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BIVARIATE DISTRIBUTIONS WITH GIVEN MARGINALS
AND FIXED MEASURES OF DEPENDENCE

by

Mark E. Johnson and Aaron Tenenbein

ABSTRACT

Two systematic approaches are given for constructing
continuous bivariate distributions with specified marginals
and fixed dependence measures. Both approaches are based
on linear combinations of independent random variables and
result in bivariate distributions which can attain the
Frechet bounds. The dependence measures considered are
the grade correlation coefficient and Kendall's T. The
joint distributions obtained are compared to those of M.
Frechet (1951), R. L. Plackett (1965), D. Morgenstern (1956),
and G. Kimmeldorf and A. Sampson (1975). Applications to
testing for sensitivity in simulation models are discussed.



I. INTRODUCTION

In many simulation applications, it is required to generate dependent
pairs of continuous random variables for which there is limited information on
the joint distribution. For example, in a portfolio analysis simulation ap-
plication, a joint distribution for stock andbond returns may have to be
specified. Because of lack of data, it may be difficult to specify completely
the joint distribution of stock and bond returns. However, it may be realistic
to specify the marginal distributions and some measure of dependence between
the random variables.

The problem of construction continuous bivariate distributions with
specified marginals has been discussed in the literature, which is reviewed in
section 2. A general method ofconstructing a bivariate distribution, whose
marginal distribution functions are F”*x) andF2(y), is proposed by Nataf
(1962) and can be represented as follows.

General Method

i. Consider any two continuous random variables U and V with
probability density function h(u, v).

ii. Let XI = HAMU) and Yl = H=(V), where H-“(u) and H=(v) are the
cumulative distribution functions of U and V, respectively.

iii. Define:

X = fr/ (X1) = F/ (H"U))
a.n
and
Y = F2hi(Y1) = P2 (H2(V)) (1.2a)
or
Y=F (1-Y)=F 1 - H(V)). (1.2b)

Since X1, Y1, and 1 - Y' are uniformly distributed over the interval (0, 1), X
defined by (1.1) and Y defined either by (1.2a) or (1.2b) will have a joint
cumulative distribution whose marginal distribution functions are F*(x) and
F2(y).

A procedure for constructing bivariate distributions should have the
following characteristics.

a. The resulting joint distribution function F(x, y) should attain the

upper or lower Frechet bounds given by Mardia (1970) as
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max [0, fi(x) + F2(y) - 1] 1 F(x, y) 1[min F-|(x), F2(y)] s (1.3)

where F-*(x) and F=(y) are the marginal distribution functions. If this
were not the case, the resulting joint distribution will not allow for highly
positive or negative correlated random variables in modeling situations.

b. The resulting joint distribution should readily lend itself for the
development of random variate generation schemes for use in simulation models.

In this paper we develop two procedures for constructing bivariate dis-
tributions whose marginal distributions and measure of dependence, as given by
Kendall's x or the grade correlation coefficient pg, are specified. Both of
these procedures are based on this General Method, where the random variables U
and V are obtained as linear combinations of U', V, and Z', where these lat-
ter three random variables are independent and identically distributed with
probability density function g(t). The first procedure, called the WLC

(weighted linear combination), defines

- 1 aa.4)
V=c¢U + (0 - ¢V a.s)
for <l 1. The second procedure, called the TVR (trivariate reduction) is

discussed by Mardia (1970). In this case U and V are defined as

U + 372 (1.6)
V + BZ' .7

-
Il

for 0 £ B < ()

Both of these procedures are easily adaptable to simulation models and
contain members which attain the Frechet Upper and Lower Bounds. The WLC
procedure attains the upper and lower bounds for ¢ = 1 and Y defined by (1.2a)
and 1.2b), respectively. Similarly, as B tends to°°, the bounds are obtained
in the TVR procedure. As a result both procedures have distributions for
which pg and x take on any given value in the interval 1-1, 1 ]. This latter
fact is true by a general result proved by Tchen (1976).

