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d Abstract .
This paper deals with the extension of Wiener's classizal mean-square fi'iering
theory to the astimation of two-dimensional (2-D), discrete random field:. In

snalogy with the 1-D case, the optimal realizable filter is derived by soluticn
of a°2-D discrete Wicner-Hopf eguation using & spectrai factorization procedure.
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{ Fo-puutional algorithms for perfarm'ngvt'u required calculations are discussed.

{ 1. INTRDDUCTION ;

jDespite the rather classical nature of Wiener's
iminim mean-square error (MMSE) filtering (11,
its extensions to new applicatians remain topics

gaf active research. The representative problem

- addressed by Wiener was that of optimally estima-
‘,t‘lng an unobserved time signal, s(t), given a

i noise corrupted observation, s{t}) + w(t), where
.w(t) is a noise process. Both signal and naise are
étakln to be wide-sense stationary processes, and
; the estimator is chosen to be linear, and derived
10ptiml in the sense of schieving the MPSE. Two
:classes of estimators were described by Wiener:

i the- so-called noncausal {unrealizable, bilateral)
" £ilter which uses past, present and future obser-
svations in forming the estimate, and the causal
;(rnHzab‘le. unilateral) filter which uses only

i past and present observations.

i
-With appropriate generalization, fundamental esti-
Elution problems of the type described above occur

“in many applications involving two-dimensional
{2~D) signals. These include atmospheric physics
(21, x-ray astronomy {3}, biomedical imaging {4],
etc. - that is, tney occur in most scientific fieids
in which 2-C data are measured and signals are to
ke ectinoted or .inferrcd from the data. As 2 con-
sequence cf its broad applicability, efforts hava
been made for sometime to extend Wiener's formalism
to 2-D prodlems. Gabor (5] apparently first deve-
Joped the Wiener "noncausal™ filter for 2-D con-
tinuous fields, with the discrete version being
developed by Heistrom [6). Both filters have been
extensively and successfully used in optical ani
digital signal processing applicaticss, respecti-
vely.

In contrast, despite the almost forty year lapce
since Wiener's original work, the 2-D gemeralization
of his "cdusal* filter has not been previously
presented. The purpose of this paper is to develop
this generalization. Because of applications
interests, the problem of estimating 2-D discrete
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Trandom fieids 15 addressed. This Teads to so-called
.’diginl Wiener filters. Following a discussion of
irealizability in 2-D, the filtering problem is
ifarmulated snd the optime) filter is derived by
llolving a 2-D discrete Wiener-Hopf equation. A
irecently developed 2-D spectral factorization pro-
‘cedure is used for this purpose [.2.). Canonical
{versions of the filter are described along with
the cosputational algorithms for performing the
required calculations.

2. PHYSICAL REALIZABILITY IN TWG-DIMENSIONS

In this section the issues of “causality® und
*realizability" are discussed as they apply in the
2-D case. As this seems to be & topic cf some con-
fusion in the relevant signal processing litera-
ture, the presentation will be informal, stressing
motivation and plausibility. A related and more
formal characterization is to be found inL81.

2.1 GEMERAL CONDITIONS '

Typically in 1-D, the causality and realizability
descriptors sre used synonymously to distinguish
systems functions having the property of being
physically realizable, that is, they can be resli-
Zed by stable systems constructed with physically-
raal components. When dealing with time domain
signals/systems, this implies that the system unit

sample response h(n) be real, stadble, and causal,

h(n) =0 n<pD (1)
where n is the time index (independent variable).
Y (or filters) satisfying (1) are said to be

csusal, realizable, and/or unilateral, because of
their one-sided response. .

iNow, the underlying physical situation in 2-D is
iquite different from the 1-D case, the most
.important difference being that usually neither of
;the two incependent variables involved aretime.
iln most imaging spplications, for example, the 2-D
tsigna) is a Yight-intensity field defined over a
Espathl region. Hence, the independent variables
fare space-space. When processing such signmals, {t
é'ls well-known that systems having bilateral or
idouble-sided response functions are, in fact,

zphysically realizable by using optical components

volution f ‘ N

g(m,n) = kf’. 1 f(mek,n-2)h(k,2) (2)

