
/

J

k... _J • under contract No. W-31-10_ENG.38.

Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish

ot reproduce the published form of this
contribution, or allow others to do so, |or
U. S. Government purposes.

i

CONF-9008181--1
(

Bilingu lPa,r llelProgrmnming D .gl006030

Ian Foster and Ross Overbeek

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

1 Introduction

Numerous experiments have demonstrated that computation'ally intensive algorithms sup-

= port adequate parallelism to exploit the potential of large parallel machines. Yet success-

ful parallel implementations of serious applications are rare. The limiting factor is clearly

programming technology. None of the approaches to parallel programming that have
been proposed to date-- whether parallelizing compilers, language extensions, or new

" concurrent languages -- seem to adequately address the central problems of portability,

: expressiveness, efficiency, and compatibility with e:dsting software.
In this paper, we advocate an alternative approach to parallel programming based on

what we call bilingual programming. We present evidence that this approach provides an

effective solution to parallel programming problems.

The key idea in bilingual programming is to construct the upper levels of applications

in a high-level language while coding selected low-level components in low-level languages.

This approach permits the advantages of a high-level notation (expressiveness, elegance,

conciseness) to be obtained without the cost in performance normally associated with

high-level approaches. I.n addition, it provides a natural framework for reusing e.visting
L

code.

The roots and motivations for bilingual programming predate parallel computers; they

grow naturally out of fundamental issues associated with the programming task on any

computer. Hence, we first review some of the lessons that have been learned during the

past thirty years of programming uniprocessors. This background allows us to present the

central tenets of bilingual programming as logical developments of fundamental concepts

in programming methodology, rather than ad-.hoc attempts to address issues that arise
with concurrency. We then argue that the additional comple.,dty of parallel programming

makes the bilingual approach particularly attractive on parallel computers.
In the latter part of the paper, we introduce a particular bilingual approach with

which we have considerable experience. The programming language Strand is used as

the high-level concurrent language; lower-level routines are coded in C or Fortran. We
: summarize our experiences developing large parallel applications in computational biology,

weather modeling, and automated reasoning. Finally, we review other a4_pro_ches to

parallel programming in the light of our analysis of the bilingual approach. _'_/f...Oi

= r)|.Cq'T'bT_!_':{I Jl-l(ib.i ('_.V2 I 1-!1'::: F", ,"'a e" - _: ,_._._v:r_s"r" ,r.. , ,.,, ,_

'lYt O tuut
J t - ,t '

I

I

2 The Program Developm ent Process

The program development process can be viewed as the formulation and implementation

of a set of design decisions concerning algorithms and data representations. Research

in program developmei_.t methodologies and computer languages has produced effective

techniques for reducing the number of design decisions associa, ted with a program, limiting
the effect of individual decisions, and simplifying the expression of decisions.

Program Development Methodologies. Two fundamental program design method-
ologies---stepwise refinement [20] and modular decomposition [15] _ seek to reduce de-

velopment and maintenance costs by encouraging programmers to respectively defer and

localize design decisions.

The key idea in stcpwisc refine,ne_t is to tackle a task by repeatedly dividing it into
sma!]er and smaller subtasks. The refinement process starts with an abstract specification

for an algorithm and proceeds via a series of refinement steps to obtain an executable

program. Each refinement step involves a number of design decisions concerning how a
particular task and its data are to be implemented. Design decisions concerning represen-

t.ational details are deferred for as long as possible.

A deficiency of stepwise refinement is that it does not encourage the recognition of

commonalities in a design. Application of stepwise refinement alone can result in similar

problems being solved many times in the context of different subtasks. This complicates

development and ma,kes subsequent modification of a program more difficult.

An alternative methodology, modular decomposition, is used in large programs to ad-
dress the deficiencies of stepwise refinement. The key idea in this methodology is to start
the design process by identifying components of a program that will be common to several

tasks or likely to change. The program is then developed as a set of modules, each encap-

sulating one or more such components. Duplication of effort is avoided, and subsequent

modification of the program is easier because, in general, only a small number of modules

are affected by any one change.

