

CONF-871101-32

CONF-871101--32

KENO V.a VALIDATION OF FUEL PIN EXPERIMENTS*

DE87 011672

H. R. Dyer and R. M. Westfall

COMPUTING AND TELECOMMUNICATIONS DIVISION
at **
Oak Ridge National Laboratory**
Post Office Box X
Oak Ridge, Tennessee 37831

To be Presented at the
Annual Meeting of the
American Nuclear Society
Los Angeles, California
November 15-19, 1987

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

* Research sponsored by the Office of Civilian Radioactive Waste Management, U. S. Department of Energy, Washington, D. C. 20545.

** Operated by Martin Marietta Energy Systems, Inc. under contract DE-AC05-84OR21400 with the U. S. Department of Energy.

MASTER

KENO V.a VALIDATION OF FUEL PIN EXPERIMENTS

H. R. Dyer and R. M. Westfall

This paper describes the results of computations performed on a set of critical experiments designed to simulate high-density storage of reactor fuel pins. The purpose of these computations is to validate the Monte Carlo criticality code KENO V.a¹ with the four cross-section libraries provided with the SCALE² modular code system. This work was sponsored by the DOE Office of Civilian Radioactive Waste Management.

A series of 21 critical experiments,³ performed by the Babcock & Wilcox Company to simulate close-packed fuel-pin storage, were modeled. The CSAS⁴ control module within SCALE was used to calculate the effective neutron multiplication factor (k_{eff}) via the KENO V.a criticality code. The experiments consisted of 5 x 5 arrays of fuel-pin modules each about 19 cm square. Three different module types were utilized in the experiments such that the pin packing density ranged from slightly more dense than typical PWR fuel assemblies, to the most compact configuration possible. In order of decreasing packing density, the fuel-pins in each module were arranged as follows:

- (a) T-type: 243 pins in triangular pitch with pins touching (forming an approximate 15 x 17 array of pins), spacing between modules ranged from about 1.86 cm to 3.39 cm;
- (b) S-type: 221 pins in square pitch with pins touching (forming a 15 x 15 array of pins), spacing between modules at 1.778 cm; and

(c) SO-type: 165 pins in square pitch with pins on a 1.4097 cm pitch (forming a 13 x 13 array of pins), spacing between modules at 1.792 cm.

The four corner pin positions of each type module was an aluminum rod, to connect the top and bottom plates.

All experiments were conducted in a 274 cm (9 ft) diameter tank.

Boric acid (H_3BO_3) was dissolved in the water moderator as a reactivity shim, such that each core configuration would initially be critical at a water height of about 145 cm, as measured from the bottom of the fuel. For each module configuration, the boric acid content was progressively reduced until the critical height of the moderator was about 100 cm. Table 1 gives the basic critical parameters (from ref. 3).

In addition to the normal detailed geometry description permitted by KENO V.a, each fuel pin was explicitly modeled, and identified such that Dancoff factors could be input for each unique pin position within each type module. The Dancoff factors are applied as part of the resonance data processing. They characterize the neutron transmission probabilities between the fuel pins in a heterogeneous lattice.

Table 2 presents the calculated k_{eff} of the 21 critical configurations of Table 1, using the four cross-section libraries available in SCALE: the Hansen-Roach 16 energy group, the ENDF/B-IV 27 energy group, the GAM-THERMOS 123 energy group, and the ENDF/B-IV 218 energy group libraries.

Earlier computations of these experiments³ using KENO IV⁴ with cell homogenized GAM-THERMOS cross sections, compare very well with these results, except for Experiment Nos. 2464 and 2472 (called Core II and Core III in ref. 3). The KENO IV results produced a trend, which progressively

underpredicts k_{eff} as the module spacing increases; this trend has been observed in other similar experimental/calculational studies.⁵

This trend is not observed in the present KENO V.a results for any of the four cross-section libraries. There are numerous explanations for the improved performance, including code improvements and cross-section processing improvements. However, no attempt has been made in this study to qualify or quantify these improvements, or lack of improvement for the ENDFB-IV based libraries. Other similar experimental programs have been identified to be modeled and calculated, as part of this validation effort. Only then can the improvements be truly assessed.

The principal conclusion drawn from this study is the satisfactory performance of the SCALE cross-section libraries in the analysis of systems containing consolidated light-water reactor fuel. As observed in previous studies, the ENDF/B-IV-based libraries undercalculate k_{eff} by 1 to 2% k , depending on the degree of neutron moderation.

REFERENCES

1. L. M. Petrie and N. F. Landers, "KENO V.a. An Improved Monte Carlo Criticality Program with Supergrouping," NUREG/CR-0200, ORNL/NUREG/CSD-2, Vol. 2, Sec. F11, Oak Ridge National Laboratory (1984).
2. C. V. Parks, Editor, "SCALE, A Modular Code System for Performing Standardized Analyses for Licensing Evaluation," Vols. 1, 2, 3, NUREG/CR-0200 (Rev. 3), 1984.
3. G. S. Hoovler et al., "Critical Experiments Supporting Underwater Storage of Lightly Packed Configurations of Spent Fuel Pins," BAW-1645-4, Babcock & Wilcox Co., 1981.
4. L. M. Petrie and N. F. Cross, "KENO IV, An Improved Monte Carlo Criticality Program," ORNL-4938, Oak Ridge National Laboratory, 1975.
5. M. N. Baldwin et al., "Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel," BAW-1484-7, Babcock & Wilcox Co., 1979.

