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Abstract 

I 

This paper deals with the extension of Wiener's classical nean-square fr ter lng 
theory to the estimation of two-dimensional (2-0), discrete random field;.. In 
analogy with the 1-0 case, the optimal realizable f i l ter 1s derived by solution 
of a '2-0 discrete Wiener-Hopf equation using a spectral factorization procedure. 
Computational algorithms for performing the required calculations are discussed. 

J 1. INTRODUCTION 

J Despite the rather classical nature of Wiener's 
I minimum mean-square error (MMSE) filtering [1] , 
' Its extensions to new applications remain topics 
;of active research. The representative nroblew 
: addressed by Uier.er was that of optimally estima­
t i n g an unobserved time signal, s ( t ) , given a 
: noise corrupted observation, s(t) + w(t j , where 
]w(t) is a noise process. Both signal and noise are 
'taken to be wide-sense stationary processes, and 
; the estimator is chosen to be linear, and derived 
i optimal in the sense of achieving the HKSE. Two 
'classes of estimators were described by Wiener: 
!the so-called noncausal (unrealizable, bilateral) 
f i l ter which uses past, present and future obser­

vations in forming the estimate, and the causal 
! (realizable, unilateral) f i l ter which uses only 

'past and present observations. 
i 
-With appropriate generalization, fundamental esti­
mation problems of the type described above occur 

in many applications involving two-dimensional 
(2-D) signals. These Include atmospheric physics 
[2], x-ray astronomy [3h biomedical Imaging f4J. 
etc. - that 1s, they occur in most scientific fields 
in which 2-0 data are measured and signals a«-e to 
he estinowi or.inferred frrc: the tiata. As a con­
sequence cf its broad applicability, efforts have 
been made for sometime to extend Wiener's formalism 
to 2-D problems. Gabor (5] apparently f irst deve­
loped the Wiener "noncausal" f i l ter for 2-D con­
tinuous fields, with the discrete version being 
developed by Heistrow 16], Both fi lters have been 
extensively and successfully used in optical an J 
digital signal processing applications, respecti­
vely. 

In contrast, despite t ^ almost forty year lapse 
since Wiener's original work, the 2-D generalization 
of his "causal" f i l ter has not been previously 
presented. The purpose of this paper is to develop 
this generalization. Because of applications 
Interests, the problem of estimating 2-D discrete 
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[random fields 1s addressed. This leads to so-called 
digital Wiener filters. Following a discussion of 
'jrnllzablllty In Z-D, the filtering problem 1s 
:formulated and the optimal filter is derived by 
|solving a 2-D discrete Wiener-Hopf equation. A 
{recently developed 2-0 spectral factorization pro­
cedure is used for this purpose [?J. Canonical 
versions of the filter are described along with 
the computational algorithms for performing the 
required calculations. 

2. PHYSICAL KALIZABILITY IN TWO-OIrEHSIONS 
In this section the Issues of "causality* tnd 
•realliability" are discussed as they apply in the 
2-D case. As this seems to be a topic of some con­
fusion in the relevant signal processing litera­
ture! the presentation will be Informal, stressing 
motivation and plausibility. A related and more 
formal d-aracterlzetloh 1s to be found in C83. 
2.1 GENERAL CONDITIONS i 

Typically in 1-D, the causality and reallzability 
descriptors are used synonymously to distinguish 
systems functions having the property of being 
physically realizable, that is, they can be reali­
zed by stable systems constructed with physically-
real components. When dealing with time domain 
signals/systems, this implies that the system unit 
sample response h(n) be real, stable, and causal, 

h(n) - 0 n < 0 (1) 
where n is the time index (independent variable). 
Systems (or filters) satisfying (1) are said to be 
causal, realizable, and/or unilateral, because of 
Jtheir one-sided response. 
iNow, the underlying physical situation in 2-D is 
iquite different from tfce 1-D case, the most 
.important difference being that usually neither of 
:the two independent variables involved aretime. 
!In most imaging applications, for example, the 2-D 
Islgnal is a light-intensity field defined over a 
Sspatial region. Hence, the independent variables 
jare space-space. When processing such signals, it 
•Is well-known that systems having bilateral or 
idouble-sided response functions are, in fact, 
physically realizable by using optical components 

