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Abstract

Exclusive vy — hadron pairs are among the most fundamental processes in QCD,
providing a detailed examination of Compton scattering in the crossed channel. In
the high momentum transfer domain (s, t,large, 6., for t/s fixed), these processes
can be computed from first principles in QCD, yielding important information on
the nature of the QCD coupling o, and the form of hadron distribution amplitudes.
Similarly, the transition form factors v*v, v*y — 7°, 1% 7', 7 . . . provide rigorous tests
of QCD and definitive determinations of the meson distribution amplitudes ¢x(z, Q).
We show that the assumption of a frozen coupling at low momentum transfers can

explain the observed scaling of two-photon exclusive processes.

1 Introduction

Exclusive two-photon processes provide highly valuable probes of coherent effects
in quantum chromodynamics. For example, in the case of exclusive final states at
high momentum transfer and fixed 6., such as vy — pp or meson pairs, photon-
photon collisions provide a timelike microscope for testing fundamental scaling laws
of PQCD and for measuring distribution amplitudes, the fundamental wavefunctions
of hadrons. [1] At very high energies s >> —t , diffractive processes such as vy —
neutral vector (or pseudoscalar) meson pairs with real or virtual photons can test the
QCD Pomeron (or the C = —1 exchange Odderon) in a detailed way utilizing the
simplest possible initial state. [2] In the case of low momentum transfer processes,
the comparison of the two-photon decay width for a given C' = + resonance with
its inferred two-gluon width provides an indirect discovery tool for gluonium. As
discussed at this conference by H. Paar, [3] CLEO has reported a very small upper
limit for the coupling I'(yy — f9(1220) due to the absence of a signal for K K
decays, whereas a large gg — f9(1220) coupling is inferred from Mark IIT and BES
observations of J/1 — vf9 decays. Using Chanowitz’s “stickiness” criteria, [4] this
points to a gluonium interpretation of the f9.

Traditionally, vy data has come from the annihilation of Weisécker-Williams ef-

fective photons emitted in e~e* collisions. Data for vy — hadrons from ep — €'p’R°
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events at HERA has also now become available. The HERA diffractive events will
allow studies of photon and pomeron interference effects in hadron-induced ampli-
tudes. As emphasized by Klein, [5] nuclear-coherent yy — hadrons reactions can be
observed in heavy-ion collisions at RHIC or the LHC, e.g. Z,Z, — Z,Zon*n~. Even-
tually v~ collisions will be studied at TeV energies with back-scattered laser beams,
allowing critical probes of Standard Model and supersymmetric processes with po-
larized photons in exclusive channels such as Higgs production vy - W+W~, and
vy > WTW-W+W-. [6]

2 Hard Exclusive Two-Photon Reactions

Exclusive two-photon processes such as 4y — hadron pairs and the transition form
factor v*y — neutral mesons play a unique role in testing quantum chromodynamics
because of the simplicity of the initial state. [1] At large momentum transfer the direct
point-like coupling of the photon dominates at leading twist, leading to highly specific
predictions which depend on the shape and normalization of the hadron distribution
amplitudes ¢y (z;, Q) the basic valence bound state wavefunctions. The most recent
exclusive two-photon process data from CLEO [7] provides stringent tests of these
fundamental QCD predictions.

Exclusive processes are particularly challenging to compute in QCD because of
their sensitivity to the unknown non-perturbative bound state dynamics of the hadrons.
However, in some important cases, the leading power-law behavior of an exclusive am-
plitude at large momentum transfer can be computed rigorously via a factorization
theorem which separates the soft and hard dynamics. The key ingredient is the fac-
torization of the hadronic amplitude at leading twist. As in the case of inclusive
reactions, factorization theorems for exclusive processes [1, 8, 9] allow the analytic
separation of the perturbatively-calculable short-distance contributions from the long-
distance non-perturbative dynamics associated with hadronic binding. For example,

the amplitude vy — n* 7~ factorizes in the form
1 1 ~ ~ ~
Moysrrn- = [ da [ dy é(z,Q) Tu(2,4,Q) 6:(4. Q) )

where ¢,(z, Q) is in the pion distribution amplitude and contains all of the soft, non-

