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ABSTRACT

The Cost-Constrained Traveling Salesman Problem (CCTSP) is a variant of the
well-known Traveling Salesman Problem (TSP). In the TSP, the goal is to find a tour of a
given set of cities such that the total cost of the tour is minimized. In the CCTSP, each city
is given a value, and a fixed cost-constraint is specified. The objective is to find a subtour
of the cities that achieves maximum value without exceeding th= cost-constraint. Thus,
unlike the TSP, the CCTSP requires both selection and sequencing. As a consequence,
most results for the TSP cannot be extended to the CCTSP. We show that the CCTSP is
NP-hard and that no K-approximation algorithm or fully polynomial approximation scheme
exists, unless P = NP. We also show that several special cases are polynomially so‘l\’/ablc.

Algorithms for the CCTSP, which outperform previous methods, were developed
in three areas: upper bounding methods, exact algorithms, and heuristics. Extensive
computational studies were undertaken to evaluate and compare algorithms. These
computational studies also examined the sensitivity of performance to problem
characteristics. We found that a bounding strategy based on the knapsack problem
performs better, both in speed and in the quality of the bounds, than methods based o:. the
assignment problem. Likewise, we found that a branch-and-bound approach using the
knapsack bound was superior to a method based on a common branch-and-bound method
for the TSP. In our study of heuristic algorithms, we found that, when selecting nodes for
inclusion in the subtour, it is important to consider the "neighborhood" of the nodes. A
node with low value that brings the subtour near mary other nodes may be more desirable
than an isolated node of high value. We found two types of repetition to be desirable:
repetitions based on randomization in the subtour building process, and repetitions
encouraging the inclusion of different subsets of the nodes. By varying the number and
type of repetitions, we can acjust the computation time required by our method to obtain

algorithms that outperform previous methods in both speed and solution quality.
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- Chapter 1
INTRODUCTION

This research addresses the "Cost-Constrained Traveling Salesman Problem,"
named for its similarity to the well-known Traveling Salesman Problem. Inits general
form, the problem is: given a set of tasks which require varying amounts of a limited
resource, select a subset of the tasks and a sequence of performing this subset such that
maximum value is obtained without cxcéeding the resource limit. . The resource may be of
any nature, but typically is time or money. Similarly, the tasks may be of any néture. The
key characteristics are: the resource is limited; each task has a fixed value; the tasks may be

viewed as sequential; completion of a task requires some ainount of the limited resource;
| and the resource requirement for a task may depend on the previous task.

Although the Cost-Constrained Trévcling Salesman Problem is very similar in
nature to the Traveling Salesman Problem, there is a fundamental difference. The Cost-
Constrained Traveling Salesman Problem requires both selection and sequencing of tasks,
while the Traveling Salesman Problem requires sequencing only. In the Traveling
Salesman Problem, the goal is not to select and sequence tasks to make optimal use of a
limited resource. Rather, it is to sequence a fixed set of tasks in order to minimize use of
an unlimited resource. The traveling salesman wishes to tour a fixed set of cities and the
cost of this tour depends on the order in which the cities are visited. The goal is to find a
tour — an ordering of the cities — that minimizes the total cost. In the Cost-Constrained
Traveling Salesman Problem, the traveling salesman is given a fixed cost-constraint, or
budget. The goal is to find a maximal subsequence of cities — a subtour — to visit
without exceeding the cost-constraint. The problem may be further complicated if some
cities have different values than others. In another version of the Traveliug Salesman
Problem, the problem is worded as "Can the set of tasks be completed given the resource

constraint?" The answer is simply "yes" or "no." If the answer is "no," no attention is



given to optimizing the number or value of tasks which can be completed within the given
constraint. Henceforth, we will refer to the tasks as nodes, the resource requirements as
costs, and the resource limit as the budget.

While an abundance of literaturq is available on the Traveling Salesman Problem,
very little work has been done on the cost-constrained version. We make use of previous
work on both the Traveling Salesman Problem and the Cost-Constrained Traveling
Salesman Problem as much as possible. However, the departure of the cost-constrained
version from the Traveling Salesman Problem is significant enough to limit severely the
applicability of Tra\}eling Salesman Problem results. This is particularly true for theoretical
results pértaining to approximation algorithms.

A point of interest is that the Cost-Constrained Traveling Salesman Problem was, in
fact, the original version of the Traveling Salesman Problem. The earliest known reference
to the Traveling Salesman Problem is a book published in Germany in 1831 by B. F.
Voigt, The Traveling Salesman, how he should be and what he should do to get
Commissions and to be Successful in his Business. By a veteran Traveling Salesman
[Vo]. In this book, the author does not staté that the objective is to minimize the cost of
visiting all of the cities, but rather, "The most important aspect is to cover as many
locations as possible . . ." [HW]. In subsequent work on the Traveling Salesman
Problem, which doesn't really appear until the mid-1900's, the problem is changed to the
- current Traveling Salesman Problem formulation.

The first four chapters of this dissertation are introductory in nature. Chapter 2
provides a brief review of basic concepts in combinatorial optimization. Its main intention
~ is to introduce terminology that is used in later chapters. This is followed by a formal
description of the Cost-Constrained Traveling Salesman Problem, including alternate
formulations, extensions, and applications. The theoretical complexity of the problem is
also discusséd. Chapter 4 contains a synopsis of relevant previous work.

The remaining chapters focus on algorithms for the Cost-Constrained Traveling
Salesman Problem. Chapter 5 presents several special cases that can be solved with very

efficient polynomial algorithms. This is followed by a discussion of the evaluation



. framework that was used for computational evaluation of the algorithms presenied in
subsequent chapters. Chapters 7 through 9 address upper bounding methods, exact
algorithms, and heuristic algorithms, respectively. Previous methods are discussed as well
as new. Extensive computational experiments are used for evaluation and comparison of
methods. |

Finally, we conclude with a summary of results, as well as a discussion of open
questions and promising areas for future research. In addition to the reference list, a
bibliography is included. The reference list contains only ‘thosc‘ works which are
specifically discussed in this dissertation. The bibliography contains additional citations of

relevant work, including the textbooks that were the basis for Chapter 2.




Chapter 2
REVIEW OF COMBINATORIAL OPTIMIZATION

In combinatorial analysis, one is often concerned with the existence of a particular
type‘of arrangement of a finite number of objects. Combinatorial optimization looks for the
best arrangement of these objects. This is analogous to the distinction in combinatorics
betweep recognition problems and optimization problems. In recognition problems, the
existence of a particular type of arrangement is questioned. In optimization problems, the
optimal arrangement is sought. For example, the recognition version of the Traveling

Salesman Problem is:

TSP(recognition): Given a set of nodes {1,2,...,n} and a non-negative

cost matrix C = [c;; ], does there exist a tour, starting and ending at node 1,
with total cost B or less? '

In other words, is there a permutation T, = (zt(l),zr(Z),...,n(n)) with
n(1)=1 and ’

n-1

> Catiymi+1) * Cngayny S B ?

i=1
The optimization version is:
TSP(optimization): Given a set of nodes {1,2,...,n} and a non-negative

cost matrix C =[c;] find a tour, starting and ending at node 1, with
minimum cost.
In other words, find a permutation 7T, = (7(1), 7(2),..., (n)) with m(l)=1
that minimizes

n-1

zcn(i).n(iﬂ) * Cr(nyn(1)

i=1

Henceforth, the notation "TSP" refers to TSP(optimization).
As in the above definitions of TSP, we will denote an arrangement of a set of n

objects by a permutation 7, = (x(1), 7(2),...,m(n)) — a one-to-one mapping of the set
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{1,2,...,n} onto itself — where n(i) = j indicates that the object with label j is in the ith
position. Using this same interpretation, we denote an arrangement of a subset of a set of n
- objects by a partial permutation 7™ = (7(1), #(2),..., A(m)) — a one-to-one mapping of the
set {1,2,...,m}, where m < n, into the set {1,2,...,n}.

| For any finite set of objects, there is only a finite number of possible arrangements.
Thus, solving combinatorial problems requires consideration of only a finite number of
possibilities. This number, however, is usually prohibitively large, making total
enumeration impract.cal. For example, the number of ways to arrange 25 objects is 25!, or
approximately 1.5 x 105, Examining each arrangement using a nanosecond computer
would take approximately 5 x 108 years.

A combinatorial problem ir defined by a general description of its parameters and a
statement of the properties the solution is required to satisfy. An instance of a problem is a
particular set of values for the problem parameters. A recognition problem has two types
of instances, yes instances and no instances. "Yes" instances are those for which a
solution satisfying the specified conditions exists. "No" instances are those for which such
a solution does not exist. Solving a recognition problem means determining whether it is a
"yes" instance or a "no" instance.

We can represent most combinatorial problems by a digraph G = (N,A) and a
matrix C = [c,-j]. In this representation, N is the set of nodes and A is a set of arcs or
ordered pairs of nodes. Often, A= N XN, i.e., there is an arc from every node to every
other node. In this case, we say G is complete. A sequence or permutation of nodes is
called a path and is represented by a subset of A where arc (i, /) is in the subset if and only
if node j follows node i in the sequence. The cost associated with having node j follow
node i is called the length or arc length of arc (i, j) and is represented by c;;. In most cases,
a digraph G which is not complete is equivalent to a complete digraph in which ¢;; = e for
the arcs (i, j) not in G. The total cost of a sequence or subsequence of nodes is called the
path length. In some cases, there is also a vector V of weights or values on the nodes.

We will now look at some characterizations of algorithms, but first we must define

the "size" of a problem. The size of a problem is the number of bits required to represent



the data of the problem. The size of a graph is characterized by the number of vertices, the
number of arcs, and the logarithm of the maximum arc length, which is proportional to the
number of bits required to encode the data in a computer.

One characterization of an algorithm is the maximum time required to solve a
problem of given size n, usually evaluated in terms of elementary operations (addition,
multiplication, compaﬁson, etc.). This gives a measure of the "worst case" vehavior of the
algorithm. This maximum tim;. is a function f(n) of the size of the problem. Since the
measure nf tim; depends on the types of operations, the relative times needed for these
operations, the type of computer, étc., one generally considers the growth rate, or
asymptotic order, of the function f(n). We say an algorithm is of order g(n), or O(g(n)),
if f(n)/g(n) tends to a constant as n — eo. Algorithms that are O(n) are called linear,
those that are ‘O(n” ) are called polynomial of order p; those that are 0(2") are called
exponential;, and those that are O(n!) are called factorial. An algorithm for which the
computation time depends polynomially on nurnerical data not encompassed by tthe size of
the problem is called pseudo-polynomial. Algorithms that are exponential or factorial are,
in many cases, computationally infeasible for large problems. A common criterion for an
“efficient" algorithm is that it be polynomial. This cri*erion is based on the assumption that
the worst case behavior of an algorithm is typical of problems encountered in practice, and,
therefore, should not be taken as gospel. In practice, many non-polynomial algorithms are
very efficient, and, in some cases, more efficient than polynomial algorithms.

Anoter characterization of an algorithm is the "average" time required to solve a
problem of given size n. This is important since, in many cases, the average time required
to solve a problem is much better than the worst case. The Simplex Method is a classic
example. Its worst case growth rate tor solving linear programs is exponential, while its
average growth rate, based both on problems encountered in practice and on randomly
generated problems, appears to be little more than linear.

The storage space required to execute an algorithm may also be of interest. In some
cases, the size of problems that can be solved is limited more by storage requirements than

by computation time. We note that, as new generations of computers and storage devices



are developed, the restrictions imposed by storage requirements and computation time
become less and less stringent. However, doubling the computation speed and storage
capacity would not mean that we could solve problems twice as large, unless the algorithm
being used was linear.

Recognition problems generally fall into two classes. The first, called P, is the
class of recognition problems for which polynomial alg&ithms exist. A classic example of

-

a problem in this class is the Assignment Problem (AP):
AP(recognition): Given a set of nodes V = (v;,v;,...,V,}, a set of nodes
U = {uy,Uy,...,4,}, and a cost matrix C =[c;;] where ¢; is the cosi of

assigring node v; tonode u;, is there an assignment of V to U with cost B
or less?

In other words, is there a permutation 7T, = (z(1), 7(2),..., (n)) for which
n
ZC"’”(") < B,
—~

where 7(i) = j indicates that node v; is assigned to node u;?
Before we define the second class, we require some additional definitions.

The class cﬂled NP is a larger class of recognition problems that includes P. Fora
problem to be in NP, we do not require that every instance can be solved in polynomial
time by some algorithm. We require only that for every "yes" instance of the problem,
there exists a certificate — a proof that it is a "yes" instance — that can be checked for
validity in polynomial time. This certificate is usually a solution that satisfies the specified
criteria of the problem. For example, a certificate for a "yes" instance of TSP(recognition)
is a tour of length B or less. (Note that the existence of a certificate implies nothing about
the existence of an algorithm for finding the certificate.)

We say a problem A, reduces in polynomial time to a problem A, if, assuming
there exists a polynomial algorithm for A4,, there exists a polynomial algorithm for A; that
uses as a subroutine the algorithm for A,. We say a recognition problem A; polynomially

transforms to a recognition problem A,, if, given any instance x of A;, we can construct



within polynomial time (in the size of x) an instance y of A, such thatx is a "yes" instance |
of A if and only if y is a "yes" instance of A,.

We can now define the second class of problems referred to above, those that are
"NP-complete". A recognition problem A is NP-complete if A is in NP and all problems in
NP polynomially transform to A. TSP(recognition) is a classic example of an NP-complete
problem. A problem A is NP-hard if éll problems in NP reduce in polynomial time to A,
but A is not necessarily in NP. TSP(optimization) is an NP-hard problem. If there exists a
polynomial algorithm for any NP-hard problem, then, by the definition of polynomial
reducibility, there exists a polynomial algorithm for all problems in NP. This would mean
that P = NP. The classes P, NP, NP-complete, and NP-hard are referred to as complexity
classes. The question of whether P = NP is a long-standing open question in the field of
combinatorics.

There are two types of algorithms for optimization problems, exact and heuristic.
An exact algorithm is one that is proven to find the true solution to an optimization
problem, that is, a solution whose value is the true optimum. Heuristic algorithms find
solutions that satisfy the constraints of the problem but cannot be guaranteed to be optimal.
Heuristic algorithms are designed to find solutions whose values are, at least, near to the
optimal value. Since there are no known polynomial exact algorithms for NP-hard
problems, heuristics are, in many cases, of great importance. For some problems, there
exist heuristic algorithms for which it is possible to prove that a performance guarantee
exists. These performance guarantees have several forms. For example, a performance
guarantee might state that a given heuristic algorithm for a minimization problem always
finds a solution whose value is not more than twice the optimal value. In general,
however, performance guarantees cannot be obtained. In fact, for some problems (e.g.
TSP), it is possible to prove that a heuristic with a performance guarantee cannot exist,
unless P = NP. Furthermore, in cases where a performance guarantee does exist,
heuristics generally perform better than their guarantee. For these reasons, aeuristics are

usually evaluated on the basis of their empirical performance.
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Chapter 3
PROBLEM DESCRIPTION

In this chapter, we give a more precise definition of the problem under
consideration and discuss several variations. We also look at the complexity of solving the
problem, both exactly and approximately. Finally, we present some extensions and

applications.

3.1 Basic Problem Formulation
Like the Traveling Salesman Problém, the Cost-Constrained Traveling Salesman
Problem can be formulated as either an optimization problem or as a recognition problem.

We definu the optimization problem as follows:

CCTSP(optimization): Given a set of nodes {1,2,...,n}, a non-negative
cost matrix C = [c;;], positive values {v,v,,...,v,}, and a budget B, find a

subtour of maximum value, starting and ending at node 1, whose total cost
does not exceed B.

In other words, find a partial permutation 7 = (#(1), Z(2),..., A(m)) with
m<n, n(l)=1, and

m-1

Ecn(i).n(iﬂ) +Ca(mynq1) S B

=1

that maximizes
m
Z"n(i)-
i=1

The corresponding recognition problem is:

CCTSP(recognition): Given a set of nodes {1,2,...,n}, a non-negative
cost matrix C = [c;;], positive values {v,v,,...,V,), and a budget B, does

there exist a subtour, starting and ending at node 1, whose total cost does
not exceed B and whose value is Q or greater?



In other words, for some m<n, is there a partial permutation

K™ = (1), A2),..., m(m)) with (1) =1,
m-1

zcn(i),n(m) + Coimy,n1) S Bs

i=1
and

m
Zvn(,-) 2 Q'?

i=1

In this basic formulation of the Cost-Constrained Traveling Salesman Problem, we
require the subtour to be a closed loop starting and ending at a specified node. Each node
may be visited at most once and the nodes may have different values. Hencc‘forth, the
notatior: "CCTSP" refers to CCTSP(optimization), as defined above.

CCTSP can also be formulated as a 0-1 integer programming problem. In the
integer programming formulation, we have x;; = 1 if node j follows node i in the subtour
and x;; = O otherwise. The value of a node is accrued only if the node is contained in the
subtour. The integer programming formulation can be written as

max 3 3w | (IR)

i=1 j=1

- nn
subject to: ZchxU <B

i=1 j=1
n .
PR XS fori=12,..,n

ixij’ixjk =0 forj=1,2,...,nv

-je{O,l} for all i and all j
> ¥ x<is|-1 forall S < {2,3,...,n),

10



where |S] is the cardinality of S. We refer to the last 2" inequalities as the subtour
eliminatior; constrainis (also referred to in TSP literature as "loop" conditions). Note that if
a solution contéins a subtour that does not include node 1, then, letting S be the set of
nodes in this subtour, the last constraint is violated. This prevents solutions containing two
or more disjoint subtours and also prevents solutions with x; =1 for some j#1.

Furthermore when node i is not included in the subtour, we have
n
Zv,-x,-j‘ = (.
j=1

As an alternative integer programming formulation, we can define ¢;; = 0 for all j
and let x jj = 0if node j is included in the subtour and x i =1 if node j is not included in the
subtour. This leads to the formulation |

mava‘-(l-x,-‘-) . (IP2)

i=1

n n
subjectto: Y, Y c;x; < B

i=1 j=1
X1 = 0

n

>ox=1 forj=1,2,..,n
i=1

. |

> xi=1 fori=12,..,n
j=1

X € (0,1}  foralliandallj
> Y x;<|s|-1 forall§ € {2,3,...,n} .
ieSJj€S ‘
J#i
3.2 Alternate Formulations
Several alternatives to the basic formulation of CCTSP exist. These include cases

where the starting node and/or ending node are not specified, a closed loop is not required,
all nodes have equal value, and/or nodes may be visited more than once. We now discuss

these alternate formulations and their relationship to the basic formulation.
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Suppose that rather than a subtour starting and ending at node 1, we desire a path
starting at node 1 and ending at an unspecified node or at a specified node other than
node 1. We call this problem CCTSP-path. In the case Qhere the ending node is
unspecified, CCTSP-path can be reduced to CCTSP by setting the costs c;; =0 for all i
and requiring a subtour starting and ending at node 1. If we require the path to end at a
specified node, m, then we reduce the problem to CCTSP by setting c,,; = 0 and cp=o°
for all i # m. The conversions can also go the other way. CCTSP can be reduced to
CCTSP-path by creating an artificial node 1’ and setting ¢y = ¢y and ¢y = oo for all i.
Note that if node 1’ occurs in the path, it will be the endpoint. We either specify node I’ as
the ¢nding node or, if the ending node is unspecified, assign a sufficiently large value to v;.
assuring that node 1’ will be the endpoint of the path. Similar transformations can be
applied for the case where the ending node is specified but the starting node is not.

In the case where a closed subtour is required but the starting node is not specified,
we reduce the problem to CCTSP by creating n instances, each one specifying a different
starting node. The instance with the highest solution value gives the solution to the original
problem. If the starting node is not specified and we desire a path rather than a closed
subtour, we can transform the problem to CCTSP by 2dding an artificial node. We add
node 0 with value vy =0 and let ¢;y = cp; =0 for i =1,...,n. We then solve CCTSP,
requiring that the subtour start and end at node 0. To reduce CCTSP to the case where a
closed subtour is required but the starting node is not specified, we assign a sufficiently

high value io node 1. This assures node 1 will be in the optimal solution, thus giving a
| subtour that starts and ends at node 1.
| If all nodes have equal value, then the objective reduces to maximizing the number
of nodes in the subtour. No transformation is required. We can simply set v; =1 for all i.
When the node values are integer and are not equal, CCTSP is transformed to a problem
where the objective is to maximize the number of nodes in the subtour by creating v;

replicas of node i for each i, resulting in the set of nodes

{11,12,...,1‘,1 ,21,22,...2v2,...nl,nz,...,n\,u]
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and the cost matrix C’, where
¢j, = Cy foralli,j,k,l withi# j
and

¢ii, =0 foralli,k,l.

It is important to note that this is a pseudo-polynomial transformation rather than a

polynomial transformation, as it increases the number of nodes from n to

Suppose we have a problem that is like CCTSP, except that nodes may be visited
more than once. We assume that a node's value is acquired if the node orcurs at least once
in the subtour and that no additional value is acquired for multiple occurrences of the same
node. "I‘hus, the ohly reason to revisit a node is if dbing so results in a cheaper path
between two nodes than the direct path. We note that if the triangle inequality is satisﬁed,
that is, if |

Cik SC;j+cy foralli,jk,

then there is never anything to be gained by multiple visits to a node, since an indirect path
is never cheaper than a direct one. Thus, in this case, an optimal solution exists in which
no node is revisited, and solving CCTSP will give an optimal solution. If we replace ¢;;
with ¢;; where cjjis the length of a shortest path from node i to node j, then the triangle
inequality will always be satisfied.  Thus we can replace C with C*, assume that each node
may be visited at most once, and solve CCTSP. If (ip,iq) is an arc in the optimal solution
under C’ and (ip;is,i,,...,iq) is a shortest route from i, to i, under C‘, we replace the arc
(ip»iq ) in the optimal solution With (i ig.i;,....ig ). |
We have not found a transformation from CCTSP to the variant where nodes may |
be revisited. However, we can make a transformation to a similar problem. Let M be a
sufficiently large number (e.g., M > B) and replace c;; with ¢; = c;; + M foreachi,j. We

allow nodes to be revisited but require that the subtour have cost less than B’ = B+ mM,

13



where m is the number of distinct nodes in the subtour. Although revisits are allowed he
cost constraint assures thét, in any feasible solution, no nodes will be revisited. Hence,
- any feasible solution is also feasible for CCTSP. This is not a precise transformation
because B’ is a function of m, an unspecified variable. In the case where we wish to
maximize the number of nodes rather than the value, we can make a precise polynomial

transformation between CCTSP(recognition) and the corresbonding recognition problem
| that does allow nodes to be revisited. Suppose we desire to know whether there is a
subtour containing m nodes and having cost less than B. We replace c;; with ¢; = ¢;; + M
and ask whether there is a subtour containing m distinct nodes and having cost less than
B’ = B+ mM. Although we allow nodes to be visited more than once, the cost constraint
assures that any feasible subtour contains at most m arcs and, thus, if it contains m distinct

nodes, no nodes are revisited.

