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BIVARIATE DISTRIBUTIONS WITH GIVEN MARGINALS 
AND FIXED MEASURES OF DEPENDENCE

by

Mark E. Johnson and Aaron Tenenbein

ABSTRACT

Two systematic approaches are given for constructing 
continuous bivariate distributions with specified marginals 
and fixed dependence measures. Both approaches are based 
on linear combinations of independent random variables and 
result in bivariate distributions which can attain the 
Frechet bounds. The dependence measures considered are 
the grade correlation coefficient and Kendall's t. The 
joint distributions obtained are compared to those of M. 
Frechet (1951), R. L. Plackett (1965), D. Morgenstern (1956), 
and G. Kimmeldorf and A. Sampson (1975). Applications to 
testing for sensitivity in simulation models are discussed.



I. INTRODUCTION

In many simulation applications, it is required to generate dependent 

pairs of continuous random variables for which there is limited information on 

the joint distribution. For example, in a portfolio analysis simulation ap­
plication, a joint distribution for stock and bond returns may have to be

specified. Because of lack of data, it may be difficult to specify completely 

the joint distribution of stock and bond returns. However, it may be realistic 

to specify the marginal distributions and some measure of dependence between 

the random variables.

The problem of construction continuous bivariate distributions with

specified marginals has been discussed in the literature, which is reviewed in 

section 2. A general method of constructing a bivariate distribution, whose

marginal distribution functions are F^x) and F2(y), is proposed by Nataf
(1962) and can be represented as follows.
General Method

i. Consider any two continuous random variables U and V with 

probability density function h(u, v).

ii. Let X1 = H^(U) and Y1 = H2(V), where H-^(u) and H2(v) are the 
cumulative distribution functions of U and V, respectively.

iii. Define:

X = f/ (X1) = f/ (H^U))
(1.1)

and
-1, -1Y = F2i(Y1) = F2 (H2(V)) (1.2a)

or

Y = F~ (1 - Y') = F2 (1 - H2(V)) . (1.2b)

Since X1, Y1, and 1 - Y' are uniformly distributed over the interval (0, 1), X 

defined by (1.1) and Y defined either by (1.2a) or (1.2b) will have a joint 

cumulative distribution whose marginal distribution functions are F^(x) and 

F2(y).
A procedure for constructing bivariate distributions should have the 

following characteristics.

a. The resulting joint distribution function F(x, y) should attain the 

upper or lower Frechet bounds given by Mardia (1970) as
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(1.3)max [0, f i (x) + F2(y) - 1] 1 F(x, y) 1[ mi n F-|(x), F2(y)] s

where F-^(x) and F2(y) are the marginal distribution functions. If this 

were not the case, the resulting joint distribution will not allow for highly 

positive or negative correlated random variables in modeling situations.
b. The resulting joint distribution should readily lend itself for the 

development of random variate generation schemes for use in simulation models.

In this paper we develop two procedures for constructing bivariate dis­

tributions whose marginal distributions and measure of dependence, as given by 

Kendall's x or the grade correlation coefficient pg, are specified. Both of 
these procedures are based on this General Method, where the random variables U 

and V are obtained as linear combinations of U', V, and Z', where these lat­

ter three random variables are independent and identically distributed with 

probability density function g(t). The first procedure, called the WLC 

(weighted linear combination), defines

(1.4)

(1.5)

11 = 11'

V = cU' + (1 - c)V

for cl 1. The second procedure, called the TVR (trivariate reduction) is 

discussed by Mardia (1970). In this case U and V are defined as

(1.6)

(1.7)

U = U' + 3Z' 
V = V + BZ'

for 0 £ B < 00 .

Both of these procedures are easily adaptable to simulation models and 

contain members which attain the Frechet Upper and Lower Bounds. The WLC 

procedure attains the upper and lower bounds for c = 1 and Y defined by (1.2a) 

and 1.2b), respectively. Similarly, as B tends to°°, the bounds are obtained 

in the TVR procedure. As a result both procedures have distributions for 
which pg and x take on any given value in the interval 1-1, 1 ]. This latter 

fact is true by a general result proved by Tchen (1976).
In both systems there are two degrees of freedom in constructing (U, V); 

the weighting factor, £ or c, and the underlying density function g(t). The 

weighting factor affects the measure of dependence. By considering various
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choices for g(t), we can construct joint distributions with a fixed measure of 

dependence and fixed marginals. These joint distributions are extremely useful 

in assessing the sensitivity of a simulation model to this specification of 

Hx, y). An example of this situation is the portfolio analysis simulation in 

which we could perform the simulation experiments with various F(x, y) to 

assess its effect on the analysis.