perturbative dynamics of the pion ¢g wavefunction integrated in relative transverse
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momentum up to the separation scale k2 < Q?, and Ty is the quark/gluon hard
scattering amplitude for 7y — (¢g)(qq) where the outgoing quarks are taken collinear
with their respective pion parent. To lowest order in a;, the hard scattering ampli-
tude is linear in o,. The most convenient definition of the coupling is the effective
charge o (Q?), defined from the potential for the scattering of two infinitely heavy
test charges, in analogy to the definition of the QED running coupling. Another
possible choice is the effective charge ag(s), defined from the QCD correction to the
annihilation cross section: R+e- - nadrons(S) = Ro(1 + ar(s)/7). One can relate ay
and ap to agrs to NNLO using commensurate scale relations [10].

The contributions from non-valence Fock states and the correction from neglecting
the transverse momentum in the subprocess amplitude from the non-perturbative
region are higher twist, i.e., power-law suppressed. The transverse momenta in the
perturbative domain lead to the evolution of the distribution amplitude and to next-
to-leading-order (NLO) corrections in a,. The contribution from the endpoint regions
of integration, £ ~ 1 and y ~ 1, are power-law and Sudakov suppressed and thus can
only contribute corrections at higher order in 1/Q. [1}

The distribution amplitude ¢(m,@) is boost and gauge invariant and evolves in
an through an evolution equation [1]. It can be computed from the integral over
transverse momenta of the renormalized hadron valence wavefunction in the light-cone

gauge at fixed light-cone time [1]:
o o ; i )
8(a,Q) = [dKL6 (Q2 - -x—i—) ¥ (e, kL)- @)

A physical amplitude must be independent of the separation scale Q. The natural
variable in which to make this separation is the light-cone energy, or equivalently
the invariant mass M? = klz/z(l — 1), of the off-shell partonic system [11, 1]. Any
residual dependence on the choice of Q for the distribution amplitude will be com-
pensated by a corresponding dependence of the NLO correction in Tx. In general,
the NLO prediction for exclusive amplitude depends strongly on the form of the pion
distribution amplitude as well as the choice of renormalization scale y and scheme.
The QCD coupling is typically evaluated at quite low scales in exclusive processes
since the momentum transfers has to be divided among several constituents. In

the BLM procedure, the scale of the coupling is evaluated by absorbing all vacuum

4



polarization corrections with the scale of the coupling or by taking the experimental
value integrating over the gluon virtuality. Thus, in the case of the (timelike) pion
form factor the relevant scale is of order Q*2 ~ e™3M2,__ = - M2, _ assuming the
asymptotic form of the pion distribution amplitude ¢2™P* = /3 f, z(1 —z). At such
low scales, it is likely that the coupling is frozen or relatively slow varying.

In the BLM procedure, the renormalization scales are chosen such that all vac-
uum polarization effects from the QCD 3 function are re-summed into the running
couplings. The coefficients of the perturbative series are thus identical to the pertur-
bative coefficients of the corresponding conformally invariant theory with 8 = 0. The
BLM method has the important advantage of “pre-summing” the large and strongly
divergent terms in the PQCD series which grow as n!(a;5)", i.e., the infrared renor-
malons associated with coupling constant renormalization [12, 13]. Furthermore, the
renormalization scales Q* in the BLM method are physical in the sense that they
reflect the mean virtuality of the gluon propagators [13, 14, 15, 16]. In fact, in the
av(Q) scheme, where the QCD coupling is defined from the heavy quark potential,
the renormalization scale is by definition the momentum transfer caused by the gluon.
Because the renormalization scale is small in the exclusive y7y processes discussed here,
we will argue that the effective coupling is nearly constant, thus accounting for the
nominal scaling behavior of the data [17, 18].