In both systems there are two degrees of freedom in constructing (U, V);
the weighting factor, £ or ¢, and the underlying density function g(t). The

weighting factor affects the measure of dependence. By considering various



choices for g(t), we can construct joint distributions with a fixed measure of
dependence and fixed marginals. These joint distributions are extremely useful
in assessing the sensitivity of a simulation model to this specification of
Hx, y). An example of this situation is the portfolio analysis simulation in
which we could perform the simulation experiments with various F(x, y) to
assess its effect on the analysis.

Section 3 of this paper defines correlation measures PS and X and
describes their properties. Section 4 discusses specific results of the WLC
procedure for arbitrary choices for g(t) and considers in detail the case of
the normal, uniform, exponential, and double-exponential distributions. For-
mulae for the cumulative distributions of U and V are derived for use in the
General Method equations (1) and (1.2a) or (1.2b) . Expressions for x and p$
as a function of the weighting factor ¢ are obtained so that c¢ can be deter-
mined for given values ofxorp”. Section 5 discusses the properties of the
various joint distributions obtained and discusses the application of these

techniques to simulation models.

II. REVIEW OF BIVARIATE DISTRIBUTIONS WITH GIVEN MARGINALS

Several researchers have proposed continuous bivariate distributions
which have specified marginals or, equivalently, uniform marginals on the in-
terval [ 0, 1]. This section reviews these distributions with regard to their
basic properties for use in simulation applications.

Morgenstern's (1956) bivariate distribution has uniform marginals on
[ 0, 1] and a correlation restricted by -1/3.1 P 1 1/3, so that the Frechet
bounds are wunobtainable. For many simulation applications, this range of
dependence, as measured by p is too limited. Methods for generating random
variates from the Morgenstern distribution are given by Johnson (1976). Farlie
(1960) has generalized the Morgenstern distribution to include additional bi-
variate distributions having uniform marginals on|[ 0, 1] . This generalized
family has a limited range of dependence as measured by p and cannot attain
the Frechet bounds.

Nataf (1962) employed his general method with h(u, v) as the bivariate
normal density to obtain a family which can have uniform marginals on [0, 11.
Unlike the Morgenstern distribution, Natafs family attains the Frechet bounds.

The correlation between U and V is (6/Tr)arcsin(p/2), so that the full range



of p is possible. This family can be obtained as a special case of both the
WLC and TVR approaches as discussed in sections 4 and S.

Frechet (1951) proposed a bivariate distribution which is a convex com-
bination of his boundary distributions (see equation 1.3). Because of the
method of construction, this bivariate distribution attains its Frechet Bounds.
However, the support of this distribution is restricted to the curves F(X) =
F(Y), and F(X) + F(Y) = 1 and does not include the case of independence.

Kimmeldorf and Sampson (1975a and 1975b) proposed a bivariate
distribution having uniform marginals on [0, 1]. The support of this
distribution consists of nonintersecting squares centered along the diagonal
of the wunit square. It is easy to show that the correlation is equal to

(using their notation)

p = (@3 - n+ 3nB(B - n))/(33,

where n = [3], and this distribution attains the Frechet Bounds.

Plackett (1965) and Mardia (1967) proposed a bivariate distribution with
normal marginals and a parameter”, which is called the coefficient of contin-
gency. Mardia (1970) and Kowalski (1973) survey this distribution and Mardia
(1970) considers the corresponding bivariate distribution with uniform margin-
als. For the latter case Mardia shows that the correlation coefficient is

(equation (8.3.8) on page 61):

p= * +D/CP- 1) -221n0 / (V- D" for 0 < A~ (C22)

This family of distributions can achieve its Frechet Bounds and the distribu-
tion has full support over the unit square. Mardia (1970) discusses a method
of generating random variates from this distribution.

Additional distributions have been proposed by Tenenbein and Gargano
(1978) and by Johnson and Ramberg (1977). These distributions are special
cases of a general approach to constructing bivariate distributions with speci-
fied marginals. Discussion of these distributions is deferred to sections 4

and 5.



