w

ol .

‘ L : Y O - C/COS))S’/

‘ e - - {
C ON }; " C//C>O 8’ / g/ The submutted manuscript has been authored

by a contractor of the U.S. Government
under contract No. W-31-108-ENG-38.
Accerdingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. 5. Government purposes.

CONF-9008181--1

Bilingual Parallel Programming DE91 006030

Ian Foster and Ross Overbeek
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, 1L 60439

1 Introduction

Numerous experiments have demonstrated that computationally intensive algorithms sup-
port adequate parallelism to exploit the potential of large parallel machines. Yet success-
ful parallel implementations of serious applications are rare. The limiting factor is clearly
programming technology. None of the approaches to parallel programming that have
been proposed to date -— whether parallelizing compilers, language extensions, or new
concurrent languages — seem to adequately address the central problems of portability,
expressiveness, efficiency, and compatibility with existing software.

In this paper, we advocate an alternative approach to parallel programming based on
what we call bilingual programming. We present evidence that this approach provides an
effective solution to parallel programming problems.

The key idea in bilingual programming is to construct the upper levels of applications
in a high-level language while coding selected low-level components in low-level languages.
This approach permits the advantages of a high-level notation (expressiveness, elegance,
conciseness) to be obtained without the cost in performance normally associated with
high-level approaches. In addition, it provides a natural framework for reusing existing
code.) '

The roots and motivations for bilingual programming predate parallel computers; they
grow naturally out of fundamental issues associated with the programming task on any
computer. Hence, we first review some of the lessons that have been learned during the
past thirty years of programming uniprocessors. This background allows us to present the
central tenets of bilingual programming as logical developments of fundamental concepts
in programming methodology, rather than ad-hoc attempts to address issues that arise
with concurrency. We then argue that the additional complexity of parallel programming
makes the bilingual approach particularly attractive on parallel computers.

In the latter part of the paper, we introduce a particular bilingual approach with
which we have considerable experience. The programming language Strand is used as
the high-level concurrent language; lower-level routines are coded in C or Fortran. We
summarize our experiences developing large parallel applications in computational biology,
weather modeling, and automated reasoning. TIinally, we review other approaches 1o
parallel programming in the light of our analysis of the bilingual approach.

OUSTRITHITION OF 108 D50

. 1 : MR
- "" R oy .; ,gggfﬁl

2 The Program Developm=nt Process

The program development process can be viewed as the formulation and implementation
of a set of design decisions concerning algorithms and data representations. Research
in program development methodologies and computer languages has produced effective
techniques for reducing the number of design decisions associated with a prograin, limiting
the effect of individual decisions, and simplifying the expression of decisions.

Program Development Methodologies. Two fundamental program design method-
ologies — stepwise refinement {20] and modular decomposition [15] — seek to reduce de-
velopment and maintenance costs by encouraging programmers to respectively defer and
localize design decisions.

The key idea in stepwise refinement is to tackle a task by repeatedly dividing it into
smaller and smaller subtasks. The refinement process starts with an abstract specification
for an algorithin and proceeds via a series of refinement steps to obtain an executable
program. Each refinement step involves a number of design decisions concerning how a
particular task and its data are to be implemented. Design decisions concerning represen-
tational details are deferred for as long as possible.

A deficiency of stepwise refinement is that it does not encourage the recognition of
commonalities in a design. Application of stepwise refinement alone can result in similar
problems being solved many times in the context of different subtasks. This complicates
development and makes subsequent modification of a program more difficult.

An alternative methodology, modular decomposition, is used in large programs to ad-
dress the deficiencies of stepwise refinement. The key idea in this methodology is to start
the design process by identifying components of a program that will be common to several
tasks or likely to change. The program is then developed as a set of modules, each encap-
sulating one or more such components. Duplication of effort is avoided, and subsequent
modification of the program is easier because, in general, only a small number of modules
are affected by any one change.