The heavy-quark potential V' (Q?) can be identified via the two-particle-irreducible

scattering amplitude of test charges, i.e., the scattering of an infinitely heavy quark

and antiquark at momentum transfer t = —Q?. The relation
47Cray(Q?
Vi@ = -], ®

with Cp = (N% — 1)/2N¢c = 4/3, then defines the effective charge ay(Q). This
coupling provides a physically-based alternative to the usual MS scheme. As in the
corresponding case of Abelian QED, the scale @ of the coupling ay(Q) is identi-
fied with the exchanged momentum. The scale-fixed relation between ay and the
conventional MS coupling is

ov(@) = ags(e°Q) (1- T2 1), @

above or below any quark mass threshold. The factor e~3/¢ ~ 0.4346 is the ratio of

commensurate scales between the two schemes to this order. It arises because of the



conventions used in defining the modified minimal subtraction scheme. The scale in
the MS scheme is thus a factor ~ 0.4 smaller than the physical scale. The coefficient
2C4/3 in the NLO term is a feature of the non-Abelian couplings of QCD; the same
coefficient would occur even if the theory were conformally invariant with G, = 0.
Recent lattice calculations have provided strong constraints on the normalization and
shape of av(Q?). [19] The J/¢ and T spectra have been used to determine the
normalization:

o!¥(8.2 GeV) = 0.196(3), (5)

where the effective number of light flavors is ny = 3. The corresponding modified

minimal subtraction coupling evolved to the Z mass using Eq. (4) is given by
® (Mz) = 0.115(2 6
az75(Mz) = 0.115(2). (6)

This value is consistent with the world average of 0.117(5), but is significantly more
precise. These results are valid up to NLO.

Ji, Pang, Robertson, and I [20] have recently analyzed the pion transition form
factor F7"7 — 70 obtained from ey — €'7%, the timelike pion form obtained from
ete™ — w7, and the vy — w+7n~ processes, all at NLO in ay. The assumption
of a nearly constant coupling in the hard scattering amplitude at low scales provides
an explanation for the phenomenological success of dimensional counting rules for
exclusive processes; i.e., the power-law fall-off follows the nominal scaling of the hard
scattering amplitude My,q ~ Ty ~ [pr]*~™ where n is in the total number of incident
and final fields entering Ty. The transition form factor has now been measured up
to Q? < 8 GeV? in the tagged two-photon collisions ey — €'7° by the CLEO and
CELLO collaborations. In this case the amplitude has the factorized form

4 f1
Fu(@%) = %/0 drop(z, QZ)Tf-»M(-’E,Q2), (7)
where the hard scattering amplitude for yy* — qq is
1
H 2y __
T,.’M(IE, Q ) - (1 . 1')Q2 (1 + O(as)) : (8)

The leading QCD corrections have been computed by Braaten [21]; however, the NLO
corrections are necessary to fix the BLM scale at LO. Thus it is not yet possible to

rigorously determine the BLM scale for this quantity. We shall here assume that
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this scale is the same as that occurring in the prediction for Fy. For the asymptotic
distribution amplitude we thus predict

) aV(Q*)> . (9)

2 2
F.. =2fz|1— =
@Fa(@) =21, (1- 524
As we shall see, given the phenomenological form of ay we employ (discussed below),
this result is not terribly sensitive to the precise value of the scale.

An important prediction resulting from the factorized form of these results is that

the normalization of the ratio

2 — F‘ﬂ’(Qz)
BQ@) = IR, Q)P 10
) (1 —0.56?) (1)
= ay(e¥2Q) (1+1.43°7‘T—V) (12)
N ) (1—0.65%) (13)

is formally independent of the form of the pion distribution amplitude. The a5 cor-
rection follows from combined references [21, 22, 23]. The next-to-leading correction
given here assumes the asymptotic distribution amplitude.

We emphasize that when we relate R, to ay we relate observable to observable
and thus there is no scheme ambiguity. Furthermore, effective charges such as ay
are defined from physical observables and thus must be finite even at low momenta.
A number of proposals have been suggested for the form of the QCD coupling in
the low-momentum regime. For example, Petronzio and Parisi [24] have argued that
the coupling must freeze at low momentum transfer in order that perturbative QCD
loop integrations be well defined. Mattingly and Stevenson [25] have incorporated
such behavior into their parameterizations of ag at low scales. Gribov [26] has pre-
sented novel dynamical arguments related to the nature of confinement for a fixed
coupling at low scales. Zerwas [27] has noted the heavy quark potential must sat-
urate to a Yukawa form since the light-quark production processes will screen the
linear confining potential at large distances. Cornwall [28] and others [29, 30] have
argued that the gluon propagator will acquire an effective gluon mass m, from non-

perturbative dynamics, which again will regulate the form of the effective couplings
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at low momentum. We shall adopt the simple parameterization
47

av(Q) = Boln (ﬁxg—'ﬁ),

(14)

which effectively freezes the oy effective charge to a finite value for Q2 < 4m2.
We can use the non-relativistic heavy quark lattice results [19, 31] to fix the
parameters. A fit to the lattice data of the above parameterization gives Ay =

