DPST--89-234
DE89 010412

NRTSC
NUCLEAR REACTOR TECHNOLOGY
AND SCIENTIFIC COMPUTATIONS

KEYWORDS: Fortran
Computer
Source Code

RETENTION: Lifetime

The GRIPS Program: User Manual
July 26, 1988

By

Henry C. Honeck
Computer Application Technology, Inc.

Issued: February 1, 1989

SRI. SAVANNAH RIVER LABORATORY, AIKEN, SC 29808
E. L du Pont de Nemours & Company, Inc.
Prepared for the U. S. Department of Energy under Contract
DE-AC09-76SR00001

BN Bl o s
. i .{é - g

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



Project: Computer Utility Programs
Document: DPST-89-234

Title: The GRIPS Program: User Manual
July 26, 1988

Contract: AX-811431
GRIPS and FLASH Program Development

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Approvals

Date:/‘/?’f7

J. verson, Research Supervisor

Date: / /7/d9}
/7

R.J. T, l%‘érch Manager

I %Cdﬁv@/\., / Date: // / <1// 29

B. W. Westmoreland, Technical Reviewer



Table of Contents

Introduction 2
Executing GRIPS 4
The Directives File 5
Gathering Source Files 6
Scattering Source Files 7
Changing Parameter Values 8
Trimming the Output Card Images 9
Including Groups of Source Statements 9
Selecting Groups of Source Statements 11
Printed Output 14
Summary of GRIPS Directives 16
Appendix A. Managing Computer-Dependent Fortran Source Code 17
A.1 Method 1, Multiple Subroutines 17
A.2 Method 2, Single Subroutines 17
A.3 Method 3, Selected Statements 18
A.4 Method 4, Parameters 18
A.5 A Suggestion for SYSTEM Names 20
List of Figures
Figure 1 - GRIPS Programs and Files 3
Figure 2 - Examples of Nested Select Statements 13
Figure 3 - Sample GRIPS Output 15




Introduction

We must come to grips with the problem of maintaining source code for a variety of
computers. Ideally, we would like to maintain ONE set of source code on the VAX in a
scattered form (one subroutine per file). We could then use the GRIPS program to produce
other sets of source code for other computers such as the SCS-40, Crays, IBMs, and PCs.
The name GRIPS is an acronym for

Gather and scatter,

Remove specified card images,
Include common files, change
Parameters, and

Select computer-dependent code.

The operation of GRIPS is illustrated in Figure 1. Let us start with computer B in the
middle of Figure 1. On the left are the Fortran source files in a scattered form. There may
also be non-Fortran text or data files. GRIPS can gather up these files into a single
composite file for shipment to another computer. Shipment is very awkward when there
are many files to ship. Being able to ship a single composite file is a great convenience.
GRIPS is controlled by a set of directives in a directives file. These directives tell GRIPS
the names of the source and text files, the name of the composite file, the templates of files
to be included, and how to prepare the composite file for the target computer. The
composite file can then be used in two different ways.

If further development of the source code is to be done, then the composite file is shipped
to computer A and we again want the source code in a scattered form. GRIPS on computer
A scatters files from the composite file to a series of source and text files on computer A.
When the development is completed, the operation can be reversed. GRIPS gathers the
source and text files on computer A into a composite file which is shipped to computer B
where GRIPS scatters it into source and text files on computer B. Thus, the scatter and
gather operations are reversible provided that certain directives which remove card images
were not used.

An example of this type of operation was the Joshua Precompiler which was developed on
an IBM PC/AT. There are over 120 subroutines, 12 include files, and 30 document files.
The directives file on the PC/AT which gathers the source and text files is as follows:

GATHER

SELECT (SYSTEM="VAX/VMS')
SOURCE (C:\JPC\SRC\*.FOR,FORTRAN)
SOURCE (C:JPCQ\SRC\*, INCLUDE)
TEXT (C\JPC\DOC\*.DOC

EXCLUDE (C:JPC\SRQ\TEST.FOR)
COMPOSITE (C:\JPC.CMP)

The syntax will be explained in detail later, but we can easily see that the operation is to
gather the source files whose names match the template C:\JPC\SRC\*.FOR which are of
type FORTRAN, add the source files whose names match the template C:\JPC\SRC\*
which are of type INCLUDE, add the text files whose names match the template
C:\JPC\DOC\* . DOC which are of type DOCUMENT, exclude the single file named
C:JPQ\SRC\TEST.FOR, and put all of them in the composite file named C:JPC.CMP.