III. MEASURES OF DEPENDENCE

The dependence in a bivariate distribution can be described by various
measures of association. The usual parametric measure is the Pearson product
moment correlation coefficient p. Nonparametric measures of association
include the grade correlation coefficient ps and Kendall's -+  These latter
measures are discussed by Kendall (1962) and Kruskal (1958) and can be defined
as follows. Let X and Y be continuous random variables having some joint
probability density function. Let XpY"™), and (X3,Y3)
be three independent pairs of observations having the same joint density

function. Then

=T &, Y) - 2Pr[ XX - X2)(Y! - Y2)> 0] -1 3.1

Ps= PS(X, Y) = 6Pr| (XX - X2) (YX - Y3)> O] - 3 (3.2)
It is easy to show that |pj and |T| are invariant under strictly
monotone transformations of X and Y. If X and Y are defined by equations

(1.1) and (1.2a), respectively, it follows that for the General Method

Ps = PS(X,Y) =P S(U, V) (3.3)

- 1XY) =T (U, V) . 3.4)

If X and Y are defined by equations (1.1) and 1.2b), respectively, then

PS(X,Y) = =P S(U, V) 3.5)

PS

r (XY= — (U, V) . 3.6>

I
I

Throughout this paper we are using T and pg as measures of dependence
rather than P. There are two reasons for this approach. Firstly, p is not
defined if either of the random wvariables, X or Y, have infinite variances;
however, PS and T are always defined. Ifp is used as a measure of associa-
tion, the choices of marginal distributions for X and Y are limited. Secondly,
the invariance property of |pj and |1 makes them more convenient as measures
of dependence for use in the General Method. From equations (3.3),(3.4), (3.5),

and (3.6) it is evident that we need only specify the values of p or T. This



immediately specifies the values ofp (U, V) or T(U, V) regardless of the
form of the marginal distributions ofS X and Y. On the other hand, the value
of P must be computed for every choice of marginal distributions. This makes
it difficult to use p as a measure of dependence in the General Method.

Other expressions for T(U, V) and pg (U, V) are useful evaluation pur-

poses. Kruskal (1958) shows that
p$ (U, V) = P[ H1(U), H2(V)], 3.7

where H”(u) and H2(v) are the marginal distribution functions of U and V,

respectively. Since E H2(V) = 1/2 and V HANU) =V H2(V) = 1/12, it
follows that

PS(U, V) = 12E[H1(U)H2(V)] - 3. 3.8
Also, it is easy to show that

T(U, V) =4 Pr[U1l > U2, Vx > V2] -1 3.9

Equation (3.7) immediately implies that ifU and V have uniform marginal dis-
tributions over the interval (0, 1), thenthe gradecorrelation coefficient
equals the Pearson product moment correlation coefficient. Hence, for the
Kimmeldorf-Sampson distribution system discussed in section 2, equation (2.1)
gives the grade correlation coefficent. Similarly, for both Plackett's and
Mardia's C-type contingency distributions equation, (2.2) represents the grade
correlation coefficent.

In practive, we may have to estimate ps and T ¢+ The former can be esti-
mated by Spearman's rank correlation coefficient r§ and Kendall'sx can be

estimated by Kendall's t, as discussed by Kendall (1962) and Kruskal (1958).

IV. THE WEIGHTED LINEAR COMBINATION

The WLC procedure constructs a joint distribution whose marginal
distribution functions are specified to be FA(Xx) and F2(y) and whose
measure of dependence can be specified to be p or x. This procedure begins

S

with two independent random variables IT and V having the same density



function g(t). The random wvariables U and V are defined by equations (1.4) and
(1.5), respectively; then X and V are obtained from the General Method using
equations (1.1) and (1.2a) if the dependence measure is positive or equations
(1.1) and (1.2b) if the dependence measure is negative.

In order to apply the WLC procedure, we must obtain expressions for
H*(w), ~(v), Pg(U, V), and x (U,V), in terms of ¢ and g(t). The values of
H*(u) and ~(v) allow us to apply the General Method for a given choice of
¢ and g(t). The expressions for x(U, V) and p (U, V) allow us to specify c
for a given choice of g(t) in terms of the required value of either x or pg .

