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INTROOUCTION 

The strength properties of concrete a t  elevated temperatures are  

I becoming a topic of increased in teres t  i n  the design and analysis of 

I advanced energy system faci l  i t ies .  These properties are  currently being 

I investigated by Burns and Roe, Inc., to provide a basis for the design 

l and the evaluation of the Clinch River Breeder Reactor Plant (CRBRP) 

structures under accident temperatures associated w i t h  postulated large 

- molten sodium coolant s p i l l s  i n  lined cel ls .  
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L;: . i " . '  .. 
~ ~ . . T h i s  paper presents the results  of a study performed to determine 

>fil:'ii t h e  elevated temperature compressive strength and e las t i c i ty  properties *.. ? ~ ~ ,  - . - , .~,  -8 ,,-, . +>.,.'.. % '  . . 'of structural concrete and includes a summary of published t e s t  results ,  ps. 
"<proposed design relationships, and the results  of an experimental verification 

h . F -  program. The relationships presented herein are based on interim t e s t  .'- .. . .~ 4 ;  '7. ,-, 
. , , ,  . . results  reflecting ongoing research and development efforts ,  and are  

,) ,: ' 

.> . '  ', .- . . subject to  change i n  the course of further development. 
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REVIEW OF PUBLISHED RESULTS 

I t  has long been established tha t  the compressive strength and the 

modulus of e l a s t i c i t y  of s t ructural  concrete decrease with exposure to 

elevated temperatures. The magnitude and variation of the reduction in 

these properties with temperature i s  influenced by a mu1 t i tude  of , 

factors  resul t ing in a wide sca t t e r  of experimental r e su l t s .  Accordingly, 

an extensive l i t e r a t u r e  study was carried out to de.termine the factors  

governing the elevated temperature strength and e l a s t i c i t y  pvoperti es ,  

t o  determine bounding exposure conditions for  use 'in the development of 

a tes t ing program, and to  establ ish.  re1 iabl e and representative relationships.  

The published t e s t  r e su l t s  considered cover the range of temperatures 

from normal. t o  1600'~ and demonstrate tha t  'the e f f ec t  of elevated 

temperature exposure i s  highly. dependent upon the concrete mix and the 

tes t ing  methods and exposure conditions. 

A review of the t e s t  methods used by various investigators has 

establ i shed tha t  el evated temperature tes t ing of concrete i s  separated 

in to  two general categories representing "cold" and "hot" tes t ing .  In 

cold tes t ing  the t e s t  specimens a re  heated gradually to a specified 

temperature, a r e  allowed to  remain o r  "heat soak" a t  tha t  temperature 

for a period of time, then a re  allowed to cool to ambient and a re  then 

tested f o r  compressive strength. In hot tes t ing the specimens are  

heated gradually to  the specified temperature, a re  a1 lowed to heat soak 

and a re  tes ted while a t  t ha t  temperature. In both cases the t e s t  specimens 

a r e  maintained in e i the r  an "open" environment, where water vapor can 



escape, o r  in a "closed" moisture migration system, where moisture i s  

contained. Specimens a re  e i ther  "loaded" or "unloaded" during the 

heating and cool ing 'phases. 

A summary of- pub1 i shed resu l t s  on the' residual compressive strength 

of concrete 'exposed to  elevated temperatures i s  shown in Figure 1 for  

hot tes t ing and in Figure 2 fo r  cold test ing.  The ef fec t  of h i g h  temperature 

exposure on the modulus of e l a s t i c i t y  i s  shown i n  Figure 3 f,or both hot 

and cold test ing.  A summary of the concrete properties and the test ing 

conditions used by the various investigators i s  presented in Table 1. 

I t  should be noted tha t  a l l  the t e s t  resu l t s  considered in th i s  study 

a re  not presented in t h i s  paper b u t  only selected and representative 

resu l t s .  The fol 1 owing general observations a r e  based on the 1 i t e ra ture  

study: 

a .  Specimens lose more strength i f  water (moisture) i s  not a1 lowed 

t o  escape while heating than do specimens where the moisture i s  

(7)(11)(.17? allowed to  escape . . 

b . '  Specimens heated and then allowed to cool before tes t ing lose 

more strength 'than those tested when hot (Figures 1, 2) .  

c .  Concrete, specimens loaded during heating lose less  strength 

than unloaded specimens (1)  ( .12).  . . 

d .  The longer the duration of heating before tes t ing ,  the larger  

the loss  in strength.  This loss  of strength,  however, s t ab i l i zes  

a f t e r  a period of long isothermal exposure. 