Figure 1 GRIPS Programs and Files

Computer A




The type names FORTRAN, INCLUDE, and DOCUMENT will be explained later. The
composite file is shipped to the VAX-8550 where it is named [S8999]JPC.CMP. It is then
scattered using the following directives:

SCATTER

SOURCE ([S8999.JPC.SRC]*.FOR,FORTRAN)
SOURCE ([S8999.JPC.INC]*.INC,INCLUDE)
TEXT ([S8999.JPC.DOC}*.DOC,DOCUMENT)
COMPOSITE ([S8999]1JPC.CMP)

The procedure can be reversed (gather on the VAX, ship to the PC, scatter on the PC) by
interchanging the SCATTER and GATHER directives.

If minimal further changes are to be made in the source, then the situation is like that shown
at the bottom of Figure 1. The composite file on computer C is to be compiled, linked, and
executed. Further changes in the source files will be made on computer B and the process
repeated. Since shipment may be done often, the composite file should be as small as
possible. This appears to be a very convenient way of working when computer C is the
SCS-40 or a Cray. For example, the directives to gather the source for a code named DIF
might be:

GATHER

UPDATE

NO COMMENTS

SELECT (SYSTEM='SCS/CTSS’)
PRIORITY ([S8999.DIF.SRC]*.SCS]
SOURCE ([S8999.DIF.SRC]* FOR)
INCLUDE ([S8999.DIF.INC]*.INC)
COMPOSITE ([S8999]DIF.SRC

Only those files which have been updated since the last GRIPS run are included. All
comment lines are to be removed. Include statements are to be expanded using the template
[S8999.DIF.INC]*.INC. If a source file with an extent SCS is found, it takes priority
over the file with the extent FOR. Statements for the SCS-40 computer are to be selected,
and the composite file [S8999]DIF.SRC is prepared for shipment to the SCS-40. The
same procedure which executes GRIPS can also ship, synchronize, compile, link, and run
the DIF program on the SCS-40, all via one user command from the VAX.

The remaining sections describe the execution of GRIPS and the format of the directives.

Executing GRIPS

The execution of GRIPS is controlled by a series of directives contained in a file named
DirectivesFileName which will be referenced by GRIPS as standard input unit 5. There is

-a short printed output which is written to the file named PrintFileName which will be
referenced by GRIPS as standard output unit 6. The connection between file name and unit
number must be made outside of GRIPS. GRIPS is executed on the VAX using:

$ DEFINE FOROQOS DirectivesFileName
$ DEFINE FORO006 PrintFileName
$ GRIPS



The Directives File

A directive has the form of a keyword followed (optionally) by one or two arguments
enclosed in parentheses. The keyword will be converted to upper case, blanks ignored,
and truncated to 4 characters. Thus all of the following represent the keyword SOURCE:

SoUrcCe
SOURCES of INFORMATION
SOUR

Each directive is placed on a separate 72-character line and must be complete on the line.
Directives may be entered in any order and will be processed in the order entered. Literal
strings may be used in the arguments. Literal strings may be enclosed in either single or
double quotes. A single quote is treated as an ordinary character in a literal string delimited
by double quotes. A double quote is treated as an ordinary character in a literal string
delimited by single quotes. For example:

'He called "Help"'  defines the string He called "Help"

"I can't go" defines the string I can't go
T can't go' is not valid
"abc"def" is not valid
'string" is not valid

Blanks not in literal strings are ignored. Lower case letters not in literal strings are
converted to upper case letters. Non-ASCII characters are invalid.

Since file naming conventions vary from computer to computer, the following general
definitions are used here:

"file name" means the complete name for a file on a specific computer.
VAX example: SRLUSER1:[S8999.SOURCE]JMAIN.FOR

"file shorthand" means the short (1-8) character name which is computer independent.
VAX example: MAIN in the above file name.

"file template” means a file name with the file shorthand represented by a "*'
VAX example: SRLUSER1:{S8999.SOURCE]*.FOR

Note that SRLUSER1:{S8999.SOURCE]*.* is NOT a valid file template.



Gathering Source Files

There are several directives that are used to specify the gathering of several source or text
files into a single composite output file. The formats for these directives are as follows:

GATHER

UPDATE

PRIORITY ( SourceFileSpecs | , FileTag 1)
SOURCE ( SourceFileSpecs [ , FileTag ])
TEXT ( TextFileSpecs | , FileTag ])
EXCLUDE ( ExcludeFileName )
COMPOSITE ( CompositeFileName )

The above directives may be entered in the directives file in any order. There must be one
and only one GATHER and COMPOSITE directive. The UPDATE directive is optional
but only one such directive should be used. There may be multiple PRIORITY, SOURCE,
TEXT, and EXCLUDE directives.