L"91 Consequently, one must excercise care in 
establishing the physical reallzability of an ar­
bitrary system simply from the support of Its 
system response. i 
Some interesting and useful conditions can be de­
veloped, however, when considering systems having 
only digital filtering components *. In this case 
the 2-0 signal 1s taken to be the finite-extent 
b1-sequence f(m,n)V0 <_ m •: M, 0 <_ n < N. Its 
processing is characterized by the discrete con­
volution i I 

g(m.n) - I I f(m-k,n-i)h(M) 
k,i«— 

. f(m,n) • h(m,n) 

(2) 

where g(m,n) is the output and h(m,n) is the pro­
cessor unit sample response. '.'.1 the M -sequences 
|1n (2) are assumed absolutely summable, I.e.etj. 
: (Regarding the continuous imaging problem, these 
bi-sequences can be obtained by appropriate dis­
cretization of that model.) Although (2) Is defined 
completely in the spatial domain, there is a time 
sequency associated with Its Implementation. When 
actually performing the processing, ths 2-D signal 
is first mapped to a 1-D sequence by the mapping 

2 T: I * I, the system output 1s computed, and the 
result then inverse mapped to 2-D via T" . It 1s 
the form of the mapping T which imposes a physical 
realizability condition on the spatial support of 
the filter response. 
This is easily demonstrated by considering a 
specific mapping, one commonly used in image pro­
cessing practice and some recent 2-0 system ana­
lysis (e.g. see [71) and [10]). 
Definition: The 2-0 bi-sequence f(m,n) is said to 
be row-sequentially mapped by the transformation 

T: i - ennH V D < i < K , 0 < n < K , 

resulting in the 1-D sequence, 

fj(1) - fjtmwM) • f(m.n) . (3) 

This discussion can be appropriately generalized 
to Include »ny physical components having their 
Input/output characteristics described in the 
time-domain. 

-T-



,TMs napping Involves the simple concatenation of 
the rows of f(m,n) (see Fig. 1). I t is sometimes 
referred to as a Hne-by-line or lexicographic 
t i 
'ordering. 
Now, this row-sequential mapping totally orders the 
bl-sequence, with 1 indexing the time sequency of 
.the processing. According to (1); any physically 
.realizable processing will use only past and pre­
sent values of the input sequence f j (1) . These 
.values are shown in Fig.2 for'the 1-D and 2-D 
Xuiier T ) ordering. Thus, in analogy with the 
il-D case, the following theorem can be stated. 

Theorem i . Under row-sequential mapping, the 
system in (2) 1s physica.ly realizable i f f h(m,n) 
Is real, absolutely sunmable and its support is 
sonttined in the region K . Q + . where 

S ^ t • ((m,n): 0 < « < " , 0 ^ 1 1 ^ 
(4») 

U((m,n): - M « < 0 , l ) < n < » ) ] . 

The " 6 H " notation Is chosen to be consistent with 
that In [73. Here, the»- e + region is called the 
Lpper half-plane and is Illustrated in Fig.2. The 
(lower half-plane 3 ^ . is correspondingly defined: 

I 
<*e- {(m.n): , - - < n < 0 1 

(4b) 
• • < n < 0} . i U((m,n): 0 < m • 

t 
2.2 TRANSFORM CONDITIONS 

Recall that 1-D physical realizability as described 
in (1) also invokes certain requirements on the 
region of analyticity for the system transfer func­
tion, H(z) (e.g. see D l 3 ) . As might be expected, 
this also generalizes to 2-D, the conditions of 
interest being those for the half-plane bi-sequences 
defined above. 

The 2-D Z transform of h(m,n) is written as 

! ! 4-
! HfZj.z,) - I I h(m,n)zj'V , (5) 

m,n—• * ' 
2 

and is defined over a region of convergence in C 
such that 

11 Ihl-.nJzjVl < - . J 
m,n * I | 
A transform pair is indicated by the relation 

h(m,n)<->-H(Zj,z 2) 
First, consider the case of e » ) bi-sequences. I t 
has been previously shown that the transform of an 
i j bl-sequence taking support on the f u l l , upper 
half-plane. I .e. 'for all m.n 6 <(m,n): 
- • i » i - , 0 < n < » « , must have an open 
region of holomorphy which includes 

. { (Z j .Z j ) : I z j l - l . 1 <. | z 2 | C 7 l 
This 1s, in essence, a "one-sideness" condition 
associated only with the variable n. An additio­
nal condition is also Involved, however, because 

, h(m,o) is a unilateral sequence. This requires 
that H(Zj,-) be analytic on a region including 

• < z l : 1 £ l z i l ' ' Corresponding conditions can be 
stated for the lower half-plane (IP^ _) bisequen-

, ces by noting the simple transformation of variab­
les between ths upper and lower half planes. 
These relations can be sumarized In the following 
theorem: 

Theorem 2. An absolutely summable b1-sequence, 
h(m,n),taking support on ^ Q + C S . ) has a Z 
transform satisfying the set of holomorphic 
conditions ^ ^ . ( ^ . ) . where 
•Sg j + : Condition 1. H(Zj,z 2) is holomorphic on a 

region Including ( (Z[ ,z 2 ) : |Z j |» l . 

