(éOUIC’X?()’f/XO —

PARALLEL SOLUTIONS OF A 2-D PHASE CHANGE PROBLEM ON A HYPERCUBE

H. N. Narang __
Computer Science Department CONF-8904180--1
Tuskegee University
Tuskegee, Alabama 36088 DE89 009619
J. B. Drake

Mathematical Sciences Section
Engineering Physics and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-8083

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

* This research was sponsored by the Applied Mathematical Sciences Research Program,. Ofﬁcq of Energy
Research, U.S. Department of Energy under contract DE-AC05-840R21400 with the Martin Marietta Energy

MASTER

RIBUTION OF THIS QOCUMENT 1S UNLIWITED

N

MsT

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Parallel Solution of a 2-D Phase Change
Problem on a Hypercube

H. N. Narang

Department of Computer Science
Tuskegee University

J.B. Drake

Mathematical Sciences Section
Engineering Physics and Mathematics Division
Oak Ridge National Laboratory

Abstract

This report documents the model, algorithms, and results for
a heat transfer problem with phase change simulated numeri-
cally on a hypercube parallel computer. The temperature and
enthalpy distribution in a rectangular domain with first kind
boundary conditions (temperature prescribed) is found as a func-
tion of time. The model involves a non-linear partial differential
equation with a constitutive relation between enthalpy and tem-
perature. The solution to the system is obtained by finite differ-
ence approximation with both explicit and implicit methods. In
the implicit case, a successive overrelaxation technique with red,
black ordering is implemented. The efficiency of the explicit
method is compared with that of the implicit method in a mul-
tiprocessor computing environment.

The design, development, and implementation of algorithms
targeted INTEL’s iPSC/2 hypercube involving up to 64 proces-
sors. The computational workload was uniformly divided
among processors as far as possible by dividing the finite differ-
ence grid into several strips and assigning each strip to a proces-
sor.

The results, depicted in terms of tables , show the effect of
relaxation parameter, and stepsize on the efficiency of the paral-
lel algorithms. This is contrasted with the sequential algorithms.

1. Introduction

The study of phase change problems has been of special
interest to engineers, scientists, and mathematicians for a long
time. This interest has been sustained because of the importance
of the problems arising in various fields. Examples include
manufacturing steel, melting of glaciers in arctic regions and
their effect on the global temperature, laser annealing technol-
ogy and manned space power stations to name a few. The

classical formulation of the problem is due to Stefan in 1889
[11]. Stefan’s model for ice melting tracked the melting front
along with the temperature distribution. Since then many
researchers have contributed to the field which is now broadly
known as ‘‘moving boundary problems’’. This field includes not
only melting but also solidification as well as problems without
change of phase, e.g., diffusion of a substance in liquid. Due to
the presence of a moving free boundary these problems are
essentially non-linear. Analytical solutions are possible in only
a few special cases. Carslaw and Jaeger [12] offer several of
these.

As the region of interest in which the solution is to be
obtained changes with time, numerical methods based on front
tracking are complicated by the necessity to move the finite
difference grid or to transform the coordinates of the problem. In
1946, Eyres [13], presented a model for this kind of problem
which alleviates the need to explicitly track fronts. The heat
transfer literature refers to this model as the enthalpy formula-
tion. In this formulation, the movement of the front is embed-
ded in the system consisting of a partial differential equation
involving enthalpy and temperature and an auxiliary relationship
between them. This formulation has advantages numerically
since the problem domain is fixed [Wilson, Solomon, Boggs].

Various researchers, Williams and Wilson [3], have
attempted solutions to these problems using super-computers to
advantage. With the advent of parallel, distributed processing,
the design and implementation of algorithms for solving moving
boundary problems in parallel is of interest. The granularity of
the parallelism inherent in this type of moving boundary prob-
lem is well suited to parallel computation. In addition to the dif-
fusion calculation, the state variables must be updated from the
conserved quantity. For example, in a phase change problem,
the temperature must be found from the enthalpy at each node of
the mesh. This computation of the state variable, temperature,
does not vectorize easily as it involves a logical switch. How-
ever, this computation may proceed with perfect parallelism on
a multiprocessor.

