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POWER CORRECTIONS, RENORMALONS AND RESUMMATION

M. BENEKE
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, U.S.A.

1 briefly review three topics of recent interest concerning power corrections, renormalons and Sudakov resumma-
tion: (a) 1/Q corrections to event shape observables in ete— annihilation, (b) power corrections in Drell-Yan
production and (c) factorial divergences that arise in resummation of large infrared (Sudakov) logarithms in

moment or ‘real’ space.

1 Utilizing renormalons

Perturbative QCD relies on factorization. By this
one implies that an observable that depends on at
least one hard scale @ can be expanded in powers
and logarithms of A/Q, where A is the intrinsic
QCD scale. At least up to some order in 1/Q, one
must also be able to factor a ‘short-distance’ part
from long-distance contributions, which are inde-
pendent of the details of the hard process. At lead-
ing order in 1/Q, the long-distance contribution
can be absent, like in et e~ annihilation, or a prod-
uct of parton distributions like for inclusive quan-
tities in hadron-hadron collisions. Beyond lead-
ing order, little is known about power corrections,
with exceptions like deep inelastic scattering. For
event shapes or effects referred to as ‘hadroniza-
tion’, it is not known how to express power correc-
tions in terms of operators and asymptotic states.

The renormalon approach to power correc-
tions uses the fact that the leading term in the
power expansion already indicates the existence
of power corrections, because the perturbative ex-
pansion of its short-distance coefficient diverges.
This ‘renormalon’ divergence occurs, because cer-
tain higher-order diagrams (the simplest being
‘bubble graphs’) contain many powers of loga-
rithms of a loop momentum, which make these
diagrams sensitive to large distances® Summing
a divergent series requires a prescription. The
prescription-dependence is best captured by the
ambiguity of the Borel integral and takes the
form (A/Q)*In® Q/A, where infrared (IR) renor-
malons yield positive integers for a. One can in-
terpret the ambiguity as an ambiguity in separat-
ing long- and short-distances, much as the fac-

%The logarithms also enhance the sensitivity to dis-
tances much shorter than 1/Q. The corresponding ultravi-
olet renormalons will not be discussed here.

torization scale dependence in separating coeffi-
cient functions and parton distributions. Since the
physical observable is unambiguous, the ambiguity
in defining perturbation theory must be matched
by power corrections and this determines their Q-
dependence, but not their magnitude, just as the
evolution of parton distributions is perturbatively
calculable, but not their initial values.

The advantage of the method is that it is en-
tirely perturbative, although to all orders. To
some extent, the language inherited from studies
of large-order perturbation theory is an unneces-
sary complication, since the set of diagrams that
leads to a divergent series really only probes the IR
sensitive regions of low-order skeleton-like graphs.
It would be desirable to classify these regions sys-
tematically by extending standard methods of per-
turbative factorization! that identify logarithmic
IR divergences to subleading, power-like IR sensi-
tivity. Meanwhile, most calculations are done in
the formal Ny — oo-limit, which selects diagrams
with one chain of fermion loops at leading order.
Provided the phase space of a cut fermion loop is
integrated unweighted, the structure of power cor-
rections inferred from renormalons in this approx-
imation is equivalent to calculating the low-order
diagrams with finite gluon mass A and interpret-
ing non-analytic terms in the small-A? expansion

as power corrections?

The method has its limitations, precisely be-
cause it is purely perturbative. To go beyond clas-
sifying the expected power corrections for each ob-
servable separately, one needs additional assump-
tions, which do not follow from perturbative con-
siderations alone, such as universality of power’
corrections, to relate different observables. And,
of course, the IR sensitivity of Feynman diagrams
might not exhaust all possibilities for power cor-
rections.
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In the past two years, these ideas have been
applied to observables that do not admit an op-
erator product expansion, such as event shapes in
ete~ annihilation, jet observables and the Drell-
Yan cross section. In these cases, IR renormalons
provide genuinely new information about power
corrections. This talk gives a somewhat qualita-
tive overview and emphasizes the outstanding is-
sues.

2 Power corrections to event shape vari-
ables

Event shapes are constructed from IR safe weights
on hadronic final states in ete™~ collisions. Thrust,
for example, is defined as T = maxz (D>, |pi -
)/ >; IPi|. The theoretical prediction is com-
puted in terms of parton momenta, while hadron
momenta are measured. Matching partons and
hadrons is dealt with as a hadronization correc-
tion, which is obtained from Monte Carlo pro-
grams and accounted for in determinations of
o, from event shapes. The fragmentation mod-
els built into Monte Carlo programs lead to
hadronization corrections that vary like 1/Q with
the cms energy Q.