In summary, we see that the program development process has both top-down and
bottom-up aspects. However, for our purposes we find it most natural to understand the
end product in terms of a sequence of refinements of the original program specification
(i.e., a top-down representation). Each step in the sequence introduces implementation
commitments. The final program represents the outcome of an extended sequence of such
commitments.

High-Level Languages. High-level languages reduce programming effort by speci-
fying standardized implementation decisions for certain abstractions. They permit pro-
grammers to truncate the development process at an earlier stage than would otherwise
be possible. For example, LISP provides list manipulation and memory management fa-
cilities; hence, a design that is expressed in terms of a “list” data type requires no further
refinement if LISP is used as an implementation language. In contrast, an implemen-
tation in a lower-level language would require additional design decisions to produce a
representation of lists and an implementation of the associated operations.

Unfortunately, standardized implementation decisions provided by high-level languages
are unlikely to be optimal for all situations. A programmer can generally improve perfor-

N

S

mance by making additional design decisions that exploit application-specific knowledge.
For example, the abstract data type “list of elements” may be implemented as a singly
linked list, a doubly linked list, or an array; each implementation will be effective in
different circumstances. No existing high-level language compiler is able to determine
which strategy is optimal for all possible situations. Hence, there is necessarily a trade-off
between implementation effort and efficiency.

3 Bilingual Programming

When developing programs, we are frequently interested in minimizing development and
maintenance costs and mazimizing performance. The cost of a program is closely related
to the number of design decisions (commitments) made during development. Each de-
cision leads to a development cost (incurred when the decision is implemented) and a
possible maintenance cost (incurred when changing circumstances lead to backtracking
on the original decision). Hence, one way of reducing costs is to adopt the standardized
implementation decisions offered by a high-level language. Another is to adopt decisions
encapsulated in existing code.

The use of a high-level language reduces costs but, as noted previously, adversely affects
performance. Optimization of performance requires the substitution of application- and
environment-specific design decisions for the standardized decisions encapsulated in high-
level languages. Fortunately, it is generally the case that only a small proportion of the
total design need be considered when seeking to optimize performance. Hence, it is usually
possible to construct a program that provides “almost” optimal performance but that
retains a significant portion of its logic in a high-level language. Such a bilingual program
retains the advantages of a high-level language program without sacrificing performance.

The bilingual approach can be seen as a logical outgrowth of developments in method-
ologies and languages. Yet clearly it is not widely used in sequential programming. today.
We attribute this fact to accidental rather than intrinsic factors. In particular, the lack
of standard interfaces between languages has hindered the development of portable bilin-
gual programs. However, we see more promising possibilities on parallel computers, where
standards remain to be defined and new problems demand new solutions.

4 Bilingual Parallel Programming

The design and development process for parallel programs is in many respects similar to
that for sequential programs. However, the need to manage multiple processors introduces
additional complexity: Problems concerned with concurrent execution, communication,
synchronization, partitioning, mapping, load balancing, and data distribution must be
addressed. Low-level solutions to these problems often compromise two highly desirable
properties in a parallel program: scalability and portability. Hence, the developer of par-
allel programs is faced with both additional complexity and pressing reasons for deferring
and localizing commitment to the design decisions required to address this complexity.
This suggests that high-level languages may have a particularly important role to play.

At the same time, the primary motivation for parallel computation is performance.
This point requires emphasis: the view that only algorithms are important, and that
one can thus disregard the “small constant factors” introduced by the use of a high-level
language, is folly. The effort required to develop a concurrent program can only be justified
if an application requires substantial performance, and in most applications performance
requires both good algorithms and low-level optimizations. Hence, we expect bilingual
programming techniques to be particularly useful on parallel computers.

A high-level language to support parallel programming must provide linguistic support
for important concurrent programming concepts: process management, communication,
and synchronization. It should encourage portability by allowing programmers to express
concurrent algorithms in a machine-independent way and by minimizing the effort (if any)
required to specialize machine-independent programs for a particular computer. Finally,
it should encourage the development of scalable applications by supporting separate spec-
ification of concurrency on the one hand and partitioning and mapping on the other.