In this report we design and implement parallel algorithms
for moving boundary problems. A 2-D change of phase problem
is used as a model problem and the simulation performed on an
Intel iPSC/2 hypercube with a maximum of 64 processors. Both

explicit and implicit algorithms are developed. Results indicate
the effect of problem size, relaxation parameter, and step-size on
the performance of the parallel algorithms. Performance studies
also show the efficiency of parallel solutions compared with
sequential solutions for explicit and implicit methods. The front
movement with time is shown for an example computation.
Finally, some difficulties encountered with implicit SOR con-
vergence, and the development of a strategy to overcome the
difficulties are discussed.

2. Model Formulation

The enthalpy formulation of Stefan problems can be written
in general, Williams and Wilson [3], as:

pe, = div(KT)gradT) 2.1)
T
e(T) = J c(z)dz @2)

where e is enthalpy, T is temperature, K (T') is thermal conduc-
tivity, ¢ (T') is thermal heat capacity and p is the density of the
medium. Many authors have considered this formulation for
Stefan problems. For example, see Rose [14], White [15], and
Solomon [16].

For the 2-phase, 2-D melting problem with constant heat
capacities, the auxiliary relation takes the following form:

CS(T _Tm)
e =] [0,H] T=T, 2.3)
a(T-T,)+H T>T,

where cs, ¢, are the heat capacities of solid and liquid phases
respectively, T,, is the melting temperature, and H is the latent
heat.

The inversion of (2.3) can be written as:

Tm +elcg e<0
T=1T, O<e<H 2.4)
Ta+ (e-H)c, e=2H

Although, (2.3) is a multivalued relationship, (2.4) is a single
valued function.

As an illustrative example, we will consider the melting of a
frozen material, initially solid. A 2-D cross section 1.5x1.5
meters with physical properties given below will be considered.
The boundaries of the material are maintained at 10 degrees C.
The problem is to predict the distribution of the liquid and solid
phases in the region as the material melts and to predict the tem-
perature distribution. We wish to analyze the performance of a
multiprocessor in performing calculations of this sort.

FEERSAERERESEE ST SESREREESER NI N BSOS AR LRI U SESERRA0ESEREE
112222222222211 111111111111111 111111111111111 111111111111111
120000000000021 111222222222111 111111111111111 111111111111111
120000000000021 112000000000211 111122222221111 111111121111111
120000000000021 112000000000211 111200000002111 111122000221111
120000000000021 112000000000211 111200000002111 111120000021111
120000000000021 112000000000211 111200000002111 111100000001111
120000000000021 112000000000211 111200000002111 111200000002111
120000000000021 112000000000211 111200000002111 111100000001111
120000000000021 112000000000211 111200000002111 111120000021111
120000000000021 112000000000211 111200000002111 111122000221111
120000000000021 112000000000211 111122222221111 111111121111111
120000000000021 111222222222111 111111111111111 111111111111111
112222222222211 111111111111111 111111111111111 1111111111111
TIIITEI131010 311111111111111 1111111111111 111111nm

1=5.0 +=10.0 1=15.0 =200

Figure 1. Front Movement for the Example Problem

3. Explicit Method

The enthalpy, temperature equation (2.1) was approximated
by finite differences with an explicit method, as follows:

e,{}‘—e,-’:j _ Q.= qhu.j + - —qljeu 3.1

At Ax Ay

where g;_y ;. gisus,; are heat fluxes on the left and right of the
cell centered at (i, j) respectively and q; j_ , gi, j+1 are fluxes
at the bottom and top boundaries respectively. The superscript
n refers to the time level.

The conductivities K;_% Jjr Kj+%'j, Ki,j—% ’ K;.j,u/, are conduc-
tivities at left, right, bottom, and top faces of the cell (i, j)
respectively and are calculated from:

K _ KT)+ KTin,j) 3.2)
it,j = 2

K _ KT)+ KT js1) (3.3)
it = 2

The equation (3.1) is the update in enthalpy per unit volume in
terms of the enthalpy at the previous time step plus the net
inflow of the heat in the cell during the time increment Az.

