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HELIUM BUBBLES I N  - 

IRRADIATED BORON CARBIDE 

G. W.  H o l l  enberg 
B. Maste l  

ABSTRACT 

Boron carbide, i n  nuclear reactor neutron absorber applications, 

generates Zarge quanti t ies  of helium, some of which i s  trapped i n  

smaZZ bubbles within the grains. Transmission electron microscopy 

was used t o  exumine the s i ze  dis tr ibut ion,  shape and density of  these 

bubbles i n  boron carbide irradiated t o  temperatures between 540°C 

and 2000°C t o  burnups between 27 and 6 2 x 2 0 ~ ~  c a p t . ~ e a / c ~ 3 .  
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HELIUM BUBBLES I N  

IRRADIATED BORON CARBIDE 

G. W .  Ho l lenberg  and B. Mastel 

1.0 INTRODUCTION 

Boron carb ide  has been i n t e r n a t i o n a l l y  accepted as the  neut ron  absorber 

m a t e r i a l  f o r  use i n  f a s t  neutron r .eactors.  I t s  a v a i l a b i l i t y  and h i g h  r e a c t i v i t y -  

wor th  i n  s a f e t y  and c o n t r o l  r o d  a p p l i c a t i o n s  has l e d  t o  these a p p l i c a t i o n s .  I n  t h e  

course o f  expe r imen ta l l y  e s t a b l i s h i n g  t h e  range o f  c o n d i t i o n s  f i .e., temperature, 

burnup, e t c .  ) i n  which boron carb ide  performance i s  adequate, sample pe l  1  e t s  

have been r e t r i e v e d  and.examined w i t h  the  t ransmiss ion  e l e c t r o n  microscope. 

The i n v e s t i g a t i o n  repo r ted  here i s  a  rev iew of  'examinat ions on boron carb ide  

w i  t h  burnup l e v e l s  t o  62x1020 captures/cn3 and i r r a d i a t i o n  temperatures from 

540 t o  2000°C. 

Boron carb ide  absorbs neutrons by the  f o l l o w i n g  r e a c t i o n  i n  which l i t h i u m  and 

hel ium a r e  formed: 

Hence, burnup values,  besides i n d i c a t i n g  t h e  number of "B atoms miss ing,  a l s o  

descr ibe t h e  amount o f  he l ium and l i t h i u m  produced i n  t h e  l a t t i c e .  Hel ium i s  

a  gas which i s  expected t o  have i n s i g n i f i c a n t  s o l u b i l i t y  i n  t he  ceramic 

m a t r i x .  Two paths o u t  of t he  c r y s t a l  l a t t ' i ~ e  are p o s s i d l e  f o r  t h e  he l i um 

atoms t h a t  a re  generated. They can d i f f u s e  through the  c r y s t a l  1  i tes  t o  a  f r e e  

sur face where they produce a  b u i l d u p  o f  c o n t r o l  p i n  plenum pressure.  A l t e r n a t i v e l y ,  

t he  he l ium a t o x  can p r e c i p i t a t e  i n t o  i n t e r n a l  pockets w i t h i n  the  c r y s t a l l i t e s .  

This  i n  t u r n  i s  thought  t o  produce s w e l l i n g  i n  t he  boron carb ide .  Both the  

p e l l e t  s w e l l i n g  and gas pressure i n  t h e  p i n  plenum l i m i t  the  use fu l  l i f e t i m e  of 

absorber c l cnen ts  s ince  each can cause excessive s t r e s s  i n  t he  c ladd ing  and 

consequently, inc rease the  p o t e n t i a l  f o r  a  c ladd ing  r u p t u r e .  Hence, t he  

mechanism by which these nuc lear  r e a c t i o n  products a re  accommodated i n  t h e  

horon carb ide  s t r u c t u r e  i s  important ,  because i t  i s  r e l a t e d  t o  the two major 

design c r i t e r i a  a p p l i e d  t o  the  boron carb ide  p e l l e l s :  he l i um re lease and 

s w e l l i n g .  



Transmission e l e c t r o n  microscopy i n v e s t i g a t i o n s  o f  i r r a d i a t e d  boron 

ca rb ide  have c o n s i s t e n t l y  revea led  smal l  p l a t e l i k e  c a v i t i e s  o r  bubbles (1-7)  

on the  (110) o r  C1111 rhombohedra1 planes. These c a v i t i e s  were presumed t o  

be f i l l e d  w i t h  h igh-pressure hel ium, s ince  s t r a i n  f i e l d s  were observed i n  t he  

immediate v i c i n i t y ,  see F igu re  1. Hollenbers, e t  a l .  ( 6 )  suggested t h a t  t he  

bubbles were respons ib le  f o r  c r y s t a l l i t e  s w e l l i n g  i n  t h e  d i r e c t i o n  normal t o  

t h e  bubbles. Hol lenberg, e t  a l . ,  a l s o  concluded t h a t  a n i s o t r o p i c  c r y s t a l l i t e  

s w e l l i n g  was the  d r i v i n g  f o r c e  f o r  i n t e r g r a n u l a r  mic rocrack ing .  Only i n  t he  

7 a t t e r  i n v e s t i g a t i o n  was m a t e r i a l  examined w i t h  more than 50x1 O Z 0  captures/cm3. 