The PRIORITY and SOURCE directives specify the names of the Fortran source files to be
gathered, and the TEXT directive specifies the names of the non-Fortran files to be
gathered. Multiple PRIORITY, SOURCE, and TEXT directives may be used. They will
be processed in the sequence entered. The SourceFileSpecs or TextFileSpecs may be a file
name which specifies a single file to be gathered, or they may be a file template which
specifies a set of files to be gathered. The FileTag is an optional user-supplied word which
describes the type of file. It is used only in conjunction with a subsequent GRIPS
SCATTER run. The distinction between the PRIORITY and SOURCE directives is that if
a file shorthand satisfies the SourceFileSpecs in both a PRIORITY and SOURCE directive,
then the file specified by the PRIORITY directive has priority and is gathered, while the file
specified by the SOURCE directive is excluded. No combination of SOURCE and
PRIORITY directives will cause the same file to be gathered twice.

The EXCLUDE directive specifies the name of an input file to be excluded (not read).
Mu'tiole EXCLUDE directives may be used and may be entered in any order. Each
dirc e applies to all of the PRIORITY, SOURCE, and T=XT directives regardless of
ord: a the directives file.

The UPDATE directive specifies that only updated files are to be read. A Reference time is
defined as follows. If the COMPOSITE file (described below) exists, and if the UPDATE
directive is given, then the Reference time is that of the COMPOSITE file. Otherwise, the
Reference time is zero. PRIORITY, SOURCE, and TEXT files are processed only if they
(or something included in them) were created or updated after the Reference time, or if they
contain a Parameter that is to be changed. However, GRIPS does not know which files
were processed in prior runs. If a previously unprocessed file is to be processed in the
current run, then it must be given a time later than that of the COMPOSITE file.

The COMPOSITE directive specifies the name of the single output file. Only one
COMPOSITE directive may be entered and the CompositeFileName must be a file name.
All files specified by the PRIORITY, SOURCE. and TEXT directives and not excluded by
the EXCLUDE directives are written in sequence to the composite file. If a FileTag was
specified, then each file is headed by a card image with one of the two following forms:

* SOURCE ( SourceFileShorthand , FileTag )
* TEXT ( TextFileShorthand , FileTag )



where SourceFileShorthand or TextFileShorthand is the shorthand name of the source or
text file. Note that if the NO COMMENTS directives (see below) is used, then these card
images will be removed and the composite file cannot be scattered at a later time.

Scattering Source Files

There are several directives that are used to specify the scattering of source and text files
contained in a single composite file. The formats for these directives are as follows:

SCATTER

COMPOSITE ( CompositeFileName )
SOURCE ( SourceFileTemplate , FileTag )
TEXT ( TextFileTemplate , FileTag )

These directives may be entered in any order in the directives file. There must be one and
only one SCATTER and COMPOSITE directive. There may be several SOURCE and
TEXT directives.

The COMPOSITE directive specifies the name of the single file whose component files are
to be scattered. The CompositeFileName must be a file name. The file must have been
produced by a GRIPS GATHER run and have one of the two following card images at the
head of each source or text file in the composite file.

* SOURCE ( SourceFileShorthand , FileTag )
* TEXT ( TextFileShorthand , FileTag )

where SourceFileShorthand and TextFileShorthand are the shorthand names of the source
and text file, and FileTag is the user supplied tag for the file. Note that if the NO
COMMENTS directive had been used when the composite file was gathered, then these
card images would have been removed and the composite file cannot be scattered.

The SOURCE directive specifies the templates of the Fortran files, and the TEXT directive
specifies the templates of the non-Fortran files to be scattered. Multiple SOURCE and
TEXT directives may be used. Each file read from the composite file must have either a
*SOURCE or *TEXT as the first card image. Assume that a *SOURCE card image is
encountered. The SourceFileShorthand and the FileTag are obtained. The SOURCE
~ directives are scanned in entry sequence for the one with a matching FileTag. An error stop
occurs if no matching FileTag is found. The SourceFileShorthand is then inserted in the
SourceFileTemplate from the SOURCE directive to obtain the SourceFileName where the
source file will be written. Note that if there are several SOURCE directives with the same
FileTag, only the first one will be found and used. The same procedure is used for the
- *TEXT files.



Changing Parameter Values

The value assigned to a parameter in a Fortran PARAMETER statement in the source can
be changed to another value using a PARAMETER directive of the form:

PARAMETER ( ParameterName = ParameterValue )

This directive may be used in either the GATHER or SCATTER mode. The delimiter
between the arguments may be either an equal sign or a comma. The ParameterName is the
name of the parameter as used in the PARAMETER statement in the source and should not
be a literal string. The ParameterValue is the new value to be assigned to this parameter
and may be a literal string. For example, if the source contains:

PARAMETER (NXX=200,IXX=150,ABC='123"'XYZ=ABC)
then the directives

PARAMETER (NXX=500)
PARAMETER (ABC="'45'")
PARAMETER (XYZ='78")

would produce the new output statement
PARAMETER (NXX=500,IXX=150,ABC= '45' ,XYZ=78)

The PARAMETER directive is reversible in the sense that, even though the original value
was removed, it can be restored using a PARAMETER directive with the original value.
The directive can be used in either the GATHER or SCATTER mode.

