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Douglas J. Riley and C. David Turner

Radiation and Electromagnetic Analysis Department
Sandia National Laboratories, Albuquerque New Mexico 87185-1166
Internet: djriley @sandia.gov

1. Introduction

VOLMAX is a three-dimensional transient volumetric
Maxwell equation solver that operates on standard rec-
tilinear finite-difference time-domain (FDTD) grids,
non-orthogonal unstructured grids, or a combination of
both types (hybrid grids) [1-3]. The algorithm is fully
explicit. Open geometries are typically solved by em-
bedding multiple unstructured regions into a simple
rectilinear FDTD mesh. The grid types are fully con-
nected at the mesh interfaces without the need for com-
plex spatial interpolation. The approach permits de-
tailed modeling of complex geometry while mitigating
the large cell count typical of non-orthogonal cells such
as tetrahedral elements. To further improve efficiency,
the unstructured region carries a separate time step that
sub-cycles relative to the time-step used in the FDTD
mesh. A cross section of the interface between finite-
volume time-domain (FVTD) and FDTD grids is shown
in Fig. 1. The “wrapper layer” is a hexahedral region
that encloses the unstructured grid and provides nodal
connectivity to the surrounding FDTD mesh. The
wrapper is constructed automatically based on the un-
structured-grid topology. The unstructured region may
consist of a single rectangular block, or be of a multiple,
block-on-block form.
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Fig. 1. The hybrid grid interface.

As shown in Fig. 1, VOLMAX is based on a staggered
grid formulation. Primary and dual grids are used.
When the unstructured grid consists exclusively of rec-
tangular hexahedral cells, the field advancement is
identically FDTD in nature, although the cells are refer-
enced in an unstructured (indirect) manner. Note that
the wrapper layer consists of rectangular cells for it’s
primary grid, but the dual cells on the wrapper inner
boundary are generally non-orthogonal. As a conse-
quence, the wrapper layer is common to both the FVTD
and FDTD grids. For the case that the unstructured-grid
consists of rectangular elements, the algorithm is sec-
ond-order accurate both in space and time.

The field advancement scheme for the VOLMAX hybrid
mesh is the following. The electric fields in the FDTD
region are initially advanced based on time step, Af,.
On the outer boundary of the wrapper, the tangential
electric fields are second-order time interpolated to
provide a Dirichlet boundary condition for the FVTD
region. The electric and magnetic fields in the FVTD
region are advanced an integral number of sub-time
iterations relative to Az;. At the completion of the sub-
cycling, the tangential electric fields on the inner
boundary of the wrapper are used to provide a Dirichlet
boundary condition to complete the magnetic-field ad-
vancement in the FDTD region. An alternative scheme
could map the magnetic fields in the wrapper layer into
the respective FDTD locations after the FDTD mag-
netic fields are advanced in time.

VOLMAX is currently integrated to the commercial
CAD package SDRC I-DEAS [4]. Solid model design,
mesh generation, and post processing are all accom-
plished through the I-DEAS interface. Electromagnetic
properties, such as voltage sources, local boundary con-
ditions, current observers, input and output ports, slots,
wires, etc., are implemented by assigning nodal attrib-
utes to the desired property. The original I-DEAS grid
file is input into the VOLMAX preprocessor, PreVol,
which builds the wrapper layer, and the primary and
dual grids. Grid construction by PreVol is accom-
plished at the rate of 50,000 to 100,000 cells/minute on
a single, high-end processor. Construction time scales
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linearly with cell count. The basic user interface for
PreVol in shown in Fig. 2. Typical inputs include the
simulation domain (interior/exterior), node attributes
(sources, observers, etc.), and (optionally) the topology
of the unstructured region(s).
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Fig. 2. The basic PreVol interface.

The overall design and simulation procedure used in the
VOLMAX system is outlined in Fig. 3. The closed loop
permits an adaptive cycle based on simulation results.

Solid-Modeling. ‘ I-DEAS Translation.
Mesh Generation. Wrapper Construction,
Post-Processing. Primary / Dual Grid

: « Generation.
SDRC I-DEAS PreVol
EM Field Simulation.
Output Generation.
VOLMAX

Fig. 3. The simulation cycle.