From equations (1.4) and (1.5) it is obvious that

u
Hl(u) = / g(tdt @.1)
H2(v) = /7 8(u")g(v')du'dv’'s “.2)

R,

where ={(ua', vl): cu' + (1 - co)v'fiviand the joint density function of

U and V is
h(u, v) » —— g(wyg(f— “4.3)

1 - ¢ \1 - ¢ 7/

over the appropriate region. The following theorem gives general expressions
for p (U, V) and T (U, V).
Theorefn 1

Let U and V be random variables defined by (1.4) and (1.5) with a joint
density function given by (4.3) and with marginal distribution functions given
by (4.1) and (4.2). It follows that

00 00

PS(U, V) =12// H1l(uH2(v)h(u, v)dudv - 3 (4.4)

T(U, V) = 4 4.5)
where

82(fy) ~ ; 8(w + Hg(w)dw (4.6)
and h

G2 [/ g2xdx. 4.7

-OD



Proof
Equation (4.4) follows directly from equation (3.8). To prove (4.5)

consider equations (3.9), (1.4), and (1.5). This implies that

TU, V) = 4Pr[UN - > 0, c(U{ - Up

+ @A - (V' -Vp >0] -1

.- .- - 5
where U”, U=, VA and V> are independent and have the same density

function g(t). Define

T and S are independent random variables which are symmetric about 0 and have
the density function and distribution function given by (4.6) and (4.7),

respectively. Thus

T, V) = 4Pr[S > 0, ¢S + (1 - )T =01-1

r 4EfPr[S > max 70, - AN AT =t} - 1

Since S and T are independent,

T™WU, V) -4/ (1 . ¢ (- Yg2(H)dt

<00
00
+4 /[0 - G2(0)]g2(Odt - 1
0
Since T is symmetric about 0, the above reduces to equation (4.5).

Using equations (4.1), (4.2), (4.3), (4.4), and (4.5), we have evaluated
Hl(u), H2(V), h(u, v), x(U, V), andps(U, V) for all values of ¢ and for
the cases where g(t) is uniform, exponential, and double exponential. These
integrals were quite tedious to perform; however, the process was facilitated
by the use of MACSYMA (1977), an MIT computer program which performs multiple
integration and algebraic symbol manipulation. The corresponding results
were obtained for the normal distribution by using the following properties of

the bivariate normal distribution given by Kruskal (1958):



6 arcsin(n/2) 4.8)
6 T

T »= (2 arcsin p)/n. “-9
The normal distribution is equivalent to Natafs (1962) distribution.

Table 1 shows the expressions for H-*(u) and (V). Tables2 and 3
show the formulae for PS and x as functions of ¢ and provide numerical

comparisons for the four distributions discussed. Table 4 shows the joint

distribution h(u, v). Note that ¢ = 0 implies independence, in which case
h(u, v) = g(a)g(v). As an example, suppose we wish to generate random
variables whose PS = -0.4 wusing the double exponential distribution. Using

the appropriate formula in Table 2 or interpolating in Table 3, the value ¢ =
0.299 yields a value of Ps = (U, V) = 0.4. We would use this value of c¢ in
equations (1.4) and (1.5) to generate U and V. We would then use equations
(1.1) and (1.2b) to generate X and Y wusingthe appropriate values of H”(u)
and H2(Vv) from Table 1. The resulting random variable pair (X, Y) is a
sample from a bivariate distribution with = -0.4 and marginal distribution
functions FA(x) and p=(y).

The double exponential, normal, and uniform distributions are members of
the class of exponential power distributions discussed by Box and Tiao (1973;

page 156), where
g(® = K exp[-0.5|t|"]

The double exponential and normal distributions correspond to q = 1 and 2,
respectively, whereas the uniform distribution is the limiting case as q
The double exponential has the heaviest tails, the normal distribution has
moderate tails, and the uniform distribution has diffuse tails. The resulting
three bivariate distributions obtained by the WLC method with the
corresponding values of c¢ adjusted to give a constant measure of dependence
will show different probabilities within the (X1, Y') region, where X =
X) = HMU) and YI = F2(Y) = H”V). As can be deduced from Table 4,
the normal and double exponential provide full support for the joint

distribution of (X1, Y') over the region (0 < Xl < 1, 0< YI < 1). The
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uniform distribution results in a bivariate distribution for which the
probability in portions of the upper left and lower right regions of the unit
square is zero.

