0.9 Danielson (1967b)
Hali éttect: -272-27  0.26,0.3, 0.6 No Lightsey (1973)™
single crystal :
Electrical resistivity: -263-27 13 x's No Gardner and
sinple vrysial 0.605-0.865 Danielson (1954)
Electrical resistivity: -269-600 12 x's No No No Ellerbeck et al.
single crystal 0.49-0.88 : (1961) :
Electrical resistivity: -269-27 17 x's No Muhlestein and
single crystal 0.4-0.9 Danielson (1967b)
Electrical resistivity: -272-27 5 x's No Lightsey (1973)1
single crystal 0.22-0.63

*These measurements were made on the epitaxial surface films.
**The heat-capacity curve shows a small change of slope near T,
fThe NMR data by Bonera et al. (1971) and those by Tunstall (1975) indicate

that the noncubic structure persists down to 1.6 K,
M The so-called cubic range could be extended down to about x = 0.22 by

depleting sodium atoms nondestructively from a Nay (WO, singlc crystal
using a diffusive dilution method. See also Lightsey et al. (1976).
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' Fig. 18. Temperature Dependencieso® Lattice Parameters and Crystal Structures of Four Structural Phases of Naj gyWO,. All data are based on
Clarke (1977;. The lastice parameters are shown in terms of the reduced pseudocubic: unit-cell dimensions, ap, bp and Cp- The space-
averaged linear thermal expansion in the tetragonal region is given by Vl-/3 (V = molar volume), ANL Neg. No. 122-73-365,
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these transport properties are similarly phonon-related. In any event, im-
proved measurements are required on practically all physical properties of
the bronzes.

The temperature dependencies of the domain structure of Nay ;0WO,
and Nag (WO; are shown in Figs. 19 and 20. In Fig, 19 the film domain appears
to monitor the phase transitions of the Na, ;,(WO; substrateat T, = 9°C, T, = 52°C,
and T; = 148°C, reported by Clarke (1977). At 0°C, the film structure is nearly
isotropic (the substrate is Cubic I); at 13°C, the (101) domains dominate
(Tetragonal I); at 23°C, the population change occurs among the [101] and [101]
domains (Tetragonal I); at 57°C, the {100) domains start to appear (the tran-
sient state between Tetragonals I and II); at 63°C, the (100) domains dominate
(Tetragonal II); at 90°C, the population change takes place among the [100] and
[001] domains (Tetragonal II); at 110°C, a further population change occurs among
the [100] and [001] domains (Tetragonal II); at 150°C, the film becomes isotropic
(Cubic 1),

In Fig. 20, the transition temperatures of Nay, (WO, are T, = -13°C,
T, = 30°C, and T, = 133°C (Clarke, 1977). The domain of the surface film changes
in an apparent coherence with the structural change of the substrate. The/101)
domains at 23°C (the substrate being Tetragonal I) are replaced by the (100)
domains at 35°C (Tetragonal II). The thermoelastic effect changes the optical
reflectivity, but not the domain configuration as shown by the 71°C pattern
(Tetragonal II). The film becomes isotropic at 140°C (Cubic I). The domain
pattern at 23°C is similar to that of Rochelle salt (Fig. 4 of Mitsui and Furuichi,
1953).

Within Tetragonals I and II, the temperature change causes a gradual
alteration on the domains, but without rotatory change of the domain wall. The
domain appears to be modulated epitaxially by such small factors as thermal
expansion of the substrate. Hence, the phase transition of the substrate is ac-
companied by a drastic change in the domain configuration of the surface film.
In addition to the anisotropic-isotropic transformation of the film at the
tetragonal-cubic transition of the substrate, we found that, in the vicinity of the
Tetragonal I-II transition, the film domain changes markedly and the twinning
planes undergo a rotatory shift of 45 or 135°. Consequently, in Tetragonal II,
the first film contains the [100] and [001] walls, the second film contains the
[IOT] and [TOI] walls, etc. The orientation of the domain walls of the inner-
most film often coincides with the striation pattern of the sodium segregation
in the substrate (see Sec. III). The domain modulation by temperature change
is occasionally accompanied by an audible, high-pitched, snapping sound ("cry of
tin" or Barkhausen sound).

The surface-film domain is often unrelated to the pseudodomain and
other morphological features of the substrate (see Sec. III). Moreover,
we found that morphological and optical properties of the substrate do not
change at the reported phase transitions. Accordingly, the optical microscopy
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Fig. 19. Polarized-light Photomicrographs Showing Temperature Dependency of Domain Structure of Surace Film of Nag 70WOg at 0-150°C.
ANL Neg. No. 122-78-306.
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Fig. 20. Polarized-light Photomicrographs showing Temperature Effect on Surface Film of Nag gWO3
at 23-140°C. ANI. Neg. No. 122-78=307.
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was unable to establish whether the modulation of the film domain is indepen-
dent of, or dependent on, the structural change of the substrate.

E. Effect of Pressure

As observed in BaTiO, (Kay, 1948), WO, (Ueda and Ichinokawa, 1951),
and Rochelle salt (Mitsui and Furuichi, 1953) the domain boundaries are modu-
lated by any feeble lateral stress, such as a gentle touch with tweezers.