Section 3 of this paper defines correlation measures ps and x and 

describes their properties. Section 4 discusses specific results of the WLC 

procedure for arbitrary choices for g(t) and considers in detail the case of 

the normal, uniform, exponential, and double-exponential distributions. For­
mulae for the cumulative distributions of U and V are derived for use in the 

General Method equations (1) and (1.2a) or (1.2b) . Expressions for x and p$ 

as a function of the weighting factor c are obtained so that c can be deter­
mined for given values ofxorp^. Section 5 discusses the properties of the 

various joint distributions obtained and discusses the application of these 

techniques to simulation models.

II. REVIEW OF BIVARIATE DISTRIBUTIONS WITH GIVEN MARGINALS

Several researchers have proposed continuous bivariate distributions 

which have specified marginals or, equivalently, uniform marginals on the in­

terval [ 0, 1]. This section reviews these distributions with regard to their 

basic properties for use in simulation applications.
Morgenstern's (1956) bivariate distribution has uniform marginals on 

[ 0, 1] and a correlation restricted by -1/3.1 p 1 1/3, so that the Frechet

bounds are unobtainable. For many simulation applications, this range of
dependence, as measured by p is too limited. Methods for generating random 
variates from the Morgenstern distribution are given by Johnson (1976). Farlie 

(1960) has generalized the Morgenstern distribution to include additional bi­
variate distributions having uniform marginals on [ 0, 1] . This generalized 

family has a limited range of dependence as measured by p and cannot attain 

the Frechet bounds.
Nataf (1962) employed his general method with h(u, v) as the bivariate 

normal density to obtain a family which can have uniform marginals on [0, 11. 
Unlike the Morgenstern distribution, Natafs family attains the Frechet bounds. 
The correlation between U and V is (6/Tr)arcsin(p/2), so that the full range
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of p is possible. This family can be obtained as a special case of both the 

WLC and TVR approaches as discussed in sections 4 and 5.

Frechet (1951) proposed a bivariate distribution which is a convex com­

bination of his boundary distributions (see equation 1.3). Because of the 

method of construction, this bivariate distribution attains its Frechet Bounds. 
However, the support of this distribution is restricted to the curves F(X) = 

F(Y), and F(X) + F(Y) = 1 and does not include the case of independence.

Kimmeldorf and Sampson (1975a and 1975b) proposed a bivariate 

distribution having uniform marginals on [ 0, 1]. The support of this 

distribution consists of nonintersecting squares centered along the diagonal 

of the unit square. It is easy to show that the correlation is equal to 

(using their notation)

p = (n3 - n + 3nb( B - n))/(33,

where n = [3], and this distribution attains the Frechet Bounds.

Plackett (1965) and Mardia (1967) proposed a bivariate distribution with 

normal marginals and a parameter^, which is called the coefficient of contin­

gency. Mardia (1970) and Kowalski (1973) survey this distribution and Mardia 

(1970) considers the corresponding bivariate distribution with uniform margin­

als. For the latter case Mardia shows that the correlation coefficient is 

(equation (8.3.8) on page 61):

p= (^ + l)/( 'P- 1) - 2^ 1 n^ / (V - 1)^ for 0 < ^ ^ ^ C2.2)

This family of distributions can achieve its Frechet Bounds and the distribu­

tion has full support over the unit square. Mardia (1970) discusses a method 

of generating random variates from this distribution.
Additional distributions have been proposed by Tenenbein and Gargano 

(1978) and by Johnson and Ramberg (1977). These distributions are special 

cases of a general approach to constructing bivariate distributions with speci­
fied marginals. Discussion of these distributions is deferred to sections 4 

and 5.
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III. MEASURES OF DEPENDENCE

