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Abstract

This report documents the model, algorithms, and results for 
a heat transfer problem with phase change simulated numeri­
cally on a hypercube parallel computer. The temperature and 
enthalpy distribution in a rectangular domain with first kind 
boundary conditions (temperature prescribed) is found as a func­
tion of time. The model involves a non-linear partial differential 
equation with a constitutive relation between enthalpy and tem­
perature. The solution to the system is obtained by finite differ­
ence approximation with both explicit and implicit methods. In 
the implicit case, a successive overrelaxation technique with red, 
black ordering is implemented. The efficiency of the explicit 
method is compared with that of the implicit method in a mul­
tiprocessor computing environment.

The design, development, and implementation of algorithms 
targeted INTEL’S iPSC/2 hypercube involving up to 64 proces­
sors. The computational workload was uniformly divided 
among processors as far as possible by dividing the finite differ­
ence grid into several strips and assigning each strip to a proces­
sor.

The results, depicted in terms of tables , show the effect of 
relaxation parameter, and stepsize on the efficiency of the paral­
lel algorithms. This is contrasted with the sequential algorithms.

1. Introduction

The study of phase change problems has been of special 
interest to engineers, scientists, and mathematicians for a long 
time. This interest has been sustained because of the importance 
of the problems arising in various fields. Examples include 
manufacturing steel, melting of glaciers in arctic regions and 
their effect on the global temperature, laser annealing technol­
ogy and manned space power stations to name a few. The

classical formulation of the problem is due to Stefan in 1889 
[11]. Stefan’s model for ice melting tracked the melting front 
along with the temperature distribution. Since then many 
researchers have contributed to the field which is now broadly 
known as “moving boundary problems”. This field includes not 
only melting but also solidification as well as problems without 
change of phase, e.g., diffusion of a substance in liquid. Due to 
the presence of a moving free boundary these problems are 
essentially non-linear. Analytical solutions are possible in only 
a few special cases. Carslaw and Jaeger [12] offer several of 
these.

As the region of interest in which the solution is to be 
obtained changes with time, numerical methods based on front 
tracking are complicated by the necessity to move the finite 
difference grid or to transform the coordinates of the problem. In 
1946, Eyres [13], presented a model for this kind of problem 
which alleviates the need to explicitly track fronts. The heat 
transfer literature refers to this model as the enthalpy formula­
tion. In this formulation, the movement of the front is embed­
ded in the system consisting of a partial differential equation 
involving enthalpy and temperature and an auxiliary relationship 
between them. This formulation has advantages numerically 
since the problem domain is fixed [Wilson, Solomon, Boggs].

Various researchers, Williams and Wilson [3], have 
attempted solutions to these problems using super-computers to 
advantage. With the advent of parallel, distributed processing, 
the design and implementation of algorithms for solving moving 
boundary problems in parallel is of interest. The granularity of 
the parallelism inherent in this type of moving boundary prob­
lem is well suited to parallel computation. In addition to the dif­
fusion calculation, the state variables must be updated from the 
conserved quantity. For example, in a phase change problem, 
the temperature must be found from the enthalpy at each node of 
the mesh. This computation of the state variable, temperature, 
does not vectorize easily as it involves a logical switch. How­
ever, this computation may proceed with perfect parallelism on 
a multiprocessor.

In this report we design and implement parallel algorithms 
for moving boundary problems. A 2-D change of phase problem 
is used as a model problem and the simulation performed on an 
Intel iPSC/2 hypercube with a maximum of 64 processors. Both



explicit and implicit algorithms are developed. Results indicate 
the effect of problem size, relaxation parameter, and step-size on 
the performance of the parallel algorithms. Performance studies 
also show the efficiency of parallel solutions compared with 
sequential solutions for explicit and implicit methods. The front 
movement with time is shown for an example computation. 
Finally, some difficulties encountered with implicit SOR con­
vergence, and the development of a strategy to overcome the 
difficulties are discussed.