1 < I * 2 I > 
Condition 2. H(zj,») is analytic on a 
region including (z,: 1 <_ |zj|). 

Likewise, 
«B^ _: Condition 1. H f z . ^ ) is hrlomorphic a* a 

region including { (Z j ,z 2 ) : I Z j I - l . l Z j i i D 
Condition 2. H(z^,*) is analytic on a 
region including {z,: |z . | <_ 1}. 

The results of Theorems 1 and 2 will assume a 
fundamental role in developing the 2-D MMSE f i l t e ­
ring formalism. The first theorem formally extends 
the concepts of causality/physical realizability 
to 2-D in a manner consistent'with Wiener's 
approach, and In so doing, establishes the rele­
vant .canonical f i l ter form. ..n the other hand. 
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jthe conditions of the second theorem serve as a 
basis for both deriving the optimat f i l ter and 
iformulatlng the operations required 1n Its calcu­
lation. Because of the general irreducibility of 
'2-D polynomials.this last step must by necessity 
Mnvolvt procedures vihlch do not expliclty depend 
on the root-finding techniques employeed by Wiener. 

JHtk these results 1n hand, the filtering problem 

I can now be addressed. 
3. OPTIMAL WIENER FILTERING 

3.1 PROBLEM FORMULATION j 
IThe 2-0 formulation of the discrete MHSE estimation 
problem is as' fallows. An arbitrary bi-sequence 
<a(m,n) 1s assumed to have been observed or measured, 
(end 1t is desired to infer or estimate a signal, 
s(m,n), from this observation. Random field models 
are adopted. Both a(m,n) and s(m,nj are taken to 
be sampltt bi-sequences from homogeneous random 
fields with 2-D autocovariances !!,(«,n) and R s(m,n), 
irespectively. Their crosscovariance Is C s a(m,n). 
phe estimator Is chosen to be discrete, linear, 
and shift-Invariant (convolution!>, hence, each 
point estimate 1s of the form 
J s(».n)» T T a<m-k.n-i)h(k.t) . (7) 

where the weiohts h(a,i>) constituts the unit sample 
response of the estimator or filter. For implemen­
tation purposes, 1t is also required that the fil­
ter be physically realizable, in the sense of 
Theorem 1. Hence, (6) can be written as 

i(m.n) • I I a(m-k,n-i)h(k.i) . (8) 

Commensurate with the statistical models 
adopted, the classical mean-square, error criteria 
Is used for design. 
This error is 
i 

! J - E{[s(m,n) - s(*,nflZ> V m . n , (9) 
where E C O is an expectation operator taken over 
the ensemble of possible measurement and signal 
bi-sequences. The optimal filter is designed to 
minimize this error, subject to the constraint that 
h(m,n) be physical'.y realizable. 

Tlie most concise method of performing this mini­
mization Involves use of the so-called orthogonal 
projection theorem [12]. , 
Theorem 3. With s(m,n) as given 1n (7), the opti­
mal filter h0(»,n) which minimizes J in (9) is 
such that 

E{Ds(K,n)-s(m,n{] a(m-k,n-i)l • 0 (10) 
V k,i< " • • + 

,' This states that the filter weights are optimal 
when the estimator error is orthogonal to theofa-
; servations used in forming the estimate - a quite 
well-known result. 
As a first step 1n deriving h g(m,n), s(m,n) in (8) 
1s substituted Into (10) yielding 

E(s(m,n) a(m-k,n-»)J 
» £{ I I «(m-»,n-«)h(i,x)a!m-k,n-2)l 

, , x e * W , . (11) 
V k . i S O ^ ! 