-. 
e.  The decrease in the modulus of e l a s t i c i t y ,  due to  elevated 

temperature exposure, i s  more pronounced than the decrease in 

compressive .strength (Figures 1, 2 ,  3 ) .  . 

f .  Mix proportions and type of aggregate influence the strength 

of heated concrete as follows: 

1 ean mixes (1 ow cementslaggregate r a t i o )  lose 1 ess strength 

1 due to  heating than richer mixes ( 12 ) (17 )  

I concrete made with limestone aggregate degrades less  due to 
I t 

heating than concrete made w i t h  s i l iceous aggregate (8 ) (6 ) (17)  

g. The water cement r a t i o  has a limited e f fec t  on strength degradation 

of heated concrete (12) 

e. Small t e s t  specimens usually incur greater strength losses 

than larger  specimens. 

i . Specimens subjected to  several cycles of heati,ng and cool ing 

(5)  lose more strength than others without thermal cycling . 

j. The s trength of concrete before heating has l i t t l e  e f f ec t  on 

(1 the percentage of strength retained a t  elevated temperatures . 



TABLE I 

.GENERAL DESCRIPTION OF TESTS AND CONDITIONS 

NA = Not  ~ v a i ' l a b l e  *Cement: F ine  Aggregate: coarse Aggregate 

C 

SOURCE OF 
DATA 

r 

Abrams (1 )  

Campbell, Lower 
and Roper (5 )  

Hannant ( 7 )  

Harada e t  a1 (8)  LB 
UB 

Lankard e t  a1 (11) 

Ma lho t ra  (12) 

Marechal (13) 

Nasser and L o h t i a  
(14) 

Ohgishi e t  a1 (15) 

M i l l e r  and 
Faul kner  (6)  

Roux (17) 

W ie r i g  (16) 

Zoldners (18) 

TEST METHOD 
Hot - (H) 
Cold - ( c )  

C 
H 

C 

C 

H 
H 

H 

H 
C 

H 

C 

C 
H 

C 

H 

C 

C 

SYSTEM 
Open - (0 )  

Closed - ( c )  

0 
0 

0 

C 

0 
0 

C 

0 
0 

0 

C 

0 
0 

0 

0 

0 

0 

LOAD CONDITION 
Loaded - (L)  

Unloaded - (UL) 

UL 
UL 

UL 

L 

UL 
UL 

UL 

UL 
UL 

L 

UL . 

U L 
UL 

U L 

UL 

UL 

UL 

AGGREGATE 

Carbonate 

D o l o r i t e  

Limestone 

Gravel 
Gravel 

Gravel 

F l i n t  
I 1  

S i  1 iceous 
1 imes tone 

Do1 omi t e  

Gravel 
I 1  

N A 

N A 

N A 

Limestone 

MIX* 
PROPORTIONS 

1:3.6:4.6 

1:1.8:1.3 

N A 

1:2:2 
1: 3: 3 

1:1.9:3.4 

1:4.5 
I 1  

N A 

N A 

1:4:6 
I I 

1:2:4 

N A 

N A 

1:3.2:3.5 

WATER 
CEMENT 
RATIO 

0.55 

0.44 

N A 

0.45 
0.70 

0.42 

0.45 
I 1  

N A 

0.6 

0.45 
I 1  

N 

0.58 

N A 

0.63 

LENGTH OF 
HEAT 

EXPOSURE 

3 - 4 h r s .  

6-8 hrs.  

2-4 h r s .  

1 - 2 h r s .  
1-2 h r s .  

4-6 h rs .  

2-3 h rs .  
I 1  

Nk 

14 days 

< l h r .  
I 1  

4 hrs .  

N A 

N A 

1-2 h rs .  



BOUNDING CONDITIONS FOR CONFIRMATORY TESTING 

From t h e  1 i t e r a t u r e  study i t  was co'ncluded t h a t  t h e  lower bound 

response o f  concre te  a t  e leva ted temperatures must be assessed a t  two 

se ts  o f  t e s t  cond i t i ons .  The d e f i n i t i o n s  o f  these two lower bound t e s t  

c o n d i t i o n s  are: 

a. Open-Hot ~ e s t i n g :  

Under open-hot t e s t i n g  t h e ' c o n c r e t e  specimens a r e  heated ' 

i n  an open mo is tu re  m i g r a t i o n  environment which a l lows f r e e  

l o s s  o f  moisture.  The specimens a re  tes ted  f o r  compressive 

s t r e n g t h  w h i l e  h o t  and a f t e r  a p e r i o d  o f  temperature s t a b i  1 i z a t i o n .  