The exponential and normal distributions are members of the gamma family,

where

1 (o1 -t “4.11)

g(® r(n)

The exponential is near the extreme of positive skewness; the normal is the
limiting case as n<® . The resulting two bivariate distributions obtained by
the WLC method with the corresponding value of c¢ adjusted to give a constant
measure of dependence will show different probabilities within the (X1, Y')
range. Table 4 implies that the exponential results in a bivariate distribu-
tion which can assign zero probability in a portion of the lower right-hand
region but has complete support everywhere else within the unit square.

The implications of these comparisions on applications to simulation

methods are discussed in section 6.

V. THE TRIVARIATE REDUCTION PROCEDURE

The TVR procedure constructs a joint continuous distribution with fixed
marginals and measure of dependence in a similar fashion to the WLC procedure.
The difference is that the random variables U and V are constructed by equa-
tions (1.6) and (1.7), respectively. In this section we derive the correspond-
ing results for H”"(u), H=(v), h(u, v),p (U, V), and (U, V) as a function
of 6 and g(t) and consider the same choices for g(t) as in section 4.

From equations (1.6) and (1.7) it follows that

H”M(u) = H2(v) = /. gCu'jgCz'jdu'dz’' (5.1
Ro
where J
r3 * f(u'» zZ'): u' + Bz' s u] (5.2)
00
h(u, v) = / g(u - Bz)g(v - 8z2)g(z)dz (5.3)

-03

The following theorem gives general expressions forps(U, V) and (U, V).

11



Theorem 2

Let U and V be identically distributed random variables defined by (1.6)
and (1.7) with a joint density function given by (5.3) and common marginal
distribution function given by (5.1). It follows that Dg (U, V) is given by
equation (4.4) and x (U, V) is given by

T(U, V) = 4 / [G2(81t)] g2(tHdt - 1, (G

where G~t) and g=(t) are given by equations (4.7) and (4.6), respectively.
Proof

Equation (4.4) has been shown in Theorem 1. To show that (5.4) is true,
consider equations (3.9), (1.6), and (1.7). It follows that

T@U, V) = 4Pr[U|[ - + e(Z” - Zp > o,
v[ - + BZ[ - zp > 0] - i,
! [ t
where 1K, V#A, and @ = 1, 2) are independent and have the same

density function g(t). Let

T =27[ - 72

Then T, S”, s> are independent random variables, which are symmetric
about zero and have the density function and distribution function given by

(4.6) and (4.7), respectively. Thus

r(u, v 4EfPr[S1 > - et, S2 > -Bt|T = t]} - 1

4 / [1 - G2(-BOJ2g2(Hdt - 1.
As a result equation (5.4) follows.

Using equations (5.1), (5.3), (4.4), and (5.4) the same computations were
carried out for the TVR procedure as have been done for the WLC procedure of

the previous section. Table 5 gives the common marginal distribution function
of U and V. Tables 6 and 7 yield the expressions forp (U, V) and T(U, V) as
S

functions of B and provide numerical comparisons. Table 8 gives the joint
density function of U and V.
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The same trends in the support of the corresponding bivariate distribu-
tions with uniform marginals are evident for the TVR procedure as for the WLC
procedure. The TVR procedure is symmetric in the sense that the marginal
distributions of U and V are the same. The normal distribution case of the

TVR procedure is equivalent to using Natafs (1962) joint distribution.

VI. APPLICATION TO SIMULATION MODELS

Many simulation models require the specification of a joint continuous
bivariate distribution as input. Eilen and Fowkes (1973) and Hall (1977) con-
sider the problem in risk simulation. If there is an adequate theory or suf-
ficient data upon which to base a specific bivariate distribution the problem
is well defined. Johnson and Kotz (1972) have compiled a large selection of
bivariate and multivariate distributions and Fishman (1973) and Johnson (1976)
have discussed methods of generating random variates from given bivariate
distributions.

In many situations there really is no adequate theory or sufficient data
to be able to specify a unique bivariate distribution. However, it may be
realistic to specify the marginal distributions of the random variables and a
measure of dependence between them. If this is the case, the problem is not
well defined because there are many bivariate distributions having these
properties. A variety of assumed joint distributions must be used to assess
their sensitivity to the results of the simulation model.