The dependence in a bivariate distribution can be described by various 

measures of association. The usual parametric measure is the Pearson product 

moment correlation coefficient p. Nonparametric measures of association 

include the grade correlation coefficient ps and Kendall's t. These latter 

measures are discussed by Kendall (1962) and Kruskal (1958) and can be defined 

as follows. Let X and Y be continuous random variables having some joint 

probability density function. Let (XpY^), and (X3,Y3)

be three independent pairs of observations having the same joint density 

function. Then

t = T (X, Y) - 2Pr[ (XX - X2)(Y! - Y2) > 0] - 1 (3.1)

Ps= PS(X, Y) = 6Pr [ (XX - X2) (YX - Y3)> 0] - 3 (3.2)

It is easy to show that |pj and |T| are invariant under strictly 

monotone transformations of X and Y. If X and Y are defined by equations

(1.1) and (1.2a), respectively, it follows that for the General Method

Ps = PS(X, Y) =P S(U, V) (3.3)

T = t(X, Y) = T (U, V) . (3.4)

If X and Y are defined by equations (1.1) and 1.2b), respectively, then

ps = ps(X, Y) = -P S(U, V) (3.5)

x = t (X, Y) = -t (U, V) . (3.6)

Throughout this paper we are using t and pg as measures of dependence 

rather than P. There are two reasons for this approach. Firstly, p is not 

defined if either of the random variables, X or Y, have infinite variances; 

however, ps and T are always defined. If p is used as a measure of associa­
tion, the choices of marginal distributions for X and Y are limited. Secondly, 
the invariance property of |pj and |t| makes them more convenient as measures 

of dependence for use in the General Method. From equations (3.3),(3.4), (3.5), 
and (3.6) it is evident that we need only specify the values of p or t. This
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immediately specifies the values of p (U, V) or T(U, V) regardless of the
s

form of the marginal distributions of X and Y. On the other hand, the value 

of p must be computed for every choice of marginal distributions. This makes 

it difficult to use p as a measure of dependence in the General Method.

Other expressions for t(U, V) and pg (U, V) are useful evaluation pur­

poses. Kruskal (1958) shows that

p$ (U, V) = P[ H1(U), H2(V)], (3.7)

where H^(u) and H2(v) are the marginal distribution functions of U and V, 

respectively. Since E H2(V) = 1/2 and V H^(U) = V H2(V) = 1/12, it
follows that

PS(U, V) = 12E[H1(U)H2(V)] - 3. (3.8)

Also, it is easy to show that

t(U, V) = 4 Pr[U1 > U2, Vx > V2] - 1 (3.9)

Equation (3.7) immediately implies that if U and V have uniform marginal dis­

tributions over the interval (0, 1), then the grade correlation coefficient
equals the Pearson product moment correlation coefficient. Hence, for the 

Kimmeldorf-Sampson distribution system discussed in section 2, equation (2.1) 

gives the grade correlation coefficent. Similarly, for both Plackett's and 

Mardia's C-type contingency distributions equation, (2.2) represents the grade 

correlation coefficent.
In practive, we may have to estimate ps and T • The former can be esti­

mated by Spearman's rank correlation coefficient r$ and KendalI'sx can be 

estimated by Kendall's t, as discussed by Kendall (1962) and Kruskal (1958).

IV. THE WEIGHTED LINEAR COMBINATION

The WLC procedure constructs a joint distribution whose marginal 

distribution functions are specified to be F^(x) and F2(y) and whose 

measure of dependence can be specified to be p or x. This procedure begins
S

with two independent random variables IT and V having the same density
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function g(t). The random variables U and V are defined by equations (1.4) and 

(1.5), respectively; then X and V are obtained from the General Method using 

equations (1.1) and (1.2a) if the dependence measure is positive or equations
(1.1) and (1.2b) if the dependence measure is negative.

In order to apply the WLC procedure, we must obtain expressions for 

H^(u), ^(v), Pg(U, V), and x (U,V), in terms of c and g(t). The values of

H^(u) and ^(v) allow us to apply the General Method for a given choice of 
c and g(t). The expressions for x(U, V) and p (U, V) allow us to specify c 

for a given choice of g(t) in terms of the required value of either x or pg .