The current implementation of the PARAMETER directive requires that the Fortran
PARAMETER statement have no continuation statements. Further, the substitution of the
new ParameterValue must not cause the line to overflow past column 72. The safe method
is to place each parameter on a separate line.

Removing Selected Source Statements

There are two directives that can be used to remove source statements in both the GATHER
and SCATTER mode:

NO COMMENTS
REMOVE ( RemoveString )

The NOCOMMENTS directive removes all comment statements from the source plus any
generated by other directives (e.g. INCLUDE, SELECT) in this GRIPS run. Comment
statements are defined to be those with a 'c’, 'C’, *', or 't in column 1. The REMOVE
directives matches the RemoveString with the statement starting in column 1. If a match is
obtained, the statement is removed. For example, the following directive would remove all
Cray CFT compiler directives:

REMOVE ('CDIR$")



The REMOVE directives leave the output in a non-reversible condition since the statements
which were removed can not be put back into the source. Their main use is to produce a
compact output which will require minimum transmission time to another computer where
it will only be compiled and run with little or no editing.

Trimming the Output Card Images

In most instances the card images in the output file can be trimmed, that is, trailing blanks
removed. Trimming Fortran source cards can reduce the size (and thus transmission time)
of the output file by a factor of two or more. Trimming is the default. There is one known
circumstance where trimming can cause a problem. This occurs because VAX Fortran
does not restore the trimmed blanks and hence may lose some blanks in a literal continued
on a second card image. The following directive can be used in both the GATHER and
SCATTER mode to prevent trimming:

NO TRIMMING

Including Groups of Source Statements

We frequently include the same group of statements into several source routines. The
definition of COMMON blocks which appear in several subroutines is a typical example.
The statements to be included are placed in a separate named file. The INCLUDE statement
is then used in the source routine at the place where the statements are to be included. The
INCLUDE statement has one of the two forms:

INCLUDE ‘IncludeFileShorthand’ or INCLUDE (IncludeFileShorthand)

where IncludeFileShorthand is the shorthand name for the file. The single quotes in the
first form are delimiters and not the start and end of a literal string. IncludeFileShorthand
from either form is converted to upper case and blanks are ignored.

INCLUDE statements in the source are intended to be expanded by either GRIPS or the
compiler of the target computer. In the latter case no action is required of GRIPS and the
INCLUDE statements are ignored. If GRIPS is to perform the include (usually in the
GATHER mode), then there must be one or more INCLUDE directives of the form:

INCLUDE ( IncludeFileTemplate )

where IncludeFileTemplate is the template for the files to be included. Assume that an
INCLUDE statement has been encountered in the source. The IncludeFileShorthand is
extracted from the INCLUDE statement. The directives are inspected in the order entered.
When an INCLUDE directive is found, the IncludeFileTemplate is extracted and the
IncludeFileShorthand replaces the ™' in the IncludeFileTemplate to form a file name. An
attempt is made to OPEN the file so named. If the attempt is unsuccessful, then the next
INCLUDE directive is tried. If they all fail, then the INCLUDE statement is left as is to be
processed by the compiler of the target computer. INCLUDE statements may be nested,
however, only the outermost one will be expanded by GRIPS.

If the OPEN is successful, then the file is read into the source following the INCLUDE
statement and the INCLUDE statement is marked with a "* BGN' in columns 1-5. The file



is also saved in GRIPS main memory for possible repeated use. The following line is
inserted in the source following the included statements to mark the end of the inclusion:

* END INCLUDE

Note that these statements will be removed if the NO COMMENTS directive is used. For
example, assume the file to be include is named [S8999.DIF.INCJGENCOM.INC and
contains the following statements:

INTEGER I1,12,13
REAL R4,R5
COMMON /GENCOM/ 11,12,I3,R4,R5

The following INCLUDE directive would be used:
INCLUDE ( [S8999.DIF.INC]*.INC ) ’
and the source containing the above INCLUDE statement would become:
* BGN INCLUDE 'GENCOM'
INTEGER I1,12,13
REAL R4,RS
COMMON /GENCOM/ 11,12,13,R4,RS
* END INCLUDE
The include process is reversible. If the source contains included statements as above with
the * INCLUDE and * END INCLUDE lines, then the UNINCLUDE directive can be used
to reverse the process. The UNINCLUDE directive has the form:
UNINCLUDE

INCLUDE and UNINCLUDE directives may not be used in the same GRIPS run. An
INCLUDE file may contain SELECT conditionals (described later).