A systemat ic  i n v e s t i g a t i o n  o f  t h e  i n f l u e n c e  o f  temperature on the  he l ium bubbles 

has n o t  been repor ted .  

P o s t i  r r a d i  a t i o n  anneal i ng experiments a t  h i  gh-temperatures (T > 1 200°C) 

have been conducted by two se ts  o f  i n v e s t i g a t o r s .  ( 2 y 7 y 8 )  1n bo th  cases, 

anneal ing a t  temperatures near 1800°C r e s u l t e d  i n  s t r e s s  r e l a x a t i o n  around the  

bubbles as the  r e s u l t  o f  an increase i n  bubble s i z e  and the  adopt ion  o f  a more 

e q u i l i b r i u m  ( t h a t  i s ,  more equiaxed) shape, see F igure  2. Both se ts  o f  

i n v e s t i g a t o r s  suggested t h a t  such bubb lesmight  be formed i n - r e a c t o r  i f  i r r a d i a t i o n  

temperatures were t o  reach these l e v e l s .  

To p lace  a pe rspec t i ve  on hel ium r e t e n t i o n  i n  boron ca rb ide  consider  the  

b a l l o o n  i n  F igure  3. I f  t h e  p e l l e t  p i c t u r e d  i n  F igure  3 were t o  r e t a i n  80% 

o f  t h e  he1 ium produced (a  t y p i c a l  va lue) ,  then 900 cc (STP) o r  approximate ly  

50,000 ppm, would be compressed i n t o  t i n y  bubbles w i t h i n  (he p e l l e t .  Comparing 

t h i s  t o  t h e  amount o f  he l ium implanted i n  t he  i n v e s t i g a t i o n  o f  i r r a d i a t i o n  e f f e c t s  

on metals  (50 t o  4000 ppm) ('-") revea ls  the  mais ive  amount o f  he l ium t h a t  can 

be r e t a i n e d  by boron carb ide .  
v 



FIGURE I .  S t r a i n  F i e l d s  Surrounding Bubbles i n Low Burnup Baron 
Carbide ( 11 x702"apttures!crn" ). f Reference 1 ) 



IRRADIATED 800OC 0.5 pm 
~ I X I @ ~ C A P T / C ~ ~  

ANNEALED 180Q°C 
5 HRS 

FIGURE 2. Effect o f  Annealing on Bubbles in Low Burnup Boron 
Carbide. Irradiated at 800°C to 1 1  XI 020 ~aptures/cm~, H E N  7901-186.11 

but Annealed After Irradiation at 1800°C for 5 Hours. (Reference 8) 



B4C PELLET 

C 5 0 X  1 O'*cap t /crn3> 

- 

FIGURE 3 .  He1 i urn Retained i n  Boron Carbide Irradiated at 50x1 020  Captures/cm3, 



Mater ia ls  and I r r a d i a t i o n  

I r r a d i a t e d  specimens were obtained from experimental subassembl i e s  

i r r a d i a t e d  i n  the EBR-I1 reactor.  The general i r r a d i a t i o n  and experimental 

condi t ions have been prev ious ly  described. (12) Po l yc rys ta l l  i n e  boron carbide 

p e l l e t s  were encapsulated i n  s ta in less  s tee l  tub ing and i r r a d i a t e d  i n  the high- 

energy neutron environment o f  EBR-11, w i t h  a t  l e a s t  50% of the  neutrons 

expected t o  possess energies above 0.1 MeV. The s t a r t i n g  p e l l e t s  were hot-pressed 

t o  92% L i theore t i ca l  dens i ty  from essent ia l  l y  s to ich iomet r i c  boron carbide powders 

(BbelC t o  B3.9C). The I 0 B  i so top i c  content of the boron was increased from t h a t  of 
natura l  boron t o  92% ~ O B  so as t o  increase the r a t e  o f  burnup. The average 
g ra in  s i ze  ranged from 3 t o  20 pm, bu t  was approximately 10 pm f o r  most of the 

specimens. During i r r a d i a t i o n ,  pel  l e t  center1 i ne temperatures were between 
(12) 540 and 2000°C. Center l ine temperatures were pred ic ted from thermal analysis, 

U l  t imate burnup l eve l s  were determined from plenum pressures and he1 i um 

released dur ing p o s t i r r a d i a t i o n  me1 t i n g  o f  pel  l e t s .  Samples were selected 
fo r  viewing such t h a t  f i n a l  burnup l eve l s  var ied between 2 7 ~ 1 0 2 ~  and 

6 2 x 1 0 ~ ~  captures/cm3, w i t h  most o f  the samples possessing a burnup o f  approxi- 

mately 5 0 ~ 1 0 ~ ~  captures/cm3. 