TABLE 1

EXPERIMENTS FROM B&W-1645-4

2.459% ENRICHED UO₂ FUEL PINS IN TRIANGULAR (T-TYPE), SQUARE (S-TYPE), AND SQUARE OPEN (SO-TYPE) PIN LATTICES FORMING FUEL MODULES. THE FUEL MODULES ARE IN 5X5 ARRAYS, VARYING MODULE SPACING, BORON CONTENT OF WATER MODERATOR, AND WATER HEIGHT.

TOTAL NUMBER OF FUEL PINS IN T-TYPE MODULE EXPERIMENTS IS 6075
 TOTAL NUMBER OF FUEL PINS IN S-TYPE MODULE EXPERIMENTS IS 5525
 TOTAL NUMBER OF FUEL PINS IN SO-TYPE MODULE EXPERIMENTS IS 4125

B&W EXPERIMENT NO.	PIN TYPE	AVERAGE MODULE SPAC'NG (CM)	BORON CONC. (PPM)	CRIT HEIGHT (CM)	MODERATOR TEMP. (C)
2452	T	1.86	435	143.96	22.5
2453	T	1.86	426	137.85	23.5
2454	T	1.86	406	128.34	24.0
2455	T	1.86	383	119.57	22.5
2456	T	1.86	354	110.20	23.0
2457	T	1.86	335	104.82	23.0
2464	T	2.62	361	142.54	20.0
2472	T	3.39	121	145.64	18.5
2485	S	1.778	886	145.00	21.0
2486	S	1.778	871	137.79	21.0
2487	S	1.778	852	128.56	22.0
2488	S	1.778	834	122.95	21.0
2489	S	1.778	815	116.21	21.0
2490	S	1.778	781	108.20	22.0
2491	S	1.778	746	100.24	22.0
2500	SO	1.792	1156	144.85	22.5
2501	SO	1.792	1141	133.49	22.5
2502	SO	1.792	1123	125.19	23.0
2503	SO	1.792	1107	116.59	23.0
2504	SO	1.792	1093	111.47	23.0
2505	SO	1.792	1068	101.81	23.0

TABLE 2

K-EFF +/- SIGMA					
B&W					
EXP'MT	HANSEN-ROACH NO	(16 GROUP)	ENDF/B-IV (27 GROUP)	GAM-THERMOS (123 GROUP)	ENDF/B-IV (218 GROUP)
----- TRIANGULAR (T) PITCHED PIN MODULES -----					
2452	0.9944 0.0030	0.9763 0.0036	0.9918 0.0034	0.9795 0.0035	
2453	0.9979 0.0029	0.9835 0.0033	0.9999 0.0034	0.9810 0.0038	
2454	0.9972 0.0035	0.9793 0.0034	0.9969 0.0036	0.9819 0.0041	
2455	0.9990 0.0038	0.9816 0.0036	0.9988 0.0035	0.9838 0.0037	
2456	0.9986 0.0036	0.9828 0.0029	1.0170 0.0035	0.9760 0.0037	
2457	1.0017 0.0034	0.9679 0.0038	1.0033 0.0035	0.9835 0.0035	
AVG-T	0.9981	0.9786	1.0013	0.9810	
2464	0.9978 0.0033	0.9750 0.0036	0.9915 0.0035	0.9783 0.0039	
2472	1.0194 0.0037	0.9928 0.0038	0.9974 0.0035	1.0003 0.0039	
----- SQUARE (S) PITCHED PIN MODULES -----					
2485	0.9911 0.0033	0.9735 0.0028	0.9953 0.0033	0.9850 0.0038	
2486	0.9995 0.0036	0.9820 0.0033	0.9983 0.0030	0.9833 0.0037	
2487	0.9991 0.0035	0.9772 0.0034	1.0023 0.0035	0.9773 0.0038	
2488	0.9999 0.0035	0.9828 0.0035	0.9890 0.0035	0.9715 0.0038	
2489	0.9954 0.0036	0.9837 0.0033	1.0005 0.0030	0.9847 0.0040	
2490	1.0044 0.0036	0.9825 0.0033	0.9925 0.0038	0.9791 0.0038	
2491	1.0036 0.0037	0.9754 0.0030	1.0020 0.0041	0.9862 0.0037	
AVG-S	0.9990	0.9796	0.9971	0.9810	
----- SQUARE-OPEN (SO) PITCHED PIN MODULES -----					
2500	1.0057 0.0028	0.9924 0.0030	1.0042 0.0030	0.9857 0.0028	
2501	0.9975 0.0033	0.9844 0.0034	1.0006 0.0032	0.9930 0.0035	
2502	0.9989 0.0039	0.9918 0.0039	0.9999 0.0034	0.9900 0.0039	
2503	1.0063 0.0033	0.9831 0.0033	0.9997 0.0033	0.9947 0.0038	
2504	1.0002 0.0034	0.9872 0.0028	1.0042 0.0031	0.9815 0.0038	
2505	1.0055 0.0026	0.9843 0.0031	0.9920 0.0038	0.9829 0.0034	
AVG-SO	1.0021	0.9872	1.0001	0.9880	
TOTAL					
AVG.	1.0006	0.9819	0.9989	0.9837	