3.3 Complexity
In this section, we show first that CCTSP(recognition) is NP-complete. We then

show that, for certain types of approximations, a polynomial algorithm cannot exist unless
P = NP.

Theorem 3.1: CCTSP(recognition) is NP-complete.

Proof: In order to show that CCTSP(recognition) is NP-complete, we must show
(a) that the problem is in NP and (b) that all other problems in NP polynomially transform
to CCTSP(recognition). To show (b), it suffices to show that a problem known to be
NP-complete polynomially transforms to CCTSP(recognition). We will‘ use TSP for this
purpose.

CCTSP(recognition) is in NP if there exists a certificate that can be checked for
validity in polynomial time for every "yes" instance of the problem. By definition, for
every "yes" instance of CCTSP(recognition), there exists a partial permutation

Ty =(n(l),x2),...,n(m)) with m < n, n(1) =1,
m-1

D Caiymti+t) + Cagmynqt) S B,

i=1
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and
m
zvn(") 2 Q.
L=l :

Thus, 7T, is a ccrtiﬁcvate and it can be‘validat'ed in polynomial time by verifying that the
above two constraints are satisfied. Hence, CCT SP(recognitibn) belongs to the class NP.
To conclude our proof, we show that TSP(recognition) polynomially transforms to
CCTSP(recognition). Letv; =1 for ail i, and Q = n. We then ask:
Is there a partial permutation ™ = (x(1), £(2),..., &(m)) with m < n, m(l) =1,

m--1

Z Crii)a(i+l) + Cn(myn) < B,

i=1

and
m
ZV”(,') 2 n?
i=1

A permutation 7T7'that satisfies these constraints must contain m = n nodes and thus
defines a Traveling Salesman tour of the n nodes with total cost B or less. Likewise, any
Traveling Salesman tour with cost B or less defines a permutation 7, that satisfies the
above conditions. Thus, there exists a polynomial transformation from TSP(recognitiOn)

to CCTSP(recognition), completing our proof that CCTSP(recognition) is NP-complete. O

Note that this proof also shows that the special case of CCTSP(recognition) where

~ all nodes have equal value is NP-complete.
Corollary 3.1: CCTSP(optimization) is NP-hard.

Consider now the problem of finding an approximate solution to CCTSP with a
value within K of the optimal solution. We will call an algorithm that finds such a solution

a K-approximation algorithm.

Theorem 3.2: No K-approximation algorithm exists for CCTSP, unless P = NP.
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Proof: Suppose algorithm A is a K-approximation algorithm for CCTSP and we
- wish to solve an instance of TSP(recognition). Let v; = K +1 for i=1,...,n. We then

apply algorithm A to the problem:

(CCTSP) Find a partial permutation 7™ = (x(1),(2),...,m(m)) with
msn, 7(l)=1, and

m—1 :

ch(i).n(m) + Cr(my,n(1) S B

i=1

that maximizes
) m
Z"n(i»
i=1

If there exists a Traveling Salesman tour with cost B or less, then there exists a feasible
solution to CCTSP containing # nodes and, thus, having value n(K +1). Note that this is
the maximum value possible. Hence, if the instance of TSP is a "yes" instance, the optimal
value for CCTSP is n(K +1). By definition, aigorithm A will find an approx.iinate solution
to CCTSP with value n(K +1)-K = (n—1)(K +1)+1 or greater. Thus, the solution must
contain all 2 nodes and have value n(K +1). If the instance of TSP is a "no" instance, there
does not exist a Traveling Salesman tour with cost B or less. Any feasible solution to
CCTSP must contain at most n—1 nodes and have value (n—1)(K +1) or less. We can
answer TSP(recognition) by applying algorithm A ’to CCTSP. The answer to TSP is "yes"
if and only if the value of the solution found by algorithm A is n(K +1).. If algorithm A is
polynomial, then we have found a polynomial algorithm which solves TSP(recognition),

an NP-complete problem. Thus, a polynomial K-approximation algorithm cannot exist
unless P = NP. 0

A fully polynomial approximation scheme for a problem [] is an algorithm A such

that for any'e > 0 (the accuracy requirement), A, is polynomial in the size of [ and 1/¢

an.d

[oPTdT) - AT _ .
OPT(IT) '
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Theorem 3.3: There is no fuliy polynomial approximation scheme for CCTSP
unlcss P = NP.

~ Proof: Supi)ose A is a fully polynomial‘ approxiination scheme for CCTSP.
Consider an instance / of CCTSP where all nodes have a value of 1 and there are n nodes.
Let e=1/n. Then Aé is polynomial in the size of / and n. If A; does not return the
optimal value for an instance / of CCTSP then OPT(I) ~A()21. Also, OPT(I)<n. So,

JOPT(IT) - A.(IT)|

OPT(ID 2l/n=¢.

Thus, A, must return the optimal value and is a polynomial algorithm for the case of
CCTSP where all nodes have equal value. Since. CCTSP where all nodes have equal value

is an NP-hard problem, the existence of A implies P — NP. O

Several complexity questions still remain opén. Our primary‘interest in in the
following: Is there any polynomial approkimation algorithm for CCTSF with a

performance guarantee? That is, is there any algorithm A and number r such that

OPT() - AW _
OPT()

for all instances I of CCTSP?

3.4 Extensions

Two extensions of CCTSP are of particular interest. These are (1) the case where
there are time windows on the nodes and (2) the time varying problem. Both extensions
have practical applications, for example, in the area of battle management for strategic
defense systems. |

In the first extension, the case of time windows, the limited resource is time.
Rather than a budget, a time window, defined by a start and stop time, is placed on each
node and a starting time for the subtour is specified. A node may be visited only during its
time window. In some cases, it may be desirable to wait some period of time at a node
before continuing the subtour and this is allowed. Baker [Ba] presents a branch and

bound algorithm for a limited version of this problem. Rather than seeking a feasible
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subtour of maximum value, he seeks a complete tour satisfying the time window
constraints. If such a tdur does not =xist, the problem is inteasible. CCTSP is the special
case of this extension where all the nodes have identical time windows.

Another extension of CCTSP is the time varying'problem. Again, the limited
resource is time and a start time for the subtour is specified. The node values and the cost
matrix may change over time and‘ are defined as functions of time, v(¢) and C(t). There is
no explicit budget constraint, but an implicit budget constraint may be defined by the time at
which the node values gs to zero. CCTSP is the special case where the cost matrix is
constant and the value funcion is: |

. ={vj fort<B

710 fort>B.

3.5 Applications

The Cost-Constrained Traveling Salesman Problem is applicable to a wide variety
of problems. Mahy problems traditionally treated with TSP are better handled with
CCTSP. This discussion focuses on several applications that have arisen at Lawrence
Livermore National Laboratory (LLNL), and one, more light-hearted, application.

Many military applications of CCTSP have arisen at LLNL. One example was a
project involving battle management for a Free-Electron Laser Strategic Defense System.
In this problem, the "traveling sallcsman" was a laser beam focused by a space mirror, the
tasks were destroying missiles, the resource was time, and the budget was the length of the
window of vulnerability. The time required to destroy a raissile depended on the missile's
type and its angular distance from the previous missile destroyed. The goal was to find a
target sequence which resulted in as many missiles being destroyed as possible. Thisis a
challenging problem since the loss due to a target sequence that is even slightly suboptimal
could be significant. Furthermore, the time required to compute the target sequence ‘was
critical since the problem data would be arriving in real time and time spent computing the
sequence would be time not spent destroying targets. Applications occurring in naval

tactics include task sequencing for mine sweepers and surveillance ships, and target
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prioritization problems arising in naval air defense. Other military applications are
countless. |

In addition to military applications, many operational applications occur at LLNL.
For example, hazardous waste management requires many waste processing tasks with
sequence dependent set-up times to be s:-heduled at a single facility. Any tasks which
cannot be completed within a specified time interval must be contracted to an outside facility
at substantiai cost. Thus, it is desirable to select and sequence the tasks to be completed in-
house such that the cost of contracting out the remzining tasks is minimized.

On the lighter side, another application is the "time-constrained shopping spree" —
the event where an individual wins a shopping spree of a specified time-length at a
particular store. If the layout of the store and both the location and value of items is known

ahead of time, the problem of computing an optimal "shopping strategy" is equivalent to
CCTSP.
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Chapter 4
REVIEW OF PREVIOUS WORK

While a great deal of work has been done on the Traveling Salesman Problem,
relatively little previous work exists for CCTSP. Furthermore, the majcrity of the results
for TSP cannot be exiended to CCTSP. This is particularly true for approximation
algorithms since, for TSP, the cost of an optimal solution is being approximated, while for
CCTSP, it is the value of an optimal solution that is being approximated. We begin this
review of previous work by discussing some common algorithms for TSP that are alluded
to in later sections. This is followed by a discussion of selected work on TSP and related
problems. Finally, we give a brief discussion of previous work on CCTSP. More detailed
discussions of previous algorithms for CCTSP are presented in subsequent chapters.

Four common heuristic procedures for TSP are referred to in subsequent chapters.
These are: the nearest neighbor algorithm, the cheapest insertion algorithm, the farthest
insertion algorithm, and the two-opt procedure. The first three of these are tour building
procedures developed in the 1960's and are difficult to attribute to any particuiar
individuals, while the fourth is a tour improvement procedure developed by Shen Lin in
1965 [Lin].

The nearest neighbor algorithm is a completely myopic procedure. It begins with a
path consisting of a single node, usually the "home base." At each step, the node not yet in
the path that is closest to the node at the end of the path is added to the end of the path.
When 2ll nodes have been added to the path, the last node is connected to the starting node
to form a tour. Rosenkrantz, Stearns, and Lewis [RSL] proved that, for instances of TSP
that satisfy the triangle inequality, the nearest neighbor algorithm always produces tours

with lengths not greater than

(-;—[logz n]+ %—) x optimal tour length.
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Both the cheapest insertion and farthest insertion methods begin with a subtour
consisting of a single ndde, usually the "home base," and iteratively insert nodes into the
tour. At each step in the cheapest insertion algorithm, the cheapest insertion point and |
associated insertion cost is determined for each node not yet in the tour. The cheapest
insertion point for a node is the place in the current subtour where inserting the node results

in the minimum cost increase, where the cost of inserting a node p between nodes i and j is

Cip + Cpj — Cij- .

The node with the smallest insertion cost is then selected and inserted at its cheapest
insertion point. In the farthest insertion algorithm, for each node not yet in the subtour, its
distance from the current subtour is determined. This distance is the minimum of the
distances from each node in the current subtour. The node which is farthest from the
current subtour is selected and inserted in the subtour at its cheapest insertion point. In
both algorithms, the insertion process continues until a tour including all nodes has been
generated. Rosenkrantz, Stearns, and Lewis [RSL] have shown that, for instances of
TSP satisfying the triangle inequality, the cheapest insertion algorithm produces tours
whose lengths, or costs, are not greater than twice the length of an optimal solution, while
for the farthest insertion algorithm they are only able to show that it produces tours whose

lengths are no greater than

(Nog, n]+1) x optimal tour length.

In spite of this, their computational experiments show that, in practice, the average
performance of the farthest insertion algorithm is at least as good as that of the cheapest
insertion and nearest neighbor algorithms.

A tour is said to be A-optimal (or A-opt) if it is impossible to obtain a tour with
smaller cost by replacing any A of its arcs with any other set of A arcs. Making such a
replacement when A =2 is equivalent to inverting, or reversing, the order of a set of
neighboring nodes in the tour. Thus, a tour that is 2-opt is optimal relative to inversion. A
two-opt routine is a procedure that takes a tour and makes it two-optimal by iteratively

performing profitable inversions, until no further profitable inversions are possible.
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One of the early exact algorithms for TSP is a branch-and-bound method that uses
the assignment problcrri for bounding and subtour elimination constraints for branching
[Li]. The assigﬁment problem is a straightforward relaxation of TSP obtained by
dropping the constraints that require the solution to be a single tour. An assignment is a |
union of directed cycles, hence, either a tour or a collection of subtours. By successively
adding subtour elimination constraints, a single tour is eventu'all'y obtained. Garfinkel
[Ga73] devcloped a branching rule, using subtour elimination, that produces more tightly
constrained subproblems than previous subtour elimination schemes. At each node in the
branch-and-bound tree, an assignment problem is solved. If the resulting assignment is not
a single tour, a subtour is selected for elimination. Let {a, ,ay ,...,am}_ denote the sequence
of arcs in this subtour. The pro‘blem is then partitioned into m subproblems where the ith
subproblem includes additional constraints excluding arc a; from the assignment and
requiring the assignment to include arcs a,...,q;_;.

As we have already seen, several results pertaining 17 approximation algorithms
have been obtained for TSP. For the special case of TSP where the cost matrix satisfies the
~ triangle inequality, a number of algdrithms with performance guarantees exist. The most
notable of these is Christofides' algorithm [Ch] which first solves a minimum spanning
tree problem and then turns the tree into a tour by solving a bipartite matching algorithm.
Christofides' algorithm produces tours whose lengths are not greater than 1.5 times the
optimal tour length. Fortunately, in most cases, these approximation algorithms perform
much better than their guarantees. Another notable theoretical result pertaining to
approximation algorithms is that, for the general TSP (where the triangle inequality is not
necessarily satisfied), unless P = NP there is no polynomial algorithm A with a
performance guarantee of the form

lengthy < rx Iengthopl,
where r is a finite constant [SG]. This is proven by showing that such an algorithm could
be used to solve the Hamiltonian Cycle Problem, another NP-complete problem.

Crowder and Padberg [CP] have developed a method of solving TSP to optimality

that has been applied successfully to very large TSP instances. The method, which they
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call branch-and-cut, uses a cutting plane approach coupled with branch-and-bound. The
cutting planes they use are broblcm specific and are based on previous theoretical results
regarding facets of the traveling salesman polytope. Because of this, their algorithm cannot
be applied to CCTSP. If similar theoretical results regarding the CCTSP polytope could be
derived, a similar approach might be developed. Padberg and Rinaldi {PR] applied the
branch-and-cut approach to a variation of the traveling salesman problem having several
~ side constraints, including a cost-constraint. Their computation times, which range from
100 to 500 seconds for 11-city problems, raise doubts about how promising this approach
might be for CCTSP. However, they were applying the approach to a problem
significantly more complicated than CCTSP and, thus, the results may not be indicative of
what would occur for CCTSP.

A problem closely related to CCTSP is the Prize Collecting Traveling Salesman
Problem (PCTSP) [FT], which might be described as the converse of CCTSP. In fact,
CCTSP(recognition) and the recognition version of the PCTSP are identical. In the Prize
Collecting Traveling Salesman Problem, the objective is to find a tour or subtour of
minimum cost, subject to the requirement that at least a specified value be obtained. TSP is
a special case of the Prize Collecting Traveling Salesman Problem. The same observation
does not hold for CCTSP. Furthermore, some of the results for TSP, which cannot be
extended to CCTSP, can be extended to the PCTSP. The proof that a polynomial
algorithm with a performance guarantee does not exist unless P = NP is one example. If
one had an exact algorithm for the PCTSP, it could be applied to CCTSP by
"parametrically” solving a PCTSP formulation. This is done by repetitivcly solving the
PCTSP, varying the total value requirement each time. CCTSP is solved when a value
requirement V is found such that the cost of the optimal solution to the PCTSP does not
exceed B, but the cost of an optimal solution to the PCTSP when the value requirement is |
V +1 does exceed B. Likewise, a heuristic algorithm for the PCTSP could be applied
parametrically to obtain an approximate solution to CCTSP. However, if there existed a

performance guarantee for the PCTSP algorithm, it would not imply a performance



guarantee when applied to CCTSP. The converse of these last three observations is also
true. | | |

Another related problem is the Minimal Cost-to-Time Ratio Cycle Problem. In this
problem, each arc is assigned a profit (analogous to the node vlaues in CCTSP) and a travel
time (anéilogous to the costs in CCTSP). To obtain a minimization problem, the profits are
multipled by —1 and called costs. The objective is to find a subtour, or cycle, for which the
ratio of total cost to total travel time is minimized. Dantzig, Blattner, and Rao [DBR]
showed that the problem reduces to finding negative cycles within an iterative framework’
and can be solved in O(n3log r) time, where n is the number of nodes and 7 is the
maximum entry in the profit and time matrices. We note that when the travel times are non-
'negat‘iv‘c and the travel time and cost matrices are symmetric, an optimal solution is the
cycle formed by the arcs (f,]) and (},f), where (f,j) = argminc;; /t;;. To prove this,

consider any cycle C. The cost-to-time ratio of C is

C» C»
Cij iy ij
DD N D Y it Y B
()eC _ )€y (hi)eC Tl _ T (J)eC i
2t E'u Xk 2t
(i.j)eC (i.j)eC ‘j)EC (i.j)eC

_ Prior to this dissertation, relatively little research had been done on CCTSP.
Golden, Levy, and Dahl [GLD] published a heuristic algorithm in 1981 for a
generalization of TSP for which CCTSP is a special case. Their algorithm is based on the
cheapest insertion algorithm but uses a linear combination of node value and insertion cost,
rather than insertion cost alone, to select nodes for insertion. No computational
experiments were conducted to determine the quality of the algorithm.

In 1984, Tsiligirides [Tsi] addressed the sport of orienteering and formulated the
problem faced by orienteering competitors as what we called "CCTSP-path" in the previous
chapter. He developed several variations of two heuristic algorithms and compared them
using three test problems and a number of budgets for each. The favored method, called
"Tsiligirides' Stochastic Algorithm" in later papers, is similar to the m;arést neighbor

algorithm. Rather than using distance alone, nodes are selected for addition to the path

[N}
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based on the ratio of their value to their distance from tﬁc last node in the path. Also, there
is randomization in the node selection process. Thus, the algorithm can be repeated a
number of times and the best solution chosen. |

Golden, Levy, and Dahl [GLD] presented another heuristic algonthm for CCTSP
in 1987. Thclr algorithm was based on an idea which they called ' ‘center of gravity." The
algorithm did not include any randomization. However, the algorithm generated a number
of solutions bearing a deterministic relationship to each other. The algorithm compared
favorably with ‘Tsiligirides' stochastic algorithm for the three test j)roblems used by
Tsxhgmdes Further computational experiments were not conducted.

Later in 1987 Golden, Wang, and Liu [GLW] developed a more complicated
heuristic for CCTSP. ' Their algorithm was less myopic than the previous algorithms.
When selecting a node for insertion, they took into consideration how the insertion of that
node might affect the future progress of the algorithm. Their algorithm utilized
randomization but also had a deterministic component in the repetition process. Again,
computational experiments were done using the three test problems presented by
Tsiligirides, and their algorithm compared favorably to the previous two in terms of
solution quality. It required substantially more computation time than the ccntér of gravity
algorithm. No corhputational experiments were done to determine how close any of these
heuristics came to optimality. This algorithm, as well as the other heuristics for CCTSP,
are prescmed in greater detail in Chapter 9.

Two exact algorithms for CCTSP, utilizing different branch-and- bound schemes,
were developed in 1988.  One, by Laporte and Martello [LM], uses a very simple
branching rule and an upper bounding method based on the knapsack problem. The other,
by Kataoka and Morito [KM], uses an approach similar to the branch-and-bound method
described above for TSP. Bounding is done using a variant of thé assignment problem,
and branching is based on subtour elimination. Since the two algorithms were developed at
approximaliiv the same time, no comparison of the two methods was made. These two

methods are discussed in further detail in Chapter 8.
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Chapter 5
SPECIAL CASES

~In this section, we present some special cases of CCTSP that can ‘be solved in
polynomial time. Many special cases of TSP have been shown to be solvable with efficient
polynomial algorithms. The special cases discussed here are a subset of those presented
for TSP in a survey by Gilmore, Lawler, and Schmoys [GLS]. Each one is defined by

placing restrictions on the cost matrix C and, in some cases, requiring the nodes to have

equal value.

5.1 OQuter-Sum Matrices
Our definition of an outer-sum matrix is inspired by the constant TSP. A constant
TSP is one for which all possible tours have the same cost. Berenguer [Be] has shown

that the only cost matrices C for which all traveling salesman tours have the same cost are

those of the form
¢ =a;+b; foralli,j.
We will call matrices of this form outer-sum matrices. An interpretation of this form is that

each node has associated with it a fixed cost for entering that node and a fixed cost for

leaving it. The cost of traversing an arc is the sum of the cost of leaving its origin and the

cost of entering its destination.