From equations (1.4) and (1.5) it is obvious that
u

Hl(u) = / g(t)dt (4.1)

H2(v) = // 8(u')g(v')du'dv'5
R,

(4.2)

where ={(u', v1): cu' + (1 - c)v'f.v}and the joint density function of 

U and V is

h(u, v) ■= —^— g(u)g(f-----

1 - c \1 - c /
(4.3)

over the appropriate region. The following theorem gives general expressions
for p (U, V) and T (U, V).

s
Theorem 1

Let U and V be random variables defined by (1.4) and (1.5) with a joint 

density function given by (4.3) and with marginal distribution functions given
by (4.1) and (4.2). It follows that

00 00

PS(U, V) =12// H1(u)H2(v)h(u, v)dudv - 3 (4.4)

where

and

t(U, V) = 4

00

82(fc) ,= / 8(w + t)g(w)dw
-CO

G2(t) /
-OD

g2(x)dx .

(4.5)

(4.6)

(4.7)
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Proof
Equation (4.4) follows directly from equation (3.8). To prove (4.5) 

consider equations (3.9), (1.4), and (1.5). This implies that

T(U, V) = 4Pr[U^ - > 0, c(U{ - Up

+ (1 - c)(V' - Vp > 0] - 1

II! ,

where U^, U2, V-^, and V2 are independent and have the same density
function g(t). Define

T and S are independent random variables which are symmetric about 0 and have 

the density function and distribution function given by (4.6) and (4.7), 

respectively. Thus

T(U, V) = 4Pr[S > 0, cS + (1 - c)T >01-1

■= 4EfPr[S > max ^0, - ^ ^ |T = t]} - 1

Since S and T are independent,

t(U, V) - 4 / (1 . c2 (- )g2(t)dt

•00 '

00

+ 4 /[l - G2(0)]g2(t)dt - 1 
o

Since T is symmetric about 0, the above reduces to equation (4.5).

Using equations (4.1), (4.2), (4.3), (4.4), and (4.5), we have evaluated 

Hl(u), H2(v), h(u, v), x(U, V), andps(U, V) for all values of c and for 

the cases where g(t) is uniform, exponential, and double exponential. These 

integrals were quite tedious to perform; however, the process was facilitated 

by the use of MACSYMA (1977), an MIT computer program which performs multiple 
integration and algebraic symbol manipulation. The corresponding results 

were obtained for the normal distribution by using the following properties of 

the bivariate normal distribution given by Kruskal (1958):
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6 arcsin(n/2)
^6 TT

t ■= (2 arcsin p)/n.

The normal distribution is equivalent to Natafs (1962) distribution.

Table 1 shows the expressions for H-^(u) and ^(v). Tables 2 and 3
show the formulae for ps and x as functions of c and provide numerical 

comparisons for the four distributions discussed. Table 4 shows the joint 

distribution h(u, v). Note that c = 0 implies independence, in which case

h(u, v) = g(u)g(v). As an example, suppose we wish to generate random

variables whose ps = -0.4 using the double exponential distribution. Using
the appropriate formula in Table 2 or interpolating in Table 3, the value c = 

0.299 yields a value of ps = (U, V) = 0.4. We would use this value of c in 

equations (1.4) and (1.5) to generate U and V. We would then use equations
(1.1) and (1.2b) to generate X and Y using the appropriate values of H^(u)

and H2(v) from Table 1. The resulting random variable pair (X, Y) is a

sample from a bivariate distribution with = -0.4 and marginal distribution 

functions F^(x) and p2(y).
The double exponential, normal, and uniform distributions are members of 

the class of exponential power distributions discussed by Box and Tiao (1973; 

page 156), where

g(t) = K exp[-0.5|t|^] .

The double exponential and normal distributions correspond to q = 1 and 2, 

respectively, whereas the uniform distribution is the limiting case as q . 

The double exponential has the heaviest tails, the normal distribution has 

moderate tails, and the uniform distribution has diffuse tails. The resulting 

three bivariate distributions obtained by the WLC method with the 

corresponding values of c adjusted to give a constant measure of dependence 

will show different probabilities within the (X1, Y') region, where X1 = 

(X) = H^(U) and Y1 = F2(Y) = H^V). As can be deduced from Table 4, 

the normal and double exponential provide full support for the joint 

distribution of (X1, Y') over the region (0 < X1 < 1, 0< Y1 < 1). The

(4.8)

(4.9)
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uniform distribution results in a bivariate distribution for which the 

probability in portions of the upper left and lower right regions of the unit 

square is zero.
The exponential and normal distributions are members of the gamma family,

where

g(t)
1

r(n)
n-1 -t t e (4.11)

The exponential is near the extreme of positive skewness; the normal is the 

limiting case as r»<>° . The resulting two bivariate distributions obtained by 

the WLC method with the corresponding value of c adjusted to give a constant 

measure of dependence will show different probabilities within the (X1, Y') 

range. Table 4 implies that the exponential results in a bivariate distribu­
tion which can assign zero probability in a portion of the lower right-hand 

region but has complete support everywhere else within the unit square.
The implications of these comparisions on applications to simulation 

methods are discussed in section 6.