Transmission Elect ron ll icroscopy 

Many specimens were simply c u t  from the p e l l e t s  w i t h  a diamond saw and 

then pol ished as t h i n  as p rac t i ca l  (2 m i l s ) .  The t h i n  discs were f u r t h e r  

thinned by argon ions i n  preparat ion f o r  viewing by a transmission e lec t ron  

microscope. Care was taken t o  ex t rac t  a 3 mm diameter TEM d i sc  from the 

center o f  the p e l l e t .  Because o f  the f r i a b l e  nature o f  most o f  the samples, 

mechanical operations were held t o  a minimum. 

Other specimens were so f r i a b l e  a f t e r  i r r a d i a t i o n  t h a t  i t  was no t  possible 

t o  prepare and view an i o n  m i l l e d  cross section. From these pel  l e t s ,  a small 

quan t i t y  o f  the mater ia l  was powdered by a mortar and pes t le  t o  less than 

100 mesh. The i r r a d i a t e d  powder was then mixed w i t h  aluminum powder. The mix ture 

was pressed i n t o  a 3 mn diameter d isc  a t  470°C under a pressure excess o f  30,000 

ps i .  The d isc  was then prepared f o r  viewing i n  the e lec t ron  microscope i n  the 

same manner as a conventional d isc.  



Samples were examined w i th  a Ph i l1  i ps  100 microscope operated a t  100 KV, As 

shown i n  Figure 1, the s t r a i n  f i e l d s  can accentuate s ing le bubbles. When viewing 

a high densi ty o f  bubbles, these same s t r a i n  f i e l d s  make in te rpre ta t ion  d i f f i c u l t ;  

hence, absorption contrast was preferred. I n  the i n t e r e s t  o f  conserving time, the 

scope o f  t h i s  invest igat ion was i n ten t i ona l l y  1 imited t o  bubble size, shape and 

densi ty determinations, and side1 i gh ts  such as bubble or ientat ion,  s t r a i n  leve ls  , 
etc., were ignored. 

Micrographs 

I n  Figure 4, a transmission e lect ron micrograph o f  boron carbide i r rad ia ted  

a t  540°C t o  50x1020 captures/cm3 i s  shown. The l e n t i c u l a r  bubbles, were qu i te  

small w i th  major diameters tha t  d i d  not exceed 0.03 pm and an average bubble 

diameter t h a t  was perhaps less than 0.005 urn. I n  the low temperature samples, 

these small bubbles were observed t o  be homogeneously d i s t r i bu ted  throughout 

the c r y s t a l l i t e s  w i th  the exception o f  a narrow deplet ion region near g ra in  boundaries. 

Many o f  the bubbles were a t  the reso lu t ion  l i m i t  of t h i s  microscope (% 0.005 
It i s  l og i ca l  t o  expect a continuous spectrum o f  bubble sizes, which would imply 

t h a t  there were numerous bubbles smaller than the reso lu t ion  l i m i t .  The bubble 

height  ( the minor ax is)  was so small t ha t  i t  ,could not  be resolved* 

I n  Figure 5, a transmission e lect ron micrograph o f  boron carbide i r rad ia ted  

a t  900°C t o  5 0 ~ 1 0 ~ ~  captures/cm3 i s  shown. A t  t h i s  s l i g h t l y  higher temperature, 

the bubbles s t i l l  retained a l e n t i c u l a r  shape. A few bubbles were much la rger  

than the rest,  about Q,1 um i n  length. Note tha t  the smaller bubbles were not 

formed i n  the region adjacent t o  the la rger  bubbles. Elsewhere, the smaller 

bubbles were homogeneously d is t r ibu ted .  

Figure 6 shows a transmission e lect ron micrograph o f  boron carbide t h a t  was 

i r rad ia ted  a t  a maximum temperature o f  1050°C f o r  6 2 x 1 0 ~ ~  captures/cm3 i n  an 

instrumented absorber experiment. The spectrum o f  observable bubbles sizes increased 

such t h a t  bubble diameters ranged a l l  the way from 1 prn down t o  the resolut ion 

l i m i t  o f  the microscope ('L 0.005 ~ m ) .  AS i n  the mater ial  i r rad ia ted  a t  909°C 

(Figure 5), the boron carbide displayed i n  Figure 6 exhib i ted an absence of 

the smaller bubbles near the la rger  bubbles. I t  appeared tha t  the height (minor ax is )  



FIGURE 4. Small Lenticular Bubbles in Boron Carbide 
Irradiated at 540°C to 50x1 0" Captures/cm3. 