Theoretically one considers hadronization as a
soft parton phenomenon that takes over from the
parton shower at a certain typical hadronic scale
ur. This separation scale is not uniquely fixed and
the boundary between perturbation theory and
hadronization is vague. Thus, probing the bound-
ary of perturbation theory with renormalons may
tell us more about hadronization. Event shape
variables have been computed to this end both
with a finite mass gluon in the lowest order gluon
emission diagram®%® and in the approximation of
a single chain of fermion loops®, in which case the
region of small invariant mass of the ¢ pair in a
cut fermion loop is the important one. The two
methods are not equivalent in this case, because
the invariant mass distribution depends on how
each particular event shape weights the ¢g phase
space. :

The calculation of the average (1 — T) with
finite gluon mass leads to a 1/Q-correction

A

(1-Thye=K-5 ey

The 1/Q-correction comes only from the two-jet
region T — 1, when the gluon momentum be-

‘comes very small. Multiple gluon emission dia-

grams modify the constant K, but only if all glu-
ons are soft, so that again 7' — 1. Consequently,
if the two-jet region is excluded from the average
over T, we expect a smaller hadronization correc-
tion,

(1 - T)Il/Q,O.S(T(O‘S 9
= Tjqar (@) @

The same conclusion applies to the heavy jet mass
average (M?). The DELPHI collaboration has re-
analyzed 7 the energy dependence of event shapes
by adding 1/Q and 1/Q? terms to the next-to-
leading order perturbative expression (evaluated
at scale p = @) and by fitting the coefficients of
the power corrections to the data. No hadroniza-
tion correction from Monte Carlo programs is ap-
plied. Some of the results are reproduced in Tab. 1
and agree qualitatively with the above predic-
tions. The energy-energy correlation (EEC) is pre-
dicted  to have 1/Q-corrections at all angles, be-
cause the soft gluon region contributes at all an-
gles. It is also easy to see that the three-jet rates
R3 computed from the JADE clustering algorithm
have 1/Q-corrections, while the Durham algo-
rithm should have only 1/@Q?-corrections, because
it weights the region of soft gluons quadratically
with their energy rather than linearly. The DEL-
PHI analysis does not have enough data points to
test this prediction for the Durham algorithm.
The examination of expected power correc-
tions provides some guidance to selecting ‘good’
event shapes, the good ones being those less sen-
sitive to hadronization. To go further, one has to
make the stronger assumption that hadronization
corrections in the two-jet limit are universal?®
This implies that although the constants K above
are not calculable for any observable, their ratio
for different observables is calculable, because mul-
tiple soft parton emission modifies K in a universal
way. Thus, fitting a 1/@Q-correction to one observ-
able would determine the hadronization parameter
once and for ever. The assumption of universal-
ity could be justified diagrammatically if an event
shape variable did not resolve the soft parton kine-
matics, which in fact it does. ¢ For example, in
the two-jet region 1 — T~ (M2/Q?) + (MZ/Q?),
where M is the light jet mass. If we now consider
the diagram where a single emitted gluon splits
into a ¢g pair, we find 1 — T = M2/Q? if both
quarks are emitted into the same hemisphere, and




Table 1: Fits to the Q-dependence of event shape variablec.
as(Mz), the coefficient of a 1/Q-term, C;, and 1/Q?-term,
C> (not quoted) are fitted to obtain the second entry for

each observable. For the first entry Cj is fixed to zero.

| Observable ” C1/GeV I a(Mz)

(1-T) 0.82 £ 0.07 | 0.123 + 0.002
0.83+0.20 | 0.122 40.004
o dT(1=T) 0.37£0.05 | 0.121 %+ 0.008
0.20 £ 0.05 | 0.134 + 0.003
(M3 /EZ,) 0.54 £ 0.08 | 0.121 4 0.002
0.75+0.26 | 0.116 = 0.006

oy My (M7 EZ;,) - -
—0.01 % 0.03 | 0.123 £ 0.000
(M3/EZ%,) 0.19 £ 0.04 | 0.094 & 0.003
0.10 £+ 0.05 | 0.097 = 0.003
Lo dcos®EEC || 1.68%0.05 |0.115%0.002
0.27 £ 0.23 | 0.137 £ 0.004
R (ycut = 0.08) 0.44 4 0.15 | 0.107 £ 0.001
~3.59 £ 0.55 | 0.123 % 0.002
RP(ycus = 0.04) || —0.67 £0.49 | 0.126 + 0.004
—~2.53+3.15 | 0.137 £ 0.019