For demonstration purposes, application of VOLMAX is
made to a cylindrical resonator and scattering by a sim-
ple conducting sphere in Section 2 of the paper. In
Section 3, two methods for modeling sub-cell wires on
arbitrary non-orthogonal cells are introduced. In Sec-
tion 4, a generalization of the hybrid thin-slot algorithm
(HTSA [5]) to arbitrary cell types is also introduced.
EMC/EMI applications are made in Section 5. Con-
cluding remarks are made in Section 6.

2. Application to Canonical Geometries

The hybrid-grid, far back-scattered field from a 0.5 m
radius, perfectly conducting sphere gridded with tetra-
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hedra and embedded in FDTD hexahedra is shown in
Fig. 4. Note the good agreement with the Mie-series
solution even as the resolution of the external FDTD
mesh falls below 10 cells / wavelength (A). A contour
rendering of the surface current-density shortly after a
Gaussian pulse has hit the sphere is shown in Fig. 5.
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Fig. 4. The far, back-scattered field from a
0.5 m conducting sphere. R;denotes
distance. Hybrid-grid solution. The
transient response is inset.

Fig. 5. The early time surface current density
on a conducting sphere.

An extruded hexahedral element mesh for a simple cy-
lindrical resonator is shown in Fig. 6. Random edges
were selected for the source and observer. A Gaussian
pulse excitation was used. The internal transient re-
sponse demonstrating stability is shown in Fig. 7. The
first few TM resonances are shown in Table 1.
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Fig. 6. Cylindrical resonator with an average
hexahedral edgelength of 5 cm. The
radius is 0.5 m and the height is 1 m.
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Fig. 7. Internal electric field after 50,000 time steps.

TABLE 1. Resonances of Cylindrical Resonator

Mode Theory (MHz) VOLMAX (MHz)
TMOT1 27412 274.01
TMO12 377.56 376.48
™11 395.21 393.93
TM112 472.86 471.35
TMO13 504.87 500.95

3. Sub-Cell Wire Modeling

The ability to model features that are small relative to
the global cell size is important in electromagnetic
simulations. By tapering an unstructured mesh, it is
possible to resolve small detail; however, the increase in
cell count and the reduction in time step can be prohibi-
tive.

Relatively simple algorithms to resolve small wires on
rectangular FDTD grids have been developed [6,7].
The algorithms are accurate but require that the wire
conforms to the rectangular mesh. This can create
problems for applications such as cellular phones that
may demand the phone model to be tilted relative to the
human head model.

Two algorithms are briefly presented here that enable
wires to run arbitrarily along edges of an unstructured
mesh. The first method embeds a transient integral
equation into the unstructured mesh, whereas the second
method is a generalization of the original FDTD scheme
to non-orthogonal cells. A similar extension of the
FDTD scheme was presented in [8], but the method was
only applied to linear wires on prismatic cells. The
technique in the present paper further extends and ap-
plies the method to curved wires on tetrahedral meshes.

3.1 Integral Equation Thin-Wire Model

A transient integral equation (IE) is used to model the
topology of the wire. The wire is defined in the original
solid model and is meshed using one-dimensional beam
elements. Within VOLMAX, the IE operates in one of
two modes. The first mode is an exclusive wire mode
that is coupled to a free-space volumetric mesh. In this
mode, VOLMAX is similar to a transient version of the
frequency-domain NEC [9] code, with the added benefit
of field visualization into the volumetric region. In the
second mode, the IE operates in a field-feedback con-
figuration that enables solid geometry to reside in the
unstructured mesh. This algorithm is similar to the hy-
brid thin-slot algorithm [5] in that local vector fields
computed in the volumetric region are injected back
into the IE at each time step. These fields correspond to
reflections from non-wire geometry and represent addi-
tional sources driving the IE. The field-feedback mode
has been found to be most effective on hexahedral cells
(that may be embedded in tetrahedral elements) and for
wire radii that are a small fraction of the surrounding
edge lengths that support the wire.
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Local wire-grid edge

D Primary edge on volumetric mesh
1 j Average connecting edge vector at node, j
E;  Electric field at primary (wire) node, j

Vi  Voltage at primary (wire) node, j

Fig. 8. Relationship of local wire-grid to volumetric
primary mesh. Dual cells (not shown)
enclose primary nodes.