In this report we have presented the TVR and WLC procedures, each of
which constructs bivariate continuous distributions with fixed marginals and
depen- dence measure. By using either the TVR procedure or WLC procedure with
g(t) being double exponential, normal, and uniform, we can assess the effect
of tail weight in g(t) on the final results of the simulation model. By using
either procedure with g(t) being exponential and normal, we would be able to
assess the effect of skewness in g(t) on the final results of the simulation
model.

For choices of g(t) discussed in this paper we have not been able to
consider more extreme heavy-tailed distributions, such as the Cauchy, or more
skewed distributions, such as the Pareto. These latter distributions are
difficult to apply to construction schemes because closed-form solutions for

the cumulative distributions of U and V are difficult to obtain. The
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intermediate choices for the exponential power family (4.10) were likewise
intractable. Intermediate choices for the garnna family (4.11), where n is an
integer, can be pursued.

The one-parameter families considered in section 2, which achieved the
Frechet bounds, can also be applied to simulation models. The correlation
coefficients given by equations (2.1) and (2.2) for Kimmeldorf-Sampson and the
Plackett-Mardia  distributions, respectively, also represent the grade
correlation coefficient because of the results of section 3. Consequently,
the Kiirmeldorf-Sampson bivariate distribution can be used as h(u, v) in the
General Method with 6 adjusted to yield a specified value of pPs. Similarly,
Plackett's or Mardia's distribution can be used with adjusted to yield a
specific value of pg .

In our methods we have adopted a systematic approach in construction
bivariate distributions with fixed marginals and dependence measure. We have
not investigated the possibility of using these bivariate distributions to fit
real data. Preliminary work by Johnson (1976) indicates that it is feasible

to fit these distributions using a modified maximum likelihood scheme.
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Hi(u) AND H2(V)

H"u)

(DISTRIBUTION)

Hj*(w) = u
for 0 s

(UNIFORM)

H” ) = $(u)

(STANDARD NORMAL)

H1(u) k exp(u)

for

for

(DOUBLE EXPONENTIAL)

HL(U) ¢ 1 - exp(-u)

for

(EXPONENTIAL)

u

u

u

u

Al

<0

1 - * exp(-u)

>

>

0

0

Table |

FOR THE WEIGHTED LINEAR COMBINATION PROCEDURE

H2(V)

v~/ (2b(A - b) for 0 s v<»>H
2v - b)/(A - b) for b vEe£l-b>D
1 -1 -wv)2 /2b (1 - b)) for 1 - bs vs |l

where b = min(c, 1 - ¢©)

S(v/ye2 + (i - ©)2)

Case 1: ¢ z \

[(A - ©)2exp(v/A - ©)) - c2zexp(V/O)]/(2( - 2¢))
for v < 0
1 - [ - ©2exp(-v/A - ©)) - c2exp(-v/0)]/(2A - 2¢))
for v >0
Case 2: ¢ = Y%
d - v)exp(2v)/2 for v <0

I - (v + Dexp(-2v)/2 for v >0

1 - [(A - exp(-v/(A - ¢) - ¢ exp(-v/c)]l/A - 20)
for v>0 and ¢ * *

1 - 2v + Dexp(-2v) for v>0 and ¢ = *

15



Table 2

FORMULAE FOR AND T AS FUNCTIONS OF ¢
IN THE WEIGHTEDSLINEAR COMBINATION PROCEDURE

DISTRIBUTION ps(U, V) | T(U, V)
UNIFORM e<l0) - 13c - 5¢2, for 0 <c¢c < .5
10(1 - <)2 I 6(1 - )2
for 0 <c¢c < .5
3c3 + 16¢2 - 1llc + 2 I1c2 - 6¢c + 1 c _ s
10c3 6c2
for 5 <c <1
NORMAL 6 c ) ¢
2 f{c2 + (1 - )2 + (1 - e
DOUBLE c(9 - 18c2 + 14c3 - 3c4) c(3 + 3¢ - 2c2)
EXPONENTIAL
22 - ) 4
EXPONENTIAL
c(3 - 20) ¢
2 - ¢

