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Introduction _

A fractal analysis of outcrop fracture patterns was undertaken in the
Valley and Ridge study area (Figure 1). Use of pavement style investigations
such as those conducted by Barton and Hsieh (1989) was not a feasible form of
analysis in either Appalachian study areas. Large exposures of bedding plane
surfaces are limited, particularly at the Plateau site; hence, fracture studies
were concentrated in the Middle and Elkhorn Mountain areas of the Valley and
Ridge. The area is complexly deformed (Figure 1), which presented difficulty
in the design of a controlled experiment. While bedding plane exposures were
found, it was not possible to find comparable exposures of the same lithologic
unit in the different structural areas represented at the site. In such instances,
therefore, lithologic factors could not be separated from structural factors in the
interpretation of variations in fractal dimension. Comparisons of fractal
behavior in a common lithologic interval were possible to some extent using
one-dimensional analysis of bed-normal fracture plane intersections. However,
even in this case, the distribution of exposure was the limiting factor.

Within the context of these restrictions, the analysis of the data
presenteff below give rise to important considerations in the use of fractals
characterization of fracture networks. For example, some of the largest
differences in fractal dimension were observed in the same outcrop in units
separated by a vertical distance of less than a meter. Large differences also
appear between the fractal dimensions of systematic and non systematic
fractures observed at a single outcrop. Fluid transport within a reservoir is
probably controlled moreso by the larger more pervasive regional scale joint
sets (Lorenz et al. 1996). Hence, accurate fractal characterization of reservoir
fracture networks must separate the influence of systematic and nonsystematic
joint sets. Based on the results of Walsh and Wattersen (1993) the viability of
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Figure 1: Fracture observations were made at several locations (large black
dots) within the Valley and Ridge study area.




the fractal model of fracture networks must also be reevaluated. The results

presented here are even more condeming of the blind use of a fractal model of
fracture networks.

Methods

Fracture patterns were photographed at several locations within the area
(Figure 1). Most of the sites are located in the Devonian shales which are
confined to the northwest and southeast limbs of Middle Mountain syncline.
The Devonian shales exposed in this area are the Valley and Ridge equivalent
of intervals buried beneath the Plateau which form significant fractured
reservoirs of natural gas. The Devonian shales are easily eroded and form the
major valleys through the area. Road cuts along the valley provided numerous
exposures which were large enough to undertake fractal analysis of fracture
patterns. Exposures elsewhere in the study area did not provide sufficient
numbers of fracture plane intersections to evaluate. This observation in itself is
foretelling of the non-fractal nature of fracture systems Observations were also
made across the axis of the Middle Mountain syncline where road cuts
provided several good exposures (Figure 1).

In Chapters 2 and 4 (final report, in preparation) we note that box
counting of fault and drainage patterns generally do not yield a fractal regime.
The slope of the boxplot (log N vs. log 7 plot) is often 2 over the first 4 to 5
base 2 orders. Beyond that, further reductions of box size yield non-linear log
N - log 7 response. In this topical report, we see that this non-linear response is
also common in box counting data from fracture networks. In such instances,
the results of box counting provide what is probably best referred to as a quasi-
fractal measure of pattern complexity. Before evaluating and comparing
fracture patterns, we present boxplots which are typical of fracture data
collected in this study. Basic features of the log N/ log r plot are illustrated, and
the approach used to evaluate and compare the log N/ log r data is defined.

As an example, fracture patterns observed on the northwest limb of the
Middle Mountain syncline (Figure 2A) yield the logN-logr plot shown in
Figure 2B. Variations in the number of occupied boxes with changes in box
size rise almost linearly but then begin to show noticeable flattening for smaller
- and smaller box sizes. Similar behavior is noted by Walsh and Wattersen
(1993) in their reevaluation of Pavement 1000 from Barton and Hseih (1989) in
the Yucca Mountain area and for active fault patterns observed in Japan
(Wilson and Dominic, in review).

Some of the features in Figure 2B are anticipated. For example, the
initial box is always occupied since it covers the entire area; and unless the
distribution of fractures is very sparse, the next subdivision will yield 4
occupied. It is the rate at which smaller size boxes turn up empty that defines
the fractal characteristics of the pattern. If boxes at successively smaller scales
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Figure 2: Fracture patterns traced from a photograph (A) yielded the log N vs.
log 7 plot shown in (B). The point-to-point variation in fractal d1mens1on
observed in the log N vs. log r plot are shown in C.



are all occupied, the slope of the logN-logr plot is 2 (i.e. D = 2). When all
boxes are occupied, the number of occupied boxes increases as the square of
the number of boxes along the map edge. Since the number of boxes covering
the map edge increases as (1/7)%, the log-log slope or fractal dimension is 2.