[9]. Consequentiy, one must excercise care in
establishing the physical reslizability of an ar-
bitrary sysiem simply from the support of its
system response, }

Some interesting and useful conditions can be de-
veloped, however, when considering systems having
only digital filtering components *. In this case
the 2-0 signal is taken to be the finite-extent

_bi-sequence f(m,n)Y 0 <m:M 0<n <l Its

processing s characterized by the discrete con-

= f(myn) # h(m,n) : { ;
where g(m,n) s the output and h(m,n) is the pro~
cessor unit sample response. A1 the bi-sequences
!1n (2) are assumed absolutely suwmable, i.e.€ 2.
. (Regarding the continuous imaging problem, these
bi-sequences can be obtained by appropriate dis-
cretization of that model.) Although {2) is defined
completely in the spatial domain, there is a time
sequency associated with its implementation. When
actually performing the processing, ths Z-0 signal
is first mapped to a 1-0 sequence by the mapping
T: 1I° «+ I, the system output is computed, and the
resvlt then inverse mappad to 2-D via T 0. 1t is
the form of the mapping T which imposes a physical
realizability condition on the spatial support of
the filter response.
This is easily demonstrated by considering a
specific mapping, one commonly used in image pro-
cessing. practice and some recent 2-D system ana-
lysis (e.9. see[ 7] and £107).
Definition: The 2-D bi-sequence f(m,n) is said to
be row-sequentially mapped by the transformation
T:i=mol V DecmeM,0<nc<Hh,
resulting in the }-D sequence,
fl(f) = fy(menM) = f(m,n) . {3)
* This discussfon can be appropristely generalized
to include any physical components having their

input/output characteristics described in the
time-domain,
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‘}TMs'npping involves the simple concatenation of
the rows of f(m,n) (see Fig. 1). It is sometimes
referred to as a 1ine-by-line or lexicographic
‘ordering.

Ilow, this row-sequential mapping totally orders the
M-uqucnce, with i indexing the time sequency of
the processing. According to (1); any physically

alizable processing will use'only past and pre-
sent values of the input scquence f1(1) These
values lre shown in Fig.2 for' the 1-D and 2-D
itunder 77 ) ordering. Thus, in analogy with the
ix-n case, the following theorem can be stated.

'ﬂuoren i. tinder row-sequential mapping, the
ystem in (2) is physica,ly realizable iff h(m,n)

Fs real, absolutely summable and its support is
contained in the region R°+. where

%,-’{(-.n):o:n:-.o:nf_-)

I| (4a)
Ui(mn): ~e<m<0,0<n<c=)) .
The * @ +* notation is chosen to be consistent with
'that in L7, Here, the®g  region is called the
Uppar haif-plane and is illustrated in Fig.2. The
Jower half~plane 23 _ 1s correspondingly defined:

|

Ry = {(mn):-= <mx0,-= <n<0}

| (4v)
UW(min): 0 <cmecw,-w <n<0}.
2.2 TRANSFORM CONDITIONS

1
l

Recall that 1-D physical reali'zahi'l'ity as described
in (1) also invokes certain requirements on the
region of analyticity for the system transfer func-
tion, H{z) (e.g. see [11]). As might be expected,
this also generalizes to 2-D, the conditions of
interest being those for the half-plane bi-sequences
defined above.

The 2-D Z transform of h{m,n} is written as
i '

- :
PoHza2p) = I.):“_Z n(-.n)z;"‘zz" y (s)

énd is defined over a region'of convergence in C2
such that

-E..Z Mz <o '

A transform pair is indicated by the relation

! him,n) €=> H(z;,2,) - o o

First, consider the case of 9.0 + bi-sequences 1t
has been previously shown that the transform of an
1y bi-sequence taking support on the full, upper
half-piane, i.e.” for all m.n € {(m,n):
em<m<m ,0<n<4a, must have an open
region of holomorphy which includes

Alzazp): Izql=1, 1« (2] [7D.