Table 3

NUMERICAL VALUES OF Ds AND T
IN THE WEIGHTED LINEAR COMBINATION PROCEDURE

Value of p (U, V) Value of T(U, V)
DOUBLE DOUBLE

c UNIFORM NORMAL EXPONENTIAL EXPONENTIAL UNIFORM  NORMAL EXPONENTIAL EXPONENTIAL

0 0 0 0 0 0 0 0 0

.1 .107 .106 122 .147 .072 .070 .082 .100
2 231 232 259 .289 .156 .156 .176 .200
3 373 379 401 424 255 258 279 .300
4 .533 537 .542 .550 370 374 .388 .400
.5 .700 .690 .674 .667 .500* .500* .500%* .500%*
.6 .837 .819 .789 771 .630 .626 612 .600
7 .924 912 .883 .862 745 742 721 .700
.8 972 967 .950 933 .844 .844 .824 .800
9 .994 .993 .988 .982 .928 .930 918 .900
1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
* It can be shown that T m \ when ¢ * for any continuous distribution (see equation

(4.5)).



Table A

THE JOINT DENSITY FUNCTION: h(u, v)
FOR THE WEIGHTED LINEAR COMBINATION PROCEDURE

UNDERLYING DENSITY h(u, v) SUPPORT
UNIFORM 1/(1 - ©) cu<v<<cu + 11— ¢
g(®) =1 0O<u<l1
O <t<1
NORMAL UNDER BIVARIATE NORMAL
N@, 1) EWU) = E(V) -0 00 < U < o5
7 =1 00 < v <0

(P =C2 + @A - O
\%
p — c/tjc2 + (1 - o>

DOUBLE EXPONENTIAL (exp[-lu|] - |v - cal/(1 - DD/(4d - ©)) 00 < u < 00

g(t) =% eXP(—|t|) 00 < V < o
"o < = { o

EXPONENTIAL (exp(-v - u + 2Zcu))/A - ©) CU < Vv < o

g() = exp(-D 0 <uU <o

O < t < oo0)
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Hj”w)

DISTRIBUTION

DNIFORM

STANDARD
NORMAL

DOUBLE
EXPONENTIAL

EXPONENTIAL

- H2(Uu)

H u) = H2(U)

u2/2p

u - p/2

1 - (u-B"
U2/2R

QCu -D/2p

1 -

$S(u//1 + p2)

(p2exp(u/p)

1 -

2 - wexp(u)/4

1 -

1 - (exp(-u)

1 -

(p2exp(-u/p)

Table 5

(u - p - D22p

Case 1:
1)2/2P

Case 2:

Case 1:
- exp(u))/(2p2

_2)

R

R

P

- exp(-u))/(2p2

Case 2:

(u + 2)exp(-u)/4

- p exp(-u/p))/(1

(u + Dexp(-u)

£

>

p)

FOR THE TRIVARIATE REDUCTION

1

1

2)