It is presumably possible to design a language that provides these features and also
supports the efficient implementation of low-level sequential algorithms. However, we
believe that it is advantageous to work with a small, clean high-level language with a
simple concurrent semantics. This simplifies understanding, analysis, and transformation
of concurrent programs. The design space for high-level languages with these properties is
presumably large. However, we have had good success with one particular language: the
concurrent logic programming language Strand. We will restrict subsequent discussion to
this particular context.

The decision to work with Strand represents an initial design decision that restricts the
class of parallel algorithms that can be expressed in two ways. First, we are committed
to MIMD rather than SIMD as the architectural model. This represents a personal pref-
erence. Second, we are committed to working within the message-passing model on which
concurrent logic programming languages are based. Space does not permit a detailed
justification of this decision. However, we point out that message-passing models have
proved adequate for the vast majority of concurrent applications. Furthermore, they tend
to simplify application development by reducing opportunities for unexpected interactions
between concurrent processes.

5 Bilingual Programming in Practice

We now summarize the key features of an approach to bilingual parallel programming
with which we have had considerable experience.

5.1 Specifying Concurrent Computation

The concurrent programming language Strand is a member of the family of languages
commonly referred to as concurrent logic programming languages. Research in concurrent
logic programming originated with the Relational Language of Clark and Gregory [5].
Subsequent proposals have included Concurrent Prolog, Parlog, FCP, and Guarded Horn
Clauses. Strand captures the essential concepts of previous proposals in a simple and

practical parallel programming tool. Here, we provide a brief introduction to Strand and
the parallel programming abstractions that it supports. A more complete dnscription may
be found in [11].

Computation in Strand is performed by sets of cooperating lightweight processes.
These processes communicate and synchronize by reading and writing shared, single-
assignment variables. A rule-based notation is used to specify process behavior. A program
is a set of guarded rules with the form

H :-Gy...Gn | B,y By m,n > 0,

where H is the head of the rule, the G’s are its guard, and the B’s are its body. The head,
guard, and body are all processes; a process has the form F(T7, ..., k), & > 0, where the T"'s
are terms. A term is a list structure (denoted [Head|Tail}), a tuple (denoted {T4,...,T5}),
a variable (denoted by a string starting with an uppercase letter), or a constant (denoted
by itself).

Each rule specifies a set of preconditions that must be satisfied for a process to execute,
and the actions to be performed if these preconditions are satisfied. Preconditions are
expressed by non-variable terms in the head of a rule (which must match corresponding
process arguments) and guard tests. For example, the rule

db([lookup(K,V) | In],Db) :— K # 0 | search(Db,K,V), db(In,Db).

specifies that a process db can be replaced by two new processes search and db if its first
argument has the form [lookup(K,V)|In] and K # 0. ,

Strand variables have the single assignment property: Their value is initially undefined
and once defined cannot be modified. Head matching and guard tests correspond to read
operations on variables. An attempt to read a variable for which no value has been defined
causes a process to suspend; this is Strand’s synchronization mechanism. Variables are
written by using a predefined assign process: a process X := T assigns the value T to the
variable X . .

Shared variables can be used to express a wide variety of communication patterns.
A commonly used structure is the stream. A stream producer and one or more stream
consumers initially share a single variable. The producer instantiates this variable to a
list structure containing a message in its head and a new variable in its tail that can be
used for furtlier communication, for example:

X = [msgl| X1], X1 := [msg2 | X2], ...

5.2 Partitioning and Mapping

A Strand program indicates opportunities for concurrent execution but does not specify
how these opportunities are to be exploited. The partitioning of the set of concurrently
executing processes into tasks and the mapping of these tasks to the nodes of a particular
parallel computer represent separate design decisions that need not be made until after a
program has been developed. These decisions eflect the efficiency of the final program but

do not in general effect its correctness. Tools provided with Strand systems reduce the
effort required to implement these decisions [11, 8]. Hence, programs are tend to be easily
portable: little or no effort is required to adapt a program for a new parallel computer.