V. THE TRIVARIATE REDUCTION PROCEDURE

The TVR procedure constructs a joint continuous distribution with fixed 

marginals and measure of dependence in a similar fashion to the WLC procedure. 
The difference is that the random variables U and V are constructed by equa­

tions (1.6) and (1.7), respectively. In this section we derive the correspond­

ing results for H^(u), H2(v), h(u, v), p (U, V), and (U, V) as a function 
of 6 and g(t) and consider the same choices for g(t) as in section 4.

From equations (1.6) and (1.7) it follows that

H^(u) = H2(v) = // gCu'jgCz'jdu'dz' (5.1)
Ro

where J

r3 * f(u'» z'): u' + Bz' s u] (5.2)

00

h(u, v) = / g(u - Bz)g(v - 8z)g(z)dz (5.3)
-03

The following theorem gives general expressions forps(U, V) and (U, V).
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Theorem 2

Let U and V be identically distributed random variables defined by (1.6) 

and (1.7) with a joint density function given by (5.3) and common marginal 
distribution function given by (5.1). It follows that Dg (U, V) is given by 

equation (4.4) and x (U, V) is given by

t(U, V) = 4 / [G2(8t)] g2(t)dt - 1, (5.4)

where G^t) and g2(t) are given by equations (4.7) and (4.6), respectively. 

Proof
Equation (4.4) has been shown in Theorem 1. To show that (5.4) is true, 

consider equations (3.9), (1.6), and (1.7). It follows that

T (U, V) = 4Pr[U[ - + e(Z^ - zp > o,

v[ - + B(Z[ - zp > 0] - i,

' I t
where IK, V^, and (i = 1, 2) are independent and have the same
density function g(t). Let

T = Z[ - Z2

Then T, S^, $2 are independent random variables, which are symmetric
about zero and have the density function and distribution function given by 

(4.6) and (4.7), respectively. Thus

r(u, V) = 4EfPr[S1 > - et, S2 > -Bt|T = t]} - 1 

= 4 / [1 - G2(-Bt)]2g2(t)dt - 1 .
•CO

As a result equation (5.4) follows.

Using equations (5.1), (5.3), (4.4), and (5.4) the same computations were 

carried out for the TVR procedure as have been done for the WLC procedure of 

the previous section. Table 5 gives the common marginal distribution function 
of U and V. Tables 6 and 7 yield the expressions forp (U, V) and T(U, V) as

S

functions of b and provide numerical comparisons. Table 8 gives the joint 

density function of U and V.
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The same trends in the support of the corresponding bivariate distribu­
tions with uniform marginals are evident for the TVR procedure as for the WLC 

procedure. The TVR procedure is symmetric in the sense that the marginal 

distributions of U and V are the same. The normal distribution case of the 

TVR procedure is equivalent to using Natafs (1962) joint distribution.

VI. APPLICATION TO SIMULATION MODELS

Many simulation models require the specification of a joint continuous 

bivariate distribution as input. Eilen and Fowkes (1973) and Hall (1977) con­

sider the problem in risk simulation. If there is an adequate theory or suf­

ficient data upon which to base a specific bivariate distribution the problem 

is well defined. Johnson and Kotz (1972) have compiled a large selection of 

bivariate and multivariate distributions and Fishman (1973) and Johnson (1976) 

have discussed methods of generating random variates from given bivariate 

distributions.

In many situations there really is no adequate theory or sufficient data 

to be able to specify a unique bivariate distribution. However, it may be 

realistic to specify the marginal distributions of the random variables and a 

measure of dependence between them. If this is the case, the problem is not 

well defined because there are many bivariate distributions having these 

properties. A variety of assumed joint distributions must be used to assess 

their sensitivity to the results of the simulation model.