10



Selecting Groups of Source Statements

We may have to use different groups of source statements for different computers. To do
this we would include in the source the following types of statements (the *' must appear
in column 1):

* SELECT CASE ( SelectName )

* CASE ( SelectValue [ , SelectValue [ ...1])
* CASE DEFAULT

* END SELECT

Except for the *', these are like the new CASE statements proposed for Fortran 8x. The
SELECT CASE statement specifies the SelectName of the variable used to make a
selection. The CASE statement specifies one or more SelectValues of the SelectName for
which the case is true. If the same SelectValue appears in a second CASE statement, it is
ignored since only one CASE statement is allowed to be true. Cases not selected by the
CASE statements are selected by the CASE DEFAULT statement which should appear after
the CASE statements. Finally, the END SELECT statement signals that all cases have been
specified. Consider the example where SelectName is SYSTEM and there are three
SelectValues of 'VAX/VMS', TBM/MVS', and 'SCS/CTSS'. The following statements
might appear in the source code:

* SELECT CASE (SYSTEM)

* CASE ('VAX/VMS', IBM/MVS')
first statement used for the VAX or IBM computer
second statement used for the VAX or IBM computer

* CASE ( 'SCS/CTSS')
*  first statement used for the SCS computer

* second statement used for the SCS computer
%

* CASE DEFAULT
*  first statement used when the computer is not the VAX nor the IBM nor the SCS

* second statement used when the computer is not the VAX nor the IBM nor the SCS
*

* END SELECT

This source code is "selected” for the VAX or IBM computer since these statements do not
have a "*' in column 1, and "deselected” for all other cases by the *' in column 1. The
selection can be changed in a GRIPS run by using a SELECT or EXTRACT directive of
the form:

SELECT ( SelectName [ = SelectValue ])
EXTRACT ( SelectName [ = SelectValue )

The EXTRACT directive will be described later. If the SelectName and SelectValue in
source statements and in directives are not in literal strings, blanks will be ignored and
lower case will be converted to upper case. If the SelectValue is omitted, the CASE
DEFAULT (if any) is selected. If no directive with a matching SelectName is found, the
source code is left as is. If several SELECT directives with the same SelectName are
used, only the first will be recognized because only one CASE statement in a SELECT
CASE is allowed to be true. If we used the following directive:

11



SELECT ( SYSTEM = 'SCS/CTSS'")
in a GRIPS run that read the above source code, then we would get the following output:

* SELECT CASE ( SYSTEM)
* CASE (' VAX/VMS', IBM/MVS')
*  first statement used for the VAX or IBM computer
* second statement used for the VAX or IBM computer
%
* CASE ('SCS/CTSS')
first statement used for the SCS computer
second statement used for the SCS computer

* CASE DEFAULT
*  first statement used when the computer is not the VAX nor the IBM nor the SCS

* second statement used when the computer is not the VAX nor the IBM nor the SCS
E 3

* END SELECT

Note that whatever was previously selected is now deselected, and the statements for the
SCS computer are selected. We assume that both the input and output source code are
ready for compilation on some computer. This implies that some selection has always been
made. We could allow for source code to containing CASE statements with none selected
and provide an UNSELECT directive to restore the input source to the unselected state.
However, the ability to switch the source code from one case to another using the SELECT
directive should be adequate.

Selection involves removing the *' from statements while deselection involves placing the
*' on statements. If the statements contained a comment line marked with a "*', it would
become "uncommented” during selection. Therefore, only a ‘C' should be used to mark
comment lines in source to be selected. Similarly, there can be problems with removing the
"*' from *INCLUDE and *END INCLUDE lines. Therefore, if an INCLUDE statement is
used in a SELECT construct, and if it is expanded using an INCLUDE directive, then the
“*' lines should be removed with a NO COMMENTS or REMOVE('*") directive.

If the NO COMMENTS directive is not used, then the selection process is reversible and
amounts to switching the *'s between selections. If the NO COMMENTS directive is
used, the *' is treated as a comment and removed. The output contains only the selected
statements and the selection cannot be reversed. Another option is to use the EXTRACT
directive which has the same format as the SELECT directive. The difference is that the
EXTRACT directive removes all deselected cards including those marked with 'C'.

SELECT statements can be nested in the source code to a depth of 9. Figure 2 illustrates
nesting. The left-most column represents the source code with nothing selected. The right
two columns show the directives and the output source code for two cases. In the middle
column patches 11, 22, and 31 have been selected. In the right-most column nothing is
selected for key3 since it is in the deselected case key2='val22'. The bottom left column
shows what happens when we also use a REMOVE (*) directive. The cleaner situation in
the bottom right column results when the EXTRACT directive is used instead of the
SELECT directive. :

12



Figure 2 Examples of Nested Select Statements

Source Code

Di .
SELECT (keyl='valll')
SELECT (key2='val22")
SELECT (key3='wval3l')

Composite Code

Dj .
SELECT (keyl='valll')
SELECT (key2='val2l"')