PROCEDURE
for 0 s: usp
for p £ u 1
for 1 £ u £ 1+8

for
for u
for u

for 0 s u £1

for 1 £ u sp

p£ufl+p

for u

for

for

for u

0 and p * 1

0 and



DISTRIBUTION

UNIFORM

NORMAL

DOUBLE
EXPONENTIAL

EXPONENTIAL

Table 6

FORMULAE FOR 0 AND T AS FUNCTIONS OF R

IN THE TRIVARIATE REDUCTION METHOD

T
Ps
, 19B4 - 126fi3 + 21082 B4 - 6B3 + 10B2
B * 1 B Dl | S 15
R . B7 - 1986 + 84B5 - 280fl4 + 770f13 - 672B2 + 2388 - 24 15B2 - 14 + 4
210pJ 15B2
10583 - 1058 + 52 15B2 - 14a + 4
B ~ 0
105p) 15R2
6 / B2 N — arcsin/N—">-">
— arcsin J; ------ L I
22 + 1Y/ n Vao + 1/
16f9 + 15218 + 58887 + 112284 + 1104B3 + 55582 + 1328 + 12 32B7 + 125016 + I61B5 + 90fl4 + 22fi3 + 212
2P + 1DAB + 2)2(2B + 1) 2(28 + i4(e + 13
fi2(2B2 + 9B + 6) 2B2
(B + D22B + 1)B + 2) B + 1)(26 + D
Table 7
NUMERICAL VALUES OF Ps AND r
IN THE TRIVARIATE REDUCTION PROCEDURE
Value of og Value of T
8 DOUBLE DOUBLE
i + ¢ UNIFORM NORMAL EXPONENTIAL EXPONENTIAL ~ UNIFORM NORMAL EXPONENTIAL EXPONENTIAL
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.012  0.012 0.018 0.027 0.008  0.008 0.012 0.018
0.2 0.053  0.056 0.076 0.099 0.036  0.037 0.051 0.067
0.3 0.140  0.148 0.178 0.204 0.093  0.099 0.120 0.138
0.4 0.285  0.295 0.315 0.331 0.191  0.199 0.216 0.229
0.5 0.490  0.483 0.473 0.472 0.333* 0.333* 0.333* 0.333%
0.6 0.702  0.675 0.637 0.617 0.496  0.487 0.466 0.450
0.7 0.855  0.833 0.786 0.756 0.649  0.641 0.606 0.576
0.8 0.945  0.936 0.904 0.877 0.783  0.781 0.747 0.711
0.9 0.988  0.987 0.977 0.965 0.900  0.900 0.881 0.853
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
* It can be shown that T “ 1/3 when R * | for any continuous distribution (see equation

(5.4
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Table 8a

THE JOINT DENSITY FUNCTION h(u, v)
FOR THE TRIVARIATE REDUCTION PROCEDURE (THE UNIFORM DISTRIBUTION)

Case 1: B £ 1

h(u, V) Support
I B< u<l1 , B <v <1
u - B/2 B< u<lI , 0 <v <B
v - B/2 R < vwvw<1 , 0 <u <B
1 - (u - 1)/B I=sua<=B + I»>B—v<1
1 - (v - 1)/B 1=v<B + 1>»>B<u<I1I
viIB - (u - 1)/8B T=wua<1 +v , O=v<=B
u/B - (v - D/B I=v=I +u, O=u<S8
v/B v< u<aB , 0 <v <B
U/B u< v< 8§ t 0 <u <B
I - (u - L)/B I=v<u LUd=u<1B + 1
1 - (v - 1)/B 1 <u< , 1 <v<B+1

Case 2: B ~ 1

h(w v Support
uB - (v - 1)/B 0 <u< B, max(l, uyy)<v < 1 +u
v/iIB - (u - I)/8 0 < v< B > miaxCL, v) < u < 1 +v
I - (v - 1)/B B<u< v, B<v<1+R
1 - (u - 1)B B<v=u , B=wu<1 +38
u/B O=u<1, uswv<l1
v/B O=wv<1 , v=u<1I
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hjCu,

h2(u.

~3(0,

4(U,

1>5(u(

h6(u,

Table 8b
THE JOINT DENSITY FUNCTION h(u, V)

FOR THE TRIVARIATE REDUCTION PROCEDURE
(THE DOUBLE EXPONENTIAL DISTRIBUTION)

h(a, v) Support

[ 2p2 + G)exp(v - v/s - u) 'l u>v >0

V) F S+ (B - 2B2)exp(v - u - u/p)> -f (16P2 - 4) for B I¥ »

- exp(-v - u)

v) - (@v + 3)exp(-v - u) - exp(v - 3w]/16 for R “ %

v) - hjCv, u)

2B + Dexp(v - u)

v) m+ -6 exp(v - u + v/rR) > -f (80 + 4) u=>0=>v

A—B exp(v - u - u/B)/

v) - h3(v, u) v>0>u

v) - h™-u, -v) 0>v>u

v) « hj*C-v, -u) 0>u>v
Table 8c

THE JOINT DENSITY FUNCTION
FOR THE TRIVARIATE REDUCTION PROCEDURE
(THE NORMAL AND EXPONENTIAL DISTRIBUTIONS)

DISTRIBUTION h(u, v)

EXPONENTIAL exp(-u V)1 - exp((2 - Ve)min(u, v))/(1 - 2Rr)
for u, v~ 0 and R W %

2 exp(-u - v)min(u, v)

for u, v~ 0 and p “ "

STANDARD BIVARIATE NORMAL WITH
NORMAL
E(U) - E(V) - 0

a2 * (12 m 1 + B2
U v
P - B2/d + R2)
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