2. Model Formulation
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The enthalpy formulation of Stefan problems can be written 

in general, Williams and Wilson [3], as: Figure 1. Front Movement for the Example Problem

pe, = div (K(T)gradT)

T

e(T) = \ c{z)dz
m

(2.1)

(2.2)

3. Explicit Method

The enthalpy, temperature equation (2.1) was approximated 
by finite differences with an explicit method, as follows:

where e is enthalpy, T is temperature, K(T) is thermal conduc­
tivity, c(T) is thermal heat capacity and p is the density of the 
medium. Many authors have considered this formulation for 
Stefan problems. For example, see Rose [14], White [15], and 
Solomon [16].

For the 2-phase, 2-D melting problem with constant heat 
capacities, the auxiliary relation takes the following form:

. qi-H.j-qu'A.j . tf.j-’A -(3.i)
P At _ Ax + Ay

where j, qi+,A j are heat fluxes on the left and right of the 
cell centered at (i, j) respectively and q;j-’/, , are fluxes
at the bottom and top boundaries respectively. The superscript 
n refers to the time level.

e
cs(T-Tm) T <Tm
[0,//] T=Tm (2.3)
cL(T-Tm) + H T >Tm

The conductivities Ki-n j, j, Kij-v, , Kij+n are conduc­
tivities at left, right, bottom, and top faces of the cell («,_/) 
respectively and are calculated from:

where Cs, cL are the heat capacities of solid and liquid phases 
respectively, Tm is the melting temperature, and H is the latent

K(Tij) + K(Ti±ij)
K-i±H.j - 2

(3.2)

heat.
The inversion of (2.3) can be written as:

K(TiJ) + K{TiJtx)
Ki,j±’A - 2

(3-3)

T =
Tm +e/cs e < 0
Tm 0< e < H
Tm+ (e-H)/cL e > H

(2.4)

Although, (2.3) is a multivalued relationship, (2.4) is a single 
valued function.

As an illustrative example, we will consider the melting of a 
frozen material, initially solid. A 2-D cross section 1.5x1.5 
meters with physical properties given below will be considered. 
The boundaries of the material are maintained at 10 degrees C. 
The problem is to predict the distribution of the liquid and solid 
phases in the region as the material melts and to predict the tem­
perature distribution. We wish to analyze the performance of a 
multiprocessor in performing calculations of this sort.

The equation (3.1) is the update in enthalpy per unit volume in 
terms of the enthalpy at the previous time step plus the net 
inflow of the heat in the cell during the time increment At.

Once enthalpy has been obtained, the temperature can be 
determined from the discrete version of the auxiliary equation 
(2.4).

3.1 System Configuration and Algorithms

The design of a parallel algorithm often begins by identify­
ing independent tasks in a sequential algorithm. For problems 
involving the solution of partial differential equations the same 
operations are being repeated at each finite difference grid point 
and so a spatial assignment of tasks to processors provides a 
simple divide and conquer strategy for identifying parallelism. 
For a distributed memory parallel computer, the data must also 
be divided among the processors. Again the spatial splitting is 
natural. Since each individual processor has a piece of the grid.



and not the whole grid, usually it must communicate with other 
processors during the solution of the problem. For example, a 
piece of the grid requires boundary information before it can be 
updated in a time marching scheme. Another example requiring 
communication among the processors arises when computing a 
norm of the computed solution. Each processor can compute a 
norm of its piece of the solution, a local norm, but communica­
tion is required to find the global norm.

The structure of the computer program reflects the division 
of tasks between the host and the node processors. A host pro­
gram must provide for all access to input and output but does lit­
tle or no computation. The node programs must provide for 
receipt of initial information from the host and for return of 
results to the host after completion of the calculation. Message 
passing generally occurs in the algorithm whenever a processor 
has a value that is (or will be ) needed by other processors. The 
message passing thus provides a low level of synchronization 
among the tasks being performed in parallel. The chief con­
structs for message passing are simply a send and a receive.