A section of a simple curved wire is shown in Fig. 8.
The IE solution uses overlapping piecewise-linear basis
functions that are centered at the nodal positions. Only
the governing equations are presented here. Numerical
solution details for the IE are similar to Refs. [10,11].



The governing integral equation for the wire system,
including the provision for volumetric-mesh feedback,
is the following [cf. [11] for the v =0 case].
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where rel’, T=t—|r-r' |/c, ¢ denotes the speed of
light in vacuum, I denotes the current on the wire, E"

denotes an impressed source on the wire, E' denotes

the average total vector field from the volumetric grid
local to the wire, v = 0 sets the equation to operate in a
free-space (no feedback) mode, and v =1 sets the
equation to operate in a feedback mode from the volu-
metric grid. The free-space Green’s function is denoted
by G() [11], a denotes the wire radius, and a, denotes
an effective radius for matching the integral equation
solution to the volumetric solution local to the wire.
Note that the volumetric solution for the electric field
on the wire will not be identically zero because the so-
lution represents an average value for the electric field
over the dual cell containing the wire node; conse-
quently, a, is typically taken to be %2 the local dual-cell
diameter.
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Fig. 9. Wire edge piercing dual face.

The integral equation solves for the current at the wire
(primary) nodes. Coupling to the volumetric grid re-
quires the wire current to be defined on primary edges.
Let the average wire current on the p-th primary edge

be denoted by I - Coupling to the volumetric grid is
then approximated through the equation (cf. Fig. 9)

denoted by n

)

To ensure stability, the time-averaging scheme intro-
duced in [1] is applied to the time-integration used for
Eq. (2). The spatial integration is over the dual face
pierced by primary edge, s';, . The normal to this face is
e

ip
E » Tepresents the electric field normal to the dual face,

and the face area is denoted by A;

while H' denotes average magnetic fields on the dual
edges enclosing the face. A more detailed discussion of
the grid topology can be found in [1].

The vector electric fields at primary nodes, E; are

approximated using a least-squares fit to the face-
normal electric fields (E,). The average electric field
projected in the primary edge direction is

[Ep - %(Ej + E;)-n?,p} (n;f,p ~s’1;) (3)

The integral-equation technique is demonstrated by
examining scattering by three curved wires in free
space. The simulation is performed two times. In the
first case, v =0 in Eq. (1) is used, whereas in the sec-
ond case, v=1. Because the geometry involves only
wires, the results of the two simulations should be iden-
tical. A contour plot for the electric-field distribution
local to the wires is shown in Fig. 10. A Gaussian pulse
is incident normal to the plane containing the wires.
The far, back-scattered field comparing the two simula-
tions is shown in Fig. 11. The wires were locally en-
capsulated in skewed hexahedral elements that were
embedded in tetrahedra. The unstructured-grid block
was then embedded in a cubical FDTD mesh out to the
grid termination using 5-cm cells.

3.2 Partial Differential Equation Thin-Wire Model

Using a partial differential equation (PDE) model, or
equivalently, a transmission-line (TL) model, the wire
electric current is defined on primary edges, while the
voltage (or charge) is defined at primary nodes. This
formulation has a more natural correlation with an
FDTD or FVTD volumetric grid than the IE method
(which defines current at primary nodes). In both mod-
els, wires are defined using one-dimensional beam ele-
ments.



Fig. 10. Scattered electric field surrounding three
wires. The wire radius was 2.5 mm and the
average edge length was 5 cm. An FDTD
grid encloses the unstructured grid.
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Fig. 11. Normalized, far, back-scattered field from
the wire system with feedback on (v=1),
and off (v=0). R;denotes distance.

The governing equations along an arbitrary path defined
by the spatial variable, [, are the following [cf. 6,7 for
an FDTD implementation]:

) A%

—[=—C —

a1l Cu dt (4a)
0 oI _, .

