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Abstract

Transient solid dynamics simulations are among the most widely used en-
gineering calculations. Industrial applications include vehicle crashworthiness
studies, metal forging, and powder compaction prior to sintering. These cal-
culations are also critical to defense applications including safety studies and
weapons simulations. The practical importance of these calculations and their
computational intensiveness make them natural candidates for parallelization.
This has proved to be difficult, and existing implementations fail to scale to
more than a few dozen processors. In this paper we describe our parallelization
of PRONTO, Sandia’s transient solid dynamics code, via a novel algorithmic
approach that utilizes multiple decompositions for different key segments of
the computations, including the material contact calculation. This latter cal-
culation is notoriously difficult to perform well in parallel, because it involves
dynamically changing geometry, global searches for elements in contact, and
unstructured communications among the compute nodes. Our approach scales
to at least 3600 compute nodes of the Sandia/Intel Teraflop computer (the
largest set of nodes to which we have had access to date) on problems involving
millions of finite elements. On this machine we can simulate models using more
than ten-million elements in a few tenths of a second per timestep, and solve
problems more than 3000 times faster than a single processor Cray Jedi.

1 Introduction

Transient dynamics simulations are among the most widely used engineering cal-
culations. The industrial application which consumes more time on Cray vector
supercomputers than any other is crash simulations, a prototypical transient dynam-
ics calculation[7]. Other industrial applications include simulations of metal forging, -
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powder compaction prior to sintering and other processes involving high stresses and
strains. These calculations are also critical to defense applications including safety
studies and weapons simulations. A number of commercial and government solid dy-
namics codes have been developed including DYNA, PamCrash and ABACUS. Sandia
also has a long history of research and code development in this area, headlined by the
PRONTO code suite. PRONTO is similar in scope to the commercial codes, but also
includes smoothed particle hydrodynamics (SPH), which allows for simulations with
very high strains (e.g., explosions) or coupled fluid/structure interaction problems.
A discussion of some PRONTO simulations can be found Section 7. The practical
importance of transient dynamics simulations, combined with their computational
intensiveness would seem to make them natural candidates for parallelization. Unfor-
tunately, this has proved to be quite difficult. For reasons discussed below, existing
_ baralle] implementations fail to scale to more than a few dozen processors. These
';""disapﬁbfnting results have convinced leaders in the solid dynamics community that
. parallel computing can not yet make a significant impact in this field[2].
" In Section 2 we describe the functionality and structure of PRONTO. In Section 3
we explain why transient dynamics simulations have been difficult to parallelize. Our
parallelization strategy is sketched in Section 4 and some further performance en-
hancements are described in Section 5. The performance of the code on some scalable
problems is discussed in Section 6. A discussion of applications enabled by parallel
PRONTO follows in Section 7. Conclusions are drawn in Section 8.

2 What is PRONTO?

PRONTO is a three-dimensional, transient solid dynamics code which is used for an-
alyzing large deformations of nonlinear materials subjected to high rates of strain[3].
Developed over the past 10 years, PRONTO is a production-level code used by over 50
organizations inside and outside Sandia. Input to the code includes an unstructured
grid consisting of an arbitrary mixture of hexahedral elements, shell elements, rigid
bodies and smoothed particles. PRONTO implements a Lagrangian finite-element
method with explicit time integration and adaptive timestep control to integrate
the equations of motion. The finite-element formulation uses eight-node, uniform
strain hexahedral elements and four-node quadrilateral uniform strain shell elements.
Either the Flanagan-Belytschko hourglass control scheme or an assumed-strain hour-
glass control scheme can be used to control element distortions. PRONTO contains
a variety of complex, nonlinear material models, including elastic-plastic materials
with various types of strain hardening. A critical feature of the code is a robust al-
gorithm for detecting when one material surface contacts another, for example in an
automobile collision when the bumper buckles into the radiator. Correctly identifying
surfaces in contact requires sophisticated algorithms for searching the global set of
finite-elements. In a complex simulation, the cost of contact detection alone can be
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more than 50% of the run time on a sequential machine. A PRONTO timestep has
the following structure.