Composite Code

Q * * * % %0

C C c

patch 00 patch 00 patch 00
C C C
* SELECT CASE (keyl) * SELECT CASE (keyl) * SELECT CASE (keyl)
* patch 10 * patch 10 * patch 10
* CASE ('valll"') * CASE ('valll') * CASE ('valll'")
* patch 11 patch 11 patch 11
Cmmmmmmr e Commr————————— Crrrmmmr e
* SELECT CASE (key2) * SELECT CASE (key2) * SELECT CASE (key2)
* CASE ('val2l') * CASE ('val2l') * CASE ('val2l?')
* patch 21 * patch 21 patch 21
* CASE ('val22') * CASE ('val22') * CASE ('val22')
* patch 22 patch 22 * patch 22
C=-=-===== === - C-=====-= == - = C—- == == == - = =
* SELECT CASE (key3) * SELECT CASE (key3) * SELECT CASE (key3)
* CASE ('val3l') * CASE ('val3l') * CASE ('val3l'
* patch 31 patch 31 * patch 31
* CASE DEFAULT * CASE DEFAULT * CASE DEFAULT
* patch 3D * patch 3D * patch 3D
* END SELECT * END SELECT * END SELECT
C-=—-=====-==-=-- C-=-=-===-====- C-==-=-=====-- -
* END SELECT * END SELECT * END SELECT
___________ C-—- ——————————————— o e

CASE ('vall2'") * CASE ('vall2') * CASE ('vall2')

patch 12 * patch 12 * patch 12

CASE DEFAULT * CASE DEFAULT * CASE DEFAULT

patch 1D * patch 1D * patch 1D

END SELECT * END SELECT * END SELECT

C C
end end end
Di . Di .

SELECT (keyl='valll"')
SELECT (key2='‘val2l"')
REMOVE ('*')

Composite Code

EXTRACT (keyl='valll')
EXTRACT (key2='val2l')

Composite Code

C C
patch 00 patch 00
C C
patch 11 patch 11
Commm e e e patch 21
patch 21 C
Cm === === === = end
C ___________
C ______________________
C
end

13



Printed Output

The output printed to unit 6 by GRIPS is illustrated in Figure 3. This was from the actual
GRIPS run on the IBM PC/AT to prepare the file to be shipped to the VAX. The directives
are shown at the top of the figure and the output at the bottom fo the figure.

The output is a record of the files read or skipped. The first SOURCE directive requests all
of the include files of which there are 2 (GRPCOM and INCCOM). They are given the
FileTag of INC for use in a SCATTER run on the VAX. The next SOURCE directive
requests all the Fortran source files of which there are 20. However, DFNEXT and
DFNTAD are skipped by priority (Skip/Prio) because VAX-specific versions will be read
later when the PRIORITY directive is executed. Also, TEST is skipped by exclusion
(Skip/Excl) because the file is named in an EXCLUDE directive. The remaining 17 files
are read. In other situations files might be skipped being duplicates (Skip/Dupl), or might
be skipped by update (Skip/Updt). The TEXT directive read 2 documentation files, and the
PRIORITY directive read the 2 VAX-specific source files. If INCLUDE directives had
been given, then the first time that a file was actually included, a message is written
indicating that the file was Saved. This means that the included file was saved for future
use in a main memory buffer.

The directives are listed at the bottom of the printed output in the Directive Use Statistics.
The number after Used is the number of times the directive was used. If a directive was
not used, the message '(not used)' is given. Here the SELECT (SYSTEM='VAX/VMS")
was not used. This is not an error in this case but it might be. The user should always
check these statistics to see that things are the way he thinks they should be.

Finally, there is a count of cards read and written. In this case there were 21 more cards

written than read. These are the 20 *SOURCE cards and 1 *TEXT card written at the head
of each subroutine.

14



Figure 3 Sample GRIPS Output

Directives

GATHER

SOURCE (\GRP\SRC\*, INC)

SOURCE (\GRP\SRC.*.FOR,FOR)
TEXT (\GRP\DOC\ *,DOC, DOC)
PRIORITY (\GRP\SRC\*.VAX,FOR)
EXCLUDE (\GRP\SRC\TEST.FOR)
COMPOSITE (\GRP\DAT\GRIPS.SRC)