Once enthalpy has been obtained, the temperature can be
determined from the discrete version of the auxiliary equation
(2.4).

3.1 System Configuration and Algorithms

The design of a parallel algorithm often begins by identify-
ing independent tasks in a sequential algorithm. For problems
involving the solution of partial differential equations the same
operations are being repeated at each finite difference grid point
and so a spatial assignment of tasks to processors provides a
simple divide and conquer strategy for identifying parallelism.
For a distributed memory parallel computer, the data must also
be divided among the processors. Again the spatial splitting is
natural. Since each individual processor has a piece of the grid,

and not the whole grid, usually it must communicate with other
processors during the solution of the problem. For example, a
piece of the grid requires boundary information before it can be
updated in a time marching scheme. Another example requiring
communication among the processors arises when computing a
norm of the computed solution. Each processor can compute a
norm of its piece of the solution, a local norm, but communica-
tion is required to find the global norm.

The structure of the computer program reflects the division
of tasks between the host and the node processors. A host pro-
gram must provide for all access to input and output but does lit-
tle or no computation. The node programs must provide for
receipt of initial information from the host and for return of
results to the host after completion of the calculation. Message
passing generally occurs in the algorithm whenever a processor
has a value that is (or will be) needed by other processors. The
message passing thus provides a low level of synchronization
among the tasks being performed in parallel. The chief con-
structs for message passing are simply a send and a receive.

By restricting our attention to a ring topology the grid is sim-
ply divided among the processors in strips. The number of grid
points in a given strip will determine the load distribution of the
computation. In our load distribution strategy, the last processor
always gets the remainder of grid rows divided by the number of
processors plus the usual load. In some cases it may get much
less load than other processors, in other cases it may get much
more than others. This will degrade the efficiency of the algo-
rithms.

3.2 Analytical Investigation into the Parallel Efficiency

Let us assume that there are p processors, each with M x N grid
to work on. Let us also assume that each node point requires A
operations to update a grid point, and G time / operation. Let §
be start up time before communicating internal boundary ele-
ments (arow). Then if ¢ is the time, we have

tug = MN(A0)

tr = AMN Z 4 25+ 21N
p

(2N elements exchanged
by each processor, bottom
row and top row)

(o is start up time for
each row communication)

t.leq
speedup = .

par

n
1]

AMNo
AMNOG+2p(8+1N)

P

=p Ao
B] T
Ao+2p(MN+ M)
when M — o
S=p
when N — oo
§=p—_as
A(:r+2pi
M

3.3 Numerical Results and Discussion

The numerical solution to the above problem was obtained
with the algorithms described, which were written in C-language
on Intel’s iPSC/2 hypercube. Results were obtained both for
small and large finite difference grids ranging from
MxN =15 x 15, for the small grids, to 480 x 480, for the large
grids. Timing results were obtained using the iPSC CLOCK
function and are accurate to + 15 ms. All times are reported in
milliseconds.

Conceivably, the larger the grid size, the larger will be the
computational time as well as the communication time. How
the CPU time varies as the grid size increases is shown in the
table below.

TABLE 1.
EXPLICIT METHOD: EFFECT OF GRID SIZE ON CPU TIME

processors =32

M N CPUTime/S/P CPUTime/S/l Speed Up
80 80 2682 2837 10.5
160 160 368.9 11331 30.7
240 240 13142 25477 19.4
20 320 1433.6 45277 315
400 400 3057.1 70493 23.0
480 480 3205.2 101821 31.7

Since a parallel algorithm should give better performance than a
sequential algorithm, some results were obtained for larger grids
(480 x 480) both with the parallel and sequential algorithms
(only one processor solving the whole grid). The results are
depicted in table the below.

TABLE 2.
EFFECT OF # OF PROCESSORS ON THE CALCULATION
OF A FIXED LARGE GRID (480 x 480)

#processors CPU Time/S/P CPU Time/S/1 Speed Up

4 25468.7 101821.2 4.00

8 12744.8 101821.2 7.99

16 6382.4 101821.2 16.03

32 3205.4 101821.2 3177

64 2098.6 101821.2 48.52
TABLE 3.