Specimens a r e  heated w h i l e  unloaded. 

T e s t i n g  under these c o n d i t i o n s  s imulates the  response o f  

a concre te 'e lement  d u r i n g  a thermal acc iden t  where the  element 

i s  e i t h e r  vented o r  has f r e e  atmospheric communication. 

(,Figure 4 )  

b. C l  osed-Cold Tes t ing :  

Under c losed-co ld  t e s t i n g  the  concre te  specimens a r e  
' 

heated i n  a c losed mo is tu re  m i g r a t i o n  environment p reven t i ng  

the.  re lease  o f  mo is tu re  from the  concrete specimens. They a r e  

heated w h i l e  unloaded and a l lowed t o  s t a b i l i z e  a t  a t e s t  

temperature be fo re  c o o l i n g  down s l o w l y  t o  ambient cond i t i ons .  

The specimens a r e  t e s t e d  f o r  compressive s t r e n g t h  f o l l o w i n g  

t h e  coo l  down (co ld ) .  



Testing under these conditions simulates the response of 

a concrete element a f t e r  a thermal accident. The atmospheric 

I condition i s  representative of a concrete element located 
I 
I 
I within an unvented region or within a massive concrete s t ructure.  

These two t e s t  conditions conservatively bound the worst case . 
response of a s t ructural  concrete element exposed to a prolonged elevated 

temperature. 

DESIGN RELATIONSHIPS 

In order to  develop design relationships the upper and lower bound 

response curves from the l i t e r a t u r e  study were used to construct the 

residual compressive strength curves corresponding to concrete tested 

while a t  elevated temperature (Figure 1) and to concrete tested a f t e r  

cool down (Figure 2 ) .  O f  the two conditions the larger  reduction in 

strength occurs f o r  the cold conditions and may conservatively be used 

as  an overall lower bound. In addition, upper .and .lower bound curves 

were established from the l i t e r a t u r e  study data fo r  the residual modulus 

of e l a s t i c i t y  (Figure 3 ) .  Perhaps due to  the lack of suf f ic ien t  data on 

t h i s  property, d i f fe rent  relationships fo r  hot versus cold test ing 

conditions were not revealed by the 1 i t e r i tu re .  However, the verif icat ion 

work described hereafter seems to  support t ha t  tes t ing conditions do not 

s ignif icant ly a f f e c t  the modulus of e l a s t i c i t y .  

In the eval uation of concrete s t ructures  subject to thermal gradients 

both the compressive strength ( f l )  and the s t i f fness ,  a function of the 



modulus of e l a s t i c i t y  ( E ) ,  a re  important parameters. The compressive 

strength influences the load carrying capacity, while the s t i f fness  

r e l a t e s  to  deformations and the forces developed by the various r e s t r a in t s .  

A t  elevated temp-eratures a d i r ec t  r e su l t  of the decrease in strength. and 

s t i f fness  i s  a reduction i n  the 'load carrying capacity and the induced 

.thermal forces, respectively. Hence, a lower bound curve for  compressive 

strength i s  conservative for  capacity while an upper bound curve fo r  E, 

a measure of s t i f fness ,  i s  conservative with respect to thermal forces. 

Design relat ionships,  however, based on a lower bound curve of one 

parameter and an upper bound curve for  the other will lead to undue 

conservatism since the t e s t  resu l t s  indicate correspondence between the 

upper and lower bound curves. More ra t iona l ly  the response to thermal 

gradients may be bracketed by comparing the response between.the upper 

bound strength and e l a s t i c i t y  and the lower bound strength and e l a s t i c i t y  

design relationships.  

The resu l tan t  relationships developed to depict  the upper and lower 

bound response of commonly used types of s t ructural  concrete exposed to  

elevated temperatures fo r  compressive strength and modulus of e l a s t i c i t y  

a re  shown in Figures 4 through 7 fo r  the open-hot and closed-cold t e s t  

conditions. These relations'hips a r e  presented with the resu l t s  of a 

ver i f ica t ion  tes t ing  program which i s  summarized in the following 

section. 