In this report we have presented the TVR and WLC procedures, each of 

which constructs bivariate continuous distributions with fixed marginals and 

depen- dence measure. By using either the TVR procedure or WLC procedure with 

g(t) being double exponential, normal, and uniform, we can assess the effect 

of tail weight in g(t) on the final results of the simulation model. By using 

either procedure with g(t) being exponential and normal, we would be able to 

assess the effect of skewness in g(t) on the final results of the simulation 

model.
For choices of g(t) discussed in this paper we have not been able to 

consider more extreme heavy-tailed distributions, such as the Cauchy, or more 

skewed distributions, such as the Pareto. These latter distributions are 

difficult to apply to construction schemes because closed-form solutions for 

the cumulative distributions of U and V are difficult to obtain. The

13



intermediate choices for the exponential power family (4.10) were likewise 

intractable. Intermediate choices for the garnna family (4.11), where n is an 

integer, can be pursued.

The one-parameter families considered in section 2, which achieved the 

Frechet bounds, can also be applied to simulation models. The correlation 

coefficients given by equations (2.1) and (2.2) for Kimmeldorf-Sampson and the 

Plackett-Mardia distributions, respectively, also represent the grade 

correlation coefficient because of the results of section 3. Consequently, 

the Kiirmeldorf-Sampson bivariate distribution can be used as h(u, v) in the 

General Method with 6 adjusted to yield a specified value of ps. Similarly, 
Plackett's or Mardia's distribution can be used with adjusted to yield a 

specific value of pg .
In our methods we have adopted a systematic approach in construction 

bivariate distributions with fixed marginals and dependence measure. We have 

not investigated the possibility of using these bivariate distributions to fit 

real data. Preliminary work by Johnson (1976) indicates that it is feasible 

to fit these distributions using a modified maximum likelihood scheme.
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Table 1

H1(u) AND H2(v) FOR THE WEIGHTED LINEAR COMBINATION PROCEDURE

H^u) H2(v)

(DISTRIBUTION)

Hj^(u) = u v^/(2b(l - b) for 0 s v < b

for 0 s u ^ 1 (2v - b) / (1 - b) for b v £ 1 - b

(UNIFORM) 1 - (1 - v)2 /(2b (1 - b)) for I - b s v s 1

where b = min(c, 1 - c)

H^u) = $(u)
$(v/yc2 + (i - c)2)

(STANDARD NORMAL)

H1(u) = k exp(u) Case 1: c t \

for u < 0 [(1 - c)2exp(v/(l - c)) - c2exp(v/c)]/(2(1 - 2c))

•= 1 - ^ exp(-u) for v <- 0

for u > 0 1 - [(I - c)2exp(-v/(l - c)) - c2exp(-v/c)]/(2(l - 2c))

(DOUBLE EXPONENTIAL) for v > 0

Case 2: c = %

(I - v)exp(2v)/2 for v < 0

I - (v + l)exp(-2v)/2 for v > 0

Hl(u) «= 1 - exp(-u) 1 - [(1 - c)exp(-v/(l - c) - c exp(-v/c)]/(l - 2c)

for u > 0 for v > 0 and c ^ ^

(EXPONENTIAL) 1 - (2v + l)exp(-2v) for v > 0 and c = ^
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Table 2

FORMULAE FOR p AND T AS FUNCTIONS OF c 
IN THE WEIGHTEDSLINEAR COMBINATION PROCEDURE

DISTRIBUTION
i

ps(U, V) | T(U, V)

UNIFORM e<10 - 13c> - 5c2, for 0 < c < .5

10(1 - c)2 1 6(1 - c)2
for 0 < c < .5 ^

3c3 + 16c2 - 11c + 2 11c2 - 6c + 1 c _ ,

10c3
for .5 < c < 1

6c2

NORMAL 6 C 2 c
2 f{c2 + (1 - c)2 + (1 - c)2

DOUBLE
EXPONENTIAL

c(9 - 18c2 + 14c3 - 3c4) c(3 + 3c - 2c2)

2(2 - c)2 4

EXPONENTIAL
c(3 - 2c)