The extent to which programs can be specialized to employ different partitioning and
mapping decisions depends in part on the structure of the original code. For examj.le, a
program designed to solve a grid problem will probably be developed with a particular
domain decomposition in mind, and will explicitly create the process network required
to handle this decomposition on a parallel computer. This program has already been
substantially specialized by the programmer and requires significant rewriting before an
alternative decomposition can be employed. :

On the other hand, consider the following program that encodes the top level of a
state-space search problem. A tree is searched by first exploring a fixed number of nodes
with a depth first strategy, then splitting any remaining subtree into a number of simpler
trees, each to be searched in turn. This program specifies opportunities for concurrent
execution in the state-space search (each subtree can be searched concurrently) but says
nothing about how processes are to be mapped to processors.

search(Params,[Prob | Probs],Solns,Solns2) : - % To search nodes,
search _subtree(Params,Prob,Solns,Solns1), % search one node, &
search(Params,Probs,Solns1,Scins2). % and search rest.

search(-,[],Solns,Solns1) :— Solns := Solnsl. % Search done.

search_subtree({M,N},Prob,Solns,Solns2) :— % To search single node,
process_prob(Prob,M,NewProb,Solns,Solns1), % expand node,
split_prob(NewProb,N,Probs), % split subtree.
search({M,N},Probs,Solns1,Solns2). % and continue.

This problem can be partitioned and mapped in several different ways: static embed-
ding, dynamic load balancing, and random mapping are all possibilities. Once a design
decision has been made, & more specialized program that implements the decision can be
obtained from the code shown here. Strand’s high-level nature makes it easy to implement
these specializations as automatic source-to-source transformations that can be encapsu-
lated in libraries [8, 10]. The important thing to note is that a completely different parallel
code can be obtained by making a different design decision at this stage, and that the cost
of making or backtracking on these decisions is small.

5.3 Interfacing to Foreign Code

Effective mixed-language programming requires a clean and simple interface between het-
erogeneous components. This is achieved in Strand with two mechanisms, user-defined
operations and user-defined data types. These are used to encapsulate foreign code and
foreign data, respectively.

A user-defined operation invokes a foreign procedure. Strand ensures that a user-
defined operation is scheduled only when data that it requires to execute is available.

The foreign procedure can then perform a finite amount of sequential execution. Upon

completion, values computed for output arguments are returned to the concurrent com-
ponent, which may pass them as arguments when invoking other user-defined operations.

Note that user-defined operations are not coroutined on a single processor; instead, the
execution of each operation is viewed as an indivisible action.
The Strand compiler automatically generates code to perform type conversion between
Strand and other foreign representations of simple data types such as integers, reals, and
strings. More complex foreign data structures (e.g., arrays) can be encapsulated in a
special user-defined data type. Strand programs can pass user data from one user process
to another but cannot examine their contents. As user data may be migrated from one

processor to another, such data cannot contain addresses. This is the only restriction

placed on their contents.

Foreign procedures can also be passed Strand data structures directly. This capability
The foreign interface imposes a certain discipline on the programmer, as it requires

is useful when data is naturally represented in terms of Strand record structures (lists or
tuples). Macro libraries are provided that allow the foreign procedure to access.the Strand

structures as abstract data types.
that all communication between user processes be achieved by argument passing; common
areas and other forms of global variables cannot (in general) be employed. This restriction
has two important benefits. First, individual foreign procedures can be developed and

debugged independently. Second, bilingual programs can be executed on both a single

processor and multiple processors without modification.
5.4 Mutable Data
Recall that Strand variables have the single assignment property: their value is initially
undefined and, once defined, cannot subsequently be modified. This property is impor-
tant for several reasons. First, it avoids the race conditions that can arise when several
concurrent processes read and write the same variable. Second, it permits a number of im-
portant optimizations in a parallel implementation. In particular, it permits non-variable
data structures to be copied between processors without concern for the consistency of
copies.
In contrast, sequential languages such as C and Fortran presuppose mutable data
structures. Indeed, it is the ability to modify large data structures in place that permits
these languages to provide succinct and efficient implementations of many algorithms.
We wish to maintain the single-assignment property in the concurrent component of
bilingual programs, while permitting updates in foreign procedures. We achieve this by
imposing the following restrictions on the operations that can be performed by programs.