By restricting our attention to a ring topology the grid is sim­
ply divided among the processors in strips. The number of grid 
p»ints in a given strip will determine the load distribution of the 
computation. In our load distribution strategy, the last processor 
always gets the remainder of grid rows divided by the number of 
processors plus the usual load. In some cases it may get much 
less load than other processors, in other cases it may get much 
more than others. This will degrade the efficiency of the algo­
rithms.

A a
= p --------------8------

when M —> <«>

S = p

when N —» °o

3 J Numerical Results and Discussion

The numerical solution to the above problem was obtained 
with the algorithms described, which were written in C-language 
on Intel’s iPSC/2 hypercube. Results were obtained both for 
small and large finite difference grids ranging from 
MxN = 15 x 15, for the small grids, to 480 X 480, for the large 
grids. Timing results were obtained using the iPSC CLOCK 
function and are accurate to ± 15 ms. All times are repiorted in 
milliseconds.

Conceivably, the larger the grid size, the larger will be the 
computational time as well as the communication time. How 
the CPU time varies as the grid size increases is shown in the 
table below.

3.2 Analytical Investigation Into the Parallel Efficiency

Let us assume that there arep processors, each withM xN grid 
to work on. Let us also assume that each node ptoint requires A 
operations to upxlate a grid pxnnt, and a time / operation. Let S 
be start up time before communicating internal boundary ele­
ments (a row). Then if t is the time, we have

r,? = AW 64 a)

r„r = AMN — + 28+ 2xN 
* P

(2N elements exchanged 
by each processor, bottom 
row and top row)

(o is start up time for 
each row communication)

S = speed up
lpar

= P
AMN a

A MN <s + 2p(8 + zN)

TABLE 1.

EXPLICIT METHOD: EFFECT OF GRID SIZE ON CPU TIME 

# processors = 32

M N CPU Time/S/P CPU Time/S/1 Speed Up

80 80 268.2 2837 10.5
160 160 368.9 11331 30.7
240 240 1314.2 25477 19.4
320 320 1433.6 45277 31.5
400 400 3057.1 70493 23.0
480 480 3205.2 101821 31.7

Since a parallel algorithm should give better pterformance than a 
sequential algorithm, some results were obtained for larger grids 
(480 x 480) both with the parallel and sequential algorithms 
(only one processor solving the whole grid). The results are 
depicted in table the below.



TABLE 2.

EFFECT OF # OF PROCESSORS ON THE CALCULATION

corresponding definitions for A'l+i/i y, etc.
With above definitions, the equation (4.1) assumes the form

OF A FIXED LARGE GRID (480 x 480)

#processors CPU Time/S/P CPU Time/S/1 Speed Up

4 25468.7 101821.2 4.00
8 12744.8 101821.2 7.99

16 6382.4 101821.2 16.03
32 3205.4 101821.2 31.77
64 2098.6 101821.2 48.52

<r =
- m\,j (Ttf-m'j)

0Af | trn+l /'th+1 'r*+l\

pA>TL/Ci,-'+% {IiJ+1 ~iiJ

\AttJ 11,^-1/

(4.2)

TABLE 3.

EXPUCIT METHOD: EFFECT OF NUMBER OF PROCESSORS 

ON A LARGE FIXED GRID (320 x 320)

# Processors CPU Time/S/P CPU Time/S/1 Speed Up

4 11326.9 45277.1 4.00
8 5671.1 45277.1 7.98
16 2844.5 45277.1 15.92
32 1434.6 45277.1 31.56
64 734.9 45277.1 61.61

Tables 2 and 3 show that efficiences near 100% are achiev­
able when the grid is evenly divisible by the number of proces­
sors. Also, for an evenly divisible grid of these sizes the optimal 
efficiency is with 32 processors.

4. Implicit Method

In this method, the approximation to partial derivatives in 
the model equations are replaced by forward difference quo­
tients at the advanced time instead of the previous time. Thus 
equation (2.1) assumes the form:

e".? ~ eu _ ,j ~ <li+n ,j (4.1)
At Ax Ay

where, 0 is the degree of implicitness and lies between 0 and 1, 
and

where

b?.j = <J + a Wu-TFj)

- ku,j oTj-Tr-u^ (4-3)

(1 - 0)Af 1

- *S/-» <T'< - T'., I)]

In this method, b*j assumes the role of epj of the explicit 
method.