In summary, we see that the program development process has both top-down and

bottom-up aspects. Itowever, for our purposes we find it most natural to understand the

end product in terms of a sequence of refinements of the original program specification

(i.e., a top-down representation). Each step in the sequence introduces implementation

commitments. The final program represents the outcome of a,n extended sequence of such
commitments.

High-Level Languages. High-level languages reduce programming effort by speci-

fy,ing standardized implementation decisions for certain abstractions. They permit pro-

grammers to truncate the development process at an earlier stage than would otherwise

be possible. Fox"example, LISP provides list manipulation and memory management fa-

cilities; hence, a design that is expressed in terms of a "list" data type requires no further
refinement if LISP is used as an implen]entation language. In contrast, an implemen-

tation in _ lower-level language would require additional design decisions to produce a
representation of lists and an implementation of the as,sociated operations.

Unfortunately, standardized implementation decisions provided by high-level languages
are unlikely to be optimal for ali situations. A programmer can generally improve perfor-

mance by making additional design decisions that exploit application-specific knowledge.

For example, the abstract data type "list of elements" may be implemented as a singly
linked list, a doubly linked list, or an array; each implementation will be effective in

different circumstances. No existing high-level language compiler is able to determine

which strategy is optimal for all possible situations. Hence, there is necessarily a_trade-off

between implementation effort and efficiency.

3 Bilingual Programming

When developing programs, we are frequently interested in minimizing development and

maintenance costs and maximizing performance. The cost of a program is closely related

to the number of design decisions (commitments) made during development. Each de-

cision leads to a development cost (incurred when the decision is implemented) and a

possible maintenance cost (incurred when changing circumstances lead to backtracking
on the original decision). IIence, one way of reducing costs is to adopt the standardized

implementation decisions offered by a high-level language. Another is to adopt decisions

encapsulated in existing code.

The use of a high-level language reduces costs but, as noted previously, adversely affects

performance. Optimization of performance requires the substitution of application- and

environment-specific design decisions for the standardized decisions encapsulated in high-

level languages. Fortunately, it is generally the (:ase that only a small proportion of the

total design need be considered when seeking to optimize performance. Hence, it is usually
possible to construct a program that provides "almost" optimal performance but that

retains a significant portion of its logic in a high-level language. Such a bilingual program

retains the a dvant, ages of a high-level language program without sacrificing performance.
The bilingual approach can be seen as a logical outgrowth of developments in method-

ologies and languages. Yet clearly it is not widely used in sequential programming today.

We attribute this fact to accidental rather than intrinsic factors. In particular, the lack

of standard interfaces between languages has hindered the development of portable bilin-

gual programs, tlowever, we see more promising possibilities on parallel computers, where

standards remain to be defined and new problems demand new solutions.

4 Bilingual Parallel Programming

The design and development process for parallel programs is in many respects similar to
that for sequential programs. However, the need to manage multiple processors introduces

additional complexity: Problems concerned with concurrent execution, communication,

synchronization, partitioning, mapping, load balancing, and data distribution must be

addressed. Low-level solutions to these problems often compromise two highly desirable
properties in a parallel program: scalability and portability. Itence, the developer of par-

allel programs is faced with both additional complexity and pressing reasons for deferring

and localizing commitment to the design decisions required to address this complexity.

This suggests that high-level languages may have a particularly important role to play.

3

r

At the same time, the primary motivation for parallel computation is performance.

This point requires emphasis: the view that only algorithms are important, and that

one can thus disregard tile "small constant factors" introduced by the use of _ high-level

language, is folly. The effort required to develop a concurrent program can only be justified
if an application requires substantial performance, and in most applications performance

requires both good algorithms and low-level optimizations, tlence, we expect bilingual

programming techniques to be particularly useful on parallel computers.

A high-level language to support parallel programming must provide linguistic support

for important concurrent programming concepts: process management, communication,

and synchronization, lt should encourage portability by allowing progra, mmers to express

concurrent algorithms in a machine-indel)ertdent way and by minimizing the effort (if any)
required to specialize machine-independent programs for a particular computer. Finally,

it should encourage the development of scalable applications by supporting sepa.rate spec-

itication of concurrency on the one hand and partitioning and mapping on the other.

lt is presumably possible to design a language that provides these features and also

supports the efficient implementation of low-level sequential algorithms, tlowever, we

belie, re that it is advantageous to work with a small, clean high-level language with a
simple concurrent semantics. This simplifies understanding, analysis, and transformation

of concurreilt programs. The design space for high-level languages with these properties is

presumably large. However, we have had good success with one particular language: the

concurrent logic programming language Strand. We will restrict subsequent discussion to
this particular context.

