

CONF-971004--10

THE US/UK ACTINIDES EXPERIMENT AT THE DOUNREAY PFR

S. Raman, R. L. Walker, J. K. Dickens, and B. D. Murphy
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Tel: 423-574-4496 Fax: 423-576-8746 E-mail: raman@mail.phy.ornl.gov

Paper selected for poster presentation at the
International Conference on Future Nuclear Systems
GLOBAL '97
Yokahama, Japan
October 5-10, 1997

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

The submitted manuscript has been authored by a
contractor of the U.S. Government under contract
No. DE-AC05-96OR22464. Accordingly, the U.S.
Government retains a nonexclusive, royalty-free
license to publish or reproduce the published form
of this contribution, or allow others to do so, for U.S.
Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

THE US/UK ACTINIDES EXPERIMENT AT THE DOUNREAY PFR

S. Raman, R. L. Walker, J. K. Dickens, and B. D. Murphy
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Tel: 423-574-4496 Fax: 423-576-8746 E-mail: raman@mail.phy.ornl.gov

ABSTRACT

The United States and the United Kingdom have been engaged in a joint research program in which samples of higher actinides were irradiated in the 600-MW Dounreay Prototype Fast Reactor in Scotland. Analytical results using mass spectrometry and radiometry for actinides and fission products are now available for the samples in Fuel Pins 1 and 2, which were irradiated for 63 full-power days, and for the samples in Fuel Pin 4, which were irradiated for 492 full-power days. Results from these three fuel pins are providing estimates of integral cross sections and fission yields.

I. INTRODUCTION

A joint venture between the United States and the United Kingdom to investigate the physics of higher actinides exposed in a fast reactor has been in operation since 1979. Objectives of the cooperative program are (a) to secure improved knowledge of the basic nuclear cross sections and reaction rates, (b) to provide data for assessment of the fuel worth and alternative waste management options, and (c) to obtain a preliminary evaluation of higher actinide oxides in a fuel-type irradiation.

Four irradiation-capsule pins were prepared¹ which had the outward appearance of standard fuel pins in use at the Dounreay Prototype Fast Reactor (PFR). Three of these pins contained a series of encapsulated actinide isotopes in milligram quantities.²⁻⁴ There were altogether 21 individual actinides ranging from ²³⁰Th to ²⁴⁸Cm as follows:

Thorium: ²³⁰Th, ²³²Th

Protactinium: ²³¹Pa

Uranium: ²³³U, ²³⁴U, ²³⁵U, ²³⁶U, ²³⁸U

Neptunium: ²³⁷Np

Plutonium: ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴⁴Pu

Americium: ²⁴¹Am, ²⁴³Am

Curium: ²⁴³Cm, ²⁴⁴Cm, ²⁴⁶Cm, ²⁴⁸Cm

There was an encapsulated sample for each one of these actinide species (and two samples for a few species). Most of the samples also contained minor amounts of other related actinide species. Each sample, however, is identified with one of the above species which was the principal actinide in that sample.

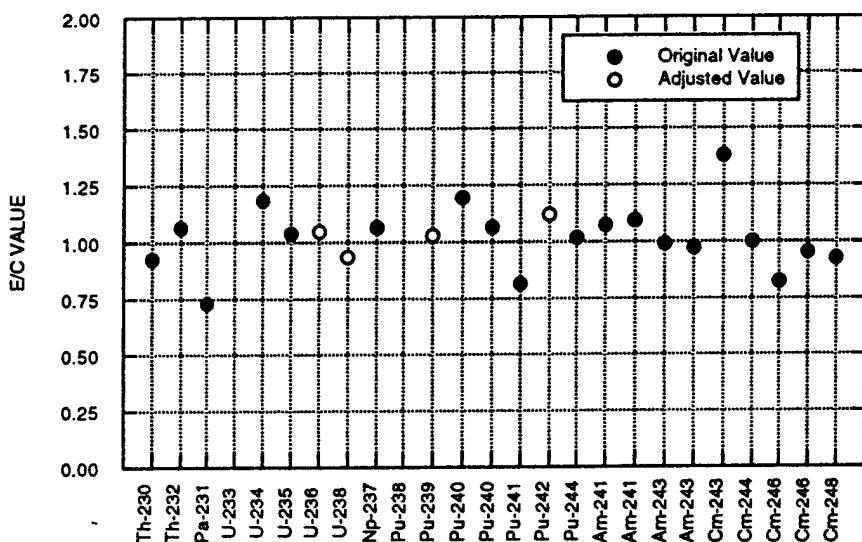


Figure 1. E/C ratio for the primary actinide concentration. This figure and supporting data are discussed in greater detail in Ref. 15. The adjustments to the E/C values are also discussed there.