—V=-L,—+E" s+V" ~IR 4b
2l v ot s (“4b)

I represents current while V denotes voltage. V =0
when the wire terminates on a conductor, whereas [ = 0
at an open-end termination. The “in-cell” capacitance
and inductance are denoted by C,, and L,, respectively.

With reference to Fig. 8, an explicit algorithm is

At,

an+1=an_ l'|(IZ+1/25j,p_II?+1/2 j’k) (5a)
witi
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V,’;"‘ and R, denote an impressed voltage source and
resistance, respectively, on the p-th primary edge. [i;
and £;denote average permeability and permittivity,

respectively, at the j-th primary node. a is the wire ra-
dius, and A¢, is the time-step in the unstructured mesh.
A superscript, n, denotes time iteration.

4 ; and E' ~sﬁ represent critical quantities that deter-

mine the accuracy the of PDE thin-wire method on a
random unstructured mesh. § j Tepresents an average

distance to the dual nodes that surround the j-th primary
(wire) node. E* 's};, represents an average of the vector

electric fields surrounding the endpoints of the p-th
primary edge, projected onto this edge. Figure 12
shows a two-dimensional representation of the geome-
try.

4 ;j and Iz*lt ~s’,§ are computed as follows (cf. Fig. 12).

1
Cj = Zsj,i

“m
= 4 _1(1 ¢t 1 t b
E ‘SP—E(;IZEL,-‘}';;EIC,E]‘SP

where the summations are taken over the valid primary
nodes or edges that support the wire node.

The wire current at each time iteration is obtained by
solving Egs. (5a, b). The current is injected onto the
volumetric grid in a manner similar to Eq. (2).



For demonstration, the input admittance of a wire-loop
antenna defined on a tetrahedral mesh is examined. The
loop diameter is 15 cm and the wire diameter (2 a) is
0.5 mm. The loop is modeled on tetrahedral elements
with an average edge length of 1.08 cm. The unstruc-
tured mesh is embedded in a uniform FDTD mesh with
1-cm cubical elements. A Gaussian-modulated sinusoi-
dal voltage source is impressed on the wire. The planar
nodal distribution surrounding the beam elements used
to mesh the wire is shown in Fig. 13. The transient
driving-point current using the PDE thin-wire algorithm
is shown in Fig. 14. A comparison is made with the
previous IE thin-wire algorithm for the case v=0 (no
feedback). As seen, the results are virtually identical.
The input admittance is shown in Fig. 15.

-
.-
.-

(Wire path)

* Primary node used in computing average electric field
S. I Primary edge length between the j-th primary (wire) node
and the /-th support node

--------- Valid primary edges supporting wire nodes

Fig. 12. Primary edges and nodes used in
computing average electric fields and
edge lengths supporting wire nodes.

4. Sub-Cell Slot Modeling

Several algorithms have been proposed to model nar-
row apertures on rectangular FDTD grids [5,6,10,12].
However, none of the algorithms have been extended to
unstructured grids with non-orthogonal cells. Such an
extension is made in this section for the hybrid thin-slot
algorithm (HTSA) [5]. The HTSA uses a transient in-
tegral equation to model the slot physics.

Similar to the IE thin-wire algorithm described in Sec-
tion 3.1, the HTSA also uses a field-feedback technique
to account for the presence of solid geometry in the
neighborhood of the slot. The original algorithm for
linear apertures has been shown to be accurate, but
long-term stability is dependent on the implementation
[10,13,14]. The generalized HTSA presented in this
section largely resolves stability issues while permitting

slots to follow an arbitrary path in a plane. The re-
quirement that the slot is locally planar is a consequence
of applying the equivalence principle [15] in conjunc-
tion with the free-space Green’s function.