SELECT (SYSTEM='VAX/VMS"'")
Qutput

> Begin GRIPS Execution
Processing ==> Directives Input File

> Gather Operation
Composite ==> \GRP\DAT\GRIPS.SRC
Read ==> \GRP\SRC\GRPCOM
Read ==> \GRP\SRC\CRDGET.FOR
Read ==> \GRP\SRC\CRDPUT.FOR
Read ==> \GRP\SRC\CRDTYP.FOR
Skip/Prio ==> \GRP\SRC\DFNEXT.FOR
Read ==> \GRP\SRC\DFNGAB.FOR
Skip/Prio ==> \GRP\SRC\DFNTAD.FOR
Read ==> \GRP\SRC\DIRGET.FOR
Read ==> \GRP\SRC\ERROR.FOR
Read ==> \GRP\SRC\GATHER.FOR
Read ==> \GRP\SRC\GRIPS.FOR
Read ==> \GRP\SRC\INCLUD.FOR
Read ==> \GRP\SRC\PARAM.FOR
Read ==> \GRP\SRC\RWFILE.FOR
Read ==> \GRP\SRC\SCATTR.FOR
Read ==> \GRP\SRC\SELECT.FOR
Read ==> \GRP\SRC\STRCHR.FOR
Read ==> \GRP\SRC\STRFAR.FOR
Read ==> \GRP\SRC\STRNBL.FOR
Read ==> \GRP\SRC\STRPRS.FOR
Skip/Excl ==> \GRP\SRC\TEST.FOR
Read ==> \GRP\DOC\GRPCOM.DOC
Read ==> \GRP\SRC\DFNEXT.VAX
Read ==> \GRP\SRC\DFNTAD.VAX

> Directive Use Statistics
Used 1l ==> GATHER
Used 1 ==> SOURCE (\GRP\SRC\*,INC)
Used 17 ==> SOURCE (\GRP\SRC.*.FOR,FOR)
Used 1 ==> TEXT (\GRP\DOC\ *, DOC, DOC)
Used 2 ==> PRIORITY (\GRP\SRC\*.VAX,FOR)
Used 1 ==> EXCLUDE (\GRP\SRC\TEST.FOR)
Used 1 ==> COMPOSITE (\GRP\DAT\GRIPS.SRC)
(not used) ==> SELECT (SYSTEM='VAX/VMS"')

> Input/Output Stastics
In 2551 ==> Number of Cards Read
Out 2574 ==> Number of Cards Written
> End Grips Execution

15



Summary of GRIPS Directives
All GRIPS directives have the format:
Keyword ( FirstArgument , SecondArgument )

The Keywords and arguments are summarized in the following table.

Keyword _ FEirstArgument SecondArgument GS  Page
COMPOSITE CompositeFileName GS 5,6
EXCILUDE ExcludeFileName G 5
EXTRACT SelectName [ SelectValue ] GS 10
GATHER G 5
INCLUDE IncludeFileTemplate GS 8
NOCOMMENTS GS 7
NOTRIMMING GS 8
PARAMETER ParameterName ParameterValue GS 7
PRIORITY SourceFileSpecs [ FileTag ] G 5
REMOVE RemoveString GS 7
SCATTER S 6
SELECT SelectName [ SelectValue ] GS 10
SOURCE SourceFileSpecs [ FileTag ] GS 5,6
TEXT TextFileSpecs [ FileTag ] GS 5,6
UNINCLUDE GS 9
UPDATE G 5

Notes:
1) Keyword may be in any case and may be truncated to 4 characters.
2) FileSpecs means either FileName or FileTemplate.
3) Second argument is optional if enclosed in| ... ].
4) The GS column has a G and/or S if used with GATHER and/or SCATTER.
5) The Page column is the page number in the text where the directive is discussed.

16



Appendix A. Managing Computer-Dependent Fortran Source Code

Fortran77 has done much to eliminate computer dependencies in Fortran source code.
However, there are still differences in computer filing systems, subroutine libraries, and
execution environments with which we must contend. The GRIPS code was developed to
help programmers contend with these computer dependencies.

Four different methods for handling computer dependencies have been implemented in
GRIPS. These methods are described in the following sections. Other methods can be
developed and incorporated in GRIPS. The author welcomes comments and suggestions.

A.1 Method 1, Multiple Subroutines

Assume that a program has been developed on several computers and that a single version
is now to be maintained on one computer, usually the VAX 8550. From this single version
we must be able to generate versions of the program suitable for each target computer. The
easiest way to do this is to develop separate computer-dependent versions of each
subroutine. These versions must have unique file names. If the extent field of the file
name is used to designate the computer, then GRIPS provides an easy way to gather up the
proper versions for a target computer. Assume that a 3-character extent is used to designate
the target computer. These could be VAX, SCS, IBM, CRA, etc. Computer independent
subroutines will have the extent FOR. Then, to gather source code for the SCS computer,
the following GRIPS directives would be used.

PRIORITY ([path]*.SCS)
SOURCE ([path]*.FOR)

where [path] is the full directory path leading to the source. GRIPS will gather up all files
which have the extent SCS and all files which have the extent FOR and which did not have
the same name as a file with extent SCS. If [path] XYZ.FOR is a source file name, then it
+ ill be gathered only if [path]XYZ.SCS does not exist. If it exists, [path] XYZ.SCS will
be gathered.