EXPLICIT METHOD: EFFECT OF NUMBER OF PROCESSORS
ON A LARGE FIXED GRID (320 x 320)

#Processors CPU Time/S/P CPU Time/S/1 Speed Up
4 113269 45277.1 4.00
5671.1 45277.1 7.98
16 2844.5 45271.1 1592
32 1434.6 45277.1 31.56
64 734.9 452771 61.61

Tables 2 and 3 show that efficiences near 100% are achiev-
able when the grid is evenly divisible by the number of proces-
sors. Also, for an evenly divisible grid of these sizes the optimal
efficiency is with 32 processors.

4. Implicit Method

In this method, the approximation to partial derivatives in
the model equations are replaced by forward difference quo-
tients at the advanced time instead of the previous time. Thus
equation (2.1) assumes the form:

a+l —el

9 +0 40 0
el —e; Q%9 N qriiw —qliin (4.1)

At Ax Ay

where, 0 is the degree of implicitness and lies between 0 and 1,
and

fn+9 - efu+l + (1 —e)f"

The quantities q;_s,;, gi+ss,j» €tc, are heat fluxes as before,
where superscripts #2+6 imply that the values of these fluxes are
weighted combination of the fluxes at times 7, and n+1.

For =0, it becomes an explicit method, and at 6=1 it
becomes fully implicit. At 8= , it is well known as Crank-
Nicholson scheme. The quantities q;_x ;. Gisus,jr i j-%»

qi.j+w are defined as in the explicit method with

corresponding definitions for K;_s ;, Ki.y j, etc.
With above definitions, the equation (4.1) assumes the form

At T n
et = b+ E[Kry.; (TR -1t
_ KL, @ T.-"_*ﬂ,-)] “2)
QAL
oy [Kr;ku, (T, — T

Ku+l % (T':j:l - Tlu;fll)]

where

.. (-0 .
bli=el; + .(p_Ax);_[K“' i T =T8)
- K @ =T “3)
1-0)As " a n
+ -(_F;_A—y)z—[Kl jos (It ja —TF))

- K& (T-"fj“T-"fi—l)]

In this method, bf; assumes the role of ef'; of the explicit
method.

The equations (4.1), (4.2), (4.3) make the system implicit in
that one has to solve the whole system simultaneously. With the
natural ordering, the coefficient matrix assumes a banded diago-
nal structure. The solution of such a non-linear system can be
found by quasi-linearizing the system at every time step with
coefficients at the old time step and then applying some direct
method. Or one can solve the system iteratively by assuming a
starting solution and iterating until convergence is obtained.

We shall solve the system by a well known iterative method
‘‘successive over relaxation’’ commonly known as SOR. In
this method, one starts with an initial approximation to the solu-
tion (usually initial conditions) and then obtains updated solu-
tions by successively making weighted residuals go to zero. The
relaxation parameter, ®, the weighting factor for residuals is
normally chosen to lie between 1, and 2, for faster convergence
to the solution. One may refer to Young [6] for details of this
method.

To apply this method, we write equation (4.2) in the follow-
ing fashion:

Let 17 ; denote the p th approximation to T/*}!, and n?; as the
pth approxnnauon to ef'}!. Then if we define

n 0At
2Py = bl + oAx 2(K.+'A j Wy + KPS TRE)
o @4.4)
t
+ pAyz(Kfj»f'A i + Kb 1'/: TP+11)

and

BA:
(KPoss j+ K2)

" pAx?
OAL @4.5)
+ pTyi(Klp'H% +K,P.§l_:,3)
equation (4.2) assumes the iterative form
neit = zb; - oy @.6)

As (4.6) is the iterative form of the finite difference approxi-
mation to enthalpy, and temperature equation (4.1) or (4.2), the
auxiliary equation corresponding to (2.4) of explicit method
assumes the following form:

CsT, +2P;
ZSom T A 2F;—cPjTn<0
Cﬁj+Cs
tﬁ}‘: T, O<zP;~cPiT,, <H (47)
¢, T, —2P;— H
ZLm g 2P;—cijTw2 H
C,P'j+CL

The role of e in explicit solution is played here by the quantity
#j—cbjt;

This happens because in the iterative process of updating the
node values, these nodes are encountered first and thus attain
newer values.