Theorem 5.1: For CCTSP where C is an outer-sum matrix, the cost of a subtour
depends only on the subset of nodes included in the subtour and not on the order in which

these nodes are visited. If § is the subset of nodes contained in a subtour, the cost of the

subtouris

> (a; +b;).

ieS
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Proof: We can divide the cost of each arc (i, ) into the cost of starting at node i
(a‘-) and the cost of ending at node j (bj). We know that there are exactly |S| arcs in the
subtour and that each node in § is the starting point of exactly one arc and the endpoint of

exactly one arc. Thus, the cost of the subtour is

d(a+b). o

ieS
Theorem 5.2: For CCTSP where C is an outer-sum matrix and all nodes have

equal value, an optimal solution is to cycle through the first m nodes, where the nodes are
labeled such that

 ;tbysay+by<...<a,+b,.

and m satisfies

m m+1

C D(a+b)sB< Y (a+b).
i=1 i=1
Proof: By Theorem 5.1 and the definition of m, the cost of a subtour containing
nodes 1,2,...,m is less than or equal ‘to B. Thus, the proposed solution is feasible.
Furthermore, any subtour with a greater value contains node 1 and at least m other nodes.
By Theorem 5.1 and the definition of m, the cost of such a tour must be greater than B.

Thus, there are no feasible tours with a greater value. [1

In the general case, since the cost of a subtour depends only on the subset of nodes
included in the subtour and not on the order in which they are visited, the problem reduces

to

mavai

ieS

subject to: Z(ai + b,—) <SB-(a +b)
i€S
Sc(2,3,...,n}.

This is equivalent to the knapsack problem,
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n
(KP) max . v;x;
i=1

n
‘subject to: Y c;x; < B
i=1
x;=0or1 foralli,
which is known to be NP-hard [PS]. When the costs c; and the budget B are integer, KP
‘can be solved in O(nB) time using a dynamic programming algorithm {Dan]. However,
' since this algorithm is pseudopolynomial — it depends on the magitude of B — its
computational'efﬁcicncy is highly dependent on the scale of the problem.
5.2 Small Matrices
A matrix C is called small if there exist n-dimensional vectors a and b such that
cj = min{al-,bj}. These matrices have the property that, for each node, there is a cost
associated with entering that node and a cost associated with leaving it. When traversing an
arc, one chooses whether to incur the cost of leaving its origin or to incur the cost of
entering its destination, rather than incurring both. We will assume that all of the elements
of @ and b are distinct and define d; as the ith smallest of the 2n distinct values of a and b.

Thus, d; <d; <...<d,,. Note that {d},dy,....ds,} = {0,030, 02n } U {B1. By B}
We will show that CCTSP where C is a small matrix and all nodes have equal value can be

solved in O(nz) time.

Theorem 5.3: For CCTSP with a small matrix C, supposé D ¢ {d,.d,,....dy,)

is the set of arc lengths for the arcs that comprise a subtour containing node 1. Then either
(i)  For some node i, both @; € D and b; € D,

or (i) D cfa,a,,...,a,)and g € D,

or (iil) D c{by,by,....b,) and by € D.

Proof: Suppose D < {(a,,a,,...,a,}. If node 1 is in the subtour, then the subtour

uses some arc (1,k) with arc length ¢}, = min{a,,b;}. This means that a; € D.

28



Suppose D < {b,b,,...,b,). If node 1 is in the subtour, then the subtour uses
some arc (k,1) with arc length c;; = min{ay,b }. This means that b € D. |

Suppose D ¢ {a,a,,...,a,} andD & {b,by,...,b,}. Then, viewing the subtour as
a continuous loop, at some pqint in the subtour, an arc with cost ; must be followed by
one with cost a; for some i and j. 'But this means that arc (k,i) is followed by arc (j,1),

which means i = J. Thus, both g; € D and b, eD. O

Theorem 5.4: Let D* be the D with maximum cardinality that satisfies the
conditions of 1iieorem 5.3 and satisfies
c(p*)= Y a,<B.
ieD*
Then there exists a feasible subtour containing ID*} nodes, and theré do not exist any

feasible subtours containing more than |D*' nodes.

Proof: First let‘us show that there exists a feasible subtour containing ID*" nodes.

Suppose D" satisfies condition (i). Let D be the set of nodes with neither a; or b,
in D*, D, be the set.of nodes with only g; in D*, D, be the set of nodes with only &; in
D*, and D, be the set of nodes with both @ and b, in D*. Note that
|Da|+|Dy|+ 2Dy | = |D*| < n and |Dy|+|D,|+|Dy|+|Da|= . Thus, |Dy|2|D,|. Construct a

subtour as follows: start at any node in D,, visit the nodes in D, in any order, go to a

node in Dy, (choose node 1 if 1€ Dy), visit the nodes in Dy, in any ordcr, and complete the
tour by alternating between nodes in D, and Dj until the nodes in D, are exhausted,
finally, returning to the étarting node. This subtour contains node 1 and has a cost no
greater than C(D").

Suppose D* satisfies condition (ii). Let D, be the set of nodes with ; in D".
Visit the nodes in D, in any order. This subtour contains node 1 and has a cost no greater
than C(D").

Finally, suppose D" satisfies condition (iii). Let D, be the set of nodes with b; in
D*. Visit the nodes in D, in any order. This subtour contains node 1 and has a cost no
greater than C(D* )
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Now let us show that there is no feasible subtour containing more than ID l nodes.
Let D be the set of arclengths for the arcs that comprise a subtour containing node 1 and

|D| > ‘D*I. By Theorem 5.3 and the definition of lD*‘, the cost of the subtour is greater than
B. 0O

Thus, in order to solve CCTSP where C is a small matrix and all nodes have equal

value, we need only find D* as defined in Theorem 5.4. Let

k
ki = arg}‘nax Zdj <SB-(a;+b)
J=1

d/'#a"
dj#b"

and
D; = {dl’d2a---vdki} Ufa;,b;) forallie(l,2,...,n)
D, =({d),a,,....d } " (ay,a3.....a,)) U (a})
D, = ({d},d,,... W, I N {b1,6y,....6,) 10 {By).
Then, D* = argmax{|D,}|Dy}|Di}|Dy}....|D,l}. These computations can be made in
O(nz) time.
5.3 Circulant Matrices
In this section, we show that the problem CCTSP-path where all nodes have equal

~value can be solved using the nearest neighbor rule (add the nearest (cheapest) unvisited

node to the end of the path) when C is a circulant matrix. A circulant matrix is a matrix of

the form
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Co G . Cy  oos Cﬂ*l?
Ch-1 €0 € v Cpog
C=1Ci2 Cut Co .+ Cpo3
i Cy Cy €3 ... Co ]

The cells (i, /) such that (j —1) = k(mod n) all have the same value c,. We call these cells
the kth stripe of C. Garfinkel [Ga77] has shown that the assignment given by the kth
stripe yields gcd(k,n) subtours each containing n/ gcd(k,n) nodes.
Define k(0), k(1),-.., k(n—1) such that cyp)  Ciqqy S...S Cyp_yy and let
go = ged(k(0), n)
gin = god(k(i+1).8;).

The arcs from stripes k(0), k(1),..., ki) yield a subgraph with g; connected components,
each containing n/g; ‘nodcs (see Gilmore, Lawler, and Schmoys [GLS]). Suppose we
desire a connected component containing m nodes. If we use only the arcs from stripes
k(0), k(1),..., k(i), we know that we can only obtain connected components with at most

n /g; nodes in them. Thus, at best, we can produce [.’{‘_ gi] disjoint components of which
n ‘

[—"—1- g;J contain n/g; nodes and one contains m — [—”1 g Jn /g; nodes.
n n

Theorem 5.5: If C is a circulant matrix, a lower bound on the cost of connecting

m nodes is

TR R EIRHET S 0 KA

Proof: Connecting m nodes requires a minimum of m —1 arcs. To obtain a lower
bound, we assume exactly m -1 arcs are used. As previously stated, using only arcs from
stripes k(0), k(1),..., k(i) results, at best, in [_r_n_ g‘-.' disjoint components. Thus, at least

in—g,- -1 arcs must come from stripes k(i + 1)',1...,‘k(n —1), leaving m —[—m—g;-l arcs that
ca’; come from stripes &£(0), k(1),..., ki). Applying these bounds iterativcl; results in the

lower bound given above. 0
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Corollary 5.1: If C is a circulant matrix and al! nodes are of eq‘ual value, an
upper bound on the bptimal value of CCTSP-path is m where m solves

max m
1smsn

subjectto ‘ |
m (m m m m
R R E R T ER N O 0

Theorem 5.6: If C is a circulant matrix and all nodes are of equal value, the

nearest neighbor rule yields an optimal solution to CCT: SP-path.

Proof: Starting at node 1 and applying the nearest neighbor rule results in a

sequence as follows, where a always refers to the last node in the current path:

0) Repeatedly add node a + k(0) (modn) to the path until the next addition
will result in a cycle or will exceed the budget.

1) Add node a+ k(i; ) (mod ) to the path where i, = min(i >01g; # go).

Repeat from Step O until the next addition will result in a cycle or will
exceed the budget.

j) Add node a + k(i j) (modn) to the path where i; = min(i >0l 8i; # g;j;l )

~ Repeat from Step O until the next addition will result in écyclc or will exceed
the budget.

The end result of this sequence is a path containing m nodes and having cost
N (R e
80 | Lk || 80 || 8 | ekt | 82 | - &n-1 | [Ck(n1)

where m is as defined in Corollary 1. O
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5.4 Upper Triangular Matrices

A matrix C is upper triangular if i 2 j imnplies ¢;; =0. We will show that solving

CCTSP, where C is an upper triangular matrix, is as easy as computing shortest paths.

Theorem 5.7: For CCTSP where C is an upper triangular matrix, the cost, or
length, of a subtour containing node m is at least as great as the length of the shortest path

from node 1 to node m.

" Proof: Sinu: a subtour containing node m must contain a path from node 1 to
node m, and the cost matrix C is non-negative, the cost of a subtour containing node m

must be at‘least as great as the length of the shortest path from node 1 to node m. O

Theorem 5.8 For CCTSF where C is an upper triangular matrix, if there exists a
path 7 from node 1 to node m with cost less than or equal to B, then there exists a feasible

subtour z’ containing nodes 1 through m.

Proof: Let n’ start at node 1 and follow the same path as 7 until node m is
reached. From node m, visit the remaining nodes in the set {1,2,3,..,m} in order of
decreasing index, returning to node 1 at the end. The portion of 7* from node 1 to node m
has a cost no greater than that of 7. The remaining portion of 7’ has a cost of 0. Thus, 7’

is a feasible subtour. O

Theorem 5.9: An optimal solution to CCTSP, where C is an upper triangular
matﬁx, is to follow the shortest path from node 1 to node m, and then visit the rernaining
nodes in the set {1,2,...,m} in order of decreasing index, returning to node 1 at the end,
where m is the maximum index for which the shortest path from node 1 to node m has

length less than or equal to B.

Proof: By Theorem 5.8 and the definition of m, the proposed solution is feasible.
Any solution having a greater value must contain a node with index greater than m + 1, but

by Theorem 5.7 and the definition of m, such a solution cannot be feasible. O
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Theorem 5.10: If C is an upper triangular matrix, then the length of the shortest

path from node 1 to node j is less than or equal to the length of the shortest path from node
1tonode j +1. '

Proof: Because of the special structure of C, the path obtained by taking the
shortest path from node 1 to node j and then visiting node j +1 has a length equal to the
shortest path from node 1 to node j+1. O

Corollary 5.2: Solving CCTSP, where C is an upper triangular matrix, requires

computing at most O(logn) shortest paths.
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Chapter 6
EVALUATION FRAMEWORK

In this chapter, we describe the evaluation framework used in computational
evaluation of the algorithms presented in the following three chapters. The performance
measures used are defined first, and include both speed and solution quality. This is
followed by a description of the types of test problems used in the evaluations. The test
problems used encompass many different problem characteristics. This was done as an

effort to uncover sensitivities of an algorithm's performance to problem characteristics.

6.1 Performance Measures

Algorithms are evaluated based on two performance measures: solution quality and
computation speed. Exact algorithms are evaluated on computation time alone. Statistical
tests are used in evaluating the difference between two algorithms.

The quality of a solution generated by an upper bounding method or a heuristic

algorithm is measured in terms of its closeness to optimality. For upper bounding

methods, the measure used is

UB-V
% error = 100 x ——224

opt
where UB is the upper bound obtained by the algorithm and V,, is the value of an optimal

solution obtained by an exact algorithm. For heuristic algorithms, the solution quality is
measured by

vV -~V
% error = 100 x —2_hear

opt

where V.., is the value of the solution obtained by the heuristic. For problems which are
100 large to obtain an optimal solution with one of our exact algorithms (the test problems

with 50 or more nodes), V,, is replaced with the value of the best known solution,
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obtained by applying several heuristics to the problem. The solution quality of an
algorithm is generally reported as an average over a number of test problems sampled froin
the same population. |

In comparing two algorithms, the Wilcoxon Signed Rank Test [BJ], a
nonparametric statistical test, is used to check whether there is a significant difference in the
quality of solutions they produce. The null hypothesis is that there is no difference in the
performance of the two algorithms. The alternate hypothesis is that one algorithm produces
solutions with a smaller errbr than the other. The null hypothesis is rejected if the
probability, under the null hypothesis, of observing differences at least as large as the
differences obtained in the computational experiments is less than 5%.

The computation speed of an algorithm is the amount of CPU time (reported in
seconds) required to execute the algorithm. Input and output are not included in the CPU
time. As with solution quality, CPU times are generally reported as an average over a
number of test problems saniplcd from the sume population. Computational experiments
were conducted on a SUN 4/330 workstation, wiich has a 25 MHz SPARC processor and
is rated at 16 MIPS and 2.5 MFLOPS. The resolution of the CPU clock on this machine is

16.67 milliscconds.

6.2 Test Problems

In our computational experiments, we desired test problems which would stress an
algorithm, as well as ones that might represent an average case. The key factors which
might affect an algorithm’s performance are the structure of the cost matrix, the relative
values on the nodes, and the percentage of nodes in an optimum solution. Computational
experiments were conducted using test problems representing 18 different combinations of
problems characteristics. These characteristics, which we discuss below, are: class,
distribution, node values, and budget. In our experiments, we specifically looked for
sensitivities to problem characteristics, both in the performance of a specific algorithm and
in the comparison between two or more algorithms.

Our test problems can be divided into two classes: Euclidean and non-Euclidean.

In Euclidean problems, the nodes correspond to points in a plane and can be represented by
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x-y coordinates. The cost matrix is the matrix of Euclidean distances between the nodes
and, therefore, is synimetn'c and satisfies the triangle inequality. Non-Euclidean problems
do not necessarily have a geometric representation. The cost matrix may be any nx n non-
negative matrix. However, in all the non-Euclidean problems we generated, the cost
matrices were symxhetric. Furthermore, we applied a shortest-path algorithm to the cost
matrices (treating costs as distances) and replaced them with the matrices of shortest-path
costs. This results in matrices that satisfy the triangle inequality. Doing this is analogous
to allowing indirect paths to be taken (which may result in multiple visits to a node) when it
is advantageous to do so. |

For both Euclidean and non-Euclidean problems, test problems are generated using
three different distributions: uniform, clusters, and outliers. For Euclidean problems, the
distribution refers to the distribution of nodes in the x-y plane. Cost matrices for uniform
problems are generated by distributing nodes uniformly in a circle of radius 100, and
calculating the resulting distance matrix. (We chose to use a circle rather than a square or
rectangle because it seemed better suited to the following two types of problems.) Clusters
refers to a problem where uniform clusters of nodes are uniformly distributed. The
problems are generated by first generating cluster points and corresponding cluster sizes.
The cluster points are uniformly distributed in a circle of radius 100. The cluster sizes, that
is, the number of nodes in a cluster, are uniformly distributed between 1 and 0.4n -1 for
problems with less than 50 nodes and between 1 and 0.2n—1 for problems with 50 or
more nodes. The cost matrix is then generated by distributing the appropriate number of
nodes uniformly in a circle of radius 20 centered at each cluster point, and calculating the
resulting distance matrix. In outlier problems, 80 percent of the nodes are uniformly
distributed within a circle of radius 100. The remaining nodes are uniformly distributed in
the ring formed by this circle and a concentric circle of radius 200. Again, the cost matrix
is the resulting distance matrix. For all problems, entries in the distance matrices are
rounded up to integer values.

In non-Euclidean problems, the entries in the cost matrix are directly generated.

This is done in such a way as to be analogous to the Euclidean distributions. For uniform

37



problems, symmetric entries in the cost matrix are integers uniformly distributed between 1
and 200. The matrix is then replaced by the matrix of shortest paths. For clusters, ﬁrst
cluster sizes are generated as deﬁnéd above. A matrix of distances between cluster points
is then generated with symmetric integer entries uniformly distributed between 1 and 200.
Then, for each cluster, an (m+1)x (m+1) sub-matrix is generated with integer entries
uniformly distributed between 1 and 40, where m is the cluster size. These distances are

combined in a single matrix. An example where there are two clusters of two is

ffTo 25 157 70 - -

25 0 10| - - -
1510 0] - - -
0 - - [0 10 30
- - - |10 0 35
|- - - |30 35 0]

The matrix is then replaced by the matrix of shortest paths, and the rows and columns

corresponding to the cluster points are thrown out. For the above matrix, this results in

0 10 105 125
10 0 95 115
105 95 0 35
125 115 35 0

For problems with outliers, first a (0.8n + 1)x (0.8n + 1) matrix is generated with integer
entries uniformly distributed between 1 and 200. This matrix is then combined with a

(0.2n+1)x(0.2n +1) matrix with integer entries uniformly distributed between 201 and

400, as shown below for n = 5.

"0 30 105 175 65 -]
30 0 45 60 120 -
105 45 0 110 140 -
17 60 110 0 20 -
65 120 140 20 0 310
- - - =310 0

-
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This matrix is then replaced by the matrix of shortest paths, and the row and column where
the two original matrices overlapped are thrown away.

For each cost matrix, two different séts of node values are used: one where all
" nodes have equal values, and one where the node values are integers uniformly distributed
between 1 and 10. For uniform problems, three a‘dditional‘s‘ets of values are used: integers
uniformly distributed between 1 and 100, integers uniformly distributed between 1 and 3,
and integers obtained by rounding down a variable that is exponentially distributed with a
mean of 5 and then adding 1 (v; = 1+|x ], where x ~ exp(1/5)).

Each problem (defined by a cost matrix and node values) is solved using several
budgets. The budgets are defined as a fraction of the cost of a complete tour, obtained
using a heuristic algbrithm for TSP. The farthest-insertion algorithm in combination with a
two-opt routine was used to obtain an approximate TSP solution. Generally, the budgets
- used were 0.25, 0.50 and 0.75 times the cost of the approximate TSP solution.

Due to the large number and variety of test problems used, in the following three
chapters, only highlights of the computational results will be presented. Detailed results are
available in Appendix C.
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Chapter 7
UPPER BOUNDS

Bounding methods are methods which can be used to establish a range within
which the optimal value for a problem must lie. For a minimization problem, lower
bounding )nethods are used to generate lower bound& on the value of any feasible solution.
Thus, if a feasible solution is found with a value equal to a lower bound, it must be
ontimal. The value of a solution found by a heuristic algorithm is used as an upper bound.
Similarly, for maximization problems, upper bounding methods are uscd to generate upper
bounds on the value of any feasible solution. A heuristic algorithrn is used to find a lower
bound. Bounding methods generate an optimistic estimates of the optimal value. A good
bounding method generates a bound which is close to the optimal value.

Bounding methods generally work by calculating the optimal solution to a

relaxation of the original problem. For example, if the problem is

max z(x), subject tox € S, ¢))

an upper bound may be calculated by solving the relaxation

max z(x), subject tox € T, where S c T. ‘ (2)

Since S T, the solution te (2) must be greater than or equal to the solution to (1).
Bounds that are close to the optimal value are called tight. Given two upper bounding
methods F and F,, if, for any problem instance, the bound generated by F is never
greater than the bound generated by F,, then we say that method F dominates F,.

Suppose that the problem to be solved is (1), bounding method F is
max z(x), subject tox € Ty, Qhere ScT,

and bounding method F, is
max z(x), subject tox € T,, where S < T,,.

If T} T, then F dominates F;.



Bounding methods and the bounds generated by them have several uses. One type
of heuristic algorithm is one that enumerates increasingly good feasible solutions, stopping
when a solution is found with a value within some specified percentage of the bound. This
type of algorithfn can be dangerous, unless we can guarantee that a feasible solution exists
within that percentage of the upper bound. Often, as with Christofides' algorithm [Ch] for
TSP, heuristic algorithms are based on bounding methods. This is especially true for those
heuristics which have performance guarantees. As we will discuss later, branch-and-
bound algorithms are often used for combinatorial optimization problems, and their success
is highly dependent on the use of good bounding methods. Another use for bounds is in
the evaluation of heuristics. In order to empirically evaluate a heuristic, based on the
closeness of its solution value to the optimal value, we must know the optimal value for the
problem. However, heuristic algorithms are of most interest in cases where the true
optimum cannot be obtained. Ir. these cases, we may choose to evaluate heuristics by
comparing their solution values to bounds on the optimal solution.

We present several methods for obtaining upper bounds for CCTSP. Some of
these methods can be shown to dominate others. However, methods which generate looser

‘bounds may still be of interest. Generally, computing a tighter upper bound is more
difficult and requires greater time. It is sometimes desirable to generate an upper bound

quickly and easily rather than make it as tight as possible.

7.1 Knapsack Bounds
One method of computing an upper bound for CCTSP is to soive the following

relaxation of formulation IP, (defined in Section 3.1):
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maxiiv,x,j | | (F)

n :
dx;sl i=23,...,n
j=1
n
ZXU =1
J=2 ‘

X = for all i

xj€{01} foralliandall;

An upper bound on F;, and hence on CCTSP, can be found by solving the linear

programming relaxation of F; using a greedy algorithm. For each node i, let

mm{c,j}
J#

and relabel the nodes such that
Volwy 2 v3/wa 2.2 V,/w,.

Let

k
m= mkax{k | Zw‘« < B}.
‘ i=1

Then an optimal solution to the linear programming relaxation of F is

‘x‘-j=1 fori<mandj= ar%r‘un{ }

m
Im+l,j = cm+1.j/(8— Zwi] forj = argmlln{ m+1, j}
i=1

]#-

and x; =0 otherwise.