The decision to work with Strand represents a,n initial design decision that restricts the

class of parallel algorithms that can be expressed in two ways. First, we are committed

to MIMD rather than SIMD as the architectural model. This represents a personal pref-

erence. Second, we are committed to working within the message-passing model on which

concurrent logic programming languages are based. Space does not permit a detailed

justification of l;his decision. Itowever, we point out that message-passing models have
proved adequate for the vast majority of concurrent applications. Furthermore, they tend

to simplify application developrnent by reducing opportunities for unexpected interactions

between concurrent processes.

5 Bilingual Programming in Practice

We now summarize the key features of an approach to bilingual parallel programming

with which wt have had considerable experience.

5.1 Specifying Concurrent Computation

The concurrent programming language Strand is a. member of the family of languages

commonly referred to as concurrent logic programming languages. Research in concurrent

logic programming originated with the Relational Language of Clark and Gregory [5].

Subsequent proposals have included Concurrent Prolog, Parlog, FCP, and Guarded Itorn

Clauses. Strand captures the essential concepts of previous proposals in a simple and

4

, j _ / _ _ _ ,

i

practical parallel programming tool. llere, we provide a brief introduction to Strand and

the parallel programming abstractions that it supports. A more complete d,,scription may

be found in [11].

Computation in Strand is performed by sets of cooperating lightweight processes.

These processes communicate and synchronize by reading and writing shared, single-
assignment variables. A rule-based notation is used to specify process behavior. A program

is a set of guarded rules with the tbrm

H :- G1,...,Gm [B1,...,Bn., rr_,n >_ O,

where// is the head of the rule, the G's are it,.Jguard, and the B's are its body. The head,

guard, and body are all processes; a process has the form F(T1,..., _l_), k > O, where the T's

are terms. A term is a list structure (denoted [IleadlTail]), a tuple (denoted {T1, ..., 2)'}),

a variable (denoted by a string starting with an uppercase letter), or a constant (denoted

by itself).
Each rule specifies a set of preconditions that must be sa,tisfied for a process to execute,

and the actions to be performed if these preconditions are satisfied. Preconditions are

expressed by non-variable terms in the head of a rule (which must match corresponding

process arguments) and guard tests. For example, the rule

db([lookup(K,V) lln],Db) :- K _¢0 [search(Db,K,V),db(In,Db).

specifies that a process db can be replaced by two new processes search and db if its first
argument has the form [Iookup(K,V) JIn] a.nd K # O.

Strand variables have the single assignment property: Their value is initially undefined

and once defined cannot be modified, ttead matching and guard tests correspond to read

operations on variables. An attempt to read a variable for which no value has been defined

causes a process to suspend; this is Strand's synchronization mechanism. Variables are

written by using a predefined assign process: a process X := T assigns the value T to the
variable X.

Sha.red variables can be used to express a wide variety of communication patterns.

A commonly used structure is the stream. A stream producer and one or more stream

consumers initially share a single variable. Th, _ producer instantiates this variable to a

list structure conl:aining a mess_tge in its head and a new variable in its tail that can be
used for further communication, for example:

X := [msgll X1], Xl := [rnsg2 I X21, ...

5.2 Partitioning and Mapping

A Strand program indicates opportunities for concurrent execution but does not specify

how these opportunities are to be exploited. The partitioning of the set of concurrently

executing processes into tasks and the mapping of these tasks to the nodes of a particular

parallel computer represent sel)a.ral;e design decisions that need not be made until after a

program has been developed. These decisions effect the efficiency of the final program but

5

I ' "_ ' l
j / I ' _ I' '

do not in general effect its correctness. Tools provided with Strand systems reduce the

effort required to implement these decisions [11, 8]. tlence, programs are teJtd to be easily

portable: little or no effort is required to adapt a program for a new parallel computer.
The extent to which programs can be specialized to employ different partitioning and

niapping decisions depends in part oll the structure of the original ,code. For examt,le, a
program designed to solve a grid problem will probably be developed with a particular

dolnain decomposition in mind, and will explicitly create the process network required
to handle this decomposition on a parallel computer. This program has already been

substantially specia,lized by the programmer and requires significant rewriting before an

alternative decomposition can be employed.