The point-to-point slope changes in the log N vs. log 7 plot (Figure 2B)
are shown in Figure 2C. In this case, all the boxes are occupied in the first two
coverings (1 box and 4 boxes). Calculation of the slope between these two
points is 2. The values plotted in Figure 2C are plotted at the midpoint between
consecutive values of 7. For box sizes less than 100 inches in size along the x-
axis, unoccupied boxes are encountered. Point-to-point values of D fall below
2 and drop down to 0 for box sizes of about 1 inch and less.

The region of Figure 2C where D drops to 0 results from the discrete
nature of the fracture trace data. Fracture traces are digitized at a certain
sampling interval, and thus there are a finite number of samples in the data set.
The data shown in Figure 2A were sampled at approximately 1 inch intervals.
When the box size is less than the sampling interval, the number of occupied
boxes will equal the total number of samples in the data set. Further decreases
of box size yield no increase in the number of occupied boxes and the slope of
the curve in this region becomes 0 (Figure 2B and 2C).

The D=0 region and the transition to it are always encountered in digital
data. If our data were comprised of continuous line segments, rather than
samples, a reduction in box size by 1/2 would double the number of occupied
boxes, and we would eventually end up in a non-fractal region with D = 1. The
scale at which the transition to 0 (or 1) occurs may represent a resolution limit
below which finer details are not representable. This transition may also
indicate that at finer scale, additional detail is, in actuality, not present.
Fracture patterns might have fractal dimension less than 1 if they consist of sets
of disconnected segments analogous to that of the Cantor set, for example.

Regions of the log N vs. log r plot where D =2, and D approaches 0 are
associated with artifacts of the initial box covering and digital form of the data
and provide no useful information about the pattern. Our primary interest is to
find a truly fractal region of constant slope in the log N vs. log r plot. If it
existed, it might appear as a flattened region in Figure 2C.

A clearly defined fractal region was not observed in the fracture patterns
measured for this study. There is nothing unusual about the patterns, which
suggests that fracture patterns may, in general, be non-fractal, or only close to
fractal over a limited scale range. Walsh and Wattersen (1993) make similar
observations but stop short of declaring fracture patterns to be non-fractal.
Instead, they suggest that fractal analysis should be confined to a scale range
that lies between the largest and smallest fracture spacing represented in the
data set. In the following study the analysis is carried out over a consistent
scale range referenced to the photographs from which the patterns were



digitized. Since the fracture patterns were digitized from photographs of
outcrops, the actual scale range varies, but corresponds approximately to the 1-
t0-0.1 inch scale range of the photograph itself.

A second example presented in Figure 3 is taken from the southeast limb
of the Middle Mountain syncline. In all cases, D is computed for the third
through sixth data points from lower right of the log N vs. log r plot (Figure
3B). This range of points corresponds to an outcrop scale range of
approximately 8-to-1 inches and to the 0.1-to-1 inch scale range of the
photograph. To save computing time the computations were not carried out for
very small boxes, so that the flattened response observed in Figure 2B (upper
left of plot) does not appear. Slight curvature is observed in the logN vs logr
plot through the 4-point region (e.g. Figure 2B) for which the slope was
calculated, however, the correlation coefficient for the slope of the regression
line over this range of scales on the photograph is always greater than 0.99.

Fracture Analysis

The interpretation and significance of box counting analysis is a
recurrent theme in the chapters of the final report (in preparation). If fracture
networks are truly fractal, then the patterns observed at different scales should
have similar fractal dimension. As noted by Walsh and Wattersen (1993), there
is continuous variation in the slope of the log N vs. log r plot for examples of
pavement taken from Barton and Hsieh (1989). This point has just been
illustrated above using data from this study, and the suggestion to compute the
fractal dimension over a range of scales accurately represented in the data
(Walsh and Wattersen 1993) is adhered to in the following analysis. However,
we further question the viability of the fractal model by analyzing both large
and small scale photographs of the same outcrop.

Two examples are shown in Figure S. Figures 5A and 5B represent
small and large scale photographs of the same outcrop. The fracture patterns
observed in the small rectangular region highlighted in Figure 5A are shown in
Figure 5B. Additional detail appears in the finer scale photograph, but the
pattern is less densely fractured. The change of appearance is represented by a
decrease in fractal dimension from 1.74 (Figure 5A) to 1.47 (Figure 5B).