1~ T = 2M?/Q? if they are emitted into oppo-
site hemispheres. Thus, there is no unique rela-
tion between 1 — T and M2, even if both quarks
are soft. Universality could still hold in an ap-
proximate sense, if, as advocated in Ref. 4, the
strong coupling approaches a finite and not too
large value in the infrared. In this case, the dia-
gram just discussed is higher order in the IR cou-
pling. In this scenario, the 1/Q-correction to M7
should be smaller than for M2, because it arises
only at second order. The small power correc-
tion for the average M2 = M? — M? does not
support this picture, although the small fit value
for a;(Mz) indicates that the corresponding Cj in
Tab. 1 might not be too reliable.

Eventually, universality should be subjected
to experimental tests. In this respect, it would be
interesting to obtain the coefficients Cj in Tab. 1
with a, fixed to a unique value. As a matter of
principle, the power corrections obtained by renor-
malon methods are synonymous with large pertur-
bative corrections in higher orders. If large coeffi-
cients are a practical concern, the divergent piece
of the series should be separated and discarded,

.80 that.it is absorbed into the power correction,

leaving an unambiguous perturbative series. A
procedure of this sort has been proposed in* and
applied with some success to (1 — T'), the average
C-parameter and or. Another question of impor-
tance for testing universality is to what extent the
power corrections in Tab. 1 effectively parameter-
ize higher order corrections in perturbation theory,
which would in principle be calculable, leaving a
rather small ‘true’ hadronization correction. In
Ref.8 it was argued that higher order corrections,
summed up to the point where the series diverges,
can well mimic the shape of a 1/Q-correction. An
equivalent effect is obtained, if one expresses the
second order perturbative prediction in terms of
a,(Q*) with @* ~ 0.1Q. Such a low scale is not
unnatural for event shape observables, since they
are dominated by the soft-collinear region, where
the scale is set by the transverse momentum of the
emitted gluon rather than @. From this point of
view, the question of whether universality holds is
less important than determining the higher-order
perturbative corrections or correct scale for each
event shape.

In principle, the universality assumption could
also be invoked to relate two non-IR safe event
shapes to each other. This would circumvent the
difficulty of having to extract subdominant power
corrections to test universality.

3 Drell-Yan production and Sudakov re-
summation

Drell-Yan (DY) production, apart from its phe-
nomenological significance, is theoretically inter-
esting, because one can kinematically realize the
situation of a process with two hard scales. In
the following, we consider the partonic DY cross
section dpy (after collinear subtractions) in the
region @ > Q(1 — 2) > A, where z = Q?%/3, Q?
being the mass of the DY pair and § the partonic
cms energy. The second scale Q(1-2) can be iden-
tified with the energy available to parton emission
into the final state. Since Q(1 — z) <« @, these
partons are referred to as soft, although they are
not soft in terms of the QCD scale A. Taking mo-
ments in z (roughly, this replaces 1/(1 — z) by N),
one obtains two powers of In N for each power of
a, = a,(Q), so that the actual expansion param-
eter of the hard cross section is o, In? N. Thus,
in higher orders, one has two sources of large cor-




rections, Sudakov logarithms, related to the scale
Q(1 — z) and renormalon factorials, related to the
scale A. One may ask how this complication af-
fects the arguments that lead to the identification
of power corrections through renormalons.

This question has been addressed in
Refs. 91011 Starting from
1 2(1-2)?
. _2CF N -1 dk?
lnaDy(N)—T dz T W%(kl)’
0 Q*(1-2)

()
which resums all leading logs In N (a,In N)* in
the DIS scheme, one finds 10 that the integral
has a renormalon ambiguity of order NA/Q from
the region of large z. However, the corresponding
n! occurs in far subleading logarithms, beyond the
accuracy to which (3) was derived. Keeping all
subleading logarithms essentially implies that the
hard cross section is evaluated exactly. In Ref. 1!
this has been done in the approximation of a sin-
gle chain, interpreted as an approximation to the
logarithm of the cross section. Using the equiva-
lence of this approximation with taking an explicit
IR cut-off, we choose, for illustration, a lower cut-
off i1 on the emitted gluon energy. Omitting all
terms that can not give rise to a p/Q-correction
(which allows us to ignore virtual corrections and
collinear subtractions), one obtains instead of the
right hand side of (3)