H EDL 7901 -1 86.1 



FIGURE 5. Lenticular Bubbles i n  Boron Carbide Irradiated 
at 900°C to 50x10" Captures/cm3. 



FIGURE 6. Large Lenticular Bubbles i n  Boron Carbide HEDL 7901-186.4 
Irradiated a t  a fll2aximum Temperature of 
1050°C for 62x1 020 captures/cm3. 



o f  the bubbles a lso increased a t  t h i s  h igher temperature, such t h a t  the 

aspect r a t i o  of the bubbles was reduced. Except f o r  the l oca l i zed  deple t ion 

around l a rge  bubbles, the d i s t r i b u t i o n  o f  bubbles, both l a rge  and small, appeared 

t o  be uniform throughout the  cr.ys t a l l  i tes . 
A t  1500°C (but  a somewhat lower burnup, 36x10" captures/cm3), the bubbles 

became heterogeneously d is t r ibu ted ,  as'seen i n  Figure 7. I n  Figure 7, a s e t  

o f  bubbles i s  featured near the center bu t  the remaining area i s  vo id  of 

bubbles. Throughout t h i s  mater i  a1 , bubbles were observed t o  be concentrated i n  
a g ra in  surrounded by grains 'devoid o f  bubbles. 

The bubbles i n  the boron carbide i r r a d i a t e d  a t  1500°C were genera l ly  l a rge r  

than t h e i r  lower temperature counterparts. It should be noted i n  Figure 8 t h a t  

many o f  these bubbles were no t  l e n t i c u l a r ,  bu t  had a more equiaxed shape w i t h  

faceted sides. The faceted bubbl es c l  osel y resembled those produced by post- 

i r r a d i a t i o n  anneal i ng (compare Figures 8 and 2). 

I n  Figure 9, boron carbide i r r a d i a t e d  a t  a pred ic ted temperatureof 2000°C 
t o  a burnup o f  27x1020 cap tu res /cm~ossessed  faceted bubbles a t  h igh magnifi- 

cat ion.  The heterogeneous character o f  these small bubbles i s  emphasized i n  

1 Figure 10, where a s t r i n g  o f  bubbles was observed i n  a gra in .  The faceted 

bubbles were p e r f e c t l y  a l igned and appeared t o  completely t raverse the c r y s t a l l i t e .  

I n  Figure 11, another s t r i n g  of these small faceted bubbles i s  shown i n  con t ras t  

w i t h  associated d is locat ions.  Many o f  these bubble s t r i n g s  were observed i n  the 

higher temperature samples, and a l l  appeared t o  have d is loca t ions  nearby. Almost 
a1 1 o f  the small diameter bubbles (d  < 0.1 ~ m )  were i n  1 inear  arrays. 

A 1 ower magni f icat ion photomicrograph o f  t he  boron carbide i r r a d i a t e d  a t  

2000°C, Figure 12, depicts l a rge r  bubbles. Note the presence o f  both low and 

h igh aspect r a t i o  bubbles i n  t h i s  area. Note the  l a rge  number o f  d is loca t ions  

near the bubbles and apparent stacking f a u l t s .  I n  Figure 13, d is loca t ions  



~ ~ X I @ ~ C A P T / C ~ ~  
FIGURE 7. Faceted Bubbles i n  Boron Carbide I r r a d i a t e d  a t  1500°C HEDL 7901-186.12 

t o  35x1 020 Captures/cm3. 



FIGLRE 8. Facete Bubbles in Qoron Carbide Irradiated a t  1500'C to B 
HEDL 7902-041.2 

35x1 O2 Captures/cm . 



FIGWE 9. Faceted Bubbles i n  Boron Carbide .Irradiated HEDL 7901-186.5 
a t  2005°C . 



FIGURE 10. S t r i n g  o f  Bubbles i n  Boron Carbide Irradiated a t  2000°C. 



m 
2€m°C 0.1 pm 

u 
2 ' 7 x l ~ ~ ~ ? T / c r n 3  

FIGURE 11. A Str ing o f  Bubbles With a D i s l o c a t i o n  i n  Boron Carbide 
I r rad ia ted  a t  2000°C. 