Log N vs. log r plots for both patterns are shown in Figure 6. Individual
point-to-point slopes are shown over the range used to compute D. The slope
between points covering the range 18.25-9.2 inches in the small scale pattern
(Figure 5A and 6A) is approximately 1.47 while over a similar range (14.25-
7.125 inches) in the large scale photograph (Figure 5B and 6B) the slope is
1.82. The larger scale or finer detail scrutiny of the outcrop reveals an
increasingly complex pattern, but over the range of scales represented in the
finer scale photograph, D is smaller. Additional fractures appear at finer scales,
but overall their relative density decreases.
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Figure 3: Another example of the typical log N vs. log r response observed in
the fracture patterns sketched at another location (A) is shown in (B).
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Figure 4: Fracture patterns in (A) portray both systematic and non-systematic
fracture sets. The systematic fracture sets present at this site are portrayed in

(B).
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Figure 5: The influence of scale is illustrated in the sketches presented here.
The small rectangular area marked located in pattern (A) represents the
location of the close-up pattern shown in (B). Pattern (C) is compared to a

nearby close-up (D).
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Figure 6: The log N vs. log  plots for patterns A and B of Figure 5 are
presented here in (A) and (B) respectively.



Another example is presented in Figures 5C and 5D. In this case the
fractal dimension decreases from 1.67 to 1.37 from the coarse to finer scale.
The camera angle displayed in Figure SD is rotated into alignment with the
dominant left-dipping fracture trend present at the site. The field of view
(Figure 5D) does not fall within the view covered in Figure 5C but was taken
within the same outcrop.

The result suggests that fracture patterns are not fractal, or at best, that
their fractal characteristics are non-stationary (a contradiction in terms). Within
the context of these results, it is necessary to photograph and compare a similar
scale range in order to make valid comparisons of pattern complexity using
fractal measures of pattern complexity.

2D Fractal Characterization

Characterization of fracture patterns observed at several sites in the
Middle Mountain and Elkhorn Mountain area (Figure 1) are evaluated in the
following discussions. Box counting data are used to determine the fractal
dimension of individual patterns, although the validity of the fractal model is
considered questionable as noted above.

Fracture patterns sketched from photographs of outcrops along the
southeast limb of the Middle Mountain syncline are shown in Figure 7. Fractal
dimensions of patterns A through C are 1.49, 1.49, and 1.57 respectively.
Patterns A and B lie in the area north of the Parsons CSD, while pattern C was
measured in an outcrop located within the CSD. At first glance, there appears
to be a slight increase in the fractal dimension of the fracture patterns observed
in the CSD. However, note that the scale range covered in pattern B extends
over little more than half the range covered in A and C. Based on the
observations presented in the preceding section, it is likely that if an equivalent
area were exposed in the vicinity of B (Figure 7B) the fractal dimension would
increase. ,

Recomputation of the fractal dimension for subdivision of these patterns
into 15 by 15 inch regions confirms this suspicion. Average fractal dimensions
of 1.1, 1.41 and 1.43 were obtained for patterns A, B and C respectively.
Individually they are less then values calculated for the entire pattern because
in all cases D was computed over a smaller, but common, area. This approach
also appears to more accurately represent the visual differences apparent in
these patterns.

Sketches of fracture patterns observed on the northwest limb of Middle
Mountain syncline are shown in Figure 8. These patterns also show increasing
levels of complexity that are almost certainly due to the increasing field of
view. D increases from 1.37, 1.45, and 1.57 for patterns A through C
respectively (Figure 8). Computation of fractal dimensions for 45 by 45 inch
subdivisions of these patterns yields average fractal dimensions of 1.28, 1.23,
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Figure 7: Fracture patterns observed along the southeast limb of the Middle
Mountain syncline are presented from two areas northeast of the Parsons CSD
(A and B) and from within the CSD (C).
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Figure 8: Fracture patterns observed along the northwest limb of the Middle
Mountain syncline are presented for two areas northeast of the Parsons CSD (A
and B) and from one within the CSD (C).



and 1.1 for patterns A through C respectively, reversing the results obtained
from the entire field of view. There are also problems with subdividing the
smaller scale photographs into 40 x 40 inch subdivisions. For example, sketch
C covers a 282 x 191 inch area so that features at the 40 x 40 inch scale are
underrepresented or not equivalent to those obtained from photographs taken
closer to the outcrop.