2 - c
c

Table 3

NUMERICAL VALUES OF Ds AND T 
IN THE WEIGHTED LINEAR COMBINATION PROCEDURE

Value of p (U, V) Value of t(U, V)

c UNIFORM NORMAL
DOUBLE

EXPONENTIAL EXPONENTIAL UNIFORM NORMAL
DOUBLE

EXPONENTIAL EXPONENTIAL

0 0 0 0 0 0 0 0 0

.1 .107 .106 .122 .147 .072 .070 .082 .100

.2 .231 .232 .259 .289 .156 .156 .176 .200

.3 .373 .379 .401 .424 .255 .258 .279 .300

.4 .533 .537 .542 .550 .370 .374 .388 .400

.5 .700 .690 .674 .667 .500* .500* .500* .500*

.6 .837 .819 .789 .771 .630 .626 .612 .600

.7 .924 .912 .883 .862 .745 .742 .721 .700

.8 .972 .967 .950 .933 .844 .844 .824 .800

.9 .994 .993 .988 .982 .928 .930 .918 .900

1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

* It can be shown that t ■ 
(4.5)).

\ when c “ for any continuous distribution (see equation



Table A

THE JOINT DENSITY FUNCTION: h(u, v)
FOR THE WEIGHTED LINEAR COMBINATION PROCEDURE

UNDERLYING DENSITY h(u, v) SUPPORT

UNIFORM 1/(1 - c) cu<v<cu + l- c

g(t) = 1 0 < u < 1

(0 < t < 1)

NORMAL UNDER BIVARIATE NORMAL

N(0, 1) E(U) = E(V) - 0 -00 < U < 05

°l = 1

CT2 = C2 + (1 - C)2
V

P - c/tjc2 + (1 - c)2

-00 < V < 00

DOUBLE EXPONENTIAL (exp[-|u| - |v - cu|/(1 - c)])/(4(l - c)) -00 < u < 00

g(t) = % exp(-|t|) -00 < V < OD

1 8 A rt A 8

EXPONENTIAL (exp(-v - u + 2cu))/(l - c) CU < V < oo

g(t) = exp(-t) 0 < U < oo

(0 < t < oo)
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Table 5

Hj^u) - H2(u) FOR THE TRIVARIATE REDUCTION PROCEDURE

DISTRIBUTION H^u) = H2(u)

DNIFORM Case 1: R £ 1

u2/2p for 0 s: u s p

u - p/2 for p £ u ^ 1

1 - (u - B " 1)2/2P for 1 £ u £ 1+8

Case 2: R > 1

u2/2r for 0 s u £ 1

(2u - l)/2p for 1 £ u s p

1 - (u - p - I)2/2p for p £ u £ 1 + p

STANDARD
NORMAL $(u//l + p2)

DOUBLE
EXPONENTIAL

Case 1: P # 1

(p2exp(u/p) - exp(u))/(2p2 - 2) for u < 0

1 - (p2exp(-u/p) - exp(-u))/(2p2 - 2) for u > 0

Case 2: B = 1

(2 - u)exp(u)/4 for u < 0

1 - (u + 2)exp(-u)/4 for u > 0

EXPONENTIAL 1 - (exp(-u) - p exp(-u/p))/(1 - p) for u ^ 0 and p ^ 1

1 - (u + l)exp(-u) for u ^ 0 and p = 1

18



Table 6

FORMULAE FOR 0 AND T AS FUNCTIONS OF R IN THE TRIVARIATE REDUCTION METHOD

DISTRIBUTION Ps
T

UNIFORM , 19B4 - 126fi3 + 210b2 B4 - 6b3 + 10B2
B * 1 ---------------- 2l0-------------- 15

, . , B7 - 19b6 + 84B5 - 280fl4 + 770fl3 - 672b2 + 238b - 24 15B2 - 14b + 4

210pJ 15B2

105b3 - 105b + 52 15B2 - 14a + 4
B ^ o

105pJ 15R2

NORMAL 6 , / B2 \
— arcsin [------ r---------- I

— arcsin/^ —^^

" ^2(b2 + 1)/ n V 82 + 1 /

DOUBLE 16fl9 + 152fl8 + 588b7 + 1122b4 + 1104B3 + 555b2 + 132b + 12 32B? + 125fl6 + I61B5 + 90fl4 + 22fi3 + 2fl2

EXPONENTIAL 2(P + 1)4(B + 2)2(2b + 1) 2(28 + i)4(e + l)3

EXPONENTIAL fi2(2b2 + 9b + 6) 2B2

(B + D2(2B + 1)(B + 2) (B + 1)(26 + D

Table 7

NUMERICAL VALUES OF Ps AND r 
IN THE TRIVARIATE REDUCTION PROCEDURE

Value of ’s Value of t

8
i + e UNIFORM NORMAL

DOUBLE
EXPONENTIAL EXPONENTIAL UNIFORM NORMAL

DOUBLE
EXPONENTIAL EXPONENTIAL

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.012 0.012 0.018 0.027 0.008 0.008 0.012 0.018