FIGURE 12. Lar e faceted Bubbles in Boron Carbide Irradiated 
a t  !OOOOC With Dislocation Array. 



appeared t o  p a r a l l e l  the faceted sides o f  the bubbles and complex s t ress pat terns 

were developed. An even lower magni f icat ion photomicrograph (Figure 14) displayed 

even l a r g e r  bubbles (3  vm). Also, note t h a t  many bubbles were associated w i t h  

g r a i n  boundaries. Real i z i  ng t h a t  a1 l samples o r i g i n a l  l y  possessed 8% poros i t y  , 
one must conclude t h a t  some o f  the voids were no t  i r r a d i a t i o n  induced, b u t  were 

res idual  poros i ty .  D i f f e r e n t i a t i o n  i s  d i f f i c u l t ,  bu t  poros i t y  i n  v i r g i n  
boron carbide tends t o  form a t  t r i p l e  points,  l i k e  the one j u s t  above the center 

o f  the photograph. 

I n  add i t i on  t o  bubbles located on d i s l oca t i on  and g r a i n  boundaries, i t  was 

observed t h a t  the  twins, which are q u i t e  common i n  hot-pressed boron carbide, 

had bubbles s t a r t i n g  a t  t h e i r  boundaries i n  the h igh temperature mater ia l .  In 

Figure 15, bubbles t raversed a twinned reg ion  i n  the i n t e r i o r  o f  a boron 

carbide g ra in  which has been i r r a d i a t e d  a t  15005C. 

Before consider ing quan t i t a t i ve  aspects o f  the bubbles i n  i r r a d i a t e d  boron 

carbide, the qua1 i t a t i v e  observations should be reviewed. As depicted i n  

Fiqure 16, the fo l low ing  general izat ions can be made: 

1. Low Temperatures ( T < 900°C) 
a. Small bubbles (0.91 
b. High bubble dens i ty  
c. Homogeneous bubbles 
d. Len t i cu la r  shape 

2. High Temperatures (T  5 150O0C) 

a. Large bubbles (1.0 urn) 
b. Low bubble dens i ty  
c. Heterageneous bubbles 
d. Equiaxed and faceted bubbles 

A t  temperatures between the extremes o f  540 and 2000°C there appeared t o  be a 

progression i n  bubble size, shdpe dnd density. 



FIGURE 13 .  Large Faceted and Lenticular Bubbles in 
Baron Carbide Irradiated at 2000°C. 
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HEM. 7901-186.7 

FIGURE 14. Large Bubbles on Grain Boundaries o f  Boron Carbide 
Irradi a ted a t  200Q°C. 



Figure 15, Bubbles Located in Tw'nned Region o f  Boron Carbide 
Irradiated at t50O0C. 



FIGURE 16,  The Effect o f  Temperature on Bubbles i n  Irradiated Boron Carbide. HEW 7V02-62 



Q u a n t i t a t i v e  Eva1 u a t i o n  

Two parameters, bubble d e n s i t y  and d iameter ,  were used t o  q u a z t i t a t i v e l y  

c h a r a c t e r i z e  t h e  changes i n  bubbles as i r r a d i a t i o n  temperature increased.  To 

o b t a i n  r e p r e s e n t a t i v e  va lues f o r  each sample, 900 bubbles were counted. Other  

parameters such as bubble shape and homogeneity d i d  n o t  l e n d  themselves t o  

q u a n t i t a t i v e  assessment. 

To determine t h e  bubbie dens i ty ,  B, i n  t h e  i r r a d i a t e d  boron c a r b i d e  the  

f o l  l ow ing  r e l a t i o n s h i p  was used: 

Eq. 1 

where A was t h e  f o i l  area considered and T was the  f o i l  th ickness .  The f o i l  

th ickness  was ob ta ined  by v iewing  s t e r e o  p a i r s  taken a t  g r e a t e r  than 12" a p a r t .  

By focus ing  on t h e  uppermost and then t h e  l owes t  f e a t u r e s  i n  t h e  f o i l ,  i t  

was p o s s i b l e  t o  measure t h e  v e r t i c a l  d i s t a n c e  between them. T h i s  d i s t a n c e  was 

used as t h e  f o i l  t h i ckness .  F o i l  t h i ckness  v a r i e d  between .O1 and 1 prn 

i n  most areas considered. 

I n  Equat ion 1, ni represents  t h e  number o f  bubbles measured t o  be o f  

s i z e  d i n  d iameter .  Almost a l l  of t he  b ~ r h h l e  coun t i ng  was done w i t h  a i 
Car l  Z iess P a r t i c l e  S ize  Analyzer .  Using t h e  ana lyzer ,  di represented  t h e  

major  dimensions o f  t he  h i g h  aspec t  r a t i o  l e n t i c u l a r  bubbles and t h e  l a r g e s t  

dimension o f  t he  more equiaxed bubbles t h a t  occur red  a t  h i g h e r  temperatures. 

The ana lyzer  p a r t i t i o n e d  bubbles i n t o  48 d i f f e r e n t  s i z e  groupings f rom 1 t o  26 rnm 

on t h e  magn i f i ed  photographs. 