. Perform finite element analysis to compute forces on elements.

. Compute forces between smoothed particles.

. Predict new locations of particles and grid elements.

. Search for contacts between mesh elements, or between elements and particles.
. Correct the locations by pushing back objects in contact.
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Stages (1), (2) and (4) dominate the sequential run time. The contact search in
stage (4) typically consumes 30-60% of the time, so a great deal of effort has been
expended over the years to make this computation fast[4]. The result of this effort
was the replacement in PRONTO of floating point operations with a faster approach
involving sorting and searching in integer lists.

3 Why is Parallelization Difficult?

Parallelizing transient dynamics codes is challenging for several reasons. For PRONTO
there is the obvious complexity of starting with a fully featured production code. All
its functionality must be parallelized in a scalable way. Even more daunting is the
inherent difficulty of parallelizing several key kernel operations which operate on dif-
ferent data sets. The first task is to parallelize the finite element (FE) portion of the
code. This is conceptually straightforward: partition the elements among processors
in a way that balances computation while minimizing communication[5]. But par-
allelizing contact detection (which is performed on only the surface mesh - not the
volumetric FE mesh) is much harder. To our knowledge, no previous attempts at
parallelizing contact detection have scaled to more than a few dozen processors(8, 9].
Since, in principle, on a given timestep any surface can contact any other, contact
detection requires some kind of global search. As the geometry of the simulation
evolves, this requires dynamic load balancing and irregular communication. Prob-
lems which exhibit any global, dynamic or irregular behavior are challenging to par-
allelize; contact detection exhibits all three. Parallelizing smoothed particle hydro-
dynamics (SPH) is also a challenging problem. Particles with time-dependent radii
interact if they are geometrically near each other, and their density can vary greatly
as the calculation proceeds, posing a load-balancing problem. Computing the physics
of the SPH interactions also requires several stages of inter-processor communication
within a timestep. The key difficulty in making a code like PRONTO perform well
on a large parallel machine is that all of these computational kernels must be par-
allelized efficiently within the same timestep. And each of the kernels operates on a
different data set (volumetric mesh, surface mesh, particles) whose spatial density is




dynamically changing.

4 Our Parallel Implementation

We only sketch our parallelization strategy here. More details can be found in some
of the references[1, 6, 10]. Most previous attempts to parallelize transient dynamics
codes have relied upon a single decomposition of the mesh for both finite elements
and contact detection. But these operations demand very different decomposition
properties. The finite element analysis performs optimally only if each processor has
the same number of elements and interprocessor boundaries are minimized. This
decomposition can be generated once and used throughout the calculation. In con-
trast, contact detection and SPH depend upon geometric proximity, so a geometric
decomposition is most appropriate. As the elements and particles evolve, the decom-
positions should change dynamically. The key idea behind our parallelization strategy
is that we construct and maintain different decompositions for the different portions
of the calculation. We choose appropriate decompositions to optimize performance
of each phase: a graph-based static method for the finite element analysis generated
by Chaco[5], and dynamic, geometric decompositions for contact detection and SPH.
For the latter we use recursive coordinate bisection (RCB) which has a number of
attractive properties for this application. The advantage of this approach is that we
can achieve high performance in all phases of the calculation. The downside is that
we need to communicate considerable information between the different decomposi-
tions which is expensive in both time and memory. But by carefully implementing
the communication routines we can limit the run time cost, and solid dynamics calcu-
lations are not generally memory-bound. As our results will indicate, the advantages
of multiple decompositions greatly outweigh the costs.:
A timestep of parallel PRONTO has the following structure.

Perform finite element analysis to compute forces on elements.

Update the RCB decomposition of smoothed particles.