Fig. 13. The nodal distribution in the loop plane
of the unstructured grid.
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A slot in a perfectly conducting plane is shown in Fig.
16. Fields are assumed to be incident from both region
1 and region 2. A derivation of an IE for the magnetic
current can be found in [10,11]. The HTSA generalizes
the standard slot IE by utilizing the total magnetic field
from the volumetric grid as a source for the IE. This
field includes not only the usual “short-circuit” terms
required by the standard IE, but also includes the slot
radiation and any additional scattered fields due to finite
geometry. The technique is particularly well suited to
FDTD, or FVTD formulations that use interleaved
grids. The resulting equation is given by [10]

'u_ol 9 —HY __'I'fi’_l.—é—

ty _
a 4 aHZ”

1

2 a 2

1V di'v, -1 k(,0)][6(rrs0) - Gleyr
r

jdz 11 K (1,7)[6{er'3a)- 6l rsa, ) |-

a,)] ©

where reI', K denotes the magnetic current, and G()
denotes the free-space Green’s function. The equiva-
lent thin-wire radius, a, for the thin slot is

=(w;‘4)exp[—7rd/(2w)] [16], where w denotes the

slot width and d denotes the slot depth. The total mag-
netic fields in region 1 and region 2 of the slot plane are

denoted by H"Y, and H" , respectively. The magnetic
fields represent average values local to the slot, such
that the respective sides of the slot plane are honored in
the average. They are computed by averaging over the
vector magnetic fields located at the dual nodes that
surround appropriate dual faces. g, is defined to be an

average distance from the slot to the surrounding local
magnetic field locations (dual node locations). Other
parameters are as defined for Eq. (1). Numerical solu-
tion details for the IE can be found in [10,11].

Faraday’s law is used to apply the magnetic current
onto the volumetric grid. Only the primary faces that
have a single edge on the slot plane, and only a single
slot node, are used with the appended magnetic current
(cf. Fig. 16). For the [-th face on the i-th primary cell,

oy ) IH,dA =—{B - ax -t @)
th Ilj‘n"’ll

The “+” sign is for region 1, whereas the “-” sign is for
region 2. Note the %2 scaling factor applied to the mag-
netic current. This is because the slot is defined to lie
along primary edges. Thus, the contribution due to the
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Fig. 16. Arbitrary slot path in a plane.

slot is apportioned to the primary faces that lie “above”
and “below” the aperture. This is a distinction relative
to previous thin-slot algorithms that assume the aperture
falls at the midpoint of the primary edge that passes
through the slot. Defining the slot on primary edges
enables it to be included in the original solid model and
meshed using beam elements. Because beam elements
are used for both wires and slots, the nodes associated
with the beam elements are given either a slot or wire
attribute to activate the appropriate algorithm within
VOLMAX. Consequently, multiple wires and slots can
reside within the same mesh.

The vector magnetic field local to the slot is approxi-
mated by forming a least-squares fit to the face-normal
magnetic fields. The vector field projected along dual
edges is defined similar to Eq. (3) [1]. An example of
thin-slot/thin-wire coupling is provided in the following
section.

5. EMC/EMI Applications

Electromagnetic compatibility (EMC) and electromag-
netic interference (EMI) issues are important in system
applications. Effective shielding is often crucial to sur-
vivability and/or vulnerability requirements. Two
shielding enclosure examples are presented in this sec-
tion. These examples were previously investigated in
[13,14] to examine the accuracy of rectilinear FDTD
thin-wire and thin-slot algorithms in simplistic, but re-
alistic geometry. The FDTD simulations were com-
pared to measurements with good agreement over the
simulation bandwidth. The geometry studied con-



formed to a rectangular grid. Using rectilinear FDTD 35T

on a rotated geometry, however, can lead to significant E e

errors in slot, wire, and cavity resonance locations [10]. 3.0
In the following, the rectangular shielding enclosures

are modeled using a tetrahedral mesh in conjunction % 25

with the generalized thin-wire and thin-slot algorithms. e 20

This largely removes FDTD geometrical constraints. § '
T 15

The first example is a closed rectangular resonator that §

is driven by a 50 Q source/coaxial line. The geometry, E 10

with partial mesh, is shown in Fig. 17. A thin-wire was
used with a 50 Q termination at the top of the resonator 05
and a 47 Q termination at the bottom of the resonator.