The equations (4.1), (4.2), (4.3) make the system implicit in 
that one has to solve the whole system simultaneously. With the 
natural ordering, the coefficient matrix assumes a banded diago­
nal structure. The solution of such a non-linear system can be 
found by quasi-linearizing the system at every time step with 
coefficients at the old time step and then applying some direct 
method. Or one can solve the system iteratively by assuming a 
starting solution and iterating until convergence is obtained.

We shall solve the system by a well known iterative method 
“successive over relaxation” commonly known as SOR. In 
this method, one starts with an initial approximation to the solu­
tion (usually initial conditions) and then obtains updated solu­
tions by successively making weighted residuals go to zero. The 
relaxation parameter, to, the weighting factor for residuals is 
normally chosen to lie between 1, and 2, for faster convergence 
to the solution. One may refer to Young [6] for details of this 
method.

To apply this method, we write equation (4.2) in the follow­
ing fashion:

Let zPj denote the p th approximation to T* J1, and T|£y as the 
p th approximation to e"}1. Then if we define

/"+6 = Qfn+l + (1 _ Q)f*

The quantities Qi+Hj, etc, are heat fiuxes as before,
where superscripts n+Q imply that the values of these fluxes are 
weighted combination of the fluxes at times n, and n+1.

For 0 = 0, it becomes an explicit method, and at 0 = 1 it 
becomes fully implicit At 0 = % , it is well known as Crank- 
Nicholson scheme. The quantities qt+nj, qi,j-'/t,

qi. j+’/i are defined as in the explicit method with

*r.j = Kj + + W-Hjxtfj)
(4.4)

+ *r.j+i + Ttfii)



(4.5)

complete the processes. The details of this scheme can be found 
in Ortega [1], Evans [2].

cF.j = +
pAx

+ +KT.?-* )pAy2

equation (4.2) assumes the iterative form

ntt1 = *r.j - <j zr,f (4.6)

As (4.6) is the iterative form of the finite difference approxi­
mation to enthalpy, and temperature equation (4.1) or (4.2), the 
auxiliary equation corresponding to (2.4) of explicit method 
assumes the following form:

csTm+zfj 
cx,i + cs

Tm
cl Tm - 2fj - H 

cf.i + cl

zf,j-cf,rTm<Q 

0 < 2f,j - cfjTm < H (4.7) 

zF,j ~ cij Tm > H

The role of e in explicit solution is played here by the quantity
zFj ~ cF,j 'iFj-

This happens because in the iterative process of updating the 
node values, these nodes are encountered first and thus attain 
newer values.

In the above iteration process, iPj1 is in fact the Gauss- 
Seidel value. We shall call this updated value T A succes­
sive overrelaxation method finds the updated value by taking a 
linear combination of the old value and the Gauss-Seidel 
updated value. Let us call the SOR updated value t/j1. Thus

x^1 = U-toK; + (O^tt1 (4.8)

Elliot and Ockendon [8], suggest taking an SOR update for 
points inside the grid and Gauss-Seidel update near the phase 
(moving) front. This they suggest to avoid oscillations about 
Tm. We take this advice in our algorithm, i.e., we take

4.2 Analytical Analysis of Speed-Up for 
the Implicit Algorithm

As in the case of the explicit algorithm, the speed up S, and 
efficiency E are given below based on operation counts. It may 
be remarked that the major difference comes from the fact that 
there will be more communication involved in the implicit 
method. The added communication comes from exchanges of 
boundary values for each red and black update. One may think it 
might involve more calculations per grid point, but if one 
remembers the fact that we are taking larger time steps (several 
times that of explicit time step) the advantages or disadvantages 
are not clear.