In general, the applicability of a fractal model is brought into question
by the field studies undertaken in this phase of the research. Disappointingly,
we must conclude that results obtained from the analysis of more than 30
exposures reveal no differences of structural significance. This, however, does
not minimize the importance of these results. The acceptance and
implementation of fractal models of fracturing into reservoir simulations should
not be pursued without confirmation of the fractal nature of these fracture
systems. Having established this as a significant research question, we feel that
future work needs to be directed toward studies designed specifically to
evaluate the viability of a fractal model of fractal networks. Structural
differences may exist, however, but future assessment of fracture patterns, if it
should be undertaken, will photographing patterns at common scale.

1D Analysis
Evaluations of fracture patterns were also undertaken using one-

dimensional fracture intersection data. These data sets were compiled by
marking off fracture intersection points measured along vertical slices through
a rock layer. Siltstones within the Braillier Formation form a prominent and
traceable unit in parts of the Valley and Ridge study area, particularly along the
northwest limb of the Middle Mountain syncline, and, in places, along its axis.
In most cases, these exposures present vertical sections through the formation.
The silts display prominent fracture sets, which may or may not extend
vertically into surrounding rock intervals. Analysis of the silts provided the
possibility of conducting a controlled experiment, since comparisons of the
fractal characteristics of fracture systems could be conducted in several areas
while lithology and stratigraphic level could be held roughly constant.

A modified version of the box-counting program was used to compute
the fractal dimension of fracture intersections encountered along the silt
layers. The analysis was restricted to 4-6inch silts. The data sets collected here
are equivalent to those which might be encountered in a horizontal well. This
experiment is of particular interest since it also allows us to evaluate the
accuracy of fractal characterization made from the limited exposure provided
by the borehole. The data collected for this experiment were obtained by direct
measurement of fracture distance from a common reference point along the
layer. Vertical differences observed in a single outcrop were noted in some
instances.



An example of the horizontal fracture intersection patterns observed in
this study are shown in Figure 9A. The locations of fractures cutting through
this siltstone were measured in the field. A 4.28 foot length of the siltstone is
shown in the photograph. Fracture intersections (Figure 9B) were measured off
along approximately 25 feet of continuous exposure.

The anticipated range of fractal dimension obtained from such data
extends from O to 1. Features of the log N vs. log r plot (Figure 9C)
mentioned previously in the analysis of two-dimensional patterns are also
encountered in the one-dimensional results. The log N vs. log 7 plot flattens out
as r approaches the minimum fracture spacing encountered in the set. Another
example (Figure 10) reveals similar log N vs log 7 behavior. The response is
typical of the siltstone fracture patterns encountered in this area.

The distribution of siltstones through the area is not uniform. They are
frequently observed on the northwest limb of the Middle Mountain syncline,
but rarely observed on the southeast limb. A transect through the syncline
(Figure 1) suggests that the reduced number of silts encountered on the
southeast limb of the syncline is the result of a facies change. The presence of
silts also appears to diminish northeast-to-southwest across the CSD. The
distribution of silts may simply be the result of facies changes in the area;
however, the southeast limb of the syncline is more intensely deformed
(Wilson 1986) and the absence of siltstone exposure in the lower Braillier may
also be due in part to higher erosion rates in this more intensely deformed area.

The distribution of silts through the area made it possible to compare the
fractal characteristics of fracture distribution within and out of the CSD along
the northwest limb of the Middle Mountain syncline, and also along a transect
across the syncline along the northern border of the CSD. The average fractal
dimension of the fracture patterns within (0.85 + 0.05) and out (0.82 + 0.07) of
the CSD are not statistically different. The fractal dimension of fracture
patterns observed within the discontinuity on the axis of the syncline (D=0.88)
and its southeast limb (D = 0.83) are not significantly different from each
other; nor do they differ from the average fractal dimension of fracture patterns
measured on the northwest limb of the syncline (D = 0.84) at locations also
within the discontinuity. Interestingly enough, the greatest difference in fractal
dimension (Ds of 0.75 and 0.87) was observed between two silts, less than a
meter apart within the same outcrop. Differences in the fracture patterns
measured in these siltstones (Figure 11) do not appear related to local
structures such as faults or folds. The intervals from which these measurements
were taken is flat lying and undeformed.