I VERIFICATION TESTING PROGRAM 
I 

1 The information obtained from the study of the published resu l t s  

was used as a basis for  implementing a confirmatory verif icat ion test ing 
' 

program which was carried out a t  Oak Ridge National Laboratory ( O R N L )  

and published in Reference 4. The objective of the program was t o  t e s t  

mature concrete under prototypic exposure conditions to verify the 

bounding re1 ationshi ps establ i  shed via the 1 i  t e ra ture  study. To obtain 

a lower bound reduction of concrete strength the cyl inders were tested 

in a semi-closed moisture migration environment a f t e r  gradual cool down 

("closed-cold"). To establ ish a relationship fo r  hot tes t ing the 

cylinders were tested in an open moisture migration environment while a t  

the  elevated temperature ("open- hot" ) . In both cases the t e s t  cyl i  nders 

were exposed to  high temperatures while unloaded. 

The tes t ing  was performed on 8 to 19 month o ld .  concrete cylinders 

(6" diameter x 12") of a 1 imestone aggregate mi.x s imilar  to tha t  proposed 

f o r  use in the CRBRP s t ructures .  All of the concrete cylinders tested 

were heated , to  t h e i r  t e s t  temperatures a t  a r a t e  of 30°~ /h r .  and were 

maintained a t  * the  t e s t  temperature fo r  14 days. Details o f  the tes t ing 

equipment, procedures and the specimens a re  given in Reference 4. 

The relationships fo r  residual compressive strength obtained from 

t h i s  tes t ing  program a re  shown in Figures 4 and 5 for  open-hot and 

closed-col d t e s t  conditions respectively. On the same figures a re  shown 

the relationships established from the l i t e r a t u r e  which are  confirmed by, 

the ver if icat ion t e s t  resul ts .  Relationships for  the residual 



modulus of e l a s t i c i t y  under open-hot and closed-cold conditions a re  

shown in Figures 6 and 7. These resu l t s  f a l l  within the established 

bounds and a re  closer to  the lower bound design relationship.  

The residual compressi,ve strength was established by comparing the 

actual compressive. tes ' t  resu l t s  with the strength of the cyl iriders. 

immediately before heat up.  The strength of companion cylinders was 

used in the determination of the t e s t  cylinder strength before heating. 

This procedure eliminated the variable of strength gain with age from 

the design relationship.  

The strength gain with age, f o r  the particula,r concrete mix used in 

this '  t es t ing  i s  shown in Figures 4 and 5. The upper curves show the 

r a t i o  of values fo r  approximately one year old cylinders heated to  the 

t e s t  temperature over companion unheated specimens tested a t  28 days. 

These curves indicate tha t  cylinders which have gained strength with age 

degrade t o  values below the 28 day strength only a f t e r  s igni f icant  
. . 

heating. Although s imilar  gains occur i n  the modulus of e l a s t i c i t y  

(Figure 7 ) ,  the age e f fec t  often resu l t s  in. conservatism which may be an 

important factor  to  consider in  the evaluation of s t ructures  par t icular ly 

f o r  events tha t  a re  of extremely unlikely occurrence. 

STRESS-STRAIN RELATIONSHIPS 

The evaluation of s t ructures  under conditions resul t ing in low 

mechanical s t r a ins  involves e l a s t i c  analysis procedures for  which i t  i s  

su f f i c i en t  t o  know the modulus of e l a s t i c i t y  and the strength of the 



. material. Whenever large s t r a ins  a r e  involved; however, as i s  usually 

the case with elevated temperatures, the evaluation of s t ructures  

requires e l a s t i c -p la s t i c  analysis procedures and use of s t r e s s  deformation 

re1 ationshi ps. For t h i s  'reason the development of. s t r e s s - s t r a i  n re1 ations hips 

f o r  concrete a t  elevated temperatures i s .essent ia1 .  

The generally accepted s t ress -s t ra in  diagram fo r  concrete begins 
. . 

with a nearly l inear  portion then as cracking takes p.l.ace i t  deviates 

from l inea r i ty  a t  an increasing r a t e  until  i t  reaches the maximum s t r e s s .  