1-24/Q Q*(1-2)/4,
2Cras [, woa [ kL 1

4 K V-2? - 41/Q?
0 u2
(4)

which reduces to the structure of (3) in the double-
logarithmic, soft-collinear limit, if k; is set to
zero in the square root. In this limit, consistent
with the previous result, the integral contains a
#/@Q-term in the expansion in small . However,
the k,-term is crucial and can not be neglected
precisely in the region z — 1, where the u/Q-
term originates from. Keeping k in the square
root, one finds that 1/Q-corrections are absent
and that the leading power correction is of or-
der (Np/Q)%. The cancelation of the 1/Q-term
emphasizes that leading power corrections stem
from soft gluons, but small angle (collinear) and

large angle (ky ~ ko ~ Q(1 — 2z)) emission are

both important. 1! This might appear surprising,
because large angle soft emission is usually con-

.sidered -suppressed, leading to angular ordering in

parton cascades. But only logarithmic enhance-
ments of matrix elements cancel at large angles
and no conclusion follows for power corrections.

Returning to resummation of Sudakov loga-
rithms, we conclude that there is no direct con-
nection between resummation of In N terms and
power corrections, which are ‘buried’ among an in-
finite number of subleading logs. Roughly speak-
ing, this is so, because @ > Q(1—z) > A and
Sudakov resummation is concerned only with the
first inequality, while power corrections are asso-
ciated with the smallest scale A. Nevertheless,
one would like to formulate the resummation pro-
cedure in such a way that it does not introduce
stronger power corrections than required. Given
the hierarchy of scales, it is useful to think about
the problem from the effective field theory point of
view, which deals with scales sequentially. Thus,
one would first ‘integrate out’ momenta larger
than Q(1—z) and deal with Sudakov resummation
in this step. At that lower scale, we can consider
power corrections, which then appear as the ratio
A/(Q(1 - 2)) (NA/Q in moment space).

The effective fields for fast quarks interact-
ing with soft gluons are expressed as eikonal or
Wilson lines. When N > 1, the hard Drell-
Yan cross section (omitting for simplicity collinear
subtractions) factorizes !213 as 6py(N,Q) =
Hpy(Q, 1) Spy (Q/N, 1), where the scales @ and
Q/N are separated. The ‘soft part’ S satisfies a
renormalization group equation in g that can be
used to sum logarithms in N, because S depends
only on the single dimensionless ratio Q/(Np).
The solution to the RGE is expressed as

6py = Hpy(Q) Spy(l,as(Q/N))-
¢ dk2 kZN?
exp ( / -—E?l [reik(as(kt))ln th

Q?/N?
+pr(a,(k:))]) : (®)

The three factors on the r.h.s. correspond to
coefficient function, matrix element and anoma-
lous dimension factor in the effective field theory
language. The analysis of Ref. !! shows that in
the MS scheme the universal eikonal anomalous
dimension and DY specific anomalous dimension
I'py are analytic functions for small o, so that




the exponential factor does not contain any renor-
malons (power corrections) at all. These enter
only through the boundary conditions at the lower
and higher scale and turn out to be (NA/Q)? as
stated before. Notice also that when N > Q/A,
the exponent becomes ill-defined. For such large
moments, the language of power corrections looses
its meaning (NA/Q ~ 1), the energy of soft gluons
becomes of order A and any short-distance expan-
sion fails.

Whether the absence of 1/Q-corrections for
Drell-Yan production persists beyond the approx-
imation of a single chain (one-gluon emission), is
an unsolved problem. In Ref. 14, the cancelation
at leading order has been reproduced as a con-
sequence of the KLN and Low theorems and it
has been argued to hold at the level of two-gluon
emission as well. On the other hand, in the lan-
guage of Wilson lines, emphasized in Refs. 1015, a
1/Q-correction could be naturally accommodated
by a certain operator constructed from Wilson
lines, although it vanishes at leading order. If, as
suspected in Ref.!®, Glauber gluons constitute a
new potential source of 1/@Q-corrections at higher
orders, the validity of the eikonal approximation
and Wilson line treatment to power-like accuracy
would have to be re-examined. In principle, the
possibility exists }! that the cancelation of 1/Q
terms occurs between (5) and terms dropped in
(5), although there is no indication of it at leading
order. Since, as explained above, the problem of
resummation is disconnected from the problem of
power corrections, one should be able to establish
equivalence of the renormalon analysis for the DY
cross section with the analysis of power corrections
in terms of multi-parton correlation functions!®
The present discussion indicates that the optimal
language for problems with two scales might yet
have to be found.