The pressure effect is approximately inversely proportional to the angle
between the direction of the applied pressure and the median direction of the
domain walls. Consequently, the domain walls parallel to the applied pressure
diminish at a lesser pressure than that required to diminish the domain walls
perpendicular to the pressure (see Fig. 21). In other words, at an initial stage
of compression, most parallel walls disappear, and a single-domain size of
3 x 1072 cm in linear dimension can be readily produced. This is followed by
a gradual decrease of the perpendicular and 45° walls, When the pressure 1s

removed, the domains reappear and reconstitute in average about 75% of the
original pattern.

The boundary migration induced by the stress is usually perceptible
visually, and the migration is estimated to be about 0.1-1 m/s (cf. 0.2 cm/s in
Rochelle salt, Mitsui and Furuichi, 1953).
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Fig. 21. Polarized-light Photomicrographs Showing Effect of External Pressure on Domain Structure of Surface Film of Nag 75WOg. (1) The original
state (zero applied field). (2) The external pressure is being applied parallel to the [001] axis. Most domain walls are diminished. (3) The
pressure is released, and the original structure is mostly reproduced. The surface under pressure is being deformed cylindrically. The cy-
lindrical axis lies underneath and parallel to the surface and is perpendicular to the pressure. ANL Neg. No. 122-78-344,
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V. ELECTRONIC SPECTROSCOPY, MICROSCOPY, AND DIFFRACTION

A. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) was used for a further char-
acterization of the bronze surface. The XPS data of WO;, WO,, and Na,WO,
were also obtained for comparison (cf. Campagna et al., 1975; Colton and
Rabalais, 1976; DeAngelis and Schiavello, 1976 and 1977; Wertheim et al., 1976;
Chazalviel et al., 1977). Photoelectron spectra were recorded with a
McPhearson ESCA 36 spectrometer using Mg Ko (1253.6-eV) radiation.
Samples were maintained in a vacuum of 1077-10"8 Torr during analysis. The
escape depth (thickness from which half the photoelectron intensity is derived)
is about 10 A in our tungsten compounds (see Carlson, 1975; McGuire and
Carlson, 1972/73).

Several samples were cut from a large Na, ,sWO3 single crystal. The
first set of samples was polished and then cleaned using organic solvents and
water. The second set of samples was polished, electrolytically etched in
10% KOH solution, and then washed thoroughly with water. All these samples
showed the twinned surface film and essentially the same XPS data. The
photoelectron peak for the Na(ls) level is very weak, only about 10 counts/s,
implying a large depletion in sodium.

The O(1ls) photoelectrons gave partially overlapped peaks at the binding
energies of 530 and 532 eV, with about 160 and 40 counts/s for the intrinsic
and extrinsic oxygen atoms, respectively. The intrinsic atoms comprise the
regular crystal structure. The extrinsic atoms belong to abnormal structures
such as defects and surface layers, or to adsorbed molecules. The width of
the extrinsic O(ls) peak is broader, owing to the variety of chemical bondings
involved. The tungsten 4f level yielded three peaks having the binding ener-
gies, 37.6, 35.5, and 33.4 eV, with an intensity ratio of about 5:9:2, respectively,
The first peak 1s assigned to wet 4f;/,, the second peak is a composite of
W 4f,,, and W*" 4f,,,, and the third peak belongs to W* 4f,,,.

I'he surface of a film-covered sample was subscquently abraded in a
dry inert-gas atmosphere. The process increased the Na(1s) intensity eightfvld
(80 counts/s) and the O(1s) intensity threefold (630 counts/s) with the intrinsic-
to-extrinsic ratio of 5:1. Essentially no change was observed on the W(4f)
levels.

The above observations are in accordance with the surface-film
formula Na.xWO3_Y(OH)z (see Sec. IV.A). This view was also supported by
Auger spectroscopic data (Atoji and Kaminsky, personal communication, 1975).
The x value is estimated to be about 0.1-0.3. The x, y, and z values as well
as the Wé' - W* distribution vary inhomogeneously on the surface. The abrasion
process destroys the film, and the dehydration due to evacuation in the XPS
apparatus converts the surface structure to approximately NayWO;(x = 0.1-0.3).



The chemical-bond irregularities on the surface are balanced out by re-
taining W*. The concentration of the oxygen atoms exhibiting the extrinsic-
bond character is higher on the surface of the abraded sample.

The film-covered surface was also treated by means of argon-ion
sputtering. The sputtering increased the Na(ls) intensity four-to-sevenfold
and the O(1ls) intensity threefold. The extrinsic O(1ls) peak was almost
eliminated. The W(4f) photoelectrons enhanced the 33.4-eV peak and produced
a new strong peak at 31.2 eV. These results suggest that the sputtering not
only destroyed the surface film, but also disrupted some ¢chemical bonds in
the substrate. The decomposition species probably include a solid solution
composed of Na, WO;, W30, and metallic tungsten.