Beyond t h i s  point, as s igni f icant  cracking takes place, the curve descends 

until  f a i l u r e  occurs. A number of mathematical equations have been 

proposed by various authors to express the relationship between s t r e s s  

and s t r a i n  in concrete. In general, these expressions a re  in good 

agreement with the ascending par t  of the curve b u t  d i f f e r  s ignif icant ly 

beyond the point of maximum s t r e s s .  The s t ress -s t ra in  relat ionship 

proposed by Kent and Park (lo) was selected i n  t h i s  study to define the 

behavior of concrete a t  normal temperature and to serve as a basis fo r  

establ ishing relationships f o r  concrete a t  el evated temperatures. Thi s 

re lat ionship i s  given by the  fol lowing expressions: 



where: 

f '  i s  the maximum s t r e s s ;  
C 

E i s  the s t r a i n  corresponding to  maximum s t r e s s  and is equal 
0 

Z = O . ~ / ( , E ~ ~ ~ +  E 
5 0 ~  

- E ~ )  i s  the slope of the descending 

branch of the curve; 

E 5Ou 
= ( 3  + 0.002 f '  ) / ( f A  - 1000) i s  the s t ra in  corresponding to 

C 

0.5 f; on the 'descending branch of the o-E curve for  unconfined 

concrete; 

'50h i s  the difference in s t r a i n  between confined and unconfined 

concrete a t  0.5 f i  on. the  descending branch of the o-E curve. 

For unconfined concrete considered here E~~~ equals zero. 

The expression f o r  the ascending part  of the curve i s  essent ia l ly  

the same as  tha t  proposed by ~ o ~ n e s - t a d ( ' ) .  Beyond the maximum s t r e s s  

the curve, fo r  unconfined concrete, descends a t  a f a s t e r  r a t e  than the 

curves prop,osed by other authors and has been found to agree well with 

experi'mental resu l t s .  
\ 

The s t ress -s t ra in  relationship fo r  concrete a t  elevated temperatures 

i s  s imilar  to  tha t  a t  normal temperature except tha t  the maximum s t r e s s  



i s  a t ta ined a t  much higher s t r a ins  in the case of elevated temperatures. 

In Reference ( Z ) ,  i t  i s  shown that  the relationship a t  elevated temperatures 

may be derived from tha t  a t  normal temperatures i f  the variation of 

maximum s t r e s s  and the corresponding s t r a in  w i t h  temperature i s  known. 

 h he variation of the maximum compressive s t r e s s  with temperature i s  

defined by the upper,and lower bound design relationships shown in 

Figures 1 and 2. The variation the s t r a in  corresponding to 

maximum s t r e s s ,  with temperature has been derived using the resu l t s  

obtained by Furamura and reported in Reference ( 2 )  together w i t h  resu l t s  

from the test ing program a t  O R N L .  The proposed relationship i s  shown in 

Figure 8 where the r a t i o  of E~ a t  elevated temperatures to E a t  normal 
.o 

temperature i s  plotted against  temperature. Using these data, s t r e s s -  

s t r a in  curves a t  d i f fe rent  temperatures were developed corresponding to 

hot and cold tes t ing  and upper and lower bounds fo r  strength and e l a s t i c i t y .  

Temperature dependent a-E curves corresponding to  lower bound. 

relationships and f l  = 4000 psi before heating, a re  shown in Figures 9 

fo r  hot tes t ing and in Figure 10 fo r  cold test ing conditions. These 

curves were obtained from Equation (1) with values of maximum s t r e s s  

based on the design relationships in Figures 1 and 2 and corresponding 

s t r a ins ,  coy  calculated from Figure 8 'with co = 0.002 in/in a t  normal 

temperature. The val ues of the modul us of el a s t i c i  ty  corresponding to 

these curves agree well w i t h  the lower bound relationships although 

somewhat higher and hence more conservative. 



A s e t  of s t ress-s t ra in  curves corresponding to the. upper bound 

strength and e l a s t i c i t y  relationships for  cold or hot test ing and 

fk = 4000 psi before exposure to high temperatures, a re  shown i n  Figure . 

11. These curves were obtained in a similar manner except tha t  values 

of co in t h i s  case were calculated from the derivative of Equation ( l a )  - 

1: instead of Figure 8 which would have resulted in unconservative values 

fo r  E .  

The s tress-s train curves derived from the lower bound design 

relationships for  cold test ing are  s ignif icant  in post-accident evaluations 
i 
I 
I of s t ructures  and of course they represent a lower bound under any 