0.16 GeV if we use the well-known momentum-dependent ny [32]. Furthermore,

2 —
g

by Mattingly and Stevenson [25]. Their parameterization implies the approximate
constraint ag(Q)/n ~ 0.27 for Q = /s < 0.3 GeV, which leads to ay (0.5 GeV) ~

0.37 using the NLO commensurate scale relation between ay and ag. The resulting

the value m2 = 0.19 GeV? gives consistency with the frozen value of ar advocated

form for ay is shown in Fig. 1. The corresponding predictions for ar and oz using
the CSRs at NLO are also shown. Note that for low Q? the couplings, although
frozen, are large. Thus the NLO and higher-order terms in the CSRs are large, and
inverting them perturbatively to NLO does not give accurate results at low scales.
In addition, higher-twist contributions to ay and ag, which are not reflected in the
CSR relating them, may be expected to be important for low Q* [33].

It is clear that exclusive processes such as the photon to pion transition form
factors can provide a valuable window for determining the magnitude and the shape
of the effective charges at quite low momentum transfers. In particular, we can
check consistency with the oy prediction from lattice gauge theory. A complimentary
method for determining ay at low momentum is to use the angular anisotropy of
ete~ — QQ at the heavy quark thresholds [34]. It should be emphasized that the
parameterization (14) is just an approximate form. The actual behavior of oy (Q?)
at low Q? is one of the key uncertainties in QCD phenomenology.

As we have emphasized, exclusive processes are sensitive to the magnitude and
shape of the QCD couplings at quite low momentum transfer: Qi ~ e™3Q? ~ Q?/20
and Q%2 ~ Q?/50 [35]. The fact that the data for exclusive processes such as form
factors, two photon processes such as 4y — 7m*7~, and photoproduction at fixed
8., are consistent with the nominal scaling of the leading-twist QCD predictions
(dimensional counting) at momentum transfers ) up to the order of a few GeV can

be immediately understood if the effective charges @y and ag are slowly varying
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0.6 T T T

ay

oFf5 - - -
0.5 v QR - -

0.1r -

Q? (GeV?)

Figure 1: The coupling function ay(Q?) as given in Eq. (14). Also shown are the
corresponding predictions for azs and ag following from the NLO commensurate

scale relations.

at low momentum. The scaling of the exclusive amplitude then follows that of the
subprocess amplitude Ty with effectively fixed coupling. Note also that the Sudakov
effect of the end point region is the exponential of a double log series if the coupling
is frozen, and thus is strong.

In Fig. 2, we compare the recent CLEO data (7] for the photon to pion transition

form factor with the prediction

> _———"‘V(e_a/zQ)) . (15)

QFpn(@) = 2s (1 _Sale
The flat scaling of the Q?F,,(Q?) data from Q? = 2 to Q* = 8 GeV? provides an
important confirmation of the applicability of leading twist QCD to this process. The
magnitude of Q2F.,,(Q?) is remarkably consistent with the predicted form, assuming
the asymptotic distribution amplitude and including the LO QCD radiative correction
with ay(e~3/2Q)/m ~ 0.12. Radyushkin [36], Ong [37] and Kroll [38] have also noted

that the scaling and normalization of the photon-to-pion transition form factor tends
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0.25 T T T T
02+ u
QFa(@) T iﬁﬁ I { { } { {
o it
0.1 + _
0.05 ]
% . ; 6 . 10

Q? (GeV?)