This is, in essence, a “one-sideness” condition
associated only with the variable n. An additio-
nal condition is also involved, however, because

. h{m,0) is a unilateral sequence. This requires
! that H(zl.-) be analytic on a region including
Az 1 x |zll). Corresponding conditions can be
stated for the lower haif-plane (R, ) bisequen-
, ces by noting the simple transtformation of variab-
Tes between thz upper and lower half planes.

These relations can be summarized in the following
theorem:

Theorem 2. An absolutely summable bi-sequence,
h(a,n),taking support on Bg (P ) has a Z
transform satisfying the set of holomarphic
cenditions %4(.?9 _)s vhere

'96+: Condition 1. H(z;,2,) is holomorphic on a
region including {(zq,2zp): [29]=1,
1<z}

Condition 2. H(zy,=) is analytic on a
region including {2: 1 < lzlll.

Likewise,

B _: Condition 1. H(zy,2;) s heiomorphic o2 a
region including ((2,25): 12)=1,[2,i<1)
Condition 2. H(zl,-) is analytic on a
region including (z;: |zl| <11

The results of Theorems 1 and 2 will assume a

fundamental role in developing the 2-D MMSE filte-

ring formlism. The first theorem formally extends
the concepts of causality/physical realizability
to 2-D in a manner consistent with Wiener's
lpproach. and.in so doing, establishes the rele~
.vant canonical filter foim. ..a the other hand,
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|the conditions of the socond thoom sem s
sbasis for both ‘derdving the optimal filter and
|fom1|t1ng the operations required in its calcu-
‘lation. Because of the general {rreducibility of

'52-0 Folynomiz1s,.this last step must by necessity

!involve procedures which do not explicity depend
on the root-finding techniques émployeed by Wiener.

ilﬂtl\ these results in hand, the filtering problem
can now be addressed.

3.: OPTIMAL WIENER FILTERING
3.1 PROBLEH FORHULATION

he 2-0 fomu'lat'lon of the d'ls:rete MMSE estimation
problem 1s es follows. An arbitrary I:gi-sequence
’l(u.n) is assumed to have been observed or measured,
nd it 1s desired to infer or estimate a signal,
ls(n.n). from this observation. Random field models
re adopted. Both a(m,n) and s(w,n} are taken to
be iup‘ln bi-sequences from homogeneous random

1
%

fields with 2-D autocovariances R (m,n) and R (m,n},
respectively. Their crosscovariance is c“(n,n).

l‘lhe estimator is chosen to be discrete, lineer,
and shift-invarfant (convolutional), hence, each
point estimate is of the form i
s(an) = H a(m-k,n-2)h{k,2) , o

1
phere the weiohts him,n} conctituta the unit sample

response of the estimator or filter. For implemen-

f.ation purposes, it is also required that the fil-

ter be physically realizable, in the sense of
Thcoru 1. Hence, (6) can be written as

s(m,n) = E.z):e

I

i

[ Commensurate with the statistical models
adopted, the classical mean-square error criteria
fis used for design.

:in\is error is

iy =B - sndI W , (9)
whare E{-) is an expectation operator taken over
the ensesbie of possible measurement and signal
bi-sequences. The optiml filter is designed to
minimize this error, subject to the constraint that
h(l.n) be physi:ﬂ.y realizable.

l(n-k.n-z)h(k.l.) . (8)

'

REC R e

The mst concist method of pnrforuing this mini-
mization involvaes use of the so-called orthogonal
projection theores (12). i ’
[ .
Theorem 3. With s(m,n) as given in (7), the opti-

mal filter hy(w,n} which winimizes % in (9) 1s
such that \

E(B(m.n)-s(n.n)] n(n—l:.n-:.)) - o _(10)'
TV kieRg, -

This states that the filter weights are optimal
_when the estimator error is orthogonal to theob-
,servutions used in forming the estiute - a quite

well-known result.