Compute forces between smoothed particles.

Predict new locations of particles and grid points.

Ship data to previous decomposition of the contact problem.

Update the RCB decomposition of the contact problem.

Search for contacts between mesh elements, or between elements and particles.
Communicate contact results back to finite element and SPH decompositions.
Correct the locations by pushing back objects in contact.
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Our parallelization of PRONTO required about 15,000 lines of new code. In
addition, much of the original PRONTO code was restructured for the parallel version




to improve data locality on cache-based architectures.

5 Maximizing Performance

The goal of both serial and parallel PRONTO is to enable very large problems to
run as quickly as possible. The dominant steps in the above outline are stages (1)
and (7). (In this and the next section we focus on mesh-only problems though SPH
computations can also be time consuming.) The fastest way to perform the global
searches inherent in stage (7) is to do virtually no flops at all, but rather to use integer-
based sort and search operations. Our calculations were performed on the 3600-node
Sandia Teraflop computer. Each node of this machine has 128 Mbytes of memory
and two 200 Mhz Pentium-Pro processors, each of which runs at 200 Mflops peak.
We specially coded the kernel operations of the finite element computation to use the
second processor for computation wherever possible. In practice the speed-up thus
obtained is limited by memory bandwidth since the two processors share the same
memory bus. We also reorganized some data structures to improve cache locality.
These efforts improved the performance of the finite element computation from 40
Mflops per node to over 120 Mflops per node. For the contact computation, our
algorithm already insures load-balance of the basic sort and search operations. We
further optimized by altering the basic algorithm to avoid a global search on most of
the timesteps. To accomplish this we occasionally perform a full search which stores '
all pairs of nearby surfaces. On subsequent timesteps we need only scan this list
instead of searching the processor’s entire domain. When the geometry has evolved
enough that the lists could miss possible contacts, a new global search is triggered.
This method requires extra memory for storing the lists, but it halved the overall
contact computation time.

6 Performance

Depending on the physical problem being modeled, parallel PRONTO can run as a
pure finite element computation without contacts, as finite elements with contacts,
as pure SPH particles (no finite elements), or as coupled finite elements and SPH
particles with contacts. Here we focus on the performance of the first two cases.
In all of the performance numbers we present, we timed the outermost timestepping
loop of PRONTO to determine CPU time per timestep. Problem setup time (which is
constant independent of the number of timesteps simulated), was not included since it
is insignificant in production-scale runs. We counted floating-point operations using
hardware counters on the Pentium Pro chips. This hardware counts floating point
divides, adds and multiplies as one flop each.

To test the performance of a pure finite element run of parallel PRONTO, we




modeled a steel bar with hexahedral elements vibrating due to an oscillatory stress
while being pinned at the ends. This simple problem was selected since it is easy to
scale to different sizes. Strains induced between adjacent elements and the material’s
equation of state are modeled in the FE computation, but the bar does not bend
enough to create contacts. We observed nearly 100% parallel efficiency in running
this problem if we scaled the problem size (number of mesh elements) linearly with
the number of processors. As mentioned above, the FE computational kernels run
at about 120 Mflops/node. Interprocessor communication is only a few percent of
the total run time. Other lower flop-rate overhead within the timestep (boundary
conditions and time integration) takes about one half the CPU time regardless of
the number of processors. Scaling the problem to the full Teraflop machine, we ran
a 14.04 million element version of the beam problem on 3600 nodes at 224.9 Gflops
(62.5 Mflops/node), requiring 0.166 CPU secs/timestep.

. Our second benchmark is more interesting as it is prototypical of the problems for
which PRONTO was designed. We simulated the crush of an idealized steel shipping
container by an inclined wall, as shown in Fig. 1. As with the first benchmark, this
computation is easily scaled due to its regular geometry. However, this calculation is
considerably more complex. The crumpling of the folded surfaces is a stringent test
of the contact algorithm’s accuracy and performance. A symmetry plane was used so
that only half the container was actually simulated. An elastic-plastic material model
was used for the steel in both the can and wall. Within the contact algorithm, global
searches were conducted about every five timesteps.