4 The Sudakon: z-space vs. N-space re-

summation

As pointed out in Ref. }7, factorial divergence,
not related to renormalons, can appear when one
converts resummed distributions in moment space
(N-space) back to ‘real’ space (z-space; note that
z replaces z in the previous section). Typically, a

physical- quantity is given as an integral

1

o(r) = /dz W(r/z)é(z), (6)

0

where 6 could be the partonic Drell-Yan cross sec-
tion — in which case W is the parton luminos-
ity and 7 = @Q?/s — or the thrust distribution,
or the lepton energy distribution in semileptonic
B — X,lv decay, for example. Let = be a generic
variable, such that £ — 1 corresponds to the soft
gluon region. If the weight function W constrains
z to the region of large z, but such that 1 — =z
is still large compared to A/Q, where Q is the
generic hard scale, the perturbative expansion of
o(7) contains the usual renormalon factorials and
the corresponding poles in the Borel transform.

Consider now the double logarithmic approx-
imation with fixed coupling «,, in which all
( In® N')* have been resummed in moment space.
It is perfectly consistent to perform the inverse
Mellin transformation to z-space in the same ap-
proximation. Then &(z) ~ exp(ca,In*(1 — z))
with some constant ¢. Expanding ¢(7) in a,, one
finds the divergent series

1
/dz W(r/z) exp(cas In*(1 — z))
0

~ 3 Fa(7) (4c)nt ol *! Q)

independent of W, as long as it does not depend
exponentially on z. In practical cases ¢ is such
that this series diverges much faster than expected
from renormalons. Continuing the tradition of
misnomers, I call the corresponding singularity in
the Borel plane a Sudakon pole. It is unphysical
and appears, because in the process of resumma-
tion, one has dropped terms, which after integra-
tion over z give equally large contributions and
cancel the singularity.

On physical grounds, one expects Sudakov
suppression, so ¢ is negative. Then the integral
in (7) can just be done and there is no reason to
re-expand it in a;. Even in this case, however, re-
summation has modified the analytic structure of
the Borel transform, although the spurious pole is
Borel summable. While ¢ is indeed negative for the
thrust distribution or lepton energy distribution
in B decay, mentioned above, it is in fact positive




for Drell-Yan production (and other hadronic col-
lisions) in the conventional subtraction schemes,
because the subtracted product of partonic struc-
ture functions shows stronger Sudakov suppression
than the partonic Drell-Yan cross section. In this
case, the integral in (7) does not exist and must
be defined by truncating the divergent expansion
at its minimal term. If, as usual, one interprets
the size of the minimal term as an uncertainty
in defining the integral, one finds that this un-
certainty is of order (A/Q)P°/4¢. As fo/(4c) can
be much smaller than one 7, this uncertainty is
large. Alternatively, the integral can be defined
by excluding the region of large z. Truncation of
the series is equivalent to a cut-off in z that cor-
responds to excluding gluons with energy larger
than A - (Q/A)!~P°/(°) from a perturbative treat-
ment. This cut grows with @ and is much larger
than the expected limit of order A for perturbative
gluons. In fact, the energy cut corresponds to the
position of the Sudakov peak of the z-distribution,
if ¢ were negative.

Although the sketched procedure is consistent
from the point of view of summing logarithms in
1— z, it is desirable to formulate resummation for
integrated quantities as in (6) such that factorial
behaviour in their expansions is consistent with
the expected renormalon structure. In Ref. 17t is
proposed to perform the inverse Mellin transform
of the double-log resummed &(N) back to z-space
exactly, keeping all subleading logarithms. In this
procedure, resummation by itself does not intro-
duce any factorial behaviour, as suggested also by
the discussion of Sect. 3. Exact evaluation of the
inverse Mellin transformation keeps exactly those
subleading logarithms, which are necessary to can-
cel the unphysical Sudakon pole. This, together
with the discussion of 1/Q-corrections before, em-
phasizes that often it is not sufficient to perform
resummations that are consistent to a certain loga-
rithmic accuracy. Different treatments of sublead-
ing logarithms can result in numerically important
different constant terms. Renormalon considera-
tions can help to decide whether such terms are
spurious or not.
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