On the other hand, consider the following program that encodes the top level of

state-space search problem. A tree is searched by first exploring a fixed number of nodes

with a depth first strategy, then splitting any remaining subtree into a number of Siml:_ler

trees, each to be searched irt turn. This program specifies opportunities for concurrent

execution in the state-space search (each subtree can be searched concurrently) but says :

nothing about how processes are to be mapped to processors.

search(Pararns,[Prob I Probs],Solns,Solns2) :- % To search nodes,

search_subtree(Params,Prob,Solns,Solnsl), % search one node, ge

search(Params,Probs,Solnsl,Sclns2). % and search rest.

search(_,[],Solns,Solnsl) :- Solns := Solnsl. % Search done.

search.subtree({ M,N },Prob,Solns,Solns2) :- % To search single node,
process_prob(Prob,M,NewProb,Solns,Solnsl), % expand node,

split_prob(NewProb,N,Probs), % split subtree.

search({M,N},Probs,Solnsl,Solns2). % and continue.

This problem can be partitioned and mapped in several different ways: static embed-

ding, dynamic load balancing, and random mapping are all possibilities. Once a design

decision has been made, a. more specialized program that implements the decision can be

obtained from the code shown here. Strand's high-level nature makes it easy to implement

these specializations as automatic source-to-source transformations that can be encapsu-

lated in libraries [8, 10]. The important thing to note is that a completely different parallel

code can be obtained by making a different design decision at this stage, and that the cost

of making or backtracking on these decisions is small.

15.3 Interfacing to Foreign Code

Effective mixed-language programming requires a clean and simple interface between het-

erogeneous components. This is achieved in Strand with two mechanisms, user-defined

operatioTzs and user-defined data types. These are used to encapsulate foreign code and

foreign data, respectively.

A user-defined operation invokes a foreign procedure. Strand ensures that a user-

defined operation is scheduled only when data that it requires to execute is available.

6

Tile foreign procedure can then perform a finite amount of sequential execution. Upon
completion, values computed for output arguments arc returned to the concurrent com-

ponent, which may pass tl_em as arguments when invoking other user-defined operations.

Note that user-defined operations are not coroutined oil a single processor; instead, the
execution of each operation is viewed as an indivisible action.

The Strand compiler automa.tically generates code to perform type coltversion between

Strand and other foreign representations of simple data types such as integers, reals, and

strings. More complex foreign data structures (e.g., arrays) can be encapsulated in a

special user-defined data type. Strand programs can pass user data from one user process
to another but cannot examine their contents. As user data may be migrated from one

processor to another, such data cannot contain addresses. This is the only restriction

placed on their contents.

Foreign procedures can also be passed Strand data structures directly. This capability
is useful when data is naturally represented in terms of Strand record structures (lists or

tuples). Macro libraries are provided that allow the foreign procedure to access:the Strand
structures as abstract data types.

The foreign interface imposes a certain discipline on the programmer, as it requires

that all communication between user processes be achieved by argument passing; common

areas and other forms of global variables cannot (in generM) be employed. This restriction
has two important benefits. First, individual foreign procedures can be developed and

debugged independently. Second, bilingual programs can be executed on both a single

processor and multiple processors without modification.

5.4 Mutable Data

Recall that Strand variables have the single assignment property' their value is initially

undefined and, once defined, cannot subsequently be modified. This property is impor-

tant for several reasons. First, it avoids the race conditions that can arise when several

concurrent processes read and write the same variable. Second, it permits a number of im-

portant optimizations in a parallel implementation. In particular, it permits non-variable

data structures to be copied between processors without concern for the consistency of

copies.

In contrast, sequential languages such as .22,and Fortran presuppose mutable data

structures. Indeed, it is the ability to modify large data structures in place that permits

these languages to provide succinct and efficient implementations of many algorithms.

We wish to maintain the single-assignment property in the concurrent component of

bilingual programs, while pe,'mitting updates in foreign procedures. We achieve this by

imposing the following restrictions on the operations that can be performed by programs.