The user must be able to demonstrate that a bilingual program satisfies these requirements.

Static analysis tools can assist the detection of improper programs [12].

Updates are encapsuluted in user-defined operations. An operation that modifies a
data structure (say D) must return as an output argument a new reference (D) to

1.
that same data structure,
7

il s

2. Data structures are single-threaded. At most one update operation can be applied
to a particular reference to a data structure.

3. Reads precede updates. All read operations applied to a particular reference to a
data structure must (:omplete before any update operation is applied.

In these requirements, the term a “particular reference” is used to mean the “set of
references that are equivalent modulo aliasing”.

For example, assume that two user operations inc.vector(V,V1) and sum_vector(V,Sum)
have been defined to increment and sum the elements of a vector {(an integer array, repre-
sented as a user data type). The first operation returns a new reference V1 to the input
vector V; the second computes the sum of its elements. Then the following set of processes
correctly increments the vector V iwice before summing its elements to yield S.

inc.vector(V,V1), inc_vecior(V1,V2), sum.vector(V2,5)

On the other hand, the following set of processes would be illegal, as V would be updated
by two processes.

inc.vector(V,V1), inc_vector(V,V2)

5.5 Abstract Data Types

Strand programs frequently need to deal with complex data types (such as arrays and
record structures) constructed by foreign procedures. As these data do not correspond
to any primitive Strand type, they will be passed to Strand as user data types. A closer
integration of Strand and foreign components of a bilingual program can be achieved by
extending a Strand system with user-defined operations to define appropriate abstract
data types. For example, a one-dimensional integer array type may be implemented in
Strand as a user data type (used to represent the array) as well as operations to read and
write array elements: \

e new_array(Size? Array]): returns an initialized Array of the designated size.
o size(Array?,Sizel): returns the Size of Array.
o get_int(Index?,Array?,Item?): returns ltem, the contents of element Index in Array.

o set_int(Index? Array?, Item? NewArrayT): updates element Index in Array to contain
[tem, and returns a new reference to the array, NewArray.

These operations allow Strand programs to access arrays created by foreign language

procedures directly. For example, the following program creates a new array initialized to
zero. Observe that this program obeys the requirements stated previously.

1 TN

zero(Size,NewArray) : -
new_array(Size,Array), zero_1(1,Size,Array, NewArray).

zero 1(I,Max,A,NewA) : -
| < Max | set.int(1,A,0,A1), I1is I+1, zero_1(I1,Max,A1,NewA).
zero 1(1,Max,A,NewA) :— | > Max | NewA := A.

6 Experiences

We have provided a detailed account of some of our experiences developing bilingual
parallel codes elsewhere [9]. Here we summarize our results and the conclusions reached.

In collaboration with colleagues, we have developed bilingual programs in computa-
tional biology, weather modeling, and ‘automated reasoning. Each of these codes is a
substantial application, used by scientists on a daily basis to support their research. In
the following table, we characterize the codes in terms of the foreign language used and
their code size.