I conditions of temperature exposure. The curves corresponding to hot 
I 
I 

I conditions a re  more r e a l i s t i c  fo r  s t ructures  under thermal gradients and 
I 

provide suf f ic ient  conservatism. I 
I 

The s t ress-s t ra in  relationships in Figures 9, 10 and 11 are  presented 

with no 1 imit on s t ra ins .  Beyond the point of maximum s t re s s ,  however, 

the cracking becomes s igni f icant  and fa i lu re  occurs a t  some lower s t r e s s  

level.  The values of ultimate o r  f a i l u r e  s t r a ins  vary widely depending 

on the type of concrete mix, the test ing methods, the degree.of confinement 

and other factors .  The A C I  318-7.7 ~ p e c i f i c a t i . o n ( ~ )  l imits  the maximum 

usable s t r a in  a t  normal temperature to  0.003 W i n ,  a lower bound value 

fo r  unconfined concrete. . For concrete exposed to elevated temperatures 

the s t r a ins  corresponding t o  maximum s t re s s  a re  substant ial ly  higher 
I 

than those a t  normal temperatures (Figure 8) and fa i lu re  s t r a ins  a re  I 
expected.to be a lso  higher. A modest increase of the ACI l imi t  to  

0.004 in/ in fo r  temperatures of 500'~ and above i s  deemed both r e a l i s t i c  

and safe in view of the above considerations. 



A study has been presented concerning the strength properties of 

concrete a t  elevated temperatures and includes a review of published 

tes t  results, the development of desig,n relationships, and the results 

I of a n  experimental verification program. The review of the published 

results provided information for the' devel opment of relationships for 

I .  compressive strength and modulus of elasticity,  and established the tes t  

condi tion-s for a 1 ower bound thermal response. The re1 at i  ons hips developed 

correspond t o  hot  and cold test  conditions. and show t h a t  exposure t o  

elevated temperature resul t s  in significant losses in compressive 

strength.and elasticity. The relationships were confirmed by the 

results of a verification testing program carried o u t  a t  the ORNL.  

1 Finally, the strength and elasticity relationships provided a basis for 

I the development of stress-strain curves a t .  elevated temperatures, which 

are essential for elastic plastic procedures and capacity calculations. 
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FIG. 1 - EFFECT OF ,TEMPERATURE EXPOSURE ON THE COMPRESSIVE STRENGTH OF CONCRETE - HOT TESTING 
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F I G .  3 - EFFECT OF TEMPERATURE EXPOSURE ON THE MODULUS OF E L A S T I C I T Y  OF CONCRETE - HOT OR COLD T E S T I N G  
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F I G .  4 - RESIDUAL COMPRESSIVE STRENGTH OF CONCRETE BASED ON OPEN-HOT T E S T I N G .  



t 

RESIDUAL COMPRESSIVE STRENGTH 
BASED ON CLOSED-COLD TESTING 

TEMPERATURE, OF 
#at normal temperat wr 

F I G .  5 - RESIDUAL COMPRESSIVE STRENGTH OF CONCRETE BASED ON CLOSED-COLD T E S T I N G  
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FIG. 6 - RESIDUAL MODULUS OF ELASTICITY O F  CONCRETE BASED ON OPEN-HOT TESTING 
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FIG.  7 - RESIDUAL MODULUS OF ELASTICITY OF CONCRETE BASED ON CLOSED-COLD TESTING 
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F I G .  8 - EFFECT OF TEMPERATURE ON THE STRAIN  AT MAXIMUM STRESS 
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F I G .  9 - STRESS-STRAIN RELAT IONSHIP  - CONCRETE TESTED HOT 
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F I G .  10 - STRESS-STRAIN RELAT IONSHIP  - CONCRETE TESTED AFTER COOLING DOWN 
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STRENGTH PROPERTIES OF CONCRETE AT ELEVATED TEMPERATURES 

By George N. Freskakis, Richard C. Burrow, and El i a s  B. Debbas 

KEY WORDS: Compressive strength; concrete; elevated temperatures; 

Modulus o f  E l a s t i c i t y ;  Stress-Strain re la t ionships;  concrete tes t ing .  

ABSTRACT: A study i s  presented concerning the compressive strength, 

modulus o f  e l a s t i c i t y ,  and s t ress-s t ra in  re la t ionsh ips  o f  concrete a t  

elevated temperatures. A review o f  published resu l t s  provides informat ion 

f o r  the development o f  upper and lower bound re la t ionsh ips  f o r  compressive 

strength and the  modulus o f  e l a s t i c i t y  and establ ishes exposure condi t ions 

f o r  a lower bound thermal response. The re la t ionsh ips  developed from 

the  l i t e r a t u r e  review are confirmed by the  r e s u l t s  o f  a v e r i f i c a t i o n  

t e s t  program. The s t rength and e l a s t i c i t y  re la t ionsh ips  provide a basis 

f o r  the development o f  design s t ress-s t ra in  curves f o r  concrete exposed 

t o  elevated temperatures. 