As & first step in deriving hy(m,n), s(m,n) in (8)
. is substituted into (10) yielding

E(s(m,n) e(m-k,n-1)}

=€ ] a(m-2,n=a)h(x,3)a(m-k,n-2)}
+ ' ! (11)
YV k,t€ % + X : '
Interchanging the order of expectation and
summation and using the covariance relations

C“(k.z) = E(s(m,n)a{m-k,n-1)} {12a)
! R.(k-t.l-l) » E{a(m-r,n-2)a(m-k,n-2}}, (12b)
“(11) can be rewritten as o

§

Co (k)= § } [} (k—r.l-l.'\)h {ten}  (13)
sar? < ue%,, a o "

V k€l -

In accordance with traditional nomenclature,
this is called a 2-D discrete Wiener-Hopf equation
of the first kind. It must, of course, be solved
“to obtain h,(m,n). Because the equality holds only
over a projection of the plane, {its solution it
nontrivial, although straightforward {given the
:,l-n precedent).

'3.2 SOLUTION FOR THE DPTIMAL FILTER

The procedure adopted here for solving (13} makes
use of a recently daveloped spectral factorization
[7]. This factorization decomposes a 2-D power
spectral density into the form

+ e-
; o(zl.zz) = 8(29,2,)8(2;,25) (14)

. Za-
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‘where o(zl.zz) and 1/0(21.12) sltisfy ‘the holomor-
iphic conditions o % 4+ Wd 0(:1.12) and 1/6(2y.2,)
|u'|sfy %Mlmpﬁic conditions e, . Thus, for
exsaple, ¢ zl.zz) has no zeros or poles (nonessen-
ithl singularities of the first kind) in a 5
iincluding {(2.25):(2;(s1, 1 ¢ (250}, and o(z),=)
has no 2¢eros or poles in a region including
{(2q:- B3 |11|)- Consistent with the even symmetry
'of oz .zz). the constnim: :
(2325} = o(zl 1,231 15y,
is chosen to ensure the unigueness of (14), Now,

is decomposition is similar in spirit to Wiener's
classical spectral factorization in that it equi-
~valently factors the corresponding covariance into
ithe convolutional product of two terms, one of

ich 1s “causal® or physically realizable and the
bther which is *anticausal” (i.e. in the sense of
Thearem 11, The holomorphic conditions of the indi-
vidual terms in (14) guarantee tiis behaviour.

s & first step in solving for the optimel filter,
13) 1 rewritten

{mn) = -C .(ll.n) + ): ): Ry(m-r,n-2)h (x,2) (16)

=0 { \I'I.na-%+ I

il‘hus. the bi-sequence e(m,n) takes support on
i -(o.o). Using the Z transform pairs
| e(m,n) €> E(zl.zz)

1 Rg(mn) €y 0g(2)2;)

! R(mn) «—> 4,{z),2y)

i C,.(n.n) <> 0, (2),2,)

: ho(min) € Hy(24.2,)

and the ccnvolution property of Z transforms, it
follows that the transform

LG T Uy Salz1zg) + (21,2 Mgley 7))
( { 17y
satisfies the holomorphic conditions & .

I Spectrally factoring ¢, 4 (21:25) 35 in (14),
E(zl.zz) may be e;punded in the form

) (zl.zz)

E(2y,2;) = . (-l e
{z) 'z) ’-(’1 z) ® ey

b — .

———— S VNV RO &, WV

(z,.z,,n (2,30} l )
[
. 0.(11.12)8(11,12) . C (19)
wnere v
balzpzy) @+
B(2y.25) = - Bt 82128,z vZp) » (20)
..(zp:z)
As [) (zl.zz) sliis-f-i;s_ éi.e'hm;;r.;r.; c—on-
ditions&‘ _» it follows from (18) that £(z.2,)
must er\vise satisfy the conditions 87 .

Inverse transforming (19}, leads to '
-

e(m,n) = ¢(m,n) * b(m,n) : (21}

where !

o - - '

-]
d(min) € 0, (29:2;)
b(m,n) €3> B(2(,2;) .
Because of the construction of ¢ ('1'12)- o(l.n)
takes support on _» Hence, for e(m,n) to vanish
on %4. b{m,n) must also vanish on R, .
One further expansion leads to the desired resu’t.