The user must be able to demonstrate that a bilingual program satisfies these requirements.

Static analy_:is tools can assist the detection of improper programs [12].

:. 1. Updates are encaps_dated in user-defined operations. An operation that modifies a

data structure (say D) must return as an output argument a new refereT_ce (D') to
-: that same data structure.
l

2. Data structures are single-threaded. At most one update operation can be applied

to a particular reference to a data structure.

3. Reads precede updates. All read operations applied to a particular reference to a

data structure must comiflete before any update operation is applied.

In these requirements, the term a "particular reference" is used to mean the "set of

references that _re equivalent modulo aliasing".

For example, assume that two user operations inc_vector(V,V1) and sum_vector(V,Sum)

have been defined to increment and sum the elements of a vector (a_. integer array, repre-
sented as a user data type). The first operation returns a new reference V1 to the input

vector V; the second computes the sum of its elements. Then the following set of processes

correctly increments the vector V _wice before summing its elements to yield S.

inc_vector(V,V1), Jnc_vector(VI,V2), sum_vector(V2,S)

On the other hand, the following set of processes would be illegal, as V would be updated

by two processes.

inc_vector(V,V1), inc_vector(V,V2)

5.5 Abstract Data Types

Strand programs frequently need to deal with complex data types (such as arrays and
record structures) constructed by foreign procedures. As these data do not correspond

to any primitive Strand type, they will be passed to Strand as user data types. A closer

integration of Strand and foreign components of a bilingual program can be achieved by

extending a Strand system with user-defined operations to define appropriate abstract

data types. For example, a one-dimensional integer array type may be implemented in

Strand as a user data type (used to represent the array) as well as operations to read and
write _rray elements"

• new_array($ize?,ArrayT): returns an initialized Array of the designated size.

• size(Array?,Size]): returns the Size of Array.

• get_int(Index?,Array?,ltemT): returns Item, the contents of element Index in Array.

• set_int(Index?,Array?,ltem?,NewArrayT)' updates element Index in Array to contain

Item, and returns a new reference to the array, NewArray.

These opera, tions allow Strand programs to access arra,ys created by foreign language

procedures directly. For example, the following program creates a new array initialized to

zero. Observe tl_at this program obeys the requirements stated previously.

8

I # t
"llll)ll)' II' 'PllII" "

J

ii.
,

zero(Size,NewArray) '.-
new_array(Size,Array), zero_1(1,Size,Array, NewArray).

zero_1(l,_Iax,A, NewA) ' -
I _<Max I set_int(l,A,0,A1), 11is I+I, zero_1(11,Max,AI,NewA).

zero_1(l,Max0A,NewA) '-I > Max l NewA := A.

6 Experiences

We have provided a detailed account of solne of our experiences developing bilingual

parallel codes elsewhere [9]. Here we summarize our results and the conclusions reached.

In collabor,_tion with colleagues, we have developed bilingual programs in computa-

tional biology, weather modeling, and :automated reasoning. Each of these codes is a

substantial application, used by scientists on a d_ily basis to support their research. In

the following t:d)le, we characterize the codes in terms of the foreign language used and
their code size.

Foreign Strand

Program Language (lines) (lines)
, , ,,.:

Weather Fortran 25000 250

Dynamics ' Fortran 4000 120
Prover C - 5000 400

......

SimSearch C 500 210

Alignment C 1200 1700

The codes cover a wide spectrum of applications and parallel algorithms. Weather is a

large "dusty deck" numeric modeling code; it was parallelized using domain decomposition

techniques. Dynamics is a motecular dynamics code; its ps:forms a state-space search

to find configurations of molecules that satisfy certain criteria. The top level of this

code is essentially the fragment given in Section 5.2; it was parallelized using a dynamic

load-balancing strategy, Prover implements a parallel theorem-proving algorithm based

on a software pipeline. SimSearch solves a database search problem; a manager/worker

structure is used to allocate parts of the database to idle processors. Finally, Alignment

implements an algorithm for computing "alignments" of sequences of genetic material

from different organisms; it was parallelized using functional decomposition and dynamic

load-balancing techniques.