The diameter of the wire was 0.16 cm. The entire ge- 0.%"""'“'"""'“""""""""'“-""."
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ometry was built as a solid model and automatically 7

meshed with linear tetrahedral elements. Construction
time was approximately 15 minutes using a Sun Ultra
Sparc computer. Because the geometry represents an
interior problem, there was no need to embed the un-
structured grid in an FDTD mesh to form the hybrid-
grid configuration.

The power delivered by the source (calculated at the 50
Q impedance) is shown in Fig. 18. The VOLMAX
simulation used the tetrahedral mesh, with an average
edge length of 1.1 cm, in conjunction with the PDE
thin-wire algorithm (Section 3.2). Comparison with
measured data is made [13]. The power available from
the source was 2.5 mW. The agreement is generally
good. A slight (< 1%) shift in cavity resonances at ap-
proximately 1.4 GHz and 1.5 GHz is seen. It was noted
in [13] that minor changes in the wire radius affect all
resonance locations. No effort was made in Fig. 18 to
“tune” the results; the physical wire diameter of 0.16 cm
was used.

a cubical
all mesh.

08 09 1 11 12 13 14 15 16
Frequency (GHz)

Fig. 18. Power delivered by source
for Fig. 17 geometry.

The second example is similar to the first, but adds a
narrow slot, with depth, to the shielding enclosure. Be-
cause this is now an open geometry, a full hybrid-grid
implement is used in VOLMAX. The interior of the
enclosure is automatically meshed with linear tetrahe-
dral elements, as well as a 1-cell-layer external to the
enclosure.
“partitioning” the enclosure geometry out of a slightly
(1-cell) larger rectangular container--a task that is easily
done within the CAD system. This extra layer of tetra-
hedral elements enables the wrapper layer to be con-
structed by PreVol (cf. Section 1) for direct interface to

To accomplish this simply requires

FDTD grid that is used to terminate the over-

Thin Slot
Ly

500 / Thin Wire

47Q

Fig. 19.

Fig. 17. Closed rectangular shielding enclosure
with thin wire. 50 Q termination at top
of wire (not shown). Units in meters
unless noted. Tetrahedral meshed.

Termination.
e A5

o -

Enclosure with wire and slot. Wire
terminated as in Fig. 17. Slot width,
0.1 cm, slot depth, 0.05 cm, slot length,
12 cm. Wire diameter, 0.16 cm. Units
in meters unless noted. Tetrahedral
meshed.



The power delivered by the source is shown in Fig. 20.
Comparison with measured data is made [14]. The cal-
culation is again made at the 50 € load. As in the pre-
vious example, there is a slight (< 1%) shift in reso-
nance locations. The PDE thin-wire model (Section
3.2) and the generalized HTSA model (Section 4) were
used in conjunction with the tetrahedral mesh. The
resonances at approximately 1.13 GHz, 1.26 GHz, and
1.38 GHz are due to the slot. The transient response
ran for 35,000 time iterations in the unstructured mesh
(5,000 in the structured-grid portion of the hybrid
mesh). No indication of instability was observed when
using the standard VOLMAX time-averaging scheme on
the unstructured mesh [1]. Note that the Q of all reso-
nances is well characterized by the simulation for both
examples.
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Fig. 20. Power delivered by source
for Fig. 19 geometry.

6. Concluding Remarks

VOLMAX is a general-purpose, transient electromag-
netic field simulator that operates on hybrid-grid struc-
tures. It is coupled to a commercial CAD system that
provides advanced solid-modeling, meshing, and post
processing. VOLMAX has been optimized for shared-
memory, multi-processor computer systems (SMP).
On a four-processor, Sun Ultra SPARC platform, per-
formance ranges from 0.2 ps/cell-time-step for multi-
million element structured grids, to 4 ps/cell-time-step
for purely unstructured grids with a few thousand ele-
ments. Hybrid-grid problems fall between these limits.

The introduction of sub-cell wire and slot algorithms on
unstructured grids significantly extends the application
domain. Detailed source modeling, microelectronic

packaging, complex aperture coupling and particle-in-
cell (PIC) applications are currently being investigated.
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