In the above iteration process, 1,1’,}1 is in fact the Gauss-
Seidel value. We shall call this updated value '},’f}fl. A succes-
sive overrelaxation method finds the updated value by taking a
linear combination of the old value and the Gauss-Seidel
updated value. Let us call the SOR updated value t7+.. Thus

= (1-0)F; + ©TPH! (4.8)

Elliot and Ockendon [8], suggest taking an SOR update for
points inside the grid and Gauss-Seidel update near the phase
(moving) front. This they suggest to avoid oscillations about
T,.. We take this advice in our algorithm, i.e., we take

TP @ —T)AP —T,a)< 0
it = 4.9)

i otherwise

4.1 Parallel (Implicit) SOR Algorithm

The SOR algorithm with the natural ordering of the equa-
tions is inherently sequential. For parallel implementation of the
SOR algorithm, one needs to resort to the "red, black" ordering
technique. Nodes are labeled alternately ‘‘red’’ and ‘‘black’’.
In this scheme, ‘“‘red’’ nodes will always have "black”" neigh-
bors, and ‘‘black’’ nodes will have "red” neighbors. A SOR
sweep through the system is first made by updating red nodes,
and then another sweep is made by updating black nodes to

complete the processes. The details of this scheme can be found
in Ortega [1], Evans [2].

4.2 Analytical Analysis of Speed-Up for
the Implicit Algorithm

As in the case of the explicit algorithm, the speed up S, and
efficiency E are given below based on operation counts. It may
be remarked that the major difference comes from the fact that
there will be more communication involved in the implicit
method. The added communication comes from exchanges of
boundary values for each red and black update. One may think it
might involve more calculations per grid point, but if one
remembers the fact that we are taking larger time steps (several
times that of explicit time step) the advantages or disadvantages
are not clear.

Ignoring the difference in the number of calculations needed
to update a grid point the speed up and efficiency can be given
by the following expressions:

s = AMNo
AMNolp +48+41N
= p(Ao
B 45 41
Ac+p(MN+M)
E=Sp= Ao
Ac+p(Ad 41,
MN M
Againas M 5 oo, E=1
Ao
and as N — e EZ————Z—<1
AO'+—;IE

4.3 Numerical Results and Discussion
The numerical results were obtained by simulation of the
same problem as in the explicit case. The extra information

needed to be supplied for the implicit SOR is the following:

convergence parameters:

o=1.6
0 = 0.5 (Crank—Nicholson)
e = 0.001

tmult = 10

The initial, boundary conditions, and grid parameters as well as
material properties etc, remained unchanged. Below are results
for temperature calculations, front movements, and performance
studies.

The table below shows the effect of the number of proces-
sors on the speed up for a fixed problem size.

TABLE 4.
SOR - IMPLICIT: EFFECT OF # OF PROCESSORS
ON SPEED UP OF A LARGE GRID

(320 x 320)
w=13

processors CPU time/S/P CPU time/S/1 speedup

4 372778 1486304 3.99
8 187022 1486304 795
16 94030 1486304 15.81
32 48090 1486304 30.99
64 26106 1486304 56.94

5. Performance Comparison Between Explicit
and Implicit Algorithms

To compare the advantages of the parallel explicit with the
parallel implicit algorithm, some results were obtained for large
grid sizes. The table below shows a CPU time comparison for
each grid size for a given time step. The explicit times given in
the tables below are the execution times for a single explicit
time step. Since the implicit method takes a larger time step,
normalization is required for a comparison. The implicit times
represent the execution time required to simulate one explicit
time step.

TABLE 5.
Comparison of Explicit and Implicit Schemes for 20x15 Grid

processors = 4
n=13

tmult Explicit-CPU time/S/P Implicit-CPU time/S/P

1 40 6302.7
5 40 1260.5
10 40 864.6
15 40 605.5
20 40 500.2
25 40 382.1
30 40 3329
35 40 2973
40 40 303.1

TABLE 6.
Comparison of Explicit and Implicit Schemes for 320x320 Grid

tmult = 20
0=13

processors Explicit-CPU time/S/P Implicit-CPU time/S/P

4 11326 186387
5671 9351

16 2844 4701
2 1434 2404
64 735 1305

The table shows that the implicit scheme is somewhat infe-
rior to the explicit scheme in terms of CPU-time used. It may be
remarked that this is primarily so because the red-black ordering
in this scheme entails more information exchange at the internal
boundaries than does the explicit scheme.