0.2 0.053 0.056 0.076 0.099 0.036 0.037 0.051 0.067

0.3 0.140 0.148 0.178 0.204 0.093 0.099 0.120 0.138

0.4 0.285 0.295 0.315 0.331 0.191 0.199 0.216 0.229

0.5 0.490 0.483 0.473 0.472 0.333* 0.333* 0.333* 0.333*

0.6 0.702 0.675 0.637 0.617 0.496 0.487 0.466 0.450

0.7 0.855 0.833 0.786 0.756 0.649 0.641 0.606 0.576

0.8 0.945 0.936 0.904 0.877 0.783 0.781 0.747 0.711

0.9 0.988 0.987 0.977 0.965 0.900 0.900 0.881 0.853

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

* It can be shown that t “ 1/3 when R *= 1 for any continuous distribution (see equation 
(5.4)).
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Table 8a

THE JOINT DENSITY FUNCTION h(u, v)
FOR THE TRIVARIATE REDUCTION PROCEDURE (THE UNIFORM DISTRIBUTION)

h(u, v)

I

u - B/2 

v - B/2 

1 - (u - 1)/B 

1 - (v - 1)/B 

v/B - (u - 1)/b 

u/B - (v - I)/B 

v/B 

u/b

I - (u - L)/b 

1 - (v - 1)/B

h(u» v>

u/B - (v - 1)/B 

v/B - (u - I)/8 

I - (v - 1)/B 

1 - (u - 1)/B 

u/B 

v/B

Case 1: B £ 1

Support

B < u < 1 , B < v < 1

B < u < I , 0 < v < B

R < v < 1 , 0 < u < B

l<u<B + l»B<v<l 

1<v<B + 1»B<u<I 

I<u<l + v , 0<v<B 

l<v<I + u , 0<u<8 

v < u < B , 0 < v < b

u < v < 8 t 0 < u < B

I<v<u ,l<u<B + l

1 < u <

Case 2: B ^ 1

, 1 < v < B + 1

Support

0 < u < B , max(l, u) < v < 1 + u

0 < v < B > niaxCl, v) < u < 1 + v

B < u < v , B < v < 1 + R

B<v<u , B<u<l + B

0<u<l , u<v<l 

0<v<l , v<u<I
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Table 8b

THE JOINT DENSITY FUNCTION h(u, v) 
FOR THE TRIVARIATE REDUCTION PROCEDURE 

(THE DOUBLE EXPONENTIAL DISTRIBUTION)

h(u, v) Support

hjCu, v) ■= <

v) -

[ (2p2 + 6)exp(v - v/s - u) "I

' + (B - 2B2)exp(v - u - u/p) > -f (16P2 - 4) for B I* ^

- exp(-v - u)

(4v + 3)exp(-v - u) - exp(v - 3u)]/16 for R “ %

u > v > 0

h2(u. v) - hjCv, u) v > u > 0

^3(0, v) ■ •

(2B + l)exp(v - u) 'j

-6 exp(v - u + v/r) > -f (80 + 4)

-B exp(v - u - u/B)
^ /

u > 0 > v

1>4(U, v) - h3(v, u) v > 0 > u

l>5(u( v) - h^-u, -v) 0 > v > u

h6(u, v) « hj^C-v, -u) 0 > u > v

Table 8c

THE JOINT DENSITY FUNCTION 
FOR THE TRIVARIATE REDUCTION PROCEDURE 

(THE NORMAL AND EXPONENTIAL DISTRIBUTIONS)

DISTRIBUTION

EXPONENTIAL exp(-u

h(u, v)

v)(1 - exp((2 - I/e)min(u, v))/(l - 2r) 

for u, v ^ 0 and R J4 %

2 exp(-u - v)min(u, v)

for u, v ^ 0 and p “ ^

STANDARD
NORMAL

BIVARIATE NORMAL WITH

E(U) - E(V) - 0

a2 * ct2 ■ l + B2 
U V
P - B2/d + R2)
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