The photomicrograph of the argon-sputtered surface is shown in Fig. 22.
The surface was originally covered with the birefringent film, which was re-
moved completely by the argon sputtering. There is no direct relation between
the domains of the surface film and the pseudodomains produced by the sput-
tering. In the latter, the domain-wall intersecting angles are 83, 62, 45, and 97°,
none of which are interpretable. Moreover, these domains are not birefringent
and hence are optically isotropic. The domains are probably an alternating
array of two different decomposed species, which were produced by the argon
sputtering. This is a remarkable phenomenon and is believed to be the first
observation of its kind.

B. Electron Microscopy and Diffraction

Scanning-electron micrographs (SEM's) of several bronze specimens
were obtained using the Stereoscan Mark IIA scanning-electron microscope
(Cambridge Scientific Instruments, London, England). For details of SEM,
see Phillips (1971), Hearle et al. (1972), McCall and Mueller (1973), and
Kane and Larrabee (1974). The primary electron voltage was 5 kV, and the
mode of operation was secondary-electron emission. Hence, all secondary
electrons having an energy of less than 5 kV are participating in forming the
image. The emissibility of the secondary electron is roughly proportional to
the atomic number of the scatterer in the light atoms up to about Z = 20
(calcium) and then gradually plateaus. However, the surface potential plays
a controlling role in the electron emissibility; hence the image brightness in
the complex topology is not interpretable straightforwardly. The angle between
the direction of the incident beam and the plane of the scatterer was 75° for
attaining optimum image contrast, although the 45° setting usually gives the
best overall efficiency for collecting secondary electrons.

An epitaxial film that exhibits well-developed twinned domains in the
polarized-light microscopy appears untwinned and topologically monotonic in
the SEM. Implications of this result are as follows: The film is flat, and
hence all domains in the film have the same thickness and no bulging; the
emissibility of secondary electrons is nearly isotropic, and hence the anisotropy

51



52

[100] 9%.75

Fig. 22. Unpolarized-light Photomicrograph of Argon-sputtered (010)
Surface of Nap 75WO3. ANL Neg. No. 122-78-397.
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in the electronic structure is very small. No electron charged-up phenomenon

was observed, meaning that the electrons were readily conducted or channeled
away.

The etched surface without the epitaxial film shows apex pyramids
(see Figs. 23 and 24), which are seen as diamonds in the optical photo-
micrograph. This apex pyramid is probably a reaction product in the etching
(Figs. 8B and 8C) process crystallized epitaxially on the base pyramid.

Fig. 23. Scanning-electron Micrograph ot Deeply Etched (010) Surface of Nay 75WO3,
The bronze specimen was mechanically polished and then etched by a solu-
tion of 10% NaOH and 10% KgFe(CN)g. L'he chemical composition of the
small, white pyramid on the apex of the base pyramid (cf. Figs. 8B and 8C)
should be considerably different from that of other areas. ANL Neg.

No. 122-T77-928A.
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Fig. 24. An Enlarged View of Fig. 23. ANL Neg. No. 122-77-927A.
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Preliminary electron-diffraction measurements were performed using
80-kV electron beams of the Siemens 101 Transmission Electron Microscope
with a diffraction attachment. The diffraction was made from the thin edge
of a small chip obtained by crushing a bronze single crystal in an inert at-
mosphere. The goniometric device was unavailable, and hence a precision
alignment of the crystal was difficult. Nevertheless, some essential aspects
of the electron diffraction of the bronze are indicated by the (hh0) and (h 3kk)
zones shown in Figs. 25 and 26, respectively. The reflection indices are
given in terms of a cubic unit cell containing eight NayWO3 units. In the (hkO)
zone, the perovskite structure gives the reflections with h = 2n and k = 2n.

However, weak reflections with h = 2n+ 1 andk = 2n+ 1 were also observed.

These extraneous or superlattice reflections are solely attributed to small
tilting displacements of the oxygen octahedra from the perovskite structure.
Similarly, in (h 3k k), the reflections with k = 2n reflections are attributed to
the perovskite structure and those with k = 2n + 1 to the displacement from
the perovskite. These superperovskite reflections are too weak to be de-

tectable by X rays but are readily detectable by neutrons (Atoji and Rundle, 1960).
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ELECTRON DIFFRACTION
Nag 75 WO3, (hkO)

Fig. 25. Electron-diffraction Pattern of (hkO) Zone of Nag,75WOg. The
reflections withh = even and k ~ evenare due to the perovskite
structure. The reflections with h = odd and k = odd are due to
a small deviation from the perovskite structure and are generally
very weak. ANL Neg. No. 122-78-695.
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h3| hOO h3| h62

Fig. 26. Electron-diffraction Pattern of (h3kk) Zone of Nay 75WOg. The reflections with k = even are
due to the perovskite structure, and those with k = odd are due to the deviation from the perov-
skite structure. Some specimen showed strong diffuse streaks on the reciprocal lattice rows
of (h00) - (h31) - (h62) - ... . The diffuse streak is strongest in the vicinity of the Bragg
reflection. ANL Neg. No. 122-78-696.
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