The first three applications use substantial amounts of pre-existing code. In these

examples, the Strand component is used principally to coordinate the execution of the

low-level sequential components. In contrast, SimSearch and Alignment were developed

from scratch as bilingual applications. In the la.tter, the Strand component implements

all but the most computationally intensive components of the algorithm.

Ali five applications went through several revisions in the course of their development.
Ill each case, we found that tlie bulk of the modifications occurred in tile high-leyel com-

ponent of the code. The existence of a concise, high-level specification greatly simplified

the exploration of alternative algorithms.

Our experience suggests that the bilinguld approach permits the benefits of a high-level

language to be attained without the perIbrmance degradation normally associated with

high-level approaches. For example, in SimSearch, Weather, and DyT_amics, we observed

no significai_t difference in uniprocessor performance between the bilingual code and an

equivalent sequential code written entirely in C or Fortran. Parallel programs coded

using low-level facilities were not available for comparison with the bilingual programs on
multiprocessors, tIowever, performance studies suggest that communication time was not

a dominant factor in any application.

The bilingual programs that we developed also proved to be highly portable. For

example, SimSearch was run on eight different parallel computers. Porting was problem-

atic only when low-lewl sequential code used non-portable constructs or excessive local
memory.

We found that linguistic support for concurrent execution encouraged a modular ap-

proach to parallel programming and the encapsulation of parallel algorithms in libraries.

Library code was frequently reused in other applications. For example, the state-space

search code developed in 5'PS was used to develop parallel implementations of two different

applications, simply by substituting alternative definitions for two low-level procedures.

No changes to the concurrent component were required. At a lower level, both SimSearch
and SPS used the same scheduler library code.

A final and important point is that we did not experience any particular difficulties

developing the bilingual applications. We attribute this to the simple interface between
the sequential and concurrent components. This permitted sequential procedures and

concurrent programs to be developed and tested independently. Furthermore, the bilingual

program could generally be tested on a single processor.

7 Related Approaches

It is instructive to review other approaches to parallel programming in the light of the

analysis of program development methodologies presented in Section 2.

Parallelizlng Compilers. For several years, a number of respected researchers have

argued that the key to successful exploitation of parallel processors was advanced compilers

[7, 14, 17]. They suggest that programmers should write standard Fortran, which compilers
would automatic_xlly restructure to take advantage of parallel hardware.

Tiffs approach has proved successful when applied to fine-grained parallelism' vec-
torizing and trace-scheduling compilers give excellent results on certain codes. However,

we argue that the approach is seriously flawed as a technique for exploiting large-grained
parallelism, as it requires that programs be refined in an inappropriate sequence. Some of

the refinements used to target a program toward a. specific architecture must be achieved

at I_ level well above that of a Fortr;m program. In particular, the refinement that corn-

10
i

tt .i- _.- ' ' 1 t

mits to an implementation based upon processe_ that communicate via message passing

is naturMly thought of as occurring before _hose that commit to specific hnplementations
of abstract data types. The consequence of making these refinements out of sequence is

that systematic analysis of the actual code becomes difficult if not impossible. Properties
that could have been stated and verified when made about abstract data types before

committing to a specific implementation (witli the corresponding details introduced by

memory management, etc.) become hard to express and verify.

High-Level Languages. Another group of respected researchers has also argued for

compilers but in the context of high-level languages [16, 19]. They suggest that program-
mers should only need to write a high-level, declarative description of an algorithm; the

compiler (and run-time system) will produce code appropriate _o specific computational
environments.

We believe that this argument is also flawed, due to the fact that automated refinement,

while not necessarily sacrificing performance theoretically, often does cost performance in

pr:actice. Peribrmance is sacrificed because refinements made by a human who under-
stands the peculiarities of an _lgorithm are almost always capable of attaining greater

performance than generalized transforms:ions included in any actual compiler. This is

the essence of the point discussed above in Section 2, and illustrated with the "list of

elements" example. The refinements required to effectively map processes to processors

and to balance load are areas in which completely automa.tic choice of optimal strategies

seems p_rticul_rly difficult.