Note that this is equivalent to solving the linear programming relaxation of the following

knapsack problem, where the weights w; are as defined above:
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| i |
max v+ Y VY, | -~ (KP)
=2
n
subject to: Y w;y; S B—w
i=2
y; €{0,1} foralli.

In the case Wherc all nodes have equal value, with the possible exception of node 1,
the pfoblems F; and KP can be solved exactiy. ‘The optimal solution is as described above,
€XCEPL X,y ; = O for all | |

Laporte and Martello [LM] describe a mdre general upper bounding method based

on the knapsack problem. They show that the problem KP where
w; = m}l‘}’.‘{%’} +(1- a)tllcg?{cjk} for all j

provides an upper bound for CCTSP for any specified value of o with 0 < & <1.

Computing this bound is cqﬁivalcnt to solving the following relaxation, F,, of IP;, which

1

is derived by replacing each x; in IP; with ocx,-lj +(1~- a)x,% where x;;

= x,% and then

dropping the constraint x}j = x,-'j’- as well as the subtour elimination constraints.
’ n n 1
max 2 v‘-x,'j (F 2 )
i=1 j=1 ‘
n n

subject to: ZZCU((I —a)xk + ax~2-) <B
i=l1 j=1

n

> x <1 i=2,3,.,n

j=1

- 1

2% =

j=2
n n
Yxi-Y =0 j=12...n
i=1 k=1

xk = for all i, k

xke{0,1} foralli, j, k
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We note that the value of o that results in the tightest bound is p >blem specific. .

For example, let v =(1,1,...,1), B= 6, and
(o0

- -

and C2 =

(SR ST S N S S
g NN
S I S B N
SIS N
§ VN —

2
2
2
2

SEESEES

2
2
2
2

Pk ek ped b
NN NS

- ' - - -

‘Using values of 0 and 1/2 for « gives upper bounds of 3.5 and 4 respectively for matrix
Ci, and bounds of 5 and 4 rcspccu'vely fof matrix C,. In both cases, the optimal solution
to CCTSP has a value of 3. Experiments by Laporte and Martello indicate that on the
averagc, setting o = 1/2 provides the best bounds. ‘

Since KP is, itself, an NP-hard problem, Laporte and Martello obtain an .upper
bound for CCTSP by computing an upper bound to KP using the method of Martello and

Toth [MT]. To compute this bound, assume the nodes are labeled such that

V2/W2 2 V3/W3 2.2 Vn/Wn
and that

Node /+1 is either included in the optimal subtour or not included. This gives bounds

UB, and UB, respectively, where

I+1 i+1 ‘
UB] = Zvj [ZW - ]—
=i Wi

1 1
UB2 = ZVJ +(B"ZWJ)—&1'2—.
j=1

j=1 Wit2
An upper bound on KP is then

UB = max{UB,,UB, }.



Henceforth, we will refer to the upper bounding method defined by Laporte and
Martello as the KP-bound (KPB). We now describe an upper bounding method which is
an improverhent on KPB. This improved bound, which we call the IKP-bound (IKP),
‘dominates KPB.

We first note that, provided the optimal solution contains more than two nodes,

Xxij+xj 1 foralli, j. Thus, we let the weights on the nodes be

w; = #r}%mj{acij +(1- a)cjk} for all j.
=k

This is equivalent to adding the constraint

xf+xi <1 foralli,
to F,. When C is a symmetric matrix, this always results in larger weights, and, hence,
tighter bounds, than KPB. Furthermorg:, if C is symmetric, then, for the weights defined
above, the optimal value of e is 1/2. On the other hand, when C is symmetric, the weights
defined by Laporte and Martello result in |

Wj = ax}li;){cij} +(1- a)T,Z?{Cf"} = T;ei?{cﬂ‘} for allj
regardless of the value of & Henceforth, unless otherwise stated, we will set a = 1/2.

We also note that a node cannot be in a feasible solution unless it is "reachable"

from node 1. The set of reachable nodes is.
S = {jlc,’j +cy < B}u{l}
where cj; is the length of the shortest path (treating costs as distances) from node i to

node j. The node weights are, then,

;= mi s+ (1-a)c; or jeS,
w; i'?&r{j{ac‘, +(1 a)clk} for jes
izk

wj=eo for jes§.

A second improvemeni is obtained by computing a tighter bound on the knapsack

problem. In the method of Martello and Toth, the fractions
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w;—B{— and B->Yw |—
j=1 ! Wi U = " Wi

used in computing UB, and UB,, respectively, may be greater than 1. With this in mind,
we replace UB,; and UB, with

k ‘ k+1
where k(< [) satisfies ij SB-wy < ZWj
| j=1 j=1

! k ! k
v
and,UB2=Zvj+ Evj+(B— wj— ij) k1l
‘ P

j=l T j=le2 j=i+2 )Wk
k l k+1
where k(2 [ +1) satisfies ijs B—ij < ij.
j=l+2 j=1 j=l+2

Since the weights w; were calculated assuming the optimal solution contains more

than two nodes, the case where it contains exactly two nodes must also be considered. To

account for this case, we let

k= arglix}ax{vi ley + ¢y < B}
We then have

UB = max{v; +v;,UB,,UB, }.

We make two additional observations. First, in the case where all nodes have equal
values, the knapsack problems associated with KPB and IKP can be solved exactly.

Second, when a =0, the knapsack problems associated with KPB and IKP are equivalent

to K.
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An even tighter bound (TKP) can be computed by specifying the nodes preceding
and following node 1 in the subtour. Let r and s denote the nodes preceding and following

node 1, respectively, and let

§ ={jicf; + ¢} < B]

and T ={(r,s)leys + ¢ + ¢, < B}

- where ¢j; is the length of the shortest path (treating cost~ as distances) from node i to

node j. Then
wj(r,s) = ;rgsigr{ac;j +(1- a)cjk} forj e S\r,s

keS\.
izk

wi(r.s)= min {ac, +(1-a)cy}+ec,q +cy
ikeS\r,s ‘

wi(r,s)=o forje{l}US\r,s
and

UB(r,s) = max(v. + v, + v, UB,,UB,)

where UB, and UB, are calculated as in IKP. Again, the case where tne optimal solution

contains exactly two nodes must also be considered. Accounting for this case, we have

UB = max (v, +v;,UB(r,s))
(r.s)eT

where

k = argrrllax{v,- ley + ¢,y S B}
(£

Computing TKP requires O(n® logn) time, while KPB and IKP require only O(x”).

7.2 The Parametric Assignment Bound

An upper bound on the number of nodes which can be in any feasible solution to
CCTSP can be found by solving a parametric assignment problem. For the case where all
nodes have equal value, this results in an upper bound on the value of an optimal solution
to CCTSP. For cases where nodes do not have the same value, we can still use the

parametric assignment problem to derive an upper bound on the value of an optimal
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solution. We first obtain a bound m on the number of nodes in an optimal solution. We
then sum the values of the m most valuable nodes. Henceforth, we will refer to the bound
“based on the parametric assignment problem as the parametric assignment bound (PAB).
The bound PAB is designed for problems where all nodes have kequal values, but, as noted
above, can also be applied to the general problem. However, we do not expect the bound
to be very good in the case where nodes do not have equal values.
To compute PAB, we use the following relaxation, F;, of IP;, assuming all nodes
have equal value. |

nnax:E::E:xU (Fé)

i=]j=1

n n
subject to: 3 D ¢;ix;; < B
i=1 j=1

Yox;<1 fori=2,3,...n
j=1

x; <1 forj = 2,3,....n

M:

1

Ma

:E:]&l—-l
J 2

x;=0 forall i
x;j €{0,1} foralli,j
This is equivalent to forming a bipartite graph with n nodes on each side and finding a
maximum cardinality assignment subject to the cost constraint.
We define the parametric assignment problem (PAP) as the problem where n—m
nodes from each side may be assigned, without cost, to dummy nodes on the opposite

side.
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Z,, = min ﬁ‘icu"u (PAP)

i=. j=1

n+l

subject to: Zx,-j =1 for i=12,...,n
j=1 g
n+l1
Zx‘-j =1 for j=12,..,n
i=1

n n
Y= x=1
CJj=2 i=2
n+l n+l
Xn+l,j = lei.rwl =n—m
1 j=

x; =0 fori =1,2,...,n
x; €{0,1}  foralli,j

Several efficient algorithms (e.g. the Hungarian Method [PS]) are available for solving
assignment problems such as PAP. |
Suppose the optimal value of F; is m*. Then, z,, < B for m <m*, and z,, > B for
m>m*. Thus, we can solve F; by adjusting the parameter m in PAP until we find m*
such that z,,. < B and z,,,, > B. This gives an upper bound on the number of nodes in
any feasible solution to CCTSP. An upper bound on the value of any solution to CCTSP
is
m
PAB= 3v,
i=1
where the nodes are labelled such that v, < v3 <...<v,. In the case where all nodes have
equal value, this reduces to PAB = m*.
Note that the constraints for F, are a subset of the constraints for F;. Thus, in the
case of CCTSP where all nodes have equal value, PAB dominates both KPB and IKP

when a = 0. However, this is not necessarily the case for other values of o.

7.3 The Cost-Constrained Assignment Bound
We now present an upper bounding method which uses a relaxation of the

formulation IP, (defined in Section 3.1). We replace the objective function
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with
nn
max V- Z Zpijx;j
i=]j=1
where
n 0 ifisj
V=3 v and p;= {

P v, ifi=j.

We force node 1 to be in the solution by setting ¢;y =eo, and set ¢; =0 for all i # 1.
Dropping the subtour elimination constraints and the cost constraint leads to a standard
assignment problem. We drop the subtour elimination constraints but retain the cost

constraint. We call this formulation the cost-constrained assignment problem (CAP).
| Since CAP is a relaxation of CCTSP, its solution provides an upper bound, the cost-

constrained assignment bound (CAB), for CCTSP.

nn
i=1j=1
n .
subject to: Zx;jzl forj=12,...,n
i=1
n
Yxj=1  fori=12,...n
j=1

x;€{0,1}  foralli,j

Note that any feasible solution to CAP is also a feasible solution to F, and F;. Thus, CAB
dominates IKP and PAB.

Since CAP is, itself, an NP-hard problem, we compute an upper bound on CAP
using the method of Lagrange multipliers [Fi]. Incorporating the cost constraint into the

objective function with a Lagrange multiplier, A 2 0, results in the following assignment

problem:
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z(A) = max V—ii [ZZCU ) CAP(A)

i=1 j=1 i=1 j=1

n
subject to: Zx(l),-j =1 forj=12,..,n

i=1

n

2.x(A); =1 fori=12,..,n
x(A); €{0,1}  foralli,j.

We can simplify the objective function to

zZ(A)=V+ /'tB—mmi}n:(pu +Ac,l) ) =V + AB — min(px + Acx).
i=1 j=1

-

j=
For a fixed value of A, CAP(A) is a standard assignment problem. To obtain the best

upper bound on CAP, we desire A* such that
2*) = min z(4).
z( ) min 2(1)
Our upper bound on CCTSP is then
CABA =2(1")

where z(l‘) is the optimal value of CAP().'). Note that, while CAB dominates IKP and
PARB, this is not necessarily the case for CABA.
As shown by Everett [Ev],
n n .
= zzcij‘t (A')l

i=1 j=1
is menotonically decreasing in A, where x*(A) is an optimal solution to CAP(4).
However, since the feasible region of CAP(4) is non-convex, there may be "gaps" in the

value of cx*(A) as A increases. If there exists a A* such that cx’ (l‘) = B,then
A’) = min z(A
z( ) min z(1)

and x"(4) solves CAP. However, in most cases, this does not occur.
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We can replace the objective function in CAP(A) with

"““22( Pij +Cv) A);

i=1j=1
We then have
2(A)=V+AB-Az'(1)

Using z’(4) instead of z(4) results in the cost matrix

oo 1012, e " Cip |
1P+C €21 '/:f 2 Con
: X

Lcnl Cn2 Ivn_

where only the diagonal elements depend on A. This facilitates reoptimization when the

value of 2 is changed.
Let 3 be the basis associated with an optimal solution x*(1) to CAP(A), and let u
and w be the optimal dual variables associated with . Then, according to the

complementary slackness theorem [Mu]

1

—V; foralli, j,i=j, i#0

Uu+w fi < A ! / /
Cij foralli, j, i#J

—l-v‘- if (i,/)e P, i=j
and u; +w; =<4
Cij if(i,j))eB i+j.

Define a second set of variables u* and w* such that

oL if (i,j)eB i=j
‘ 0 if (i,j)epB i#j.

J
Suppose we increase 1/4 by A. Let

ul =u; +Au;

and w’ =w; +ij.
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Then,
(—1—+A)vi i (i j)eB i=)
uf +wi=<\4
¢ if (i,j) € B, i #
Thus, the solution x*(A) remains optimal as long as
U+ w; +A(u,-‘ +w,~‘)$c,-j foralli, j, i#j

and u; +w; + A(uf + w,") < GT + A)v; forall i

or, equivalently, as long as the increase in 1/A does not exceed

: 1
: U — W TVi U W
A+ = min min E.‘_j...._’fi___‘v_j min _A‘______.—..—.
=ml Pk o " "R ; * * :
L)W#E) u; -+ Wj .l W + w; — vi
ui +w;>0 u +w; =v;>0 ,

Similarly, suppose we decrease 1/A by A. Let

W =u; — Au;

= w.—Aw'
andwj—w} ij.

g\
+
T
I

) (%—A)v; if (i,j)eB, i=j
¢y (i) eB %)
Thus, the solution x*(A ) remains optimal as long as

u+wj— Al +wj)<c; foralli, j, i#j

and u; +w; — A(uf +‘w;-) < G - A)v,- for all i,
or, equivalently, as long as the decrease in 1/A does not exceed

u,-+wj—c,~j min
. 4 Y *
' S ViTl W
V“—u"-'wi)O

TVi— U~ W

A" =min| min - L

DL U W,
U +w; <0
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Let

Then, x*(2) is an optimal solution to CAP(A’) for all 4" in the interval (A7,A%).

‘We now present a method for finding A°. We start with 4, and A, such that
cx*(A,)> B and cx*(1,) < B, where x*(1) is the optimal solution to CAP(1).
Equations which can be used to compute initial values of A, and A, are given in Appendix
A. After solving CAP(A,) and CAP(4,), we compute A} and *2. We let
Ay = (l;' +A§)/2 and solve CAP(A3). If cx*(1;)< B, we replace A, with A5. If
cx"(43) > B we replace 4, with A;. We continue this process until we find 4; and 1,
such that A7 2 A3. Typically, we will find A} = 1;. We then select any 4 in the
overlapping region of the intervals (4,4 ) and ( 5,5{2). Associated with this value of A°
are two optimal solutions, xf(l‘) = x*(4,) and xi(l‘) =x"(1,), to CAP(X'),With
cx;(l‘) > B and cxﬁ(}l") <B.

~Theorem 7.1: The value A° found by the above method solves
z(l‘) = rriin 2(A), where z(A) is the optimal solution to CAP(1).

“Proof: Suppose 4 > A”. Since B—-cx;(l') >0, we have

z(;f) =V+ 1B~ min(px + :’fcx) >V+AB- (pxﬁ(l') + icxé(l‘ ))

=V- pxg(/l‘) + }T(B- ch(l’)) > V- px{,(/l‘)+ l‘(B-— cxé‘(/l')) = z(l‘ )

Similarly, suppose 4 < A°. Since cx;(1")— B >0, we have

2() = V+ 2B~ min(px + Acx) 2 V4 AB = (px; (A*) + Acx} (A%))
= V=px{(A")= A (cx] (A") - B) > V- px}(A%) = A* (cxf (A*) - B) = z(A%).
Thus, z(A") = mlin z(A). O

This method of computing an upper bound is based on the ideas of Gensch [Ge].

However, Gensch's method of finding A° contains substantial errors and lacks efficiency.
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Furthermore, Gensch claims that xé(k‘) actually solves CAP. A counterexample to this
claim is presented in Appendix B.

Kataoka and Morito [KM] present a method of computing an upper bound where
CAP is solved exactly. They use a branch-and-bound algorithm where the bounds are
computed by solving the linear programming relaxation of CAP and branching is done by
selecting a fractidnal x; and setting it to 0 and 1 on alternate branches. Their method of
solving the linear programming relaxation also uses the Lagrangian relaxation CAP(4), but
their method of finding 4°, x{ (l'), and x{(/’l.‘) differs substantially. They solve the linear
relaxation of CAP by taking a convex combination of x (2.*) and xs(l') such that the cost

constraint is satisfied with equality.

7.4 Computational Results

Computational experiments were conducted to compare the quality of the bounds
generated by the previously discussed methods. The parametric assignment method was
only applied to problems in which the nodes had equal values. Table 7.1 shows a selected
set of representative computational results. All problems have 20 nodes and results are
averaged over a sample size of 10. The full set of computational results is given in
Appendix C. In general, the improved knapsack bound (IKP) performed significantly
 better, sometimes by a factor of 10, than Laporte and Martello’s knapsack bound (KP), the
parametric assignment bound (PAB), and the constrained assignmcni bound (CABA). The
improved knapsack bound also required less computation time than the two assignment
bounds. The tighter knapsack bound (TKP) generally performed better than the improved
knapsack bound, as expected. However, the difference in performance between IKP and
TKP is not dramatic as it is between KP and IKP, and, in many cases, the difference in
performance is not staiistically significant. In addition, TKP required a great deal more
computation time.Taking this into account, IKP should be the favored upper bounding
method for most purposes.

The difference in performance between the upper bounding methods decreases as
the problem budget (B) increases. For small budgets, there is a dramatic difference

between the bounds obtained by IKP and the bounds obtained by KP, PAB, and CABA.
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(9}



Problem
|_type B IKP KP TKP | PAB | CABA
Euclidean 0.00 | 000 | 0.03 | O0.11 ] 0.09
uniform [0.25 | 11.33 {119.00{ 7.33 {104.33{104.33
Euclidean 0.00 | 0.00 0.18 0.12 0.12
uniform |0.50 | 33.72 | 63.20| 30.59! 52.67] 52.67
Euclidean 0.00 | 0.01 0.27 | 0.06 | 0.08
uniform [0.75 | 16.67 | 25.50| 16.04 | 23.67 | 23.67
‘Euclidean 0.00 | 0.00 | 0.02 | 0.13 0.10
clusters |0.25 | 14.721209.68| 10.44 |189.37{216.04
Euclidean 0.01 0.00 0.11 0.10 | 0.10
| clusters 10.50 | 58.51 (112.84] 39.801102.60{102.60
Euclidean 0.00 0.00 0.25 0.00 0.03
clusters |0.75 | 29.58 | 29.58 | 29.58 | 29.58 | 29.58
non-Eucl. 000 | 0.00 | 0.28 | 0.10 | 0.3
uniform |0.75 | 10.76 | 12.49 | 10.76 | 6.83 | 6.83

Table 7.1. Selected computational results comparing the
performance of upper bounding methods using test problems
with 20 nodes. In all problems, the nodes were given equal
values. Results are averaged over a sample size of 10. The
numbers in larger print are the average percent errors from
optimality of the upper bounds while the numbers in smaller
print are the average computation times. Bold type indicates
that, when compared with IKP, the difference in performance
was statistically significant at the 95% level.

These differences are also more dramatic for problems with clusters than for uniform -
- problems. On the other hand, when the budget is large, the difference in performance
between IKP and the other bounds is smaller for problems with clusters than for uniform
problems. For non-Euclidean problems, while IKP was superior to PAB and CABA for
small budgets, PAB and CABA obtained tighter bounds when the budget was large. This,
however, was not true for problems with clusters. In the case of clusters, IKP was always

superior to PAB and CABA.
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Chapter 8
EXACT ALGORITHMS

Finding exact solutions to NP-hard problems, such as CCTSP, is a difficult, time
consuming task and often computationally infeasible. However, algorithms which
guarantee a true optimal solution do exist for most NP-hard problems. These algorithms
generally rely on the processes of recursion and enumeration. As a worst case, an
algorithm may consist of enumerating and evaluating all possible solutions. The total

number of possible solutions for CCTSP is

n=lip ‘
|= 1! DY —=e(n—-1)!
‘2{( i )l (n=1) 2 1—1)! ‘ 2 )
e (= 2) )i ‘\/275 ) (using Stirling's approxxmatwﬂ)

~ The techniques of dynam1c programming and branch-and-bound are often used to
improve on total enumeration, Dynamic pngrammihg can be used to solve many problems
that have a factorial number of feasible solutions with only an éxponcmially growing
'numbcr of computational steps. As we will show, CCTSP is one such problem, Although
branch-and-bound algorithms are equivalent to total enumeration in the worst case, the use
of good branching and bounding techniques can result in algorithms that are relatively
efficient. Unfortunately, even for a very efficient branch-and-bound algorithm, it is rarély
possible to establish any good bounds on the computation tixhe.

In this chapter, we present a dynamic programming algorithm and two types of
branch-and-bound algorithms for CCTSP. The first branch-and-bound algorithm and the
dynamic programming algorithm are closely related. A noteworthy feature of these two
algorithms is that they can also be applied to the two extensions of CCTSP discussed in
Chapter 3. Computational experiments were performed for the branch-and-bound

algorithms only.
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8.1 A Dynamic Programming Algorithm

Dynamic programming is a technique used on problems involving a sequence of
interrelated decisions, where the goal is to determine the combination of decisions that
maximizes overall effectiveness. Many different types of problems can be solved using a
dynamic programmin‘g approach. The key characteristics of dynamic programming
problems are: -

(i) The problem can be divided into stages with a policy decision required at each
stage. |

(i) Each stage has a state associated with it.

(iii) The policy decision at each stage determines the state associated with the next
stage. ‘

(iv) Given the current state, an optimal policy for the remaining stages‘ is
independent of the policy decisions of the previous stages. This is referred to
as "the principle of optimality," and, stated differently, says that knowledge of
the current state is all the information necessary to determine the optimal policy
henceforth.