0Oms 1.6ms

Figure 1: Crushing of idealized shipping container.

Parallel timings are shown in Fig. 2 for a set of small scaled simulations with
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1875 elements/node. Every time the number of processors P is doubled, the mesh is
refined in one of the three dimensions so that the number of mesh elements N also
doubles. Thus the leftmost data points are for a 3750 element simulation running on
2 processors. The rightmost data points are for a 6.57 million element simulation on
3504 processors.
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Figure 2: Scaled speedup for small container-crush problem.

The topmost curve is the total CPU time per timestep averaged over a 100 mi-
crosecond (problem time) run. On the small problems this is a few hundred timesteps;
on the large problems it is several thousand, since the timestep size must shrink as the
mesh is refined. The lowest curve is the portion of time spent in the FE computation.
Contact detection is the time between the lowest and middle curves. Overhead is the
time between the top two curves. We again see excellent scalability to very large N
and P. Perfect scalability would be a horizontal line on this plot. The FE computation
scales essentially perfectly. The contact detection time varies from one problem size
to the next due to variations in surface-to-volume ratios of mesh elements as refine-
ment is done in different dimensions, but is also roughly horizontal. The overhead
time is also a constant portion of the total run time (i.e. scalable) as P increases until

7




the P=2048 and P=3504 data points. The reason for the non-scalability here is that
the overhead timing includes the cost to push-back contacts that are detected. This
normally small computation becomes somewhat unbalanced in this problem on very
large numbers of processors. The overall flop performance of parallel PRONTO on
this problem is 76.05 Gflops on 3504 nodes of the Teraflop machine. Essentially all
the flops are computed within the FE computation (lowest curve) which again runs
at about 120 Mflops/node. The majority of the remaining CPU time is spent in the
integer-based contact searches and sorts (no flops).

A set of larger simulations of the container crush was also performed where each
run used a mesh with about 3800 elements/node. These timings are shown in the
Fig. 3. As before, the upper curve is total CPU time per timestep. PRONTO again
evidences excellent scalability, since all of the timing curves are roughly horizontal.
The largest problem (rightmost data points) is a simulation of 13.8 million mesh
elements on 3600 nodes of the Teraflop machine. It runs at a sustained rate of 120.4
Gflops or 33.4 Mflops/node.
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Figure 3: Scaled speedup for large container-crush problem.




7 Applications

Parallel PRONTO has been used to perform a range of calculations which were pre-
viously impractical or impossible. Here we briefly sketch three representative appli-
cations. ' ‘

7.1 _ Application I: Airplane Crash Fuel Dispersal

Tn an airplane crash, fires fed by ruptured fuel tanks are a great threat to survivors
‘and to hazardous cargo. The danger posed by such a fire depends critically on the

dispersal pattern of the fuel. Parallel PRONTO is ideally suited for simulating these
kinds of incidents since it can combine structural analysis for the plane with smoothed
particle hydrodynamics for the fuel. Fig. 4 shows a simulation of an airplane wing
striking a vertical pole. In the image on the left, the purple dots are SPH particles
representing the resulting fuel cloud. The image on the right shows the damage
to the wing itself. Note that the collision tears the wing. This particular example
illustrates how pronto allows the surface to be adaptively redefined as portions of
model experience failure. If the strain in a given element becomes too large, failure
is simulated by deleting the element. Allowing the elements to be adaptively deleted
requires the parallel contact algorithm to be capable of tracking and updating the
changing contact surface as the problem progresses. This calculation was run on 128
nodes of the Teraflop computer using about 110,000 hexahedral and shell elements
to model the structures and about 130,000 SPH elements to model the fuel. More
detailed versions of this problem are being developed which will include the entire
airplane and a soil model for impact. the current limitation lies in the tools to build
the computational mesh. These calculations are being performed by John Pott at
Sandia.