Language Extensions and Layering. Most parallel programming to date has used

lower-level l_nguages extended with parallel processing constructs [1, 2, 6, 13, 18]. If

properly designed, these extensions can maintain portability without sacrificing substantial
performance. A number of packages offering such extensions e,ist; we have been involved

in several efforts based on this _pproach. The principa,1 drawback of the ,_pproach is the

loss of notational elegance and freedom from detail associated with high _.evellanguages.

Advccates of languages such as C++ argue that layering of software can provide many

of the benefits of a high-level language and in addition allow exploitation of the additional

options offered by a lower-level language. For example, one can easily envision a set of

routines that supports list processing, memory management, and synchronization facili-
ties similar to those provided by Strand. This sort of layering can dramatically reduce

complexity, ttowever, experience suggests that the support and maintenance of lower lay-

ers introduces significant intellectual overhead. There is a substantial difference between

an Mgorithm coded with C list-processing routines and an equivalent algorithm coded in

Strand. Details introduced by the lower-level context must be remembered, and the lack

of notation_Ll elegance (eg., the syntax of a list) produces a marked loss of clarity.

Similar arguments are advanced by proponents of high-level languages that support

low-level features such as arra.ys and assignment (e.g., Common LISP). The low-level

features permit etticient implementation of low-level algorithms, and hence seem to permit

the benefits of the bilingual approach to be achieved in a single language, ttowever,
we believe that the introduction of low-level features tends to compromise the semantic

elegance of the high-level language. For example, unrestricted use oi updates in Strand

would prevent the automatic transformation of programs to incorporate load balancing.

11
i

: J "_ I i'

,t : I

The use of a distinct high-level language permits a clean separation of concerns between

high-level and low-level components.

Coordination Languages. Many of the arguments we have advanced in this paper

have also been put forward by advocates of "coordination languages" [3]. Indeed, we are in
basic agreement with the essential positions taken by advocates of coordination languages,

and we h_ve in the past discussed the use of Strand as a mechanism for coordinating com-
putations written in a lower-level notations [9]. However, our current position views the

boundary between the languages as determined essentially by performance considerations,

rather than by a division between a sequential component and a coordination component.

0 8 Conclusions

Bilingual programming t_as a long, if not noble, history. It has been used since the earliest

experiments with high level languages as a mechanism for mitigating the performance
: penalty associated with notations that offer standardized implementations of common

abstract data types. Its value as a programming methodology is a direct consequence of
the trade-offs between ease of expression and performance.

We have argued in this paper that bilingua.1 programming should not be viewed as an

ad-hoc solution to transient engineering problems but instead as a logical development of

fundamentM concepts in programming methodologies. The use ci a high-level la:Lguage

permits programmers to adopt standardized implementation decisions when performance
is not critical. This minimizes development costs and maximizes fle:dbility, At the same

time, aceess to low-level languages permits the programmer to perform additional refine-

: ment steps when necessary. This permits efficient implementation of critical components.
The bilingual approach is applicable in many areas.]towever, we believe that it is

particularly appropriate in parallel programming, where the need to specify not only se-

quential execution but also partitioning, scheduling, communication, _nd synchronization

introduces a.dditional complexity.]tigh-level concurrent languages can reduce this com-

plexity by providing standard implementations for common concurrent program structures

and by permitting separate specification of program logic, partitioning, and scheduling.

At the same tinm, the efficiency provided by low-level languages is particularly important
on parallel computers.

We have accumulated considerable experience in bilingual programming using the high-

level language Strand and the lower-level languages C and Fortran. We have developed
major applications in several application areas using this technology. We have found that

the bilingual approach encourages the development of parallel programs that perform

well, are portable, and are easy to maintain. We advocate the adoption of bilingual
programming as a technology for programming parallel processors.

Acknowledgments

This research was supported by the Applied Mathematical Sciences subprogram of the

Office of Lnergy Resea,rch, U,S. Department of Energy, under Contract W-31-109-Eng-38.

12
i

- I s _ l : i ,

References

[1] Babb, R., Parallel processing with large grain data flow techniques, IEEE Co,nputer,
17, 55-61, 1984.

[9}.,Boyle, J., Butler. R., Disz.. T., Glickfeld, B.. Lusk, E., Overbeek, R., Patterson,
., t'rocessors, Holt, Rinehart andJ and Stevens. R., Portable Prog,'ams for Parallel "

, :_-Winston. 19,=_.