Ignoring the difference in the number of calculations needed 
to update a grid point the speed up and efficiency can be given 
by the following expressions:

______ A MN a_______
A MN 0/p + 4 8 + 4tN

A a
. .48 4x. >

E = S/p A o

A 0 + p( 48
MN

Again as Af —» ,
and as N

E = 1 
E ~ - A a < 1

43 Numerical Results and Discussion

The numerical results were obtained by simulation of the 
same problem as in the explicit case. The extra information 
needed to be supplied for the implicit SOR is the following:

"^Cj1 ifWj-Tm)(^f-Tm)<0 
t/j1 otherwise (4.9)

4.1 Parallel (Implicit) SOR Algorithm

convergence parameters: 

to = 1.6
0 = 0.5 (Crank-Nicholson) 
£ = 0.001 

tmult = 10

The SOR algorithm with the natural ordering of the equa­
tions is inherently sequential. For parallel implementation of the 
SOR algorithm, one needs to resort to the "red, black" ordering 
technique. Nodes are labeled alternately “red” and “black”. 
In this scheme, “red” nodes will always have "black" neigh­
bors, and “black” nodes will have "red" neighbors. A SOR 
sweep through the system is first made by updating red nodes, 
and then another sweep is made by updating black nodes to

The initial, boundary conditions, and grid parameters as well as 
material properties etc, remained unchanged. Below are results 
for temperature calculations, front movements, and performance 
studies.

The table below shows the effect of the number of proces­
sors on the speed up for a fixed problem size.



TABLE 4. TABLE 6.

SOR-IMPLICIT: EFFECT OF # OF PROCESSORS

ON SPEED UP OF A LARGE GRID

(320 x 320)
CD= 1.3

# processors CPU time/S/P CPU time/S/1 speedup

4 372778 1486304 3.99
8 187022 1486304 7.95
16 94030 1486304 15.81
32 48090 1486304 30.99
64 26106 1486304 56.94

5. Performance Comparison Between Explicit 
and Implicit Algorithms

To compare the advantages of the parallel explicit with the 
parallel implicit algorithm, some results were obtained for large 
grid sizes. The table below shows a CPU time comparison for 
each grid size for a given time step. The explicit times given in 
the tables below are the execution times for a single explicit 
time step. Since the implicit method takes a larger time step, 
normalization is required for a comparison. The implicit times 
represent the execution time required to simulate one explicit 
time step.

TABLE 5.

Comparison of Explicit and Implicit Schemes for 20x15 Grid

# processors = 4 
a>= 1.3

tmult Explicit-CPU time/S/P Implicit-CPU time/S/P

1 40 6302.7
5 40 1260.5
10 40 864.6
15 40 605.5
20 40 500.2
25 40 382.1
30 40 332.9
35 40 297.3
40 40 303.1

Comparison of Explicit and Implicit Schemes for 320x320 Grid

tmult = 20 
(0=1.3

# processors Explicit-CPU time/S/P hnplicit-CPU time/S/P

4 11326 186387 
8 5671 9351 
16 2844 4701 
32 1434 2404 
64 735 1305

The table shows that the implicit scheme is somewhat infe­
rior to the explicit scheme in terms of CPU-time used. It may be 
remarked that this is primarily so because the red-black ordering 
in this scheme entails more information exchange at the internal 
boundaries than does the explicit scheme.

6. Conclusions

We have presented parallel algorithms, explicit and implicit 
SOR for a change of phase problem in two space dimensions. It 
seems that the explicit algorithm does better. This may be due 
to the fact that the implicit SOR algorithm involves red, black 
ordering which necessitates more exchanges of data among the 
strips. Since communication in distributed processing is still 
much more time consuming than computation, this makes the 
implicit SOR algorithm less attractive. As the communication 
rates improve this may change the picture. Therefore for larger 
grid sizes, implicit SOR is either worse or comparable to the 
explicit method in terms of CPU time consumed.

Our results show excellent speed up for the parallel algo­
rithms on large grids. Large grid calculations may be infeasible 
on sequential computers due to memory limitations. A 
480 x 480 grid was unable to execute on one node on the Intel’s 
hypercube due to lack of memory.
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