The e f f e c t i v e  bubble diameter,  3, was determined f rom t h e  averaged bubble 

volume, a: 

- 
where K i s  a geometr ic f a c t o r  which was assumed cons tan t .  V was determined f rom 

the f o l  low1 ng express, iur~:  



Eq.  2 

Mul ti p l  e photographs were used t o  c h a r a c t e r i z e  d i f f e r e n t  areas i n  each 

sample, sometimes w i t h  d i f f e r i n g  m a g n i f i c a t i o n .  Low temperature samples were 

always photographed a t  h igh  magni f icat ions;and consequently,  o v e r a l l  bubble 

d e n s i t i e s  and diameters were s imp ly  averages o f  a l l  t h e  values f rom the  

photographs. 

M a t e r i a l  i r r a d i a t e d  a t  h igh  temperature possessed such a 

spectrum i n  bubble s i z e  ( a l m o s t  3 o rders  o f  magni tud&j  t h a t  bo th  h igh  (300,000X) 

and low (5000X) magn i f i ca t i on  photographs were necessary. Obviously,  one l a r g e  

bubble ( 1  urn) would f i l l  a h igh  m a g n i f i c a t i o n  micrograph by i t s e l f ,  and y e t ,  smal l  

bubbles (di < 0 .  urn) cou ld  n o t  be reso l ved  a t  low m a g n i f i c a t i o n .  I n  these 

cases, o n l y  bubbles l e s s  than 0.1 um were counted on h igh  m a g n i f i c a t i o n  

micrographs w h i l e  o n l y  bubbles g r e a t e r  than 0.1 pm were counted on the  low 

m a g n i f i c a t i o n  micrographs. The average bubble d e n s i t y  was then computed by 

cons ide r ing  the  two popu la t ions  together ,  hence, 

where < and < were the  l a r g e  and smal l  bubble d e n s i t i e s ,  r e s p e c t i v e l y .  ~ l s o ,  

t he  average vo l  ume became, 

where vL and < were the  average bubble volumes f o r  l a r g e  and srnzll bubbles, 

r e s p e c t i v e l y .  



There a r e  several sources o f  e r r o r  expected i n  these measurements. Since 

orders  o f  magnitude changes i n  s i z e  and d e n s i t y  were apparent i n  these samples 

the  impact o f  these e r r o r s  was n o t  as severe as i t  migh t  o therw ise  have been. 

Heterogenei ty ,  e s p e c i a l l y  i n  t he  h igh- temperature samples, can i n t r o d u c e  

e r r o r  i n t o  these r e s u l t s .  An e f f o r t  t o  s e l e c t  r e p r e s e n t a t i v e  photographs 

was made; b u t  i t  i s  be l i eved  t h a t  t he re  was a  tendency t o  photograph areas w i t h  

more un i fo rm e t c h i n g  and h ighe r  bubble concen t ra t i ons  r a t h e r  than l e s s  aes. thet ic  

areas. When large.  bubbles were present ,  complete exc lus ion  o f  i n i t i a l  poi-osi t,y 

was d i f f i c u l t .  

The f i n i t e  specimen th ickness  which was r e q u i r e d  f o r  v iewing induced a  

p o s i t i v e  b i a s  t o  bubble d e n s i t y  measurements, s i nce  bubbles w i t h o u t  t h e i r  centers  

i n  the  f o i l  th ickness  were inc luded i n  t h e  coun t i ng  process. ( I 3 )  I n  a d d i t i o n  

t h e  t r u n c a t i o n  o f  t h e  l a r g e r  bubbles by the  t o p  and bottom sur face i n f l uenced  

t h e  observed bubble d iameters.  (13)  

A t  low temperatures, t he  smal l  bubbles s i z e s  measured (0.004 pm) suggested t h a t  

even smal le r  bubble s i z e s  ex i s ted .  Reso lu t ion  by the  r,~icrosco?e prec luded 

the  i n c l u s i o n  o f  these sma l l e r  bubbles i n  the  popu la t i on .  Obviously ,  t he  

r e s o l u t i o n  l i m i t  i n f l uences  the  accura te  measurement o f  these smal l  bubbles. 

I n  o rder  t o  eva lua te  t h e  i n f l uence  of temperature on bubbles, t he  da ta  were 

t r e a t e d  as i f  a l l  the  samples were i r r a d i a t e d  a t  t he  same burnup; a  convenience n o t  

a v a i l a b l e  i n  t h e  r e a l  i ty o f  mu1 t i p l e  i r r a d i a t i o n  experiments. Most sample 

burnups were between 48 and 62x1 020 captures/cm3 ; b u t  t he  h igh  temperature 

samples possessed lower values (27 t o  35x1020 captures/cm3).  There i; no bas i s  t o  

expect  decreases i n  bubble s i z e  o r  dramat ic  changes i n  bubble d e n s i t y  a t  h ighe r  

burnup l e v e l s  i n  these h i g h  temperature samples. 