Foreign | Strand
Program | Language | (lines) | (lines)
Weather Fortran 25000 250
Dynamics Fortran 4000 120
Prover C 5000 400
SimSearch C 500 210
Alignment C 1200 1700

The codes cover a wide spectrum of applications and parallel algorithms. Weatheris a
large “dusty deck” numeric modeling code; it was parallelized using domain decomposition
techniques. Dynamics is a molecular dynamics code; its pe-forms a state-space search
to find configurations of molecules that satisfy certain criteria. The top level of this
code is essentially the fragment given in Section 5.2; it was parallelized using a dynamic
load-balancing strategy. Prover implements a parallel theorem-proving algorithm based
on a software pipeline. SimSearch solves a database search problem; a manager/worker
structure is used to allocate parts of the database to idle processors. Finally, Alignment
implements an algorithm for computing “alignments” of sequences of genetic material
from different organisms; it was parallelized using functional decomposition and dynamic
load-balancing techniques.

The first three applications use substantial amounts of pre-existing code. In these
examples, the Strand component is used principally to coordinate the execution of the
low-level sequential components. In contrast, SimSearch and Alignment were developed
from scratch as bilingual applications. In the latter, the Strand component implements
all but the most computationally intensive components of the algorithm.

All five applications went through several revisions in the course of their development.
In each case, we found that the bulk of the modifications occurred in the high-level com-
ponent of the code. The existence of a concise, high-level specification greatly simplified
the exploration of alternative algorithms.

Our experience suggests that the bilingual approach permits the benefits of a high-level
language to be attained without the performance degradation normally associated with
high-level approaches. For example, in SimSearch, Weather, and Dynamics, we observed
no significant difference in uniprocessor performance between the bilingual code and an
equivalent sequential code written entirely in C or Fortran. Parallel programs coded
using low-level facilities were not available for comparison with the bilingual programs on
multiprocessors. However, performance studies suggest that communication time was not
a dominant factor in any application.

The bilingual programs that we developed also proved to be highly portable. For
example, SimSearch was run on eight different parallel computers. Porting was problem-
atic only when low-level sequential code used non-portable constructs or excessive local
memory.

We found that linguistic support for concurrent execution encouraged a modular ap-
proach to parallel programming and the encapsulation of parallel algorithms in libraries.
Library code was frequently reused in other applications. I'or example, the state-space
search code developed in SPS was used to develop parallel implementations of two different
applications, simply by substituting alternative definitions for two low-level procedures.
No changes to the concurrent component were required. At a lower level, both SimSearch
and SPS used the same scheduler library code.

A final and important point is that we did not experience any particular difficulties
developing the bilingual applications. We attribute this to the simple interface between
the sequential and concurrent components. This permitted sequential procedures and
concurrent programs to be developed and tested independently. Furthermore, the bilingual
program could generally be tested on a single processor.

7 Related Approaches

It js instructive to review other approaches to parallel programming in the light of the
analysis of program development methodologies presented in Section 2.

Parallelizing Compilers. Yor several years, a number of respected researchers have
argued that the key to successful exploitation of parallel processors was advanced compilers
[7,14,17]). They suggest that programmers should write standard Fortran, which compilers
would automatically restructure to take advantage of parallel hardware.

This approach has proved successful when applied to fine-grained parallelism: vec-
torizing and trace-scheduling compilers give excellent results on certain codes. However,
we argue that the approach is seriously flawed as a technique for exploiting large-grained
parallelism, as it requires that programs be refined in an inappropriate sequence. Some of
the refinements used to target a program toward a specific architecture must he achieved
at a level well above that of a Fortran program. In particular, the refinement that com-

10

mits to an implementation based upon processec that communicate via message passing
is naturally thought of as occurring before those that commit to specific implementations
of abstract data types. The consequence of making these refinements out of sequence is
that systematic analysis of the actual code becomes difficult if not impossible. Properties
that could have been stated and verified when made about abstract data types before
committing to a specific implementation (with the corresponding details introduced by
memory management, etc.) become hard to express and verify.

High-Level Languages. Another group of respected researchers has also argued for
compilers but in the context of high-level languages [16, 19]. They suggest that program-
mers should only need to write a high-level, declarative description of an algoritiim; the
compiler (and run-time system) will produce code appropriate .o specific computational
environments.