Let the first verm of B(24,2;) in (20) be expanded
as I '

.

oa(2pazy)  fog,(210250] - o“('zl.zz)'
B= - *

?a(zl;zz) L’ (21'22) D+ \:'a(zlnzz) (g
. (22)
mere the nctl%on [JQ + indicates the conponent
of :5(2112))/8,(21.2,) which contributes to b{m,n)
in the region . Notice that the second term

contributes to b(m,n) in the region & _~{0,0),
hence the @ - notation. Thus, -

0‘(21:21) °a(11-lz) -

O+ i ’
* (242 0(24425) ) (23)

Clearly, only the first and 'I|st terms in
B(zl.zz) contribute to b(m,n) on o 4 1n fact,
because of the construction of o?zl.zz) and tha
physical realizability constraint on "o(zl"z" the
inverse trlnsfom of their product (the last term)

TR
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ionly takes values on

4+ Consequently, for
:b(m,n) (hence, :(m,n)) to vanish tmti'e‘m 4 these

jtwo contributions must: identically cancel: |
0. (202,) @+

L2 iz iyg) =0 (24)
0 (2:27) |©+ |

i Solving (24), the transfer function of the

. [2-D optima1, physically realizable Wiener filter

is given by ) . ;
! v, (200
bpr) rh— (B
Hepzg)  l4ae) j@.
This is the main result of the papir. The opera-
tions required in deriving Ho(zl.zz"y\ are i)a
spectral factorization of the measurbment field
spcctrul, and 11) a subsequent plrtit"oning to
lobtain the physically realizable (half.plane) part
f the signal and mezsurement cmss-speqnn divi-
‘ded by the "co-analytic® term of the factorization.
ith this optimal filter, expressions for 'the MMSE
an be derived and compared with the unrealizable
error, 21though this will not be pursued hera.

l | 4 rewres i

\

!Reurk 1. The model, criterda, and general view:
|point adopted here for the 2-D linear filtering "

‘problem are essentially identical in context to

those employed by Wiener in his classical work.

With a careful generalization of physical realiza- -

bil1ty to 2-p, both the canoniczl, realizable fil-
ter form and subsequent 2-D spectral factorization
follow as natural extensions of their 1-D antece~
dents. Thus, it is not surprising that the form of
the optimal, 2-D realizable filter in (25) appears
functionally identical to the 1-D result [11].

The traditional motivations for using the HHE for-
mlism (compatible statistical characterization of
sany estimation problems, availability of the re-
fquired covariance information, glabal optimality
for the gaussian case, ease of derivation and
Implementation for the 1inear filter, etc.) sub-
stant{ally extend to the 2-D case. The passible
exception, observed by some researchers, seems to
be the potentially Timited utility of the mean-

squlre error criter'll 1n 2 D image processing
applications which involve the human visual system
[13]. However, most 2-D signal processing problems

‘efither to not have as their objective improvement

of the “visuti® quality of measured data, or simply

(o not involve image data bases. Thus, this does

not sppear to be a serious limitation, although it
does point out the need to determine general appli-
cability of the MMSE criteria as a first step to

Applying the formalism. t

Reurk 2. A remarkable difference exists between
the 1-D and 2-D cases, however, which was mentioned
above. This difference arises from the absence of
an equivalent Fundamental Theorem of Algebra for
2-D polynomials. As 4 consequence of this irreduci-
bility of 2-D polynomials, the spectral factoriza-
tion and realizability projection operations called
for in (25) generally do mot rzsvlt in rational
functions, although the underlying spectral densi-
ties involvea may themselves be rational.

Despite this compiication, it is possible to per-
form the two individual operations of (25) in appro-
ximation, thereby cbtaining suitable rational
approximates. It turns ocut that both operations can
be implemented with algorithms based on sectioning
cepstral bi-sequences.
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f(m,n) to 1-D sequence (1)

past raluves
14 2z ’1,\'7,”2,‘73
N\
. o i ,
AN
i n )
| - im.n) .
! flm,n) “posi“volues

22222

[ M-1 m
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[Figure 3. Region of support for h{m,n) of a physi-~
cally realizable system (using the row-
sequential map).
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