Figure 2: The v — 7° transition form factor. The solid line is the full predic-
tion including the QCD correction [Eq. (15)]; the dotted line is the LO prediction

Q2F’YW(Q2) = 2f7r

to favor the asymptotic form for the pion distribution amplitude and rules out broader
distributions such as the two-humped form suggested by QCD sum rules [39]. One
cannot obtain a unique solution for the non-perturbative wavefunction from the F;,
data alone. However, we have the constraint that
1 Sa *

1§

=2 5‘7‘] =08 (16)

1
3¢
(assuming the renormalization scale we have chosen in Eq. (9) is approximately
correct). Thus one could allow for some broadening of the distribution amplitude
with a corresponding increase in the value of ay at low scales.
We have also analyzed the vy — ntn~, K*K~ data. These data exhibit true
leading-twist scaling (Fig. 3), so that one would expect this process to be a good test
of theory. One can show that to LO

%% (yy = 7tn7) _ 4| Fy(s)|?
E(vy—utus) 1-—costbom,

(17)
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in the CMS, where dt = (s/2)d(cosf..,) and here F,(s) is the time-like pion form
factor. The ratio of the time-like to space-like pion form factor for the asymptotic

distribution amplitude is given by

|F1$time]ike)(_Q2)| B |av(*Q'2)|
F}spacelike)(Qg) - aV(Qd)

(18)

If we simply continue Eq. (14) to negative values of @? then for 1 < Q* < 10
GeV?, and hence 0.05 < Q*2 < 0.5 GeV?, the ratio of couplings in Eq. (18) is
of order 1.5. Of course this assumes the analytic application of Eq. (14). Thus
if we assume the asymptotic form for the distribution amplitude, then we predict
Ftimelike) (92} ~ (0.3 GeV?)/Q? and hence

L(yysntnm) .36 1
@ (yy > ptpm) ~ 82 1—costfem.’

(19)

The resulting prediction for the combined cross section o(yy — ntn~, KTK )tis
shown in Fig. 3, along with CLEO data [7]. Considering the possible contribution of
the resonance f,(1270), the agreement is reasonable.

We also note that the normalization of ay could be larger at low momentum
than our estimate. This would also imply a broadening of the pion distribution
amplitude compared to its asymptotic form since one needs to raise the expectation
value of 1/(1 —z) in order to maintain consistency with the magnitude of the F,,(Q?)
data. A full analysis will then also require consideration of the breaking of scaling
from the evolution of the distribution amplitude. In any case, we find no compelling
argument for significant higher-twist contributions in the few GeV regime from the
hard scattering amplitude or the endpoint regions, since such corrections violate the
observed scaling behavior of the data.

The analysis we have presented here suggests a systematic program for estimat-
ing exclusive amplitudes in QCD (including exclusive B-decays) which involve hard
scattering. The central input is ay(0), or

__I/di 2 ) Q2<1 GeV? 20
av——zo Q" av(Q"), @ < evy, (20)

tThe contribution from kaons is obtained at this order simply by rescaling the prediction for
pions by a factor (fx/fr)* =~ 2.2.
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Figure 3: Two-photon annihilation cross section o(yy — n*7~, K+ K~) as a function

of CMS energy, for | cos6*| < 0.6.

which largely controls the magnitude of the underlying quark-gluon subprocesses
for hard processes in the few-GeV region. In this work, the mean coupling value for
Q5 ~ 0.5 GeV? is @y ~ 0.38. The main focus will then be to determine the shapes and

normalization of the process-independent meson and baryon distribution amplitudes.

3 Conclusions

The leading-twist scaling of the observed cross sections for exclusive two-photon pro-
cesses and other fixed 6., reactions can be understood if the effective coupling oy (Q*)
is approximately constant in the domain of Q* relevant to the underlying hard scatter-
ing amplitudes. In addition, the Sudakov suppression of the long-distance contribu-
tions is strengthened if the coupling is frozen because of the exponentiation of a double
log series. We have also found that the commensurate scale relation connecting the
heavy quark potential, as determined from lattice gauge theory, to the photon-to-pion

transition form factor is in excellent agreement with ve — 7% data assuming that
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the pion distribution amplitude is close to its asymptotic form V3 frz(1—1x). We also
reproduce the scaling and approximate normalization of the vy — 7t7~, KT K~ data
at large momentum transfer. However, the normalization of the space-like pion form
factor F,(Q?) obtained from electroproduction experiments is somewhat higher than
that predicted by the corresponding commensurate scale relation. This discrepancy
may be due to systematic errors introduced by the extrapolation of the v*p — 7n*n

electroproduction data to the pion pole.
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