Interchanging the order of expectation and 
summation and using the covariance relations 
C„(k,t) • Els(m,n)a(m-k,n-i)l (12a) 

I Rt(k-T,t-») « E{a(m-t.n-*)a(m-k,n-i;.}, (12b) 
(11) can be rewritten as ' 

C„(M}« I I, 

V M6<£ + . 
In accordance with traditional nomenclature, 

this is called a 2-D discrete Uiener-Hopf equation 
of the first kind. It must, of course, be solved 
to obtain h a(m,n). Because the equality holds only 
over a projection of the plane, its solution 1: 
nontrivlal, although straightforward (given the 
-1-D precedent). 
' 3.2 SOLUTION FOR THE OPTIMAL FILTER 
The procedure adopted here for solving (13) makes 
use of a recently developed spectral factorization 
D J . This factorization decomposes a 2-D power 
spectral density into the form 

©+ e -
• (^ . i j ) - •U 1 ,t 2 )*U i ,Z2) (14) 
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' © • © + -." 
! « (z 1 .2 2 ) and l/^lZj.Zj)satisfy the hplonor-

jphie conditions J ^ , + , and t (Z j ,z 2 ) and l /^Uj .Zj ) 
satisfy ththolonorphic condi t ions*^. . Thus, for 
example, »(z 1 ,2 2 ) has no zeros or poles (nonessen­
t i a l singularities of the f irst kind) in a region 
[Including ( (Z j , z 2 ) : | z j | " l , 1 .<_ | z 2 ( ) , and eTzj,-) 
has no zeros or poles in a region Including 
|(2j:- l i |Z j | ) . Consistent with the even symmetry 
»f » (z , , z , ) , the constraint 

TO 5 ©+.I .1 ! 

• U i . i 2 ) • t ( 2 1

1 . 2 2

l ) (15) , 
is chosen t o ensure the uniqueness of ( 14 ) . Now, 

•this decomposition is similar in spirit to Wiener's 
classical spectral factorization in that i t equi­
valents factors the corresponding covariance into 
lata convolution1 product of two terms, one of 
Milch 1s "causal" or physically realizable and the 
lather which 1s "anticausal" ( i .e . In the sense of 
Thtoren <|. The holomrphic conditions of the indi­
vidual terns 1n (14) guarantee this behaviour. 

Is a f irst step 1n solving for the optimal f i l t e r , 
[13) Is rewritten 

i(ia,n) - -C M (n.n) * H R,(n-T.n-x)h0(T.x) (16) 

V«.ne<%, + j 

thus, the b1-sequence e(n,n) takes support on 
j6^,_-(o,o). Using the Z transform pairs 
| e(i»,n) • « - > EtZpZj) | 
I R,(".n) * — > » s(Zj.z 2) j 
j *,(•,>!) < — > »,(2j,Zj) | 
i C„(n,n) *-^.» 5 1(Zj,z 2) i 

h0(n,n) H„<zl-Z2> 
and the ccnvolution property of Z transforms, it 
follows that the transform 

i 

: E(zj,z2) • - a^zj.zj) + •,(z 1,z 2)H 0(z 1,z 2) 
f W 
satisfies the holomorphlc conditions «$^,_. 
1 Spectrally factoring t((Zj,z2) as in (14), 
EfZj.Zj) nay be expanded in the form 

• © - •«,(21.2?) 
•? (21.*2J 

• . ( l i^JH.d^Zj)) I (W) 

' • , ( i 1 . ' 2 )B(2 1 ,2 2 ) . 
1 | 

i < W J 

*(*V*Z> ' • ^ , ' ! Z l ' 1 2 ' * ».<*; 

! i 

.2 z >(^{2 1 rf 2 > . (20) 

As • J(z ],z 2) satisfies the holonorphic con­
d i t i o n s ^ . , it follows from (18) that E(Zj,z2) 
must likewise satisfy the conditions A .. 
Inverse transforming (19), leads to 

C -
e(n,n) - 4(n,n) • b(n,n) (21) 

e- ©-

where 
e- s-
,(n,n) «--*. ^ ( Z J . Z J ) 

b(n,n) •*-»• Bfz^Zj) 
Because of the construction ot •,(z 1,z 2), <(m,n) 
takes support on c a ^ _. Hence, for e(n,n) to vanish 
on 5 ^ + , b(n,n) must also vanish on &Q+. 
One further expansion leads to the desired result. 
Let the first tern of B(z 1,z 2) in (20) be expanded 
<s I I ( > | , ( 2 1 . 2 2 ) 1 

+ [*ai*i'hA 

_V Z 1- Z 2>. 