7.2 Application II: Shipping Container Integrity

A problem of great interest to the DOE is the integrity of shipping containers for
transporting weapons and hazardous waste. Specifically, will the containers function
properly in the event of a vehicular collision? An image of such a simulation of
interest is depicted in Fig. 5, where the container is about to be crushed between two
steel walls. This simulation involves more than 1.3 million elements, and includes
both hexahedral and shell elements. The large number of elements is necessary to
resolve critical small-scale structural details of the container. Studies of this model
with parallel PRONTO are ongoing. This work is being performed by Jeff Gruda at
Sandia. .




Figure 4: Simulation of wing hitfing vertical pole.

7.3 Application ITI: Constitutive Models of Foams

Foams of various types are widely used to distribute impact forces or to absorb en-
ergy in collisions. The macroscopic properties of foams depend upon their fine-scale
structure in a complex manner that is not well understood. Better constitutive mod-
els of foam properties can be obtained through simulations of small-scale behavior.
Unfortunately, very large simulations are necessary to be able to compare computa-
tions to experiments. Until the parallelization of PRONTOQ, such simulations were
impossible. This example illustrates how parallel PRONTO has enabled qualitatively
new and different engineering studies.

Fig. 6 depicts a simulation of an open-cell foam, with cells about 1mm in diame-
ter. A linear elastic material model was used, but the complex buckling and folding
generates complex nonlinear behavior. The foam is being crushed from above by a
fast moving plate.

As the picture reveals, there is some crush near the impacting plate, but much
more on the opposing boundary. This is due to the reflection of stress waves off of
the bottom plate. This behavior is consistent with experimental observations.

Each of the foam struts was modeled with multiple hexahedral elements, totaling
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Figure 5: Simulation of shipping container crushed between steel walls.

more than 900,000. While one could use beam finite elements, the complex deforma-
tion patterns associated with large crush could cause the beam elements difficulty. In
particular, the beam-on-beam contact would be very hard to detect. By using hexa-
hedral elements, we are able to model very complex contact conditions. The drawback
to using hexahedral elements, aside from the number of elements required, is that a
very small timestep is required to properly integrate the motion. The problem was
run on 512 nodes of the Teraflop computer and required 8.8 hours of CPU time. Over
650,000 timesteps were used to integrate the motion in this problem. The complexity
of the model and the physics can be appreciated in the close-up view shown in Fig. 7.
The large number of finite elements comprising the struts are clearly visible, as is the
complicated folding and contact patterns. The red regions are those with the highest
stresses. This study is being conducted by Mike Neilsen and Stephen Attaway at
Sandia. v
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Figure 6: Simulation of partially crushed, open-cell foam.

8 Conclusions

We have successfully parallelized a large-scale production solid dynamics code with a
novel algorithmic approach that utilizes multiple decompositions for different key seg-
ments of the computations. On our 3600-node Teraflop computer, parallel PRONTO
runs complex finite element (FE) simulations with global contact searches at rates of
up to 120 Gflops. The finite element kernel can run contact-free FE simulations at a
rate of 225 Gflops. While these flop rates may not seem impressive when compared
to other kinds of simulations or the peak rate of the Pentium Pro chips, some con-
text may be useful. First, to be able to simulate a more than ten million element
model in a few tenths of second per timestep is unprecedented for solid dynamics
simulations, especially when full global contact searches are required. The key reason
is our new algorithm for efficiently parallelizing the contact detection stage. To our
knowledge scalability of this computation had never before been demonstrated on
more than 64 processors. This has enabled parallel PRONTO to become the only
solid dynamics code we are aware of that can run effectively on 1000s of processors.
More importantly, our parallel performance compares very favorably to the original
serial PRONTO code which is optimized for vector supercomputers. On the container
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