The Cost Constrained Traveling Salesman Problem can be viewed as a sequential
decision problem. Each stage consists of visiting an additional node, and the policy
decision to be made is which node, if any, to visit next. The state at each stage is specified
by the set of nodes which have already been visited (§) and the node which was visited last
(D). Thus, if the current state is (S,/) and the policy decision is to visit node k & S next,
then the state at the next stage is (S + k,k). Given the current state, the optimal sequence of
remaining nodes is independent of the sequence used to get to that state. |

We have developed a dynamic programming algorithm for CCTSP based on Held
and Karp's [HK] dynamic programming algorithm for TSP. Their algorithm is based on
the following recursion equations:

Given § < {2,3,...,n} and { € §, let C(S,!) be the minimum cost of starting
atnode 1 and visiting all nodes in the set S, terminating at node /. Then
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@ C{iL)=cy foralll
and (b) C(S,/)= min [C((S~1).m)+ Cp .

meS-|

1)

The optimal‘value is then

C({2,3,...,n},0) +
Ie{23 [ ( n}1)+cy )
in our algorithm for CCTSP, we use the same definition of C(S,/) and the same
recursion equations. We define |
S l) = ZV" ‘+"V1.
ie§
Then the optimal value to CCTSP is

Vopt = V(S.0). | Q@
oPt, {(s:)lcr(rsl?)(\«c,,se} (5:) | @ |
We l\now that a partial permutation (1,i,is,.. .,y ) is optimal if and only if
283y syig 1ol S,1 (3)
(CEBS: n)= (SICT N rensB) vis.h |
and,for2< p<m-1,
C({izsisorvwsipsips bipsr) = Cl{izsizneenip by )+ i, @)

In the first phase, equation (1) is used recursively to compute the quantities C(S,/) and then
Vopt is computed from (2). In the second phase, ei]uations (3) and {4) are used to compute

an optimal solution.

The fundamental operations employed in the computations are additions and

comparisons. The number of computations in the first phase is on the order of

nikk 1( '1) (n=1)(n~ 2)"5;3( ) (n=1)(n-2)2""3,

The number of computations in the second phase is at most on the order of

n-1
> k=[n(n-1)/2]-
k=2
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Thus, the growth rate of this algorithm is 0(2"). Since each number C(S,/) must be
stored, the number of storage locations required is

ol fn-1y n2(n-2 |

k =(n-1 =(n-1)2""2

2 g

In many cases, the computétion time can be significantly improved since it is not
necessary to compute C(S,!) for every possible (S,/). At any point in our computations,
we can divide the states (S,/) into two sets: candidates, those for which C(S,/) € B, and
 candidate solutions, those for which C(S,!)+ ¢, < B. If C(S,/) > B, then, for any k ¢ S,

C(S,!)+cy > B and C(S,l)+¢; > B.

. Thus, any (S,I) that is not a candidate need not be considered in any further computations
and, since it is also not a candidate soluticn, may be deleted. If the triangle inequality holds

for the cost matrix C, then
C(S,l) top ton 2 C(S,I) +Cp

‘and any (S,/) that is not a candidate solution may be deleted. If no candidates remain to be
used in the computation of C(S + k,k), then C(S + k,k) need not be computed. When no
additional C(S + k,k)s can be computed, the candidate solutions are examined to find Vo, .
If (5,1) is a candidate solution, and (S, k) is a candidate solution, where §” < S, then (S,k)
need not be considered in the computation of V,,,. These observations can greatly reduce
the number of computations required, especially in cases where the optimal solution does

not contain all n nodes.

8.2 A Branch-and-Bound Algorithm

Branch-and-bound algorithms are implicit enumeration techniques which iteratively
reduce the number of feasible solutions that must be examined. They rely on the process of
repeatedly breaking the set of feasible solutions intc subsets (branching), and calculating
bounds on the value of all feasible solutions contained within them (bounding). During the
branch-and-bound process, the best feasible solution found thus far is called the

incumbent. A heuristic algorithm is often used to generate an initial incumbent. For a
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maximization problem, the set of all feasible solutions is partitioned into twb or more
subsets and, for each subset, an upper bound on the objective function‘ is obtained for the
solutions within that subset. If the upper bound for a subset is lower than the value of the
incumbent, then that subset cannot contain an optimal solution and is fathomed — excluded
from further consideration. A subset is also fathomed if it is shown to contain no feasible
solutions or if the best feasible solution within the subset has been found. In the latter
case, if the value of the solution exceeds that of the incumbent, the solution replaces the
incumbent. A branching rule is then used to select one of the remaining subsets and
partition it further into two or more new subsets. The process is repeated until there are no
remaining subsets, i.e. all subsets have been fathomed. The success of a branch-and-
bound algorithm is highly dependent on starting with an incumbent soluﬁon that is close to
optimal and on the tightness of the. bounding function used. |

Branch-and-bound inethods are a common technique for solving integer linear
programs. For example, one well-known branch-and-bound algorithm for solving such
problems is that of Dakin [Da]. In his method, the Simplex (or Dual-Simplex) method is
used to solve linear programming relaxations of subproblems of the original problem.
These solutions provide the beunds. Branching is done by selecting a fractional variable in
the linear programming solution and generating two new subproblems, one where the
fractional value is cut off from above by the addition of an inequality constraint, and one
where the fractional value is cut off from below. Generally, this type of branch-and-bound
algorithm does not exploit any special combinatorial structure of the problem and, thus,
could, in principle, be applied to virtually all linear integer programming problems,
including CCTSP.

We present a branch-and-bound algorithm, based on the method of Laporte and
Martello [LM], that does exploit the structure of the problem. In their algorithm, Laporte |
and Martelln partition the set of feasible solutions by specifying the initial sequence of
nodes in a subtour. Initially, the specified sequence consists of node 1 only. A subset of
feasible solutions is partitioned by adding a node to the end of the specified initial

sequence. One partition is formed for each node not in ihe cuiieni specified sequence. fa
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specified sequence has a value greater than that of the incumbent and can be turned into a
subtour without violating the cost constraint, the incumbent is replaced with the subtour
corresponding to the specified sequence. A subset of feasible solutions is fathomed if the
cost of the specified node sequence exceeds the budget, or if an upper bound on the value
of a solution containing the specified sequence is less than the value of the incumbent. A
subset is also fathomed if it is shown that no additional nodes can be added to the sequence
without violating the cost constraint, or if the specified sequence contains all n nodes.
Upper bounds are computed using the knapsack bound (KPB) described in Chapter 7,
where node 1 is a "super-vertex," corresponding to the specified initial node sequence.
In our branch-and-bound algorithm, we use the same partitioning method and
fathoming rules as Laporte and Martello, but replace their upper bounding method with the
“improved knapsack bound (IKP) presented in Section 7.1. We experimented with using
the tighter knapsack bound (TKP) whenever a subset could not be fathomed based on IKP.
Although doing this resulted in significantly smaller branch-and-bound trees, the excess
time required to compute TKP resulted in an overall increase in computation time. To
generate their initial incumbent solution, Laporte and Martello use two heuristic algorithms,
- one based on the nearest neighbor TSP algorithm and one based on the cheapest insertion
TSP algorithm, and select the better solution. In our method, we begin with an incumbent

produced by the new heuristic algorithm for CCTSP presented in the following chapter.

8.3 An Alternate Branch-and-Bound Approach

An alternate branch-and-bound approach is based on the ideas of Gensch [Ge].
This approach uses the cost-constrained assignment problem for computing upper bounds
and uses subtour elimination for branching. Gensch proposed a branch-and-bound
algorithm where upper bounds are computed by solving the cost-constrained assignment
problem (CAP) using Lagrangean relaxation, and, when the resulting assignment consists
of more than subtour, partitioning is done using Garfinkel’s procedure for subtour
elimination {Ga73]. Due to a number of errors, including the method of solving CAP

(discussed in Section 7.3), Gensch'’s algorithm does not guarantee an optimal solution.
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Using the same ideas, Kataoka and Morito [K‘M] developed a branch-and-bound
algorithm that does guarantee an optimal solution. They use Lagrangean relaxation to find
an optimal solution to the linear programming relaxation of CAP. This is then used as the
bounding method in a branch-and-bound algorithm for CAP, where partitioning is done by
setting a fractional variable to 0 and 1, respectively. If the solution to CAP has a value
greater than the incumbent but is not feasible for CCTSP, that is, if it contains a spbtour
that includes more than a single node and does not include node 1, partitioning is done by
selcéting an arc in this subtour and creating two subproblems, one where the arc is always
used and one where thé arc is excluded. Otherwise, the subproblem is fathbmed. This
algorithm has two undesirable features: the embedding of a branch-and-bound algorithm
within a branch-and-bound algorithm, and the use of a partitioning scheme that is less
efficient than Garfinkel’s subtour elimination procedure.

This branch-and-bound procedure can be improved in two ways. Firsi, rather than
solving CAP exactly, an upper bound can be computed using the method discussed in
Section 7.3. Second, using the two assignments, x; ( 2‘) and rﬁ( /l*), preduced as
byproducts of this upper bounding method, to identify illegal subtours, Garfinkel’s subtour
elimination procedure can be used to partitioning the subproblems. This will eliminate
X (l‘) and/or x;()l") from the feasible set of assignments, resulting in tighter upper
bounds at subsequent iterations. If possible, a subtour that appears in both assignments
should be chosen for elimination. Branch-and-bound need be applied to CAP only in the
case where both x; ( /'V) and x'z’( )L') contain no illegal subtours. In this case, xz( /1") is a
feasible solution to CCTSP, but there may exist other feasible s>lutions with a value

between that of xz( A‘) and the upper bound.

8.4 Computational Results

The computation time required by Laporte and Martello’s branch-and-bound
algorithm and by our modified version utilizing the improved knapsack bound were
compared using uniform problems in which the nodes all had equal values. A “timeout”

was set for each algorithm. Laporte and Martello’s algorithm was aboned if the

ion ume cxeeeded 4000 seconds and the improved algorithm was aborted if the



comnputation time exceeded 200 seconds. The computational results are given in Table 8.1.
A sample size of 10 was used and results were averaged over the problems for which both
algorithms completed within the allotted times. Computation times for the improved
method are generally at least 10 times faster and sometimes hundreds of time faster than

Laporte and Martello’s method. We note that Euclidean problems required less

CPU time (seconds) Sample

Class Nodes jBudget Imp. L&M Ratio | size
20 0.10 0.00 0.01 10
20 0.20 0.01 0.18 11.89| 10
20. 0.30 0.11 2.35 22.00] 10
20 0.40 0.65 20.23 31.28| 10
Euclidean| 20 0.50 4.26 139.29 32.71} 10

20 0.60 47.45 1231.02 25.94( 10
20 0.70 49.30 1067.60 21.66 5
20 | 0.80 26.00 1021.74 39.29 3

20 0.90 4.86 1338.61 1275.30 4
25 0.10 0.00 0.01 3.001 10
25 0.20 0.04 0.77 17.15| 10
Euclidean| 25 0.30 0.74 30.65 41.24| 10
25 0.40 7.78 497.34 63.92 9
25 0.50 40.27 2123.24 52.73 3
20 0.10 0.01 0.06 4.88) 10
20 0.20 0.30 5.93 19.65| 10
20 0.30 12.62 212.40 16.84) 10
Non- 20 0.40 39.49 491.26 12.44) 10

Euclidean|{ 20 0.50 66.82 763.69 11.43) 10
20 0.60 180.69 | 2016.82 11.16] 10
20 0.70 41.57 1198.24 28.83 5

20 0.80 0
20 0.90 14.68 1135.74 77.35 4
25 0.10 0.02 0.23 10.62] 10
Non- 25 0.20 1.47 28.53 19.38( 10

Euclidean| 25 0.30 58.31 1039.14 17.82 9
25 0.40 72.71 | 1831.64 25.19| 2
25 | 0.50 0

Table 8.1. Computational results comparing Laporte and Martello’s
branch-and-bound algorithm and the improved version. Problems were
generated using a uniform distribution and all nodes had equal value.
Results are averaged over the problems that successfully completed
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computatio;l time than the non-Euclidean problems. This is believed to be an artifact of the
way the problems were generatcd and attributable to the amount of variability in the cost
matrix rather than td the class of problem. Because of the way the problems were
generated, the non-Euclidean problems showed less variability in their cost matrices than
the Euclidean problems.

The two branch-and-bound approaches were compared by repeating Kataoka and
Morito’s computational experiments using our improved version of Laporte and Martello’s
branch-and-bound algorithm. Our improved algorithm was applied to problems generated
from the same distributions as those used by Kataoka and Morito. Computation times for
our algorithm were then adjusted to account for the difference in computers. The SUN
4/330 computation times were multiplicd‘by a factor of 10.20, which was the factor of
difference observed in experiments we conducted comparing the speed of the SUN 4/330
- with a machine comparable to the one used by Kataoka and Morito. The adjusted
computation times were then comparéd with Kataoka and Morito's published computation
times. Results are given in Table 8.2. Unless otherwise stated, the problem parameters are

as follows:

¢;j ~ unif(30,70)

v; ~ unif (5,15)

B =250

= 10.

Computation times are averaged over a sample of 50 problems. The results show Kataoka
and Morito’s approach to be much inferior. Although the improvements discussed in the
previous section would improve the performance of this approach, it seems unlikely that
the improvement would be great enough to make this approach competitive. Hence, no

further experimentation was done.
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Problem

CPU time (seconds)

parameters K&M ~ Imp. Ratio
B =60 17.10 0.00 >1710.00
B =80 34.24 0.00 >3424.00
B =100 48.86 0.02 2443.00
B =150 717.42 0.05 1548.40
B =200 89.08 0.25 285.60
B =250 71.40 0.96 74.38
B =300 46.52 2.27 20.49
B =350 16.78 3.17 5.30
B =400 0.54 0.68 0.79
c=50 7.54 0.02 377.00
40<c<60 102.80 0.89 115.51
'30<¢<70 71.40 0.88 81.14
20<¢c<80 3594 1.36 26.43
10<¢<90 3.74 3.05 1.23
v=10 10.28 0.21 48.95
9<v<ll 61.28 0.70 87.51
55v<1s 71.40 0.70 102.00
1<v<19 54.18 0.73 74.22
1<v<2l 55.82 0.67 83.31
10sv<30 72.74 0.68 106.97
20<v <40 85.36 _0.72 118.56
Table 8.2. Comparison of published average

computation times for Kataoka and Morito’s branch-and-
bound algorithm with average computation times for our
improved version of Laporte and Martello’s branch-and-
bound algorithm. The computation times reported for
the improved algorithm have been adjusted to account for
the difference in computers.
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Chapter 9
HEURISTIC ALGORITHMS

Having shown that CCTSP is NP-hard, we now "lower ou‘r sights" and consider
heuristic algorithms — algorithms which find "good" (but not necessarily optimal)
solutions within an acceptable amount of time. The most common technique used in
heuristic algorithms is "neighborhood search," in wﬁich a predefined set of operations is
used to iteratively improve an initial solution, until no further improvements can be
obtained with these operations. The resulting solution is "locally optimal" with respect to
the predefined operations. All of the heuristic algorithms that are discussed here use this
technique. They begin with ah initial subtour consisting of one or two nodes and iteratively.
improve it, maintaining feasibility throughout the proécss. Two types of improvements are
possible — changing the set of nodes in a subtour, either by inserting an additional node or
replacing a node with a more desirable one, and rearranging the order of the nodes in a
subtour such that the cost of the subtour is reduced.

We have identified five key characteristics of heuristic algorithms for CCTSP.
These are: B

node selection — How is a node selected for insertion into a subtour?

insertion method — Where is the selected node inserted?

recourse — Once inserted, can a node later be deleted?

subtour improvement — Is an attempt made to reduce the cost of a subtour
by rearranging its nodes? ‘

repetition — Is a single subtour generated or are several generated and the
best selected?

Repetition may be based on probabilistic events (e.g., randomization in the node selection
process) or deterministic influences (e.g., starting the search with a different initial

solution).
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In this chapter, we 'discuss‘previous heuristic algorithms for CCTSP, along with
some modifications, and then present a new one, which combines the sﬁrong points of the
previous algorithms while attempting to avoid their shortcomings. In addition to
comparing the solutions‘ obtained by the algorithms, we also examine the effects of the
individual features of the new algorithm on both solution quality and computation time.
‘Several modifications of the new algorithm, with progressively decreasing computation
- time, are considered and the trade-off between solution quali‘ty‘ and computation time

examined.

9.1 Previous Heuristics

As noted in FChapter 4, four heuristic algorithms have been developed previously
for CCTSP. The first two are based on simple TSP algorithms while the second two
incorporate many new ideas. Since the second two algorithms are only applicable to
Euclidean problems, we also present modifications which generalize them.

Golden, Levy and Dahl [GLD] developed a heuristic for a generalization of
CCTSP that is based on TSP's cheapest insertion algorithm. In their generalization, rather
than the nodes having values, the arcs have both costs and profits. The goal is to find a
subtour that maximizes total profit while not exceeding a specified cost. Their algorithm
varies from the cheapest insertion algorithm for TSP in that the node selection criterion
takes into account profit as well as insertion costs. When we adapt their algorithm to

CCTSP, the node selection criterion at iteration k£ becomes
\4 i~ RI(ATJ ’
where

P = value of current subtour,
T = cost of current subtour,
AT; = cost of inserting node j at cheapest insertion point,

and R, = a(P/T)+(1-a)R,_,, where 0 S x < 1.
Once selected, a node is inserted into the subtour at its cheapest insertion point and all
variables are updated. The process is continued until no further nodes can be inserted

without violating the cost constraint. Several subtours can be generated by using different
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values of Ry and . In our experiments, we used 0.1, 0.5, and 1.0 for & and 1, 10, 25,
“and P/T for Ry where P/T is the value/cost ratio of the best solution generated thus far.

Tsiligirides [Tsi] modified the nearest neighbor algorithm for TSP to incorporate
node values and randomization. In his algorithm, the node selection criterion is

(v)/etass)
where last is the last node in the current subtour before returning to node 1. The node to be
inserted is selected randomly from am‘ong the top four using probabilities proportional to
these scores. The selected node is‘ then inserted at the end of the subtour. The process is
continued until no more nodes can be added without violating the cost constraint. This
method of generating a subtour is repeated many times and the highest valued subtour
selected. Tsiligirides suggests 3000 repetitions, a number which we found to be
computationally prohibitive. In our cxperiments, the process is repeated 100 times. We
found that, in general, exceeding 100 iterations was not productive.

Golden, Levy and Vohra [GLV] developed an algorithm for CCTSP using a new
idea, "center of gravity." An initial subtour is generated using a node selection criteria
based on a linear combination of value, distance from node 1, and distance from the center
of gravity of, initially, all nodes, and later, the nodes in the current subtour. Nodes are
inserted at their cheapest insertion point. When the cost constraint prohibits the insertion of
additional nodes, a two-opt procedure is applied and more nodes are inserted if possible.
The center of gravity, cg = (X,¥), of this subtour (Lg) is then computed, where

X= Zv,-x;/ Zv,- and y = zviy,/

ieLy ieLy ieLy ieLy
A new subtour is then generated using

v; [dist(node j,cg)
as the node selection criterion, where dist(i, j) refers to the distance between i and j, and
then inserting the se.lcctéd nodes at their cheapest ingertion point. When no additional
nodes can be inserted without violating the cost constraint, an attempt is made to reduce the

cost of the subtour using a two-opt procedure. If possible, more nodes are then inserted.
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The process is repeated, using each time the center of gravity of the previously generated
subtour, until 10 subtours have been generated or until a center of gravity repeats itself.
We note that this algorithm is only applicable to Euclidean problems where nodes are
‘represented by x-y coordin'atcs and costs are based on a distance function.
~ We generalize this center of gravity algorithm to make it applicable to non-Euclidean
problems by usiﬁg the node which best corresponds to the center of gravity of a set of
nodes in place of an actual center of gravity. This node is computed as follows:
cg = argmin zv jc,-zj.
b jeS\i
~ In the node selection criterion, ‘dist(nodc J»cg) is replaced by ¢ j'cg.‘ .
Golden, Wang and Liu's algorithm [GWL], which they call the "Multi-Faceted
Heuristic," incorporates many new ideas. Rather than considering a node's individual
value, a "neighborhood value" is considered for each node. The neighborhood value for a
specific node is an aggregate of its own value and the discounted values of all other nodes,
where the discount factor depends on the distance of the node from the specified node. The
éggrcgatc value for a node j is
i+ S,
i
for some discount factor i 2 0. The desired value of u depends on the scale of the

problem. In our experiments, we used
p = 10/maxc;.

The node selection criterion uses a linear combination of aggregate value, distance from
ccntef of gravity, and distance from node 1. Each of these components is first scaled such
that the maximum value over all of the nodes is n. The aggregate values are then multiplied
by a learning measure (whose original value is 1). Weights of 0.7, 0.2 and 0.1,
reSpectivcly, are used in the linear combination. Using this selection criterion, a node is
selected randomly from the top five remaining nodes using equal probabilities. The
selected node is inserted into the current subtour at its cheapest insertion point. If this

results in a violation of the cost constraint, a node is then deleted from the subtour. To
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select this node, the cost reduction (savings) resulting from deletion is computed for each
node in the subtour. From those nodes for which the savings are not less than the current
cost overrun, the one with the highest savings to value ratio is deleted. This nodelmay be
the one that was just inserted. Once deleted, a node is not reconsidered. The process is
continued until no nodes remain for consideration. At this point, a two-opt procedure is
applied to reduce the cost of the subtour. If the cost is reduced, the insertion/deletion
process is repeated. This subtour generation process is repcéted 20 times, each time
replacing the center of gravity used with the center of gravity of the tour just generated.

After each iteration, the learning measures are updated as follows:

LM; = ﬁ E(Value of subtour £/average subtour value),
il teR;

where

R; = set of subtours generated thus far that include node .

In addition, the entire process is repeated five times starting with different initial centers of
gravity. To compute these initial centers of gravity, the smallest rectangle, with sides
parallel to the x and y axes, that encloses all of the nodes is drawn. The five initial centers
of gravity are the center of this rectangle and the centers of each of the four quadrants of the
“rectangle. As with the center of gravity algorithm, this algorithm is applicable only to
Euclidean problems.