+ 

f,<h*t\ 
»s.t'l'*2> 
ty= 
? i l(2 1;z 2) [*.(zi>z2) J © + i !a ( ll , z2'J e'" 
i ' ' (ZZ> 
where the notation [•*$ + indicates the component 
o f 'sa' zl , z2' / ,a' zl , z2' w h 1 c h contributes to b(n,n) 
1n the region OJ^ +. Notice that the second term 
contributes to b(m,n) in the region (^—.-(o.o), 
hence the &- notation. Thus, 

B(i,.»2) •„ t z 1 . z
? ) ' 

L».< z i- z i) . 

+ *,('l.' 2)H 0(2 1.2 2) 

•«( Z1- ZJ.) 

•.^.Zj) 

(23) 

Clearly, only the first and last terms In 
B(Zj,z2) contribute to b(n,n) on (B.^ i n fact, 
because of the construction of afzj.Zj) and the 
physical reallzabillty constraint on H 0(Zj.z 2), the 
1- v?^L?.^ r , n- s f? r". 0.fJ h*. 1r. PfOduct (the last tern) 



ionly takes values on S ^ t . Consequently, for 
6(*,n) (hence, .(«,n)) to vanish M * « 4 I these 
itM contributions mi': identically cancel: 

, r* n(z 1.i 2V 
•tUiiij) 

• •,!i 1.if)H 0C 1.2 2) - 0 (24) 

i Solving ( 2 4 ) , the transfer function of the 

2-0 opt imal , physically rea l izable Wiener f i l t e r 

1s given by 

' 1 " 2 z,) 1 
• ( i j . i j ) Vl'*i 

(25) 

© • 

This i s the main resul t of the papSr. The opera­

tions required in deriving H 0 ( 2 j , z 2 j ) are 1) a 

spectral factor izat ion of the measurement f i e l d 

spectrum, and 11) a subsequent par t i t ion ing to 

obtain the physically rea l izable ( h a l f .plane) part 

of the signal and measurement cross-spertrum d i v i -

!ded by the "co-analytic" te rn of the factor iza t ion . 

JH1th th is optimal f i l t e r , expressions for the MMSE 

can be derived and compared with the unrealizable 

e r ror , although th is w i l l not be pursued hers. 

I | 4. REWRK5 \ I 

iRemark 1. The model, criteria, and general view­
point adopted here for the 2-D linear filtering 
problem are essentially Identical in context to \ 
those employed by Wiener in his classical Work. 
With a careful generalization of physical realiza-
bility to 2-D, both the canonical, realizable fil­
ter form and subsequent 2-D spectral factorization 
follow as natural extensions of their 1-D antece­
dents. Thus, it is not surprising that the form of 
the optimal, 2-D realizable filter in (25) appears 
.functionally identical to the 1-D result fJlQ. 

The traditional motivations for using the hKSE for­
malism (compatible statistical characterization of 
jany estimation problems, availability of the re­
quired covariance information, global optimality 
for the gaussian case, ease of derivation and 
Implementation for the linear filter, etc.) sub­
stantially extend to the 2-D case. The possible 
exception, observed by some researchers, seems to 
be the potentially limited utility of the mean^ 
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square er ror c r i t e r i a 1n 2-D image processing 

applications which Involve the human visual system 

[ 1 3 ] - However, most 2-D signal processing problems 

e i ther to not have as t h e i r objective improvement 

o f the "vis'..".*" qua l i ty o f measured data , or simply 

,do not involve image data bases. Thus, th is does 

not appear to be a serious l i m i t a t i o n , although i t 

does point out the need to determine general a p p l i ­

c a b i l i t y of the WISE c r i t e r i a as a f i r s t step to 

applying the formalism. 

Remark 2 . A remarkable difference exists between 

the 1-0 and 2-D cases, however, which was mentioned 

above. This di f ference arises from the absence of 

an equivalent Fundamental.Theorem of Algebra for 

2-0 polynomials. As a consequence of th is i r reduc i -

b i l i t y of 2-D polynomials, the spectral f ac to r i za ­

t ion and r e a l i z a b l U t y projection operations cal led 

for in (25) generally do not resul t in rat ional 

functions, although the underlying spectral densi­

t i e s involved may themselves be r a t i o n a l . 

Despite t h i s complication, i t i s possible to per­
form the two individual operations of (25) in appro­
ximation, thereby obtaining sui table ra t ional 
approximates. I t turns out that both operations can 
be Implemented with algorithms based on sectioning 
cepstral bi-sequences. 
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f(m,n) to 1-D sequence fj(1). 
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Figure 2. Inverse row-sequential mapping of past I values of f,(i) to "past" values of f(m.n). * 

Figure 3. Region of support for h(m,n) of a physi­cally realizable system (using the row-sequential map). 
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