I n  F igure  17, t h e  e f f e c t i v e  bubble d iameter  i.s p l o t t e d  aga ins t  i r r a d i a t i o n  

temperature.. The e r r o r  bar  on each data  p o i n t  represents  the  span o f  observed 

bubble diameters observed. As a n t i c i p a t e d  f rom v iewing the  micrographs, the  

bubble diameter increased w i t h  temperature. A t  low temperature the  average bubble 

diameters approach t h e  r e s o l u t i o n  l i m i t  o f  t he  ~n~ i c roscope ;  t h e  minimum i s  

c e r t a i n l y  sma l l e r  than t h i s  l i m i t .  



A1 though the  average diameter does n o t  inc rease apprec iab ly  between 540 and 1300'C, 

t h e  maximum bubble diameter does. Above 1000°C, n o t  o n l y  d i d  t h e  maximum bubble 

s i z e  increase w i t h  temperature, b u t  a l s c t h e  average bubble s i z e  increased t o  over  

1 m .  I n  a d d i t i o n ,  very smal l  bubbles ( d  < .O1 urn) were n o t  observed i n  t h e  h i g h  

temperature samples. W i t h i n  the  r e s o l u t i o n  range o f  t h e  micro;cope, t h e  d i s t r i -  

b u t i o n  o f  bubble diameters appeared t o  broaden a t  h ighe r  temperatures. 

I n  F igu re  13, bubble d e n s i t y  i s  p l o t t e d  a g a i n s t  temperature. The bubble 

d e n s i t y  appeared t o  be i n v e r s e l y  r e l a t e d  t o  t h e  average bubble d iameter .  A t  

low temperatures ( T  < 1000°C) t h e  bubble d e n s i t i e s  were approximate ly  1017 t o  

10'8 bubbles/cm3. A t  h ighe r  temperatures (20Q0°C) i t  dropped t o  1012 bubbles/cm3. 

i iahaqin(a)  a l s o  repo r ted  bubble d e n s i t i e s  o f  1017 t o  1018 a t  a mucll lower  

burnup l e v e l  ( 1 5 x 1 0 ~ ~  captures/cm3) i n  t he  1 ower temperature range (700°C). 

Discussion 

Theories s p e c i f i c a l  l y  developed f o r  he1 ium bubble fo rma t ion  i n  boron ca rb ide  

a r e  n o t  a v a i l a b l e .  I n  nuc lea r  f u e l s ,  however, concern w i t h  t h e  f a t e  o f  f i s s i o n  

produced gases dates back t o  the  1950's .  Since then myr iad  mechanisms 

have been proposed, b u t  t h e i r  a p p l i c a t i o n  t o  boron ca rb ide  has been l i m i t e d .  (14)  

I n  these theo r ies ,  the  major  mechan is t i c  proc2ssas t h a t  have been considered 

are :  

1. Gas Product ion  

2 .  N u c l e a t i o r ~  

3. . ~ u b b l e  Growth 

D i f f u s i o n  
Coalescence 
Reso lu t i on  

4. Bubble M i g r a t i o n  

5. I n t e r a c t i o n  w i t h  L a t t i c e  Defects 

Each o f  these processes w i l l  be considered i n  l i g h t  o f  t he  da ta  a v a i l a b l e  f o r  

he1 i urn i ri boron carb ide .  
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FIGURE 1 7 .  E f f e c t  of  Temperature  on Bubble Diameter 
i n  I r r a d i a t e d  Boron C a r b i d e .  
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F I G U R E  13. Effect of Temperature on Bubble Density i n  
Irradiated Boron Carbide. 



Helium p roduc t i on  i n  boron' ca rb ide  i s  a  consequence o f  the  1 0 ~  burnup 

r e a c t i o n  which forms an alpha p a r t i c l e .  As a  r e s u l t  o f  t h i s  r e a c t i o n ,  he l ium 

atoms a r e  expected t o  be generated even ly  throughout  the  c r y s t a l l i t e s .  

Nuc lea t i on  of gas bubbles i n  nuc lea r  fue l  may be e i t h e r  hoxogeneous o r  

heterogeneous. Homogeneous n u c l e a t i o n  c o n s i s t s  o f  t h e  fo rma t ion  o f  s t a b l e  

n u c l e i  by chance encounters o f  hel ium atoms. Homogeneous nuc lea t i on ,  

consequently,  r e s u l t s  i n  h igh  concen t ra t i on  o f  bubble s i t e s  d i s t r i b u t e d  

even ly  throughout  t he  l a t t i c e  w i t h  ve ry  s h o r t  d i f f u s i o n  d is tances  between 

t h e  p o i n t  o f  he l ium c r e a t i o n  and the  l o c a t i o n  of a  c l u s t e r .  Homogeneous 

n u c l e a t i o n  theo r ies  a r e  q u i t e  complex and do n o t  a l l o w  r a t i o n a l  s i m p l i f i c a t i o n  

o r  g e n e r a l i z a t i o n ,  b u t  they tend t o  p r e d i c t  t h a t  t he  n u c l e a t i o n  r a t e  

would decrease a t  h ighe r  temperatures. (15)  