[3] Carriero, Y. and Gelernter, D., Coordinatior, languages and their significance. Tech-

nical report _'ALEU/DCS/RR-716, Yale University. 1989.

[4] Chand.v, _I. and Taylor. S., Program composition, Prec. Supereomputing '89, Reno,
Nevada, 1989.

[5] Clark, K. and Gregory, S., A Relational Language for parallel programming, Proc.
t981.4 CM Conf. on gunctioqal Progrommin 9 Languages and Computer Architectures,

198), 1,1-1_

[6] Dongarra, J. and Soreuson, D., Schedule: Tools for developing and analyzing parallel

Fortran programs, The Characteristics of P¢_,'allel Algoritl, ms, MIT Press, 1.iS,.

[7] Fischer. a., Ellis. J., Ruttenberg, J.. and Nicolau, A., Parallel processing: a smart

compiler and a dumb machine, Pr.'oc. SIGPL.4N '$4 Syrnp. on Compiler Construction,
AC._I, 37-47, 1984.

[,Sl Foster, i., Automatic gep,eration of self-scheduliag programs, Preprint MCS-P124-

0190, Argonne NationM Laboratory. 1990.

!_3i Foster. I. ,.,hd Overbeek, R., Experiences with bilingual parallel programming, Proc.

Sth Diatributed 3lemon v Comp. Co,LI., IEEE Press, 1990.

[10] Foster, I. and Stevens, R., Parallel programming with algorithmic motifs, Pr(a'. 1990

Intl Conf. on Parallel Processing, Penlt Sta_e University Press, 1990.

[Ill Foster, I. and Taylor,. S., .c'.trana:' New Concepts' inParallel Programming, Prentice-
Hall, Englewood Cliffs, N.J., 1990.

r

[1"21Foster, I. and Winsboroug,_,, W., Unpubl!shed information.

i3] }[alstead, R.H., ,[ultiLtsp - A language for cot_current syxnbolic computation, ,,4(,_1

Trans. Prog. Lang. atad 5'_st., 7(4), 198o, 501-._38.

.ri-ll,Padua, D..a., Kuck, D.J ., and Lawrie, D.H., tligh-speed multiprocessors and compi-
latlor:'-' : . , S,.ecnn,qves, [KKK Yrans. on Computers, C-29(9) 19,_0.

[15] Parnas, D., On the criteria to be used in decomposing systems into modules, C'ACM,
15, t972, o._u-o,_ 2.

13

[16] Peyton Jones, S., The Imple,nentation of Functio,_al Programming Languages, Pren-
tice Ha|l, 1987.

[17] Polychronopoalos, C., Parallel Prog,'amrni,_g and Compilers, Kluwer Academic,

Boston, Mass., 1988_

[18] Seitz, C., The cosmic cube, CACM 28(1), 22-33, 1985.

[19] Warren, D.H.D., Or-para.llel execution models of Prolog, TAPSOFT'87, The 1987

Intl Joint Conf. on The,'._ryand Practice of Software Development, Springer-Verl_xg,
243--259, 1987.

[20] Wirth, N., Program development by stepwise refinement, CACM, 1,t, 1971, 221--227.

DISCLAIMER

This reIx)rt _as prepared as an account o(work sponsored by an agency of the United States
Government. Neither the United States Government nor an)' agency thereof, nor any of their

employees, makes any _arranty, express _,r implied, or _ssumes any legal liability oi" responsi-
bility for the accuracy,, _ompleteness, t_r usefulness of an) inf_rmation, apparatus, prt_duct, or

pr_e_s disclosed, or represents tha_ its use _'uuld not infringe privately o_ned rlgh'_s. Reler-
ence here,n t_) an) specific commercial product, pr_xe'._._,_r service by trade name, trademark,

manufacturer, _r o_herw'isc does not necessarily consU_utc _r imply its end_rsement, recom-

mendation, or fa_.orin_ b_ the L!nited State_ (_ovcrnment _r an) agenc_ _heret_(. _lhc vie_'s

and opirnons oi" authors expresse.xl herein do not nece._sari}',' _tate or reflect those of the
tJnited Stales G_vernment or any agency thereof.