1D and 2D Interrelationships
One-dimensional analysis yielded fractal dimensions that ranged from
0.75 to 0.92. On the average the fractal dimension of the fracture plane/bed-
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Figure 9: A photograph of a siltstone typical of those found throughout the
Braillier Formation is shown in (A). The distribution of fractures along this

exposure are shown in (B). The log N vs. log r plot is presented for this pattern
in (C).
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Figure 11: Fracture patterns measured at the same outcrop in siltstones of
similar thickness separated by about 1m are presented in A and B. Their fractal

dimensions represent the largest differences encountered in these
investigations.



normal intersection patterns is 0.84 + 0.05. Turcotte (1992) argues that the
fractal dimension of planar cross sections through a fractured volume of rock
(D) are simply related to the fractal dimension of the rock volume (D3) by the
relationship D; = D, + 1. It is hard to carry this analogy from two to one
dimensional representations. Inspection of Turcotte’s fragmentation model
suggests that results extending from D = 1 to approximately 0 will occur
depending on the orientation of a line across the surface of his model. Rather
than deal with these possibilities from a theoretical point of view, we examine
the relation empirically by computing the fractal dimension of fracture
intersections with several linear transects across one of the two-dimensional
patterns observed in the field. The results of a theoretical analysis also seem
inapplicable in these studies since the strict assumption that these fracture
patterns are fractal has not been verified by observation. We undertake this
analysis on the pattern presented in Figure 4. Fracture intersections were
measured along 17 transects through the pattern (Figure 12). While the fracture
patterns in this sketch do not cover linear dimensions ¢omparable to those
measured in the siltstones, the comparison will be internally consistent and
provide a general representation of relative differences to be expected between
one- and two-dimensional analysis. We also make the assumption that the
preponderance of fractures measured in the siltstone layers are actually non-
systematic fractures. This assumption is supported by the observation that the
majority of fracture intersections observed in the siltstone are confined to the
siltstone layer.

The fractal dimension of the two-dimensional pattern is 1.91. The
fractal dimensions computed for each of the transects through the pattern
ranged from O to 0.72. The average fractal dimension is 0.55 = 0.18. Based on
this limited test, it seems imprudent to suggest that the fractal dimensions of
one-dimensional fracture distributions can be guessed from those of the
corresponding two-dimensional patterns.

Conclusions

The results of the foregoing studies suggest that fracture distributions
are not fractal. Major findings of this analysis include the following.

o Patterns formed by fracture systems are considerably more complex than
currently addressed in the literature. The observations presented here
suggest that pattern complexity decreases with the area of investigation.
Effort needs to be expended to evaluate the validity of fractal
representations fracture systems. Perhaps fractal models are justifiable in
some areas. However, observations such as those presented above, made at
different scales, need to be presented to verify such assertions.
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Figure 12: Results from an evaluation of 1D estimates of fractal dimension
extracted from a 2D pattern. The fracture patterns shown in (A) were sampled
at 1 inch intervals along the x axis. Variations in the fractal dimensions of each
1D set are plotted in (B).



If, in other areas, a fractal model is valid, then it will be necessary to assess
the relative importance of systematic vs. non-systematic fracture networks
in applications such as those associated with reservoir modeling of fluid
flow. Models based on the results of fracture studies incorporating both
systematic and non-systematic fractures are likely to yield significant
differences from those incorporating only the systematic fracture systems.

Although the fractal model is invalid in the Valley and Ridge area, future
use of fractal statistics could be employed to quantify pattern complexity at
different scales. Measurements over several ranges of scale would be
required. The fractal dimension of fracture systems measured over large
areas is invariably greater than that measured over smaller areas. Perhaps
non-linear variations in pattern complexity can be established, which will
allow extrapolation of pattern complexity outside the observable scale
range, and even numerical modeling.

In the same vein, the failure of the fractal model requires that future
implementation of fractal statistics in the evaluation and comparison of
fracture data from this area must be standardized. Log N vs. log r slopes
must be computed over a constant scale range to obtain comparable
numerical estimates.

Exceptions to the fractal model arise primarily within the context of box
counting data. The results obtained here do not affect results obtained
through use of the roughness-length or compass methods of fractal
dimension estimation discussed in our earlier studies.

If the results this study area considered within the context of potential
wellbore evaluations of fracture networks, it is unlikely that computed
fractal dimensions obtained from the wellbore will accurately represent the
fractal dimension of the systematic fracture network in the surrounding
reservoir. This discrepency is likely to arise regardless of the applicability
of the fractal model, unless systematic and non-systematic fracture sets are
differentiated.

The results obtained from this analysis bring into question the general
applicability of reservoir simulations employing fractal models of fracture
distribution.
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