II. ANALYSIS AND RESULTS

Fuel pins 1 and 2 were irradiated for 63 full-power days. The laboratory analysis of the samples contained in FP-1 and FP-2 was performed at Oak Ridge National Laboratory (ORNL) and has been discussed in previous reports.⁵⁻⁸ A third pin, FP-3, was also irradiated for 63 full-power days. It was sent to AERE Harwell and shall not concern us further. The fourth pin (FP-4) was the most extensively irradiated (equivalent to 492 full-power days) of these four pins. The PFR power history during the irradiation process is given in Ref. 9. For the total exposure experienced by FP-4, the neutron fluence was approximately $2 \times 10^{23} \text{ n/cm}^2$. Analyses of the FP-4 samples (also performed at ORNL) have now been completed.¹⁰ Mass and alpha-spectrometry were used to measure the actinide concentrations, and gamma-ray spectrometry was used for the fission products. The fission products analyzed were ^{106}Ru , ^{110m}Ag , ^{125}Sb , ^{134}Cs , ^{137}Cs , ^{144}Ce , ^{152}Eu , ^{154}Eu , and ^{155}Eu .

irradiation was significantly different from unity. Some of this could be attributed to difficulties encountered during laboratory analysis. It was possible via inter-comparisons among the samples using other actinide species contained in the samples together with quite accurate values of isotopic ratios to identify samples where adjustments to the measured values could be estimated. The same adjustments were then applied to the fission-product data.

The general trend in the actinide results is well illustrated by Fig. 1 which shows the E/C values for the principal actinides. These values are reasonably close to unity. From the fission-product data, the results for ^{137}Cs are summarized in Fig. 2 which shows the E/C values for each of the samples identified by its primary component. The values for most of the plutonium, americium, and curium isotopes are reasonably close to, if somewhat lower than, unity. For the thorium, protactinium, uranium, and neptunium isotopes, however, the fission-product results are rather variable. We are currently attempting to better understand these actinide and fission-product results.

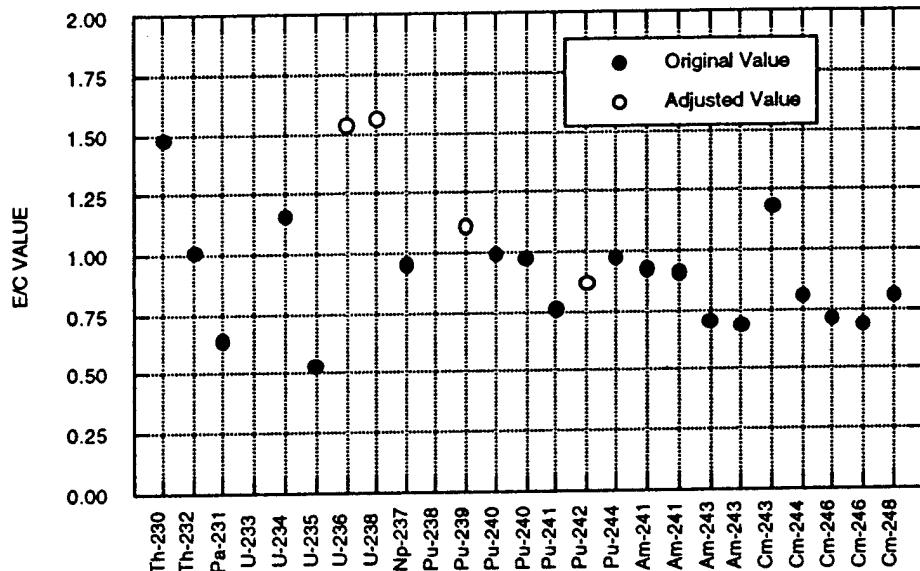


Figure 2. E/C ratio for ^{137}Cs in each of the actinide samples versus the principal fissioning actinide. These are the results following adjustments indicated from an analysis of the actinide data. See Ref. 15 for details.

Time-dependent neutron flux spectra were supplied by the UK for the sample locations in the PFR core, and these, together with ENDF/B-V cross-section and ENDF/B-VI fission-yield data, were used to develop one-group cross sections and fission yields. These cross sections and yields were used with the ORNL code ORIGEN-S [Ref. 11] to simulate the irradiation process and predict actinide transmutation rates and fission-product production. Preliminary comparisons have been made between the measured and the calculated reaction products.¹²⁻¹⁶ This analysis showed some results where the Experiment to Calculated (E/C) ratio for actinide amounts following

III. ACKNOWLEDGMENTS

We thank our coworkers who are listed in the references cited below. We also thank P. B. Hemmig (USDOE), K. M. Swanson (UKAEA), C. Brown (UKAEA), T. D. Newton (UKAEA), and T. Mukaiyama (JAERI), for their interest in this work. This work was sponsored in part by the U.S. Department of Energy under Contract No. DE-AC05-96OR22464 and by the Japan Atomic Energy Research Institute under Contract No. ERD-88-736, both with Lockheed Martin Energy Research Corporation.