We generalize the Multi-Faceted Heuristic to make it applicable to non-Euclidean
problems by using the node which best corresponds to the center of gravity of a set of
nodes in place of an actual center of gravity, as we did for the center of gravity algorithm.
The five initial centers of gravity are replaced by the following four points:

A= k} where ¢y = maxc;;,
p2 =1 g

= arg!‘}lax{mln(cpl,-.cpz,- )},

- : 2 2 |
and p, = arggmn{cpli + ngz + cpg,:}.



- 9.2 A New Heuristic Algorithm

Before presenting our new heuristic algorithm, we will begin by analyzing some of
the characteristics of the previous methods. The methods by Tsiligirides and by Golden,
Levy, and Dahl‘ are myopic in their node selection processes. Tsiligirides' algorithm is also
n‘lyopic‘in its insertion method. The randomization process used in Tsiligirides' algorithm
is biased toward always making the same selection since the probabilities are propbrtiohal
to the fourth power of the nodes’ value/cost ratio. On the other hand, since the nodc’
selection ériterion is dcpcndcnt on the last node added, when a different selection is made,
the entire future of the algorithm may be changed. In contrast, the Multi;Faceted Heuristic
(MFH) uses equal probabilities in the node selection process. However, since the node
selection criteria are independent of the progress of the algorithm, the randomization only
has the effect of causing local shuffling in a pre-ordered list. Both the center of gravity
algorithm (CofG) and the MFH are somewhat less myopic since thcy consider distance
from a center of gravity in the node selection process. This, in some sense, causes them to
consider the relationship of the node to the overall tour. On the other hand, the algorithms
are deficient in that they do not consider the actual cost of inserting a node. Furthermore,
the emphasis on the center of gravity of the previously generated solution causes the
algorithm to focus oﬁ similar solutions. The procedure of starting with five different initial
centers of gravity, in MFH, counteracts this effect to some extent.

A notable feature of MFH is the use of “neighborhood scores,” rather than
individual node scores, in the node selection process. When evaluating a node, the number
and value of nodes nearby are taken into consideration by using an aggregate node value.
We note that, since all nodes are eventually included in a TSP solution, this is not an
important consideration for TSP algorithms. On the other hand, it can be of extreme
importance in solving CCTSP, particularly in problems where nodes occur in clusters.
However, the aggregate values used by MFH are not updated as the algorithm progresses.
Thus, a node may receive undue favoritism for bringing the path close to nodes that have
already been included in the subtour or that have already been excluded from further

consideration. As the remaining budget gets smaller, the amount of aggregation of the
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node values should decrease since it does no good to bring the path close to other nodes if
there is not enough budget remaining to include these nodes. Another favorable feature of
MFH is that it allows a limited amount of recourse. Once inserted, a node may later be
deleted in order to allow insertion of a more desirable node.

We developed an algorithm based on these observations about the previous
methods. In our algorithm, aggregate node scores are used in the node selection process,
but are updated as the algorithm proceeds. The aggregate node value for node i is

agg; = v; + Zv je_‘uc U where § = {remaining candidates for insertion},

ZE

' The node selection criterion is

LM; x agg;

insertcost;
where insertcost; is the cost of inserting node i at the cheapest insertion point in the current
subtour and LM; is the same as in MFH. Nodes are selected randomly from the top five
using equal probabilities. Note that the values given by the node selection criterion change
after each insertion. Thus, the randomization has a greater effect than in MFH.

Initially, our algorithm uses the same insertion process as MFH. The selected node
is inserted in the current subtour at its cheapcSt insertion point. If this causes the cost to
exceed the budget, the node with the highest savings/value ratio, subject to the condition
that the savings are at least as great as the current cost overrun, is deleted from the subtour.
Orice deleted, a node is not reconsidered. When no nodes remain for consideration, a two-
opt procedure is applied to reduce the cost of the subtour. At this point, the procedure
differs from MFH. Regardless of whether the two-opt procedure resulted in cost
reduction, an attempt is then made to insert additional nodes. This time deletions are not
allowed. Nodes are selected deterministically using the ratio of value to insertion cost as
the node selection criterion. Nodes are considered only if their insertion does not violate
;he cost constraint. When no additional nodes can be inserted, the two-opt procedure is
repeated. An attempt is then made to increase the value of the subtour by swapping nodes.

Nodes are selected for insertion according to their values and inserted at their cheapest
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insertion points. If the cost constraint is.violated after an insertion, the lowest-value node,
subject to the requirement that its deletion reduce the cost to within the cost constraint, is
deleted from the subtour. This process is continued until no further improvements can be
made. Figure 9.1 shows a flowchart of this entire procedure.

Our algorithm begins with a tour consisting of node 1 and a specified "focus point.”
Repeating the algorithm using different focus points can have a drastic effect on the initial
insertion costs and, thus, drastically change the course of the algorithm. We repeat the
algorithm with five different focus points for Euclidean problems and four for non-
Euclidean problems. The focus points used in non-Euclidean problems are the same as the
initial centers of gravity used by MFH. In Euclidean problems, the focus points used are
the points nearest the five initial centers of gravities used by MFH. For a given focus

point, 10 iterations of the algorithm are executed.

9.3 Computational Results
‘ Computationzﬂ experiments were conducted to compare the five heuristic
algorithms. Both the percent error from optimality and the computation time were
recorded. Initially, problems with 20 nodes were used and the results were averaged over
a sﬁmplc size of 10. Selected representative results are given in Table 9.1. Complete
~ results are given in Appendix C. Out of 540 test problems, MFH found the optimal
solution 510 times, while our new heuristic (NewH) found the optimal solution 524 times.
Tsiligirides' algorithm (Tsi), CofG, and Golden, Levy, and Dahl's algorithm (GLD) were
clearly inferior in solution quality to MFH and NewH. However, if speed of computation
is essential, CofG might be preferred. Since these experiments did not show a statistically
significant difference between MFH and NewH, further experiments were done with these
two algorithms using 50-node problems, a sample size of 40 for Euclidean problems, and a
sample size of 20 for non-Euclidean problems. Selected results are shown in Table 9.2 and
| complete results are included in Appendix C. Overall, NewH appears to outperform MFH.
Next, the effect of individual features of NewH on computation speed and solution
quality were examined. Five versions of NewH were created by dropping the following

individual features:

74



tial Select node randomly from top five ,
subtour according to aggregate value/insertion [<—
‘ cost and insert. Update agg. values.
| Yes

| %

Subtour Nodes
cost < B? remain?

No

Compute savings resulting from
deletion for each node in subtour.
Delete node with highest savings/value,
subject to savings 2 subtour cost — B.

Y

Apply two-opt routine.

Insert node with highest value/insertion cost,
subject to insertion cost <X B — subtour cost.

Nodes with insertion
cost < B remain?

Yes

Apply two-opt routine. 14

L————3p-{Insert node with highest value.

Delete node with lowest value, subject
to savings 2 zubtour cost — B. ‘

Figure 9.1. Insertion procedure for Ne-s 'l
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Budget NewH MFH Tsi CofG GLD
0.61 0.41 0.20 | 0.02 0.01
0.25 0.00 0.77 0.27 4.951 9.40
0.85 0,62 0.74 0.04 0.02
0.50 0.00 0.14 4.82 4.87 | 11.84
1.30 1.24 1.24 0.07 0.03
0.75 0.00 0.10 4.41 6.13|13.53

Table 9.1. Selected computational results comparing heuristic
algorithms. The results shown are for Euclidean, uniform
problems with 20 nodes, averaged over a sample size of 10.
Node values are uniformly distributed between 1 and 10.
Numbers in large type are the average percent error from
optimality and numbers in small type are average computation
times. Bold type indicates that the difference in performance
from that of NewH was statistically significant at the 95% level.

i,

clusters, equal v's ||ave. over all Euclid. types
sample size = 40 sample size = 360
Budget NewH MFH NewH MFH
3.66 2.29 ,
0.25 0.00 3.26 0.27 1.40
7.86 7.56
0.50 0.08 1.24 0.86 0.97
17.28 20.45
0.75 0.30 n.66 0.63 0.90

Table 9.2. Selected computational results comparing NewH
and MFH. The results shown are for Euclidean problems with
50 nodes. Numbers in large type are the average percent error
from the best known solution and numbers in small type are
average computation times. Bold type indicates that, when
compared with NewH, the difference in performance was
statistically significant at the 95% level.
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aggregate values (agg.) — aggregate values were replaced by individual
node values in the node selection criterion,

learning measure (LM) — the learning measure was dropped in the node
selection criterion,

updating of aggregate values (updat.) — aggregate values were computed as
in MFH and not updated as the algorithm progressed, .

focus points (foc. pts.) — the insertion process was started with a subtour
consisting of node 1 only, and '

randomization (rand.) - the highest scoring node, according to the selection
criterion, was always selected.

‘The experiments were conducted using problems with 50 nodes, a sample size of 40 for
Euclidean problems, and a sample size of 20 for non-Euclidean problems. Selected results
are given in Table 9.3 and complete results in Appendix C. Further experiments were
conducted for the learning measure and aggregate values using problemsvwith 100 nodes

and a sample size of 20. These results are given in Table 9.4. The updating of aggregate

Node no no no no no
values| B | NewH age. | LM updat. foc.B_ts. rand.

3.66 2.5 3.58 7 0.77 | 0.34

equal {0.25] 0.16 0.13 0.35 { 0.13 1.99 | 2.68
- 7.75 6.63 7.67 | 6.80 162 | 0.75 |

equal {0.50] 0.49 1.10| 049 | 1.00 | 2.50 | 2.99

16.62 | 1528 | 1649 [ 15.52 337 | 1.63

equal ]0.75] 0.88 1.12 065 | 1.17 | 2.65 | 2.87
3.57 2.64 3.51 | 2.68 0.75 | 0.33 |

exp. 10.25] 0.44 0.04] 0.37 ]| 0.78 1.60 | 3.29

7.32 6.19 6.31 | 6.50 1.56 | 0.71 |
exp. {0.50] 1.47 1.01] 072 | 2.81 | 4.74 | 5.44

15.61 | .441 | 1549 15.13 | 3.17 | 1.59
exp. |0.75f 0.84 0.60 105 ]| 1.66 | 2.97 | 2.73

Table 9.3. Selected computational results showing the effects of
dropping individuai features of NewH. The results shown are for
Euclidean problems with 50 nodes and a uniform distribution. Results
are averaged over a sample size of 40. Numbers in large type are the
average percent error from the best known solution and numbers in
small type are average computation times. Bold type indicates that,
when compared with NewH, the difference in performance was
statistically significant at the 95% level.
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Node - no 1?131
values |Budget| NewH agg.

, "16.35 17%_“91  15.81 |
equal 0.25 0.96 2.13 0.32

| 49.66 43.08 49.06
equal 0.50 0.00 2.66 1.16
128.77 | 11620 | 12827 |
~ equal 0.75 0.94 2.28 1.40
16.17 12.52 15.58
Unif(1,10) | 0.25 1.97 197 | 0.73

47.36 40.87 46.91

Unif(1,10) { 0.50 | 1.68 2.83 2.41
122.53 111.00 122.32

Unif(1,10) | 0.75 0.75 1.39 0.61

Table 9.4. Computational results showing the effects of
dropping the aggregate value and learning measure features of
NewH. The results shown are for Euclidean problems with 100
nodes and a uniform distribution. Results are averaged over a
sample size of 20. Numbers in large type are the average
percent error from the best known solution and numbers in small
type are average computation times. Bold type indicates that,
when compared with NewH, the difference in performance was
statistically significant at the 95% level.

values, use of focus points, and randomization in the node selection process show a
statistically significant beneficial effect on solution quality. The use of focus points and
randomization cause a substantial increase in computation time. We note that the amount 6f
this increase is determined by the number of focus points used or the number of iterations
conducted. The aggregation of node values had a beneficial effect on solution quality,
except in cases where the node values were distributed exponentially. In those cases, the
effect was negative. Use of the learning measure does not appear to have a significant
effect.

Finally, we experimented with several versions of NewH, requiring progressively
decreasing computation time, to examine the trade-off beiween computation time and
solution quality. In the first two variations, we dropped the use of focus points and

randomization, respectively. Next, we dropped both focus points and randomization. The
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final variation used a straight cheapest insertion algorithm without recourse, where the node
selection criterion was simply the node value to insertion cost ratio, followed by two-opt
and node swapping for improvement. Selected results are shown in Table 9.5 andcompletc
results in Appendix C. The problems were also solved with CofG, since as mentioned
earlier, CofG might be the favored algorithm if speed o. computation is essential. Qur
results show that the faster variations of NewH are preferable to CofG, except for cases
where the nodes values are exponentially distributed. We note that these are the same cases
where using aggregate node values is detrimental and that all the variations of NewH use

aggregate node values, except for cheapest insertion.

Node no no |no foc.|] chp.
values| B | NewH |foc.pts.| rand. [no rand] insert.|] CofG

3.54 0.74 0.33 0.09 0.03 || 0.14 |
equal {0.25 0.13 { 2.11 3,18 | 7.07 7.63 9.90
— 7.65 1.56 0.74 | 0.17 0.10 || 0.42
equal |0.50] 0.31 2.49 3.65 | 8.10 {14.15]{11.54
16.62 | 1528 | 1649 | 1552 | 3.37 1.63
equal |0.75] 0.82 | 2.80 | 2.80 | 7.14 | 10.99](| 8.72

346 | 0.72 | 032 | 0.0¢ 0.02 || 0.12 |
exp. ]0.25] 0.00 | 0.62 | 3.11 | 8.79 | 7.17 5.07
7.23 | 1.52 0.70 0.16 | 0.10 [[ 0.30
exp. |0.50] C.90 | 4.76 | 5.66 | 10.90] 9.64 7.86
15.70 | 3.08 1.59 | 0.37 0.28 0.70 |
exp. {0.75] 0.52 | 2.60 | 2.21 | 5.61 5.50 || 4.08

Table 9.5. Selected computational results for experiments
examining the trade-off between solution quality and computation
time. The results shown are for Euclidean problems with 50 nodes
and a uniform distribution. Results are averaged over a sample size of
20. Numbers in large type are the average percent error from the best
known solution and numbers in small type are average computation
times. Bold type indicates that, when compared with the algorithm to
the immediate lett in the table, the difference in performance was
statistically significant at the 95% level.
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Chapter 10
" CONCLUSIONS
Since relatively little previous research had been done on the Cost-Constrained
Traveling Salesman problem, we undertook a comprehensive study, touching on many
areas rather than focusing on one sbcciﬁc aspect. In this chapter, we give a brief summary

of our results. This is followed by a discussion of open questions and areas for future

research.

10.1 Summary of Results

The Cost-Constrained Traveling Salesmar. Problem is a difficult combinatorial
optimization problem with many practical applications. CCTSP is NP-hard, and no K-
approximation algorithm or fully polynomial approximation scheme exists, unless P = NP,
Although, in theory, CCTSP is equivaicnt to the Traveling Salesman Problem, in practice it
appears to be more difficult. CCTSP requires both selection and sequencing, unlike TSP,
which requires sequencing only. As a consequence, most results for TSP cannot be
extended to CCTSP. We were, however, able to show ’that several special cases, which
are solvable for TSP using low order polynomial algorithms, are aiso solvable for CCTSP
using polynomial algorithms of degree 3 or less. These are the cases of outer-sum
matrices, small matrices, circulant matrices, and upper triangular matrices.

Algorithms for CCTSP; which outperform previous methods, were developed in
three areas: upper bounding methods, exact algorithms, and heuristié:s, Ex.té;nsive
computational studies were undertaken to evaluate and compare algorithms. These
compntational studies also examined the sensitivity of performance to problem
characteristics.

We found that a bounding strategy based on the knapsack problem performs better,

both in speed and in the quality of the bounds, than methods based on the assignment
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problem. We note that the preferred method depends primarily on the selection aspeét of
CCTSP and, hence, is not related to upper bounding methods for TSP.

Likewise, we found that a branch-and-bound approach using the knapsack bound
and a very simple branching strategy was superior to a method, analogous to a common
branch-and-bound method for TSP, that uses a constrained assignment problem for
bounding and subtour elimination for branching. In addition, the pfefen*ed branch-and- -
bound method is easy to implement and can be applied to several extensions of CCTSP as
well as the basic problem.

Iﬁ our study of heuristic algorithms for CCTSP, we made several observations.
First, when selecting nodes for the subtour, it is important to consider the "neighborhood"
of the nodes. A node with low value that brings the subtour near many other nodes may be
‘m‘ore desirable than an isolated node of high value; Second, an algorithr.. that generates
many different solutions and selects tire best one results iln better solutions than one that
generates a single solution. However, such an algorithm also requires more computation
time. We found two types of repetition to be desirable: repetitions based on randomization
in the subtour building process, and repetitions focusing the subtour toward different nodes
or areas. We developed a heuristic algorithm that incorporated these features.
Computational experiments show that this method outperforms previous methods in
solution quality. By varying \he number and type of repetitions done by our method, we
can adjust the computation time required and obtain algorittms that outperform previous

methods in both speed and solution quality.

10.2 Open {juestions

One outstanding question about CCTSP relates to its complexity. For the general
case of TSP, it has been shown that there cannot exist a polynomial algorithm A with a

performance guarantee of the form
lengthy < r x length,y,

unless P = NP. However, several polynomial algorithms with this type of performance

guarantee have been developed for the case where the triungle inequality holds. Ne such
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results have been obtained for CCTSP. We conjecture that the first result holds for CCTSP
as well. That is, we conjecture that there cannot exist a polynomial algorithm A for CCTSP

with a performance guarantee of the form

V4 SrX Vop[,
uniess P = NP. However, since CCTSP appears to be more difficult than TSP, we will
not speculate that a polynomial algorithm with a performance guarantee can be obtained for
the case of CCTSP where the triangle inequality holds, even when the nodes have equal
value, | | '

A great deal of research has been done to characterize the facets of the underlying
polytope of feasible solutions for TSP. Another open question about CCTSP regards the
relationship between its polytope of feasible sélutions and that of TSP. Using results

regarding the facial structure of TSP polytopes, exact algorithms which can solve very

large problems have been obtained. Similar results for CCTSP could prove to be very

useful.

10.3 Areas for Future Research
Many areas for future research remain. As mentioned above, results concerning the
facial structure of the CCTSP poly:ope might be very useful. With such results, a branch-
and-cut algorithm similar to that of Crowder and Padberg for TSP [CP] could be
develbped. The success of the branch-and-cut method for TSP has bgcn overwhelming.
The variant tackled by Padberg and Rinaldi [PR] with a similar method is mpch more
complex than CCTSP. While the results of Padberg and Rinaldi generate some doubts
about the efficiency of such a method for CCTSP, it would be prematare to draw any
conclusions. |
Further refinement of heuristic algorithms for CCTSP could prove to be fruitful.
For example, when considering "neighborhood scores" for nodes, the discount function
used by our method may not be the best. Different parameters in the discount function, or
a different discount function altogether. may improve performance. Also, rather than

considering the distance, or cost, between nodes when aggregating node values, it may
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prove more beneficial to consider how the inclusion of a node affects the cost of including
other nodes. This would require comparing the insertion costs of other nodes, given that
the specified node has been inserted into the tour, with the insertion costs prior to the
inclusion of the specified node. We did not take this into account in our method because it
increases the computation time by a factor of n. However, if it improves performance
substantially, it may be worth the extra computation timé._ We note that, vhile our
algorithm found optimal or very near optimal solutions for problems with 20 nodes, since
we did not obtain exact solutions for larger problems, we can say very little about its
performance, relative to optimality, on larger problems. We know only that it outperforms
previous heuristic methods.

Finally, another area for future work is the development of algorithms for
extensions or variations of CCTSP. Two extensions which incorporate time dependencies

were discussed in Chapter 3. Other interesting extensions and variations surely exist.
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APPENDIX A: Initial Values of A, and A, for Computing CABA

We desire initial values A, and 4, such that the optimal solutions to

n

max Z":‘(l --x(/l)‘.‘.) —l(iic‘-jx(l)ij - B] =vx(A)-A(cx(2)-B)  CAP(A)

i=1 i=1j=1

n
subject to: Zx(/l)ij =1 forj=1,2,...,n

i=l

n
2. x(a); =1 fori=12,...n

J=
x(A)ij € {0,1} foralli,j

satisfy cx"(4,) > B and cx*(A,) < B, where ¢;; = soand ¢;; = 0 forall i # 1.
First, we consider A4;. We will find a 4, such that

vx'(ll) = iv‘- =V

i=1

Provided 4, > 0, x"(A,) will also satisfy

ex"(4;) = min cx(4;)
subject to: vx(4,) =V
x(A,) feasible for CAP(A).

If cx"(4,) < B, then x"(4,) solves CAP and we need not search for 1°.
If x*(4;), = O for all i, then vx*(4,) =V . Select A, such that

. V;
0<A < _rgu,nl————'—-——-.
i#L el ¢ 4 ¢y — €y ;

i#j L y 1]

To show that x*(4,),, = O for all i, suppose x*(4,). =1 for some i and x'(/’Ll)U =1 (this
holds for some j since ¢j; = ). The change in the objective function resulting from

inserting node i between node 1 and node j is
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V; "'Al(cl" +C"j _CU) >0,

contradicting the optimality of x*(4,).

Now we consider A,. We will find a A, such that x*(4,) minimizes cx(4). Let
D be the matrix of shortest pathlengths between each pair of nodes. If C satisfies the
triangle inequality, then D = C. The minimum possible value of cx(4) is

din = d;; + d;,, Where i= argfnin(dli +d;).
Let

e = dwgﬁgdm(dx j+dj)
and let x;, be the solution formed by taking the shortest path form node 1 to node i
followed by the shortest path from node i to node 1, and setting x; = 1 for all nodes i not
in this subtour. (Note that no node may appear twice in this subtour since that would
contradict the definition of /. Thus, X, is a valid solution to CAP(1).)