Heterogeneous n u c l e a t i o n  r e l a t e s  t o  t h e  fo rma t ion  o f  a  s t a b l e  bubble 

nucleus near a  l o c a l i z e d  d i s p a r i t y  i n  t h e  l a t t i c e ,  i .e. ,  d i s l o c a t i o n s ,  

giain boundaries, second phase, e t c .  A t  low temperatures, so many homogeneously 

nuc lea ted  bubble s i t e s  a re  a v a i l a b l e  t h a t  d i f f u s i o n  o f  he l ium atoms t o  hetero-  

geneous s i t e s  i n  the  bubble growth stage i s  n o t  necessary. But  a t  h ighe r  

temperatures, the  redt ic t ion i n  homogeneously nuc lea ted  s i t e s  requ i res  t h a t  

he1 ium m ig ra te  t o  bubbles formed on heterogeneous s i t e s .  A lso  a t  h i g h e r  

temperatures, i t  i s  a n t i c i p a t e d  t h a t  t he re  i s  a  g r e a t e r  m o b i l i t y  and t h e  hel ium 

atoms cou ld  t r a v e r s e  the  l ong  d is tances  r e q u i r e d  t o  reach t h e  heterogeneous s i t e s .  

Bubble n u c l e a t i o n  i n  boron ca rb ide  appeared t o  be h igh  and homogeneous a t  low 

temperatures and low and heterogeneous a t  h igh  temperatures. Th i s  temperature 

e f f e c t  on hel ium bubbles i n  boron ca rb ide  i s  c o n s i s t e n t  w i t h  the  t h e o r e t i c a l  

expecta t ions  de r i ved  from nuc lear  f u e l  n u c l e a t i o n  models. ( I 5 '  I n  these h igh  

temperature boron ca rb ide  samples, t he  obvious p r o x i m i t y  o f  bubbles t o  d i s l o c a t i o n s ,  

g r a i n  boundaries and tw ins  i s  i n d i c a t i v e  o f  heterogeneous nuc lea t i on .  



The simplest bubble growth mechanism i s  the r e su l t  of diffusive flow 

of individual gas atoms (or  defects) t o  the nucleated bubbles. The driving 
force fo r  such a flow i s  the high concentrati-on of helium atoms within the 

l a t t i c e  in re la t ion  to  the so lubi l i ty  l imi t  of helium i n  boron carbide. The 
presence of helium sinks (bubbles) of fers  a mechanism of reducing the f ree  
energy of the nonequilibrium s i tua t ion .  This type of growth may, i n  f a c t ,  
be the basis fo r  much of the observed in-reactor bubble growth in boron carbide. 

. 

The bubble growth noted i n  post i r radiat ion annealing experiments a t  high 
temperatures obviously must have incorporated some of the more complex mechanisms. 
Resolution, bubble migration or coalescence were necessary in order to  make the 
t rans i t ion  from the small, high density bubbles to  the large,  low density 
bubbles tha t  were present a f t e r  annealing. In-reactor, there was no indication 
tha t  pre-existing, small, homogeneous bubbles ever existed in  order f o r  these 
mechanisms to operate. Hence, i t  appears tha t  the bubble growth mechanism 
in-reactor may be s igni f icant ly  d i f fe rent  than ex-reactor. However, the 
ultimate product in each case ( la rge ,  faceted bubbles) was obviously s imilar  
for  in-reactor and annealing investigations (See Figures 2 and 6-12) .  

In the intermediate temperature range (900 to  1 lflQ°C) i t  was 

observed tha t  there was a reduction in the density of small bubbles near larger  
bubbles and grain boundaries. This observation was taken to  indicate a localized 

depletion of helium atoms in the matrix by the major diffusional sink, i .e. 
the large helium bubble or grain boundary, such t h a t  the chemical potential  
available for  nucleus formation and growth in tha t  v ic in i ty  was reduced. 

'Conclusion 

The density,  shape, and s ize  of helium bubbles in boron carbide has been 

found to change dramatically when the i r rad ia t ion  temperature was varied from 

500 t o  2000JC. 

The resu l t s  indicated that  homogeneous nucleation mechanisms predominated 

a t  low temperature while heterogeneous nucleation mechanisms existed a t  high 

temperatures. These resu l t s  will be u t i l ized  in the development of correlat ions 

for  boron carbide swelling and gas release.  
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