We believe that this argument is also flawed, due to the fact that automated refinement,
while not necessarily sacrificing performance theoretically, often does cost performance in
practice. Performance is sacrificed because refinements made by a human who under-
~ stands the peculiarities of an algorithm are almost always capable of attaining greater
performance than generalized transformacions included in any actual compiler. This is
the essence of the point discussed above in Section 2, and illustrated with the “list of
elements” example. The refinements required to effectively map processes to processors
and to balance load are areas in which completely automatic choice of optimal strategies
seems particularly difficult.

Language Extensions and Layering. Most parallel programming to date has used
lower-level languages extended with parallel processing constructs (1, 2, 6, 13, 18]. If
properly designed, these extensions can maintain portability without sacrificing substantial
performance. A number of packages offering such extensions exist; we have been involved
in several efforts based on this approach. The principal drawback of the approach is the
loss of notational elegance and freedom from detail associated with high avel languages.

Advecates of languages such as C++ argue that layering of software can provide many
of the benefits of a high-level language and in addition allow exploitation of the additional
options offered by a lower-level language. For example, one can easily envision a set of
routines that supports list processing, memory management, and synchronization facili-
ties similar to those provided by Strand. This sort of layering can dramatically reduce
complexity. However, experience suggests that the support and maintenance of lower lay-
ers introduces significant intellectual overhead. There is a substantial difference between
an algorithm coded with C list-processing routines and an equivalent algorithm coded in
Strand. Details introduced by the lower-level context must be remembered, and the lack
of notational elegance (e g., the syntax of a list) produces a marked loss of clarity.

Similar arguments are advanced by proponents of high-level languages that support
low-level features such as arrays and assignment (e.g., Common LISP). The low-level
features permit efficient implementation of low-level algorithms, and hence seem to permit
the benefits of the bilingual approach to be achieved in a single language. However,
we believe that the introduction of low-level features tends to compromise the semantic
elegance of the high-level language. For example, unrestricted use of updates in Strand
would prevent the automatic transformation of programs to incorporate load balancing.

11

The use of a distinct high-level language permits a clean separation of concerns between
high-level and low-level components.

Coordination Languages. Many of the arguments we have advanced in this paper
have also been put forward by advocates of “coordination languages” [3]. Indeed, we are in
basic agreement with the essential positions taken by advocates of coordination languages,
and we have in the past discussed the use of Strand as a mechanism for coordinating com-
putations written in a lower-level notations [9]. However, our current position views the
boundary between the languages as determined essentially by performance considerations,
rather than by a division between a sequential component and a coordination component.

8 Conclusions

Bilingual programming has a long, if not noble, history. It has been used since the earliest
experiments with high level languages as a mechanism for mitigating the performance
penalty associated with notations that offer standardized implementations of common
abstract data types. Its value as a programming methodology is a direct consequence of
the trade-offs between ease of expression and performance.

We have argued in this paper that bilingual programming should not be viewed as an
ad-hoc solution to transient engineering problems but instead as a logical development of
fundamental concepts in programming methodologies. The use ci a high-level laiguage
permits programmers to adopt standardized implementation decisions when performance
is not critical. This minimizes development costs and maximizes flexibility, At the same
time, aceess to low-level languages permits the programmer to perform additional refine-
ment steps when necessary. This permits efficient implementation of critical components.

The bilingual approach is applicable in many areas. However, we believe that it is
particularly appropriate in parallel programming, where the need to specify not only se-
quential execution but also partitioning, scheduling, communication, and synchronization
introduces additional complexity. High-level concurrent Janguages can reduce this com-
plexity by providing standard implementations for common concurrent program structures
and by permitting separate specification of program logic, partitioning, and scheduling.
At the same time, the efficiency provided by low-level languages is particularly important
on parallel computers.

We have accumulated considerable experience in bilingual programming using the high-
level language Strand and the lower-level languages C and Fortran. We have developed
major applications in several application areas using this technology. We have found that
the bilingual approach encourages the development of parallel programs that perform
well, are portable, and are easy to maintain. We advocate the adoption of bilingual
programming as a technology for programming parallel processors.