Select A, such that.

A, and A, > ~L for all i, j.

D e——————

drext — Amin Cij
To show that cx*(4;) = dp, first suppose x*(4,) contains a subtour that does not
include node 1. The change in the objective function resulting form replacing each x;; in

this subtour with x; =1 is

2 (A€, =v,)>0,
x'(l,),-/-":n subtour
contradicting the optimality of x*(4,). Thus x"(4,) consists of a single subtour
containing node 1 and some number of self loops (x, =1). Suppose cx*(1,) > dpn. The

change in objective function resulting from replacing x*(1,) with Xy, is

Aa(ex (A2)) = vx" (Ag) + VXimin = Ag iy 2 A ey, =V +0 = Ayl
= A3 (dnexs = @min) =V >0,
contradicting the optimality of x*(4,). Thus, cx"(A3) = dmyn- If dpin > B, then CAP is

infeasible. If d;;, = B, then x"(4,) solves CAP and we need not search for A°.
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APPENDIX B: A Counterexample to Gensch's claim

~ Gensch [Ge] claims that the solution x{(l‘) found when computing CABA
actually solves CAP. The following counterexample to this claim consists of four nodes in

the x-y plane and uses the Euclidean distance function for arc costs.

Node kyl  Yalue o 14 1 1

1 (1,1) 5 14 0 1 2 |
2 0,0) 35 C=ly | o 14| B73
3 ©.1) 3

4 (1.2) 1 1 22 14 0

In figure B.1, we plot each feasible solution to CAP(4) according to its value and cost.
Those points below the line Cost = 3 are feasible solutions to CAP. We also indicate the
optimal solution(s) to CAP(4 ) for each value of A and the optimal solution to CAP. In this

counterexample, the value of xg(l') is 8, while the optimal value for CAP is 8.5.

7
l
6 |
| A=0
5 |
E
c 4 Optimal Solution
ost . . A € (0,1.69)
B A € (1.69,2.48)
2 - »
. A € (2.48,0)
0 2 4 6 8 10 12 14
Value ‘

Figure B.1: Feasible solutions to CAP(4) are plotted according, to value
and cost. The optimal solution(s) to CAP(A) for each value of A and the
optimal solution 10 CAP are indicated. For this problem A° = 2.48,
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APPENDIX C: Detailed Computational Results

This appendix contains complete tables of compuational results. Below is a listing

of the abbreviations and terms used in the tables.

Problem Type (see Section 6.2)

Uniform, Clusters, Outliers: Refers to the method by which the cost matrix is
generated (as described in Section 6.2).

v~equal: All nodes are given equal values. ‘
v~ uni(1,10): Node values are integers uniformly distributed between 1 and 10.
v~ uni(1,3): Node values are integers uniformly distributed between 1 and 3,

| v~ uni(1,100): Node vaiues are integers uniformly distributed between 1 and 100.

v~exp: Node values are exponentially distributed with a mean of 5 and rounded up to
integer values.

B: Defines the budget as a fraction of the approximate cost of a complete TSP tour.

Algorithms ~ Upper Bounding Methods (see Sections 7.1 - 7.3)
- KP: The knapsack bound by Laporte and Martello.
IKP: The improved knapsack bound.
TKP: The tighter knapSack bound.
PAB: The parametric assignment bound.

CABA: The cost-constrained assignment bound.

Algorithms - Heuristic Algorithms (see Sections 9.1 - 9.2)
NewH: The new heuristic algorithm.
MFH: The Multi-Faceted Heuristic by Golden, Wang, and Liu.
Tsi: The heuristic algorithm by Tsiligirides.
CofG: The center of gravity algorithm by Golden, Levy, and Vohra.
GLD - the heuristic algorithm by Golden, Levy, and Dahl.
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Algdrithms - Variations of NewH (see Section 9.3)
no agg.: NewH without aggregated node values.
no LM: NewH without the learning measure.
no updat.: NewH without the updating of aggregated node values.
no foc. pts.:. NewH without the use of focus points.
norand.: NewH without randomization in the node selection process.
no foc. no rand.: NewH without the use of focus points and without randomization.

chp. insert.: Cheapest insertion algorithm followed by two-opt and node swapping.
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Problem

IKP

type B KP TKP PAB CABA
Uniform 0.00 0.00 0.03 0.11 0.09

v ~ equal 0.25 11.33 119.00 7.33 104.33 1 104.33
Uniform \ 0.00 0.00 0.18 0.12 0.12

v~equal | 0.50 33.72 63.20 30.59 52.67 52.67
Uniform 0.00 0.01 0.27 0.06 0.08

v ~ equal 0.75 16.67 25.50 16.04 23.67 23.67

Uniform 0.01 0.00 0.03 — 0.08

v ~uni(1,10) | 0.25 26.03 136.29 7.23 —_ 110.25
Uniform | 0.01 0.00 0.10 — 0.11

v~uni(1,10)| 0.50 | 39.65 | 60.30 | 37.99 | — 51.65 |

Uniform 0.01 0.00 0.27 — 0.07

v ~uni(1,10) | 0.75 14.9_0 18.56 15.02 — 17.50
Uniform 0.00 0.00 " 0.02 — 0.11

v ~uni(1,3) | 0.25 30.81 141.63 7.74 — 109.74
Uniform 0.00 0.00 0.19 — [ 0.12

v ~uni(1,3) | 0.50 37.37 59.82 33.91 o 49.19
Uniform 0.00 0.00 0.27 — 0.09

v ~uni(1,3) | 0.75 14.29 20.69 14.59 —_— 18.46
Uniform 0.00 0.01 0.03 — 0.10

v ~uni(1,100)| 0.25 39.99 157.78 | 12.81 — 123.70
Uniform 0.00 0.00 0.20 — 0.14

v ~ uni(1,100)] 0.50 45.65 67.38 41.26 54.57
Uniform 0.00 0.01 028 — 0.09

v ~uni(1,100 )} 0.75 14.40 16.75 14.45 — 16.13

Uniform 0.00 0.00 0.03 — 0.00 |

V- exp 0.25 31.03 173.63 4.58 —_ 139.70
Uniform 0.00 0.00 0.20 — 0.13

V ~ exp 0.50 44.62 60.19 41.35 — 51.34
Uniform 0.01 0.00 0.27 —_ 0.10

V ~ exp 0.75 10.36 13.34 10.05 —_ 12.22

Table C-1. Computational results comparing the performance of upper bounding
methods using Euclidean test problems. All problems have 20 nodes and results are
averaged over a sample size of 10. The numbers in larger print are the average percent
errors from optimality of the upper bounds while the numbers in smaller print are the
average computation times. Bold type indicates that, when compared with IKP, the
difference in performance was statistically significant at the 95% level.
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— Troblem

IKP

type B KP TKP PAB CABA
Clusters 0.00 0.00 0.02 0.13 0.10
v ~ equal 0.25 14.72 209.68 10.44 189.37 | 216.04
I Clusters 0.01 0.00 0.11 0.10 0.10
v ~ equal 0.50 58.51 112.84 | 39.80 {102.60 {102.60
Clusters 0.00 0.00 0.25 0.00 0.03
v ~ equal 0.75 29.58 - 29.58 | 29.58 29.58 | 29.58
Clusters 0.00 0.00 0.02 — 0.11
v ~uni(1,10) | 0.25 14.65 261.91 8.78 — 233.76
Clusters 0.00 0.00 0.12 — 0.11
v ~uni(1,10) | 0.50 48.89 97.36 29.86 — 94.16
lusters 0.01 0.00 0.25 —_ 0.03
v ~uni(1,10) § 0.75 25.66 25.66 25.66 — 25.66
Outliers "0.00 0.00 ~0.04 0.12 0.00
v ~ equal 0.25 26.61 112.98 16.01 101.31 | 141.31
Outliers 0.01 0.00 0.20 0.12 0.13
v~equal | 0.50 23.41 49.13 21.91 35.32 35.32
Outliers 0.01 0.00 0.27 0.11 0.12
v ~ equal 0.75 6.93 14.46 8.11 9.36 9.36
“Outliers 0.00 0.00 0.04 — 0.10
v~uni(1,10) | 0.25 | 46.38 142.15 | 22.61 — 128.24
Outliers 0.01 0.00 0.22 — 0.14
v ~uni(1,10) | 0.50 25.73 41.66 23.87 — 31.39
Outliers 0.00 0.00 0.27 —_ 0.14
v ~uni(1,10) | 0.75 8.77 11.65 8.94 — 9.88

Table C-1 (cont.).
bounding methods using Euclidean test problems. All problems have 20 nodes and results
are averaged over a sample size of 10. The numbers in larger print are the average percent
errors from optimality of the upper bounds while the numbers in smaller print are the
average computation times. Bold type indicates that, when compared with IKP, the
difference in performance was statistically significant at the 95% level.
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Computational results comparing the performance of upper




 Problem

B

IKP

type _IK KP TKP PAB | CABA
Uniform 0.01 0.00 0.09 0.12 0.11

v ~ equal 0.25 26.83 76.12 | 21.06 54.01 54.01
Uniform 0.01 0.00 0.26 0.11 0.13

v ~ equal 0.50 14.17 27.11 12.08 16.27 17.70

Uniform 0.00 0.00 0.28 0.10 0.13
v-equal |075 | 1076 | 1249 | 1076 | 6.83 | 6.83
Uniform 0.00 0.00 0.10 T — 0.11

v ~uni(1,10) | 0.25 38.32 83.60 26.76 . — 73.46
Uniform 0.00 ~0.00 0.26 — 0.15

v~uni(1,10)| 0.50 | 15.99 24.19 14.55 — 15.79
Uniform 0.01 0.00 0.28 — 0.14

v~uni(1,10) | 0.75 | 8.64 8.94 8.52 — 7.23
~ Uniform 0.01 0.00 | 0.10 — 0.10

v ~uni(1,3) | 0.25 32.64 80.78 25.26 —_ 55.82
Uniform 0.00 0.00 0.26 — 0.13

v ~uni(1,3) | 0.50 15.61 27.15 13.58 — 18.10
Uniform 0.00 0.00 0.29 — 0.13

v ~uni(1,3) | 0.75 8.78 9.59 8.78 —_— 0.60
Uniform 0.00 0.00 0.10 — 0.13

v ~uni(1,100)] 0.25 36.97 88.26 | 26.38 — 62.15
Unitorm 0.00 0.00 0.27 — 0.15

v ~uni(1,100)] 0.50 20.20 29.89 18.26 —_— 19.01
Uniform 0.01 0.00 0.28 — 0.13

v ~ uni(1,100)| 0.75 9.27 9.32 9.17 — 8.36

Uniform 0.00 0.00 0.10 — 0.11

V ~ exp 0.25 43.52 91.68 31.06 —_— 78.70
Uniform 0.01 0.00 0.27 —_ 0.14

V ~ exp 0.50 14.77 21.30 13.31 —_ 13.88
Uniform 0.00 0.00 0.29 — 0.14

V ~ exp 0.75 6.16 6.48 6.16 —_— 5.08

‘Table C-2. Computational results comparing the performance of upper bounding
methods using non-Euclidean test problems. All problems have 20 nodes and results are
averaged over a sample size of 10. The numbers in larger print are the average percent
errors from optimality of the upper bounds while the numbers in smailer print are the
average computation times. Bold type indicates that, when compared with IKP, the
difference in performance was statistically significant at the 95% level.
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~ Problem
type B IKP KP TKP PAB CABA
Tusters ~0.00 0.00 0.04 0.11 0.12 |
v~equal | 0.25 4149 | 348.76 | 2447 |326.60 | 126.60
[ Clusters 0.01 0.00 0.15 0.04 0.07
v ~ equal 0.50 40.86 81.84 36.14 80.67 74.67
lusters 0.00 0.00° 0.26 0.01 0.03
v~equal | 0.75 23.84 23.84 23.84 24.60 23.84
flusters m (')._O(-)-—-Tﬁd, — 0.1
I v~uni(1,10)0| 0.25 4308 11330.05! 21.82 _ 133.78
“lusters 0.01 0.00 0.16 —_ 0.07
v ~uni(1,10) | 0.50 37.71 73.27 32.45 —_ 69.74
Tusters 0.00 0.0C 0.26 — 0.03
v ~uni(1,10) | 0.75 23.50 23.50 23.50 — 23.50
Outliers ~0.00 0.00 0.14 0.13 )
v ~ equal 0.25 28.43 58.95 24.79 44.73 44.73
Outliers 0.00 0.00 0.27 0.12 0.16
v ~ equal 0.50 8.65 16.13 9.28 6.88 6.88
Outliers 0.01 0.00 0.27 0.12 0.15
v~equal | 0.75 8.22 8.77 8.77 3.33 3.33
Outhiers 0.00 0.00 —0.15 — 0.13
v ~uni(1,10) | 0.25 32.26 57.31 27.20 — 44.54
Outliers 0.00 0.00 0.26 — 0.17 |
v ~uni(1,10) | 0.50 8.74 12.78 8.74 — 6.82
Outliers 0.01 0.00 0.27 — 0.18
v ~uni(1,10) | 0.75 4.64 4,73 4,73 e 2.83

Table C-2 (cont.).
bounding methods using non-Euclidean test problems. All problems have 20 nodes and
results are averaged over a sample size of 10. The numbers in larger print are the average
percent errors from optimality of the upper bounds while the numbers in smaller print are
the average computation times. Bold type indicates that, when compared with IKP, tre
difference in performance was statistically significant at the 95% level.
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Computational results comparing the performance of upper



~ Problem

type B NewH MFH Tsi CofG GLD
Uniform 0.62 0.43 0.22 | 0.02 0.00
v~equal | 0.25 0.00 0.00 0.00 5.67 7.67
Uniform 0.86 0.65 081 | 0.03 0.02

v ~ equal 0.50 0.00 0.00 4.76 8.85 | 10.65
Uniform 1.33 1.23 ~1.34 0.07 0.04

v ~ equal 0.75 0.00 0.00 | 3.17 9.50 12.13
Uniform 0.61 0.41 ~0.20 0.02 0.01

v ~uni(1,10) | 0.25 0.00 0.77 0.27 4.95 9.490
Uniform 0.85 0.62 0.74 0.04 0.02

v ~uni(1,10) | 0.50 0.00 0.14 4.82 4.8] 11.84
Uniform 1.30 1.24 1.24 0.07 0.03

v ~uni(1,10) | 0.75 0.00 0.10 4.41 6.13 13.53
Uniform 0.62 0.42 0.21 0.02 0.01
1 v~uni(1,3) | 0.25 0.00 0.00 0.00 12.54 4.85
Unitorm D.86 0.65 0.77 0.03 | 002

v~uni(1,3) | 0.50 { 0.00 0.00 2.63 7.17 12.86
Uniform 1.28 1.15 1.27 0.07 0.04

v ~uni(1,3) | 0.75 0.00 0.40 4.25 3.37 12.90
Uniform 0.62 0.42 0.20 | 0.02 0.01

v ~ uni(1,100)| 0.25 0.00 0.00 0.58 12.05 4.87
T Uniform 0.85 0.64 0.72 0.04 0.02

v ~uni(1,100)] 0.50 0.36 J.52 2.06 6.31 16.63
Uniform 1.27 1.14 1.20 0.06 0.04

v~uni(1,100 § 0.75 0.72 0.29 5.07 1.16 18.62
Uniform 0.61 0.42 0.19 0.02 0.00

V ~ exp 0.25 0.38 0.38 0.75 7.04 9.44
Uniform 0.85 0.65 0.66 0.03 0.02

V ~ exp 0.50 1.13 1.45 4.42 1.85 20.98
Uniform 1.23 0.99 T.11 0.06 0.03

V ~ exp 0.75 0.00 0.20 7.11 1.97 17.75

Table C-3. Computational results comparing the performance of heuristic algorithms
using Euclidean test problems. All problems have 20 nodes and results are averaged over a
sample size of 10. The numbers in larger print are the average percent errors from
optimality while the numbers in smaller print are the average computation times. Bold type
indicates that, when comparsd with NewH, the difference in performance was statistically
significant at the 95% level.
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— Problem
type B NewH MFH Tsi CofG GLD
— Clusters 0.62 0.44 0.21 0.02__ | 0.0
v ~ equal 0.25 0.00 0.00 1.43 5.00 6.19
— Clusters 0.86 0.66 0.63 0.03 0.02
v ~ equal 0.50 0.00 0.00 6.32 4.06 14.01
— Clusters 1.44 1.43 1.28 0.08 0.03
v ~ equal 075 I 0.00 0.00 5.11 2.69 6.98
Clusters 0.62 0.42 0.20 0.02 0.01
v ~ ani(1,10) | 0.25 0.00 0.00 0.65 1.05 8.69
Clusters 0.85 0.62 0.60 0.04 0.0Z
v ~uni(1,10) | 0.50 0.16 0.16 6.30 3.12 27.48
Clusters 1.41 1.33 1.20 0.06 0.04
v ~uni(1,10) | 0.75 | 0.00 000 | 5.72 | 4.96 | 10.91
Outliers 0.65 0.46 0.28 0.02 0.01
v ~ equal 0.25 0.00 0.00 0.00 3.93 11.43
Outliers 1.03 0.83 0.98 0.05 0.03
v ~ equal 0.50 0.00 0.00 2.39 4.70 4.82
Outliers 1.62 1.51 1.47 0.09 0.04
v ~ equal 0.75 0.00 0.00 1.70 4.68 4.61
Outliers 0.65 0.43 0.26 ~0.02 0.01
v ~uni(1,10) | 0.25 0.00 0.00 1.60 7.13 15.65
Outliers” | 1.01 0.81 0.86 0.04 0.03
v ~uni(1,10) | 0.50 0.14 0.14 3.95 3.97 13.04
Outliers 1.55 1.46 1.31 0.07 0.03
v ~uni(1,10) | 0.75 0.67 0.28 6.04 2.68 6.28

Table C-3 (cont.). Computational results comparing the performance of heuristic
algorithms using Euclidean test problems. All problems have 20 nodes and results are
averaged over & sample size of 10. The numbers in larger print are the average percent
errors from optimality while the numbers in smaller print are the average computation
times. Bold type indicates that, when compared with NewH, the difference in performance
was statistically significant at the 95% level.



- Problem

type B NewH MFH Tsi _CofG GLD
Uniform , 0.57 0.61 0.57 0.02 —0.03

v ~ equal 0.25 0.00 0.00 1.00 11.58 9.10
Uniform 1.00 1.26 1.38 0.04 0.04
v~equal | 0.50 | 0.71 0.71 0.62 | 8.25 | 8.96
Uniform 142 | 2.08 1.65 0.07 0.05

v ~ equal 0.75 0.00 0.00 1.67 3.37 3.95
Uniform 0.56 0.59 0.52 0.02 ~0.02

v ~uni(1,10) | 0.25 0.00 0.29 1.20 12.30 12.03
Uniform 0.95 1.23 1.25 0.03 0.04

v ~uni(1,10) | 0.50 0.10 0.00 3.10 4.82 12.73
Uniform 1.40 1.99 1.54 0.06 0.05

v ~uni(1,10y | 0.75 0.00 0.19 3.51 2.54 7.10
Uniform ‘ ~0.57 0.61 0.54 0.02 0.02

v ~uni(1,3) | 0.25 0.00 0.91 2.03 15.39 12.10
Uniform 0.95 1.26 1.28 0.04 0.04

v ~uni(1,3) | 0.50 0.00 0.00 2.05 3.32 11.56
Uniform 1.38 1.93 1.58 0.06 0.06

v ~uni(1,3) | 0.75 0.00 0.00 4.01 2.89 7.24
Uniform 0.57 0.57 0.53 0.03 0.02

v ~uni(1,100)] 0.25 0.00 0.00_ 0.35 7.27 13.83
Uniform 0.95 1.17 1.20 0.03 0.05

v ~uni(1,100)] 0.50 0.02 0.22 2.96 5.69 16.86
Uniform 1.37 1.99 1.50 0.05 0.06

v ~uni(1,100)] 0.75 0.09 0.03 3.38 2.42 9.75
Uniform 0.56 0.54 0.44 0.02 0.02

v~exp | 0.25 0.66 0.37 1.74 3.58 13.74
Uniform I 096 1.26 1.12 0.04 0.05

V ~ exp 0.50 0.00 0.10 3.73 2.02 15.00
Uniform 1.38 1.96 1.48 0.06 0.05

V ~ exp 0.75 0.11 0.38 3.55 1.99 6.23

Table C-4. Computational results comparing the performance of heuristic algorithms

using non-Euclidean test problems. All problems have 20 nodes and results are averaged

over a sample size of 10. The numbers in larger print are the average percent errors from
optimality while the numbers in smaller print are the average computation times. Bold type
indicates that, when compared with NewH, the difference in pe;formance was statistically

significant at the 95% level.