REFERENCES

1. J. A. BASMAJIAN, K. R. BIRNEY, E. T. WEBER, H. L. ADAIR, T. C. QUINBY, S. RAMAN, J. K. BUTLER, B. C. BATEMAN, and K. M. SWANSON, Design of Unique Pins for Irradiation of Higher Actinides in a Fast Reactor, *Proceedings of the ANS Topical Conference on Fast, Thermal, and Fusion Reactor Experiments (Salt Lake City, 1982)* p. 2-408.
2. T. C. QUINBY, H. L. ADAIR, E. H. KOBISK, D. W. RAMEY, J. A. SETARO, J. L. BOTT, J. H. COOPER, R. L. WALKER, J. E. BIGELOW, J. R. GIBSON, W. T. MARTIN, R. G. POPE, and S. RAMAN, Preparation of Actinide Specimens for the US/UK Joint Experiment in the Dounreay Prototype Fast Reactor, *Oak Ridge National Laboratory Report ORNL-5858* (1982).
3. R. L. WALKER, J. L. BOTT, J. H. COOPER, H. L. ADAIR, J. E. BIGELOW, and S. RAMAN, Characterization of Actinide Physics Specimens for the US/UK Joint Experiment in the Dounreay Prototype Fast Reactor, *Oak Ridge National Laboratory Report ORNL-5986* (1983).
4. H. L. ADAIR, S. RAMAN, B. L. BROADHEAD, and R. L. WALKER, Availability and Use of Radiometric Neutron Monitor Materials for Characterizing Nuclear Reactor Environments, *Proceedings of the Twelfth World Conference of the International Nuclear Target Development Society (Antwerp, 1984)*, *Nucl. Instrum. Methods in Physics Research A236*, 591 (1985).
5. B. L. BROADHEAD, N. B. GOVE, and S. RAMAN, Preanalysis Calculations of the US/UK Joint Experiment in the Dounreay Prototype Fast Reactor, *Oak Ridge National Laboratory Report ORNL-6058* (1984).
6. J. K. DICKENS and S. RAMAN, Fission-Product Yield Data from the US/UK Joint Experiment in the Dounreay Prototype Fast Reactor, *Oak Ridge National Laboratory Report ORNL-6266* (1986).
7. S. RAMAN, B. L. BROADHEAD, J. K. DICKENS, R. L. WALKER, and J. L. BOTT, Analyses of Physics Specimens in Fuel Pins 1 and 2 Irradiated in the Dounreay Prototype Fast Reactor, *Oak Ridge National Laboratory Report ORNL-6632* (1992).
8. B. L. BROADHEAD, S. RAMAN, and J. K. DICKENS, Measurement and Calculation of High Actinide Burnup in the Prototype Fast Reactor, *Trans. Am. Nucl. Soc.*, 63, 88-89 (1991).
9. S. RAMAN, B. D. MURPHY, C. W. NESTOR, JR., C. FOREMAN, W. S. FRASER, and T. D. NEWTON, Dounreay PFR Irradiation History for the US/UK Actinide Sample Exposures, *Oak Ridge National Laboratory Report ORNL/TM-12984* (1995).
10. R. L. WALKER, J. L. BOTT, R. J. HYDZIK, J. M. KELLER, J. K. DICKENS, and S. RAMAN, Analytical Results of Physics Specimens and Dosimeters in Fuel Pins 1, 2, and 4 Irradiated in the Dounreay Prototype Fast Reactor, *Oak Ridge National Laboratory Report ORNL-6837* (1994).
11. O. W. HERMANN and R. M. WESTFALL, "ORIGEN-S: SCALE System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay, and Associated Radiation Source Terms," Sect. F7 of ORNL/NUREG/CSD-2/V2/R4, *SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation*, NUREG/CR-0200, Rev. 4 (ORNL/NUREG/CSD-2/R4), Vols. I, II and III (February 1995). Available from the ORNL Radiation Shielding Information Center as CCC-545.
12. B. D. MURPHY, S. RAMAN, J. K. DICKENS, R. L. WALKER, and T. D. NEWTON, Fission Product Data Analysis from Actinide Samples Exposed in the Dounreay Prototype Fast Reactor, *Proceedings of the International Conference on Nuclear Data for Science and Technology (Gatlinburg, 1994)*, edited by J. K. Dickens (Am. Nucl. Soc., Chicago, 1995) p. 974.
13. B. D. MURPHY, S. RAMAN, J. K. DICKENS, R. L. WALKER, and T. D. NEWTON, Transmutation Data for Actinide Samples Exposed in the Dounreay Prototype Fast Reactor, *Trans. Am. Nucl. Soc.*, 70, 89-90 (1994).
14. S. RAMAN and B. D. MURPHY, US/UK Actinides Experiment at the Dounreay PFR. I. Fission Products, GLOBAL 95, *Proceedings of the International Conference on Evaluation of Emerging Nuclear Fuel Systems (Versailles, 1995)*, p. 832.
15. B. D. MURPHY, T. D. NEWTON, and S. RAMAN, Preliminary Calculational Analysis of the Actinide Samples from FP-4 Exposed in the Dounreay Prototype Fast Reactor, *Oak Ridge National Laboratory Report ORNL-6889* (1996).
16. S. RAMAN, R. L. WALKER, and B. D. MURPHY, Actinide Behavior in the US/UK Actinides Experiment at the Dounreay PFR, *Proceedings of the International Conference on Nuclear Data for Science and Technology (Trieste, 1997)*, to be published.

M97008434

(18) DOE, XF

(19) UC-900, DOE

DOE

19971202 045