6. Conclusions

We have presented parallel algorithms, explicit and implicit
SOR for a change of phase problem in two space dimensions. It
seems that the explicit algorithm does better. This may be due
to the fact that the implicit SOR algorithm involves red, black
ordering which necessitates more exchanges of data among the
strips. Since communication in distributed processing is still
much more time consuming than computation, this makes the
implicit SOR algorithm less attractive. As the communication
rates improve this may change the picture. Therefore for larger
grid sizes, implicit SOR is either worse or comparable to the
explicit method in terms of CPU time consumed.

Our results show excellent speed up for the parallel algo-
rithms on large grids. Large grid calculations may be infeasible
on sequential computers due to memory limitations. A
480 x 480 grid was unable to execute on one node on the Intel’s
hypercube due to lack of memory.

Acknowledgements

The authors are thankful to George Wilson, Ray Flanery, Al
Geist, Tom Dunigan, Chuck Romine, and Esmond Ng for many
useful discussions.

References !

10.
11.

12.

13.

14.

15.

16.

. wew g

'

James Ortega and Robert Voigt, ‘*Solution to Partial Dif-
ferential Equations on Vector and Parallel Computers’’,
SIAM Review 1-240 (June 1985).

D. J. Evans, *‘Parallel SOR Iterative Methods”’, Parallel
Computers 1, 3-18 (1984).

M. A, Williams and D. G. Wilson, *IMPSOR, A Fully
Vectorized Fortran Code for Three Dimensional Moving
Boundary Value Problems with Dirichlet or Neumann
Boundary Conditions’’, Report ORNL-6393, Oak Ridge
National Laboratory, Oak Ridge, Tennessee, August 1987.

M. A. Williams, ‘‘Iterative Solution of a Non-Linear Sys-
tem Arising in Phase Change Problems’’, Report ORNL-
6398, Oak Ridge National Laboratory, Oak Ridge, Tennes-
see, August 1987,

D. G. Wilson and R. E. Flanery, ‘*Modeling Cyclic Melting
and Refreezing in a Hollow Metal Canister’’, Report
ORNL-6497, Oak Ridge National Laboratory, Oak Ridge,
Tennessee, September 1988.

D. M. Young, ‘‘Iterative Solution of Large Linear Sys-
tems’’, Academic Press, 1971.

D. G. Wilson, A. D. Solomon, and P. Boggs, ‘‘Moving
Boundary Problems’’, Academic Press, 1978.

C. M. Elliot and J. R. Ockendon, **Weak and Variational
Methods for Moving Boundary Problems’, Pitman
Advanced Publishing Program, Boston, 1981.

Intel Corporation, ‘‘IPSC Program Development Guide’’,
October 1986.

Intel Corporation, *‘IPSC/2 Users Guide’’, March 1988.

J. Stefan, ‘‘Uber einize Probleme der Theorie der War-
meleitung’’, S. B. Wein. Akad. Mat. Natur. 173-484 (1889).

Carslaw and Jaegar, ‘‘Heat conduction in Solids’’, Oxford
University Press, London, 1959.

N. R. Eyres, et al, ‘“The Calculation of Variable Heat Flow
in Solids’’, Philosophical Transactions of the Royal Society
of London, Series A, 240, 1-57 (1946).

M. A. Rose, ‘““Method for Calculating Solutions of Para-
bolic Equations’’, ed. J. K. Reid, Academic Press, New
York, 1971.

R. E. White, ““An Enthalpy Formulation of the Stefan
Problem’’, SIAM J. Num. Analysis 19, 1129-1157 (1982).

A. D. Solomon, ‘‘Some Remarks on Stefan Problem’’,
Math. Comp. 20, 347-360 (1976).