— Problem

CofG

type B NewH MFH Tsi GLD
 Clusters - 0.45 0.41 0.30 | 0.02 0.01
v~equal | 0.25 0.00 0.00 2.50 10.32 8.10
Clusters 0.76 0.94 0.94 0.03 0.03

| v~equal 0.50 1.67 0.00 3.81 12.92 12.34
[ Clusters T.11 1.47 1.59 0.04 0.05
|__v~equal 0.75 0.00 0.00 1.34 2.59 7.02
Clusters 0.45 0.42 0.29 0,02 0.01

v ~uni(1,10) | 0.25 0.00 0.00 0.19 1.97 14.54
Clusters 0.74 0.89 0.87 0.02 0.04

v~uni(1,10)| 0.50 0.00 0.15 0.85 9.16 11.65
Clusters 1.04 1.59 1.42 0.04 0.05

* v ~uni(1,10) | 0.75 0.00 0.00 0.82 2.07 6.06
Outliers — 0.65 0.74 0.79 0.03 0.02

v ~ equal 0.25 0.00 0.00 0.00 13.62 12.90
Outliers T.20 1.63 1.49 0.04 0.05

v ~ equal 0.50 0.00 0.00 1.25 5.63 4.26
Outliers 1.67 2.45 1.72 0.07 0.05

v ~ equal 0.75 0.00 0.00 1.05 0.00 2.13
Outliers 0.64 0.71 0.74 0.03 ~0.03

v ~uni(1,10) | 0.25 0.00 0.48 2.93 8.48 19.75
Outliers 1.19 1.59 1.38 0.05 0.05

{ v~uni(1,10)} 0.50 0.00 0.29 3.06 2.64 7.09
Outliers 1.56 2.35 1.65 0.07 0.05

v ~uni(1,10) | 0.75 0.00 0.00 2.28 0.96 5.84

Table C-4 (cont.).

was statistically significant at the 95% level.
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Computational results comparing the performance of heuristic
algorithms using non-Euclidean test problems. All problems have 20 nodes and results are
averaged over a sample size of 10. The numbers in larger print are the average percent
errors from optimality while the numbers in smaller print are the average computation
times. Bold type indicates that, when compared with NewH, thc difference in performance




Problem Euclidean problems non-Euclidean problems
type B NewH MFH NewH MFH
Uniform 3.66 2.19 4.28 4.42
v ~ equal 0.25 0.16 1.48 - 1.63 1.80
Uniform 7.75 7.45 10.84 13.60
v ~ equal 0.50 0.49 1.36 1.19 1.19
Uniform 16.62 19.51 ~20.66 26.54
v~equal | 0.75 0.88 1.29 - 0.44 0.64
Uniform 3.59 T 2.12 4.12 4.15
v ~uni(1,10) | 0.25 0.29 0.98 2.40 1.40
Uniform 7.48 6.89 10.05 12.76 |
v ~uni(1,10) | 0.50 1.05 1.14 1.21 1.34
Uniform 15.95 18.17 19.56 25.64
v ~uni(1,10) | 0.75 0.97 1.20 0.53 0.73
Uniform | 3.62 2.22 4.25 )
v ~uni(1,3) | 0.25 0.32 1.20 2.22 1.62
Uniform 7.59 7.01 10.43 13.04
v ~uni(1,3) | 0.50 0.82 1.14 1.09 1.42
Uniform 16.16 18.69 19.96 25.80
v~uni(1,3) | 0.75 0.57 1.02 0.59 0.73
Uniform 3.58 2.04 413 4.12
v ~ uni(1,100)| 0.25 0.07 0.96 2.29 2.03
Uniform 7.41 6.71 9.90 12.46
v ~uni(1,100)] 0.50 1.39 0.47 1.41 - 1.90
Uniform 15.69 17.77 19.12 25.06
v ~ uni(1,100)| 0.75 Oﬁ 0.85 0.33 0.71
Uniform 3.57 2.00 4.11 3.87
V ~ exp 0.25 0.44 0.66 2.94 1.59
Uniform 7.32 6.31 9.66 12.14
V ~ exp 0.50 1.47 0.72 1.10 1.37
Uniform 15.61 18.03 19.04 24.97
V ~ exp 0.75 0.84 0.83 0.27 0.44

Table C-5. Computational results comparing the performance of NewH and MFH using
50-node test problems. Results for Euclidean problems are averaged over a sample size of
40 and results for non-Euclidean problems are averaged over a sample size of 20. The
numbers in larger print are the average percent errors from the best known solution while
the numbers in smaller print are the average computation times. Bold type indicates that,
when compared with NewH, the difference in performance was statistically significant at

the 95% level.

106



Problem Euclidean problems non-Euclidean problems
type B NewH MFH NewH MFH
[ Clusters |, 3.66 | . 2.29 3.51 3.23
v~equal | 0.25 0.00 3.26 0.61 1.06
Clusters_ [ . 7.86 7.56 8.46 10.54
v~equal | 0.50 0.08 1.24 0.00 0.32
Clusters 17.28 20.45 16.48 22.28
~v~equal | 0.75 0.03 0.66 0.00 0.00
™ Clusters 3.61 2.17 3.47 2.97
v~ uni(1,10) | 0.25 0.04. 2.61 0.57 2.73
Clusters 7.62 7.05 8.33 10.14
v ~uni(1,10) | 0.50 0.50 -1.19 0.11 0.36
Clusters 16.77 19.25 16.25 21.5%
v ~uni(1,10) | 0.75 0.63 1.16 0.06 0.07
[ Outliers 4.53 3.38 10.94 13.75 |
v ~ equal 0.25 0.51 0.64 0.94 0£6
Outliers 13.09 - 14.88 23.35 - 32.85
v ~ equal 0.50 0.87 0.61 0.11 0.11
Outliers 25.27 3275 26.39 40.54
v~equal | 0.75 0.16 0.53 0.00 0.00
Outliers - 4.43 " 3.23 10.82 13.27
v ~uni(1,10) | 0.25 0.63 0.80 0.68 0.89
Outliers ‘ 12.55 13.83 23.14 32.30
v ~ uni(1,10) | 0.50 1.03 0.90 0.15 0.26
Outliers 24770 31.83 26.10 3972 |
v ~uni(1,10) | 0.75 0.43 0.53 0.05 0.30

Table C-5 (cont.). Computational results comparing the performance of NewH and
MFH using 50-node test problems. Results for Euclid=an problems are averaged over a
sample size of 40 and results for non-Euclidean problems are averaged over a sample size
of 20. The numbers in larger print are the average percent errors from the best known
solution while the numbers in smaller print are the average computation times. Bold type

indicates that, when compared with NewH, the dxffcrence in performance was statistically
significant at the 95% level.
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_T’robleni

no no no no no
type B NewH ageg, LM updat. foc_:Bts. rand.
Uniform 3.66 2.75 3.58 2.76 . | 0.77 0.34
v~equal- |0.25{ 0.16 0.13 0.35 0.13 1.99 2.68
Uniform 7.5 "6.63 7.67 6.80 1.62 0.75
v~equal [0.50| 0.49 1.10 0.49 1.00 2.50 2.99
Uniform 16.62 | 15.28 16.49 15.52 3.37 | 1.63
v~equal |0.75] 0.88 1.12 0.65 1.17 2.65 | 2.87
Uniform 3.50 2.68 3.53 271 | 0.76 | 0.34
v ~uni(1,10) {0.25 | 0.29 0.23 0.27 0.61 1.43 2.33
Uniform 7.48 6.31 7.38 6.60 | 1.55 0.74 |
v ~uni(1,10) [0.50 | 1.05 1.39 6.70 1.40 2,29 3.29
Uniform 15.95 14.70 | 15.96 15.21 3.26 1.61
v ~uni(1,10) {0.75 | 0.97 1.02 0.94 1.22 '2.1§ 2.84
Uniform 3.62 2.72 3.56 2.13 0.77 0.34 |
v~uni(1,3) 10.25] 032 | 033 | 039 | 000 | 1.63 | 2.55
Uniform 7.59 6.47 7.50 6.64 1.55 0.74
v~uni(1,3) {0.50| 0.82 0.85 0.74 1.14 2.73 2.55
Uniform | 16.16 | 14.82 15.96 | 15.18 3.31 1.61
v~uni(1,3) 10.75| 0.57 1.09 0.46 1.11 2.17 3.15
Uniform 3.58 2.65 3.51 2.60 0.76 0.33 |
v ~uni(1,100)]0.25 | 0.07 0.24 0.15 0.05 1.64 2.62
Uniform 7.41 6.19 727 6.54 1.53 0.72 |
v ~uni(1,100){0.50 | 1.39 1.18 1.40 1.67 3.32 | 4.01
Uniform 15.69 14.30 15.65 15.10 3.18 1.53
v ~uni(1,100)]0.75 | 0.84 0.64 0.92 1.14 2.53 3.33
Unilorm 3.57 2.64 3.51 2.68 0.75 | 0.33
V ~ exp 0.25] 0.44 0.04 0.37 0.78 1.60 3.29
Uniform ~7.32 6.19 7.22 6.50 1.56 | O0.71
vV ~ exp 0.50] 147 1.01 1.67 2.81 4.74 5.44
Uniform 15.61 14.41 15.49 15.13 3.17 1.59
V ~ exp 0751 0.84 0.60 1.05 1.66 2.97 2.73

Table C-6. Computational results showing the effects of dropping individual features of
NewH using Euclidean test problems. All problems have 50 nodes and results are
averaged over a sample size of 40. The numbers in larger print are the average percent
errors from optimality while the numbers in smaller print are the average computation
times. Bold type indicates that, when compared with NewH, the difference in performance

was statistically significant at the 95% level.
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" Problem no no no no no
type B NewH agg. LM updat. foc.pts.| rand.
— Clusters | 3.66 | 2.76 | 3.9 | 2.77 0.7 0.34
v~equal |0.25] 0.00 0.12 0.00 0.00 0.14 0.70
[~ Clusters ~7.86 6.64 7.73 6.89 1.66 0.76
v~equal (0.50| 0.08 0.78 0.33 0.48 | 2.54 2.43
[ Clusters 17.28 | 15.40 | 17.29 16.28 3.57 1.74 |
v~equal |0.75] 0.03 0.67 0.30 0 67 2.11 | 1.97
Clusters 3.61 2.72 ~3.53 2.72 0.77 0.34
v~uni(1,10)|0.25 | 0.04 0.03 0.04 0.14 1.03 1.54
Clusters | 7.62 6.42 7.52 6.77 1.60 0.73
v~ uni(1,10) 1 0.50 | 0.50 0.73 0.49 0.74 | 2.83 2.63
usters 16.77 15.21 16.70 15.92 3.36 1.67
| v~ uni(1,10) 0.751 0.63 0.57 0.74 0.89 2_:_63 2.23 |
Qutliers 4.53 3.58 4.45 3.62 0.98 0.42
v~equal [0.25] 0.51 0.98 0.36 0.60 1.62 4.00
Outhers 13.09 11.72 13.01 11.92 2.68 1.30
v~equal |0.50} 0.87 1.09 0.67 079 | 2.23 3.34
Outliers 25.27 | 2438 | 25.28 | 2436 | 5.15 2.57 |
|V ~equal 0.751 0.16 0.37 0.32 0.16 0.6& 1.39
Outliers 4.43 | 3.50 4.35 3.54 0.96 0.42 |
v ~uni(1,10) ] 0.25 | 0.63 0.33 0.38 0.84 2.19 3.40
Outliers 12.55 11.26 12.58 11.76 2.65 1.26 |
v~uni(1,10) | 0.50 { 1.03 0.80 1.18 0.95 2.69 3.22
Outliers 74.70 | 23.31 | 24.71 | 24.21 5.11 2.55 |
v~uni(1,10) {0.75 | 0.43 0.30 0.28 0.44 0.93 1.46

Table C-6 (cont.). Computational results showing the effects of dropping individual
features of NewH using Euclidean test problems. All problems have 50 nodes and results
are averaged over a sample size of 40. The numbers in larger print are the average percent
errors from optimality while the numbers in smaller print are the average computation
times. Bold type indicates that, when compared with NewH, the difference in performance

was statistically significant at the 95% level.
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Problem no no no no no
‘type B | NewH agg. LM updat. | foc.pts.| rand.
Uniform 4.28 Tﬁ% 4.23 3.53 1.11 0.40
v~equal |0.25| 163 | 267 | 147 | 1.8 | 3.86 | 5.93
Uniform 10.84 9.68 | 10.70 9.05 2.77 1.04
v~equal [0.50| 1.19 1.45 1.86 1.58 | 2.79 3.73
Uniform 20.66 19.60 | 20.30 19.35 5.13 2.05
v~equal |0.75| 0.44 0.32 0.54 0.64 1.30 1.75
Uniform 12 | 3.9 207 | 3.4 1.06 0.39 |
v~uni(1,10010.25]| 240 | 262 | 248 | 2.15 | 4.71 | §5.82
Uniform 10.05 8.87 9.95 9.51 2.5¢ | 1.02
v~uni(1,10) [|0.50 | 1.21 1.06 | 1.24 1.36 2.18 3.25
Uniform 19.56 | 18.46 19.36 | 19.52 | 4.88 2.04
v~uni(1,10) |0.75| 0.53 0.20 0.59 0.49 0.97 1.30
Uniform 2.25 | 3.41 2.18 351 1.09 0.41
v~uni(1,3) 10.25| 2.22 1.73 1.22 1.63 3.32 6.40
Uniform 10.43 9.36 10.23 9.79 2.63 1.00
v~uni(1,3) {0.50| 1.09 0.82 0.93 1.48 2.08 2.91
Uniform 19.96 18.99 | 19.69 19.01 5.00 2.02
v~uni(1,3) |0.75] 0.59 0.63 096 | 0.80 1.52 1.75
Uniform 4.13 3.30 4.10 3.43 1.07 0.40
1v ~uni(1,100)]0.25 | 2.29 1.72 2.13 1.69 3.63 6.65
Uniform 9.90 8.8 9.95 9.34 2.55 1.00
v~uni(1,100{0.50 | 1.41 | 0.97 | 151 | 173 | 2.70 | 3.66
Uniform 19.12 18.04 | 18.97 19.36 4.85 1.91
v ~uni(1,100010.75 | 0.33 0.40 0.43 0.52 1.00 1.75
Uniform 4.11 3.17 4.06 3.44 1.06 0.39
Vv ~ exp 0.251 294 1.71 2.71 3.78 4.37 8.41
Uniform 9.66 8.45 9.81 9.46 2.49 1.01
Vv ~ exp 0.50| 1.10 0.66 1.06 1.83 | 2.05 2.54
Uniform 19.04 17.67 18.97 18.47 4.81 1.79 |
V ~ exp 0.75| 0.27 0.24 0.25 0.67 | 0.62 0.91

Table C-7. Computational results showing the effects of dropping individual features of
NewH using non-Euclidean test problems. All problems have 50 nodes and results are
averaged over a sample size of 20. The numbers in larger print are the average percent
errors from optimality while the numbers in smaller print are the average computation
times. Bold type indicates that, when compared with NewH, the difference in performance
was statistically significant at the 95% level.
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— Problem

B N no n]:)/[ n((l) : ) no nod

type ewH age. L updat. oc.pts.| rand.
[~ Clusters 3.51 2.71 T43 | 280 | 0.95 0.33
v~equal |0.25]| 0.61 1.92 0.53 0.53 0.53 1.57
— Clusters 8.46 6.98 8.40 7.48 2.26 0.84
v~equal [0.50| 0.00 1.51 0.00 0.28 0.44 0.76

" Clusters 16.48 1429 16.45 15.62 | 4.21 1.60
v~equal |0.75] 0.00 | 0.12 | 000 | 0.00 | 0.00 | 0.23
Clusters 3.47 2.12 3.39 2.16 0.94 0.33

v ~uni(1,10) | 0.25 | . 0.57 0.21 0.40 0.35 0.79 3.01
Clusters 8.33 7.07 8.24 7.46 2.22 0.81

v ~uni(1,10) {0.50 | 0.11 0.38 | 0.05 0.41 | 0.34 | 1.14
Clusters | 16.25 15.00 | 164C 15.56 4.07 1.56
v~uni(1,10) |0.75 ] 0.06 0.11 0.15 0.11 0.23 0.63
Outliers 1094 1 1016 | 1090 | 10.13 | 2.79 1.13
v~equal |0.25] 0.94 1.39 0.85 1.10 1.39 2.87
Outliers 2335 | 22.46 | 22.93 | 22.80 | 5.1 224 |

v~equal |0.50] 0.11 0.11 0.11 0.21 0.11 0.43
Outliers 26.39 25.70 25.98 25.76 | 6.55 2.51
v~equal [0.75] 0.00 | 000 | 0.00 | 0.00 | 000 | 0.00
Outliers 10.82 9.70 10.60 10.00 2.75 1.06

v ~uni(1,10) | 0.25 | 0.68 0.69 0.92 1.14 | 1.88 | 3.32
Outliers 23.14 22.43 | 23.15 22.57 | 5.84 2.16

v ~uni(1,10){0.50 ] 0.15 0.21 0.17 0.25 0.25 0.55
Outliers 76.10 | 2538 | 26.46 | 25.52 | 6.0 | 2.62

v ~uni(1,10) | 0.75 | 0.05 0.08 0.08 0.11 0.20 0.42

Table C-7 (cont.). Computational results showing the effects of dropping individual
features of NewH using non-Euclidean test problems. All problems have 50 nodes and
results are averaged over a sample size of 20. The numbers in larger print are the average
percent errors from optimality while the numbers in smaller print are the average
computation times. Bold type indicates that, when compared with NewH, the difference in

performance was statistically significant at the 95% level.
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Problem no no no foc. chp.
type P NewH | foc.pts.| rand. | no rand insert. || CofG
Uniform 1 3354 [ 074 | 0.33 | 0.09 0.03 0.14
v~equal |0.25| 0.31 2.11 3.18 7.07 7.63 990
Uniform | ~7.65 1.56 0.74 | 0.17 0.10 0.42
v~equal ]0.50) 0.31 2.49 3.65 8.10 9.20 11.54
Uniform 16.63 3.41 1.65 0.37 0.35 1.10
v~equal |0.75] 0.82 2.80 2.80 7.14 110.99 8.72
Uniform | ~3.49 0.72 0.33 | 0.08 0.03 0.12 |
v~uni(1,10)|6.25| 036 | 093 | 2.64 | 6.50 | 4.37 |/ 10.96 |
Uniform | ~7.42 1.52 | 0.73 | 0.16 0.09 0.37
v ~uni(1,10)10.50 | 1.09 2.37 3.56 7.83 111.70 8.66
Uniform 16.07 1.24 1.65 0.37 0.26 0.93
v~uni(1,10010.75| 0.85 1.97 2.54 5.82 | 8.97 5.41
Uniform 3.51 0.74 0.33 0.00 | 0.02 0.13
v~uni(1,3) 10.25] 0.50 1.67 2.77 5.91 9.33 13.10
Uniformn ~7.49 1.49 0.72 | 0.17 0.10 0.44
v~uni(1,3) |0.50| 0.91 2.70 2.71 7.89 113.64 || 10.36
Uniform 16.50 331 1.64 0.36 0.24 0.92
v~uni(1,3) |0.75| 0.28 1.38 2.20 5.73 110.60 7.34
"~ Uniform 3.48 0.72 | 032 | 0.09 0.02 0.11
v ~uni(1,100/0.25 | 007 | 1.50 | 2.47 | 6.17 | 8.22 | 10.05
Uniform 7.33 1.47 0.72 0.17 0.09 0.31
v ~uni(1,100)]0.50 | 1.43 3.22 4.00 9.20 |11.33 7.18
Uniform 1597 | 3.22 1.54 0.33 0.24 0.61
v ~uni(1,100)]0.75 | 0.53 1.76 3.42 6.21 8.04 5.09
Uniform ~3.46 0.72 0.32 0.09 0.02 0.12 |
V ~ exp 0.25] 0.00 0.62 3.11 8.79 7.17 5.07
Uniform ~7.23 1.52 0.70 0.16 0.10 0.30
v~exp [0.50] 0.90 4.76 5.66 [10.90 | 9.64 7.86
Uniform 15.70 3.08 1.59 0.37 0.28 0.70
V ~ exp 0.75| 0.52 2.60 2.21 5.61 5.50 4.08

Table C-8. Computational results for experiments examining the trade-off between
solution quality and computation time. Results are for Euclidean test problems with S0
nodes and are averaged over a sample size of 20. The numbers in larger print are the
average percent errors from optimality while the numbers in smaller print are the average
computation times. Bold type indicates that, when compared with the algorithm to the
immediate left in the table, the difference in performance was statistically significant at the

95% level.
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Problem

no no no foc. | chp. -
type B NewH | foc.pts.| rand. | no rand.| insert. CofG_ |
Clusters 3.57 0.76 0.33 . 0.03 0.11
~v~equal [0.25] 0.00 0.00 0.29 2.73 4.83 10.36
usters 7.53 1.60 0.72 0.16 | 0.09 0.38
v~equal |0.50| 0.00 3.24 2.67 8.41 |13.72 | 11.38
usters 17.43 3.61 1.77 0.36 0.25 0.97
v~equal 0.75| 0.12 | 1.55 1.57 6.41 | 11.27 8.23
" Clusters 354 | 0.5 033 | 0.09 0.02 || 0.12
v ~uni(1,10) |0.25 | 0.00 0.97 0.82 2.40 9.79 14.79
Clusters 7.30 1.54 0.69 0.17 0.09 0.37
v ~uni(1,10) {0.50 | 0.46 2.96 2.73 .8.73 | 15.37 || 5.96
Clusters 17.10 3.30 1.68 0.35 0.26 0.36
v ~ uni(1,10) 0.751. 0.35 2.11 2.00 5.37 7.§6 3.56
Outliers 4.50 0.97 0.42 0.11 0.04 0.24 |
v~equal |0.25| 0.81 2.56 4.47 8.98 10.81 7.86 |
Outliers 13.37 | 2.69 .30 0.29 0.19 0.78 |
v~equal ]0.50] 0.68 | 2.44 3.15 5.72 9.87 8.68
Outliers | 25.67 | 5.17 2.60 0.53 0.54 1.61
v ~ equal 0.75] 0.11 0.31 1.07 2.55 246 1.81
Outliers 4.41 0.95 0.42 0.11 0.04 0.20 |
v ~uni(1,10) 10.25 | 0.37 2.35 3.44 9.00 10.27 7.57
Outliers 12.74 2.68 1.27 0.30 0.20 0.65
v ~uni(1,10) | 0.50 | 1.33. 3.25 3.22 6.48 8.46 7.02
Outliers 25.00 5.15 2.57 0.56 | 0.47 1.31
v~uni(1,10) | 0.75 | 0.42 0.65 1.32 2.93 2.24 " 48

Table C-8 (cont.).. Computational results for experiments examining the trade-off
between solution quality and computation time. Results are for Euclidean test problems
with 50 nodes and are averaged over a sample size of 20. The numbers in larger print are
the average percent errors from optimality while the numbers in smaller print are the
average computation times. Bold type indicates that, when compared with the algorithm to
the immediate left in the table, the difference in performance was statistically significant at

the 95% level.
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