Acknowledgments

This research was supported by the Applied Mathematical Sciences subprogram of the
Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

References
[1] Babb, R., Parallel processing with large grain data flow techniques, I[EEE Computer,
17, 55-61, 1984,

[2] Boyle, J., Butler. R., Disz, T., Glickfeld, B., Lusk, E., Overbeek, R., Patterson,
J., and Stevens, R., Portable Programs for Parallel Frocessors, Holt, Rinehart, and
Winstor, 1987.

[3] Carriero, N. and Gelernter, D., Coordination languages and their significance. Tech-
nical report YALEU/DCS/RR-716, Yale University. 1989.

(4] Chandy, M. and Taylor, S., Program composition, Prec. Supercomputing '89, Reno,
Nevada, 1989. ‘

[5] Clark, K. and Gregory, S., A Relational Language for parallel programming, Proc.
1881 ACM Conf. on Functional Progromming Languages and Computer Architectures,
198}, 171-173.

(6] Dongarra, J. and Soreuson, D., Schedule: Tools for developing and analyzing parallel
Fortran programs, The Characteristics of Puarallel Algorithms, MIT Press, 1987.

{7] Fischer, J., £llis. J., Ruttenberg, J., and Nicolau. A., Parallel processing: a smart
compiler ard a dumb machine, Proc. SIGFLAN 84 Symp. on Compiler Construction,
ACM, 3747, 1934,

(8] Foster, 1., Automatic generation of self-scheduling programs, Preprint MCS-P124-
0190, Argonne National Laboratory. 1990.

i9; Foster. I. «and Overbeek. R., Experiences with bilingual parallel programming, Proc.
Gth Distributed Memory Comp. Conf., IEEE Fress, 1990.

[10] Foster, I. and Stevens, R., Parallel programming with algorithmic motifs, Proc. 1990
Intl Conf. on Parallel Processing, Penn State University Press, 1990.

! Foster, I. and Taylor, S.. Strand: New Concepts in Parallel Programming, Prentice-
Hall, Englewood Cliffs. N.J., 1990,

[12] Foster, I. and Winsborough. W., Unpublished information.

{137 Halstead, R.H.. MultiLisp - A language for concurreat symbolic computation, ACM
Trans. Prog. Lang. and Syst., T(4}. 1985, 501-535.

(14] Padua. D.A. Kuck. D.J., and Lawrie. D.H., High-speed muitiprocessors and compi-
lation rechniques, [EEE Trans. on Computers, C-29(9), 1980.

{15] Parnas. D., On the criteria to be used in decomposing systems into modules, ¢'ACAM,
15, 1972, 330-336.

13

Peyton Jones, S., The Impleme ; " ; .
y Oy plementation of Functional Progra .
tice Hall, 1987, gramming Languages, Pren-

Polychronopoulos, C., Parallel Programmir . .
v Ve gramming and C\ lers .
Boston, Mass., 1988: 9 ompilers, Kluwer Academic,

Seitz, C., The cosmic cube, CACM 28(1), 22-33, 1985.

Warren, D.H.D., Or-paralle]l execution models of Prolog, TAPSOFT’87, The 1987

Intl Joint Conf. heor s _
243-259, 1987.f on Thesry and Practice of Software Development, Springer-Verlag,

73 |
Wirth, N., Program development by stepwise refinement, CACM, 14, 1971, 221-227

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express of implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any nfermation, apparatus. product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
| product. process, o service by trade name, trademark,
cessarily constitute of imply ity endorsement, recom-
or any agency thereof. The views

ence herein o any specific commercia
manufacturer, ur utherwise does not ne
mendation. or favoring by the United States Government
and opinions of authors expressed herein do not necessarily state or reflect those of the

Umted States Government of any agency thereof.

14

Ty ' f
! ' . win

B e §