A.2 Method 2, Single Subroutine

If we have (as a first step) developed the computer-dependent subroutines as separate files
as indicated above, it might be advantageous (as a second step) to combine the separate
files into a single file with extent FOR and then let GRIPS "select" the proper statements
for the target computer. GRIPS supports this with the SELECT CASE statements. For
example, assume that our single file is named [path]XYZ.FOR and has the following
statements and sections.

17



* SELECT CASE (SYSTEM)

* CASE ('CRAY/CTSS', 'CRAY/CTSS-1', 'CRAY/CTSS-XMP")

* (All of the statements previously in the file named [path]XYZ.CRA)
* CASE (IBM/MVS', T1BM/MVS-3081', TBM/MVS-3083")

* (All of the statements previously in the file named [path]XYZ.IBM)
* CASE ('SCS/CTSS")

* (All of the statements previously in the file named [path]XYZ.SCS)
* CASE DEFAULT

(All of the statements previously in the file named [path]XYZ.FOR)
* END SELECT

This is easy to accomplish with a text editor. Note that all sections except for the one
following the * CASE DEFAULT have been "deactivated" using a '*' in column 1.
Compiling this file we would give the same result as obtained by compiling the previous
[path]XYZ.FOR file. However, if we run GRIPS and include the directive

SELECT (SYSTEM='SCS/CTSS")

then GRIPS will "activate" the statements previously in [path]XYZ.SCS and "deactivate"
all the other sections. If we want to eliminate the "deactivated" sections, we would use the
following GRIPS directive instead of the SELECT directive above.

EXTRACT (SYSTEM='SCS/CTSS")

Method 2 has two advantages over Method 1. First, there is only one source file which
contains all versions. Second, the SELECT CASE syntax is far more flexible than the file
name extent syntax. We have used the case name SYSTEM above with a set of case values
like 'SCS/CTSS'". The last section of this memorandum discusses the choice for case name
and values and lists some suggested case values.

A.3 Method 3, Selected Statements

There will be considerable duplication of statements in both Methods 1 and 2. If we start
from the single file of Method 2, then we could eliminate the duplicate statements (those
that apply to all computers) and use the SELECT CASE syntax only for those sets of
statements that are computer-dependent. This is simply an editing job which results in a
more compact (and perhaps more readable) source file.

A.4 Method 4, Parameters

Many computer dependencies can be handled by defining the dependent item as a Fortran
parameter. Three examples are given here: array dimensions, file names and lengths, and
file OPEN parameters.

Frequently it is necessary to change the storage layout or maximum problem size via array
dimensions defined as parameters. For example, the following statements might appear in
the source code.

18



PARAMETER (ND1X=200,ND2X=100)
DIMENSION A(ND1X),B(ND2X),C(ND1X,ND2X)
DO 10ND1=1,NDI1X

DO 20 ND2=1ND2X

etc.

GRIPS can change these parameters by using the GRIPS directives

PARAMETER (ND1X=50)
PARAMETER (ND2X=75)

which will change all occurrences of these parameters.

File name lengths are arbitrary on the VAX but must be 8 or less on the SCS and CRAY.
The following statements might appear in the source code and define both the file name
length (FNL) and file name (IFN) as parameters.

INTEGER FNL

PARAMETER (FNL=64,IFN="{S8999.DIF. DAT]CASE1.DAT")
CHARACTER*(FNL) FILE1

FILE1=INFILE

OPEN (2,FILE=FILE1)

These statements would be suitable for the VAX computer. For the SCS computer we
might change these parameters using the GRIPS directives

PARAMETER (FNL=38)
PARAMETER (IFN=""CASE1")

Finally, we might have the value for the OPEN keyword STATUS defined as the parameter
STAT. For example,

PARAMETER (STAT='OLD’)
OPEN (2 ,FILE=F1,STATUS=STAT)

On some computers it is better to change STAT using the GRIPS directive
PARAMETER (STAT="UNKNOWN")
Note that using the GRIPS PARAMETER directive removes some of the computer

dependencies from the source code and places them in the GRIPS directives. There must
then be a GRIPS directives file for each target computer.

19



A.5 A Suggestion for SYSTEM Names

The author and Jane McCort suggest that the case name in the SELECT CASE syntax be
the name SYSTEM (rather than the obvious COMPUTER) since it is to describe a
combination of computer system and operating system. A partial list of the suggested
values is as follows:

SYSTEM = PC/DOS )
PC/DOS-RM/F (Ryan McFarland Fortran)
PC/DOS-MS/F (Microsoft Fortran)

VAX/VMS
SCS/CTSS

CRAY/CTSS
CRAY/CTSS-1
CRAY/CTSS-XMP

IBM/VM
IBM/TSO
IBM/MVS
IBM/MVS-3081
IBM/MVS-3083

20



