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The nonlinear Schr_dinger equation on a disordered chain

Rainer Scharf and A. R. Bishop

Theoretical Division and Center for Nonlinear Studies, Los Alamos Na_ioi_al

Laboratory, Los Alamos, NM 87545, USA

The integrable latt,_ce nonlinear SchrSdinger equation is a unique model with
which to investigate the effects of disorder on a discrete integrable dynamics,
and its interplay with nonlinearity. We first review some features of the lattice
nonlinear SchrSdinger equation in the absence of disorder and introduce a 1-
and 2.-soliton collective variable approximation. Then we describe the effect
of different types of disorder: attractive and repulsive isolated impurities, spa-
tially periodic potentials, random potentials, and time dependent (kicked) long
wavelength perturbations.

1. Introduction

Recent years have seen an enormous progress in understanding the effects of
disorder in linear systems like Anderson localization and the transition from
insulating to conducting behavior in d = 3 dimensions at zero temperature upon
decreasing the disorder. Completely integrable nonlinear systems in d = 1 are
also fairly well understood by now. The understanding of the interplay between
disorder and nonlinearity on the other hand is still in its infancy [1].

Both, nonlinearity and disorder, may give rise to self-localized excitations
(solitons or Anderson localized wave packets, respectively). Therefore it is nat-
ural to ask, how these effects might reinforce, complement or frustrate each
other. Transport properties in disordered, nonlinear materials for example
strongly depend on whether solitons behave as "particles" in the presence of
disorder, or interact very strongly with other degrees of freedom. Does the non-
linearity lead to adaptive behavior of excitations in disordered materials which
preserves coherence? How do nonlinear excitations interact with each other

in the presence of disorder? These and other issues are of great experimental
concern in fields from nonlinear optics [2]i to polaron formation in solid state
materials [3,4], to vibron localization in natural and synthetic biomolecules
[5,6,7].

In ali the cases mentioned so far perturbation theory allows us to cal-
culate which of the unperturbed structures becomes unstable and how they

start to decay [8]. But it does not tell us, what excitations [n fully developed
disorder look like. Collective variable approximations together with numerical
experiments allow us to investigate these properties in greater detail.

As a first step, in this rich program, we consider the discrete nonlinear
SchrSdinger equation (NLS eq.) in (1 + 1) dimensions and investigate some
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elementary forms of parametric spatial and time periodic disorder - namely
constant bias, isolated impurities, periodic and random spatial variations, and

time periodic (kicked) perturbations. Several novel features have been found,
some of them being a. result of the spatial discreteness of the dynamics.

2. The completely integrable lattice NLS equation

Ablowitz and Ladik [9] have introduce a completely integrable discretization
of the NLS equation. We generali'-e it by including an onsite potential energy
term:

i¢. = -(W.+I + ¢.-1)(1- _1¢.12)+ v.¢., (1)

with _ = -1 or +1 (attractive or repulsive self-interaction, respectively). This
equation can be derived from the Hamiltonian

I_ v.log(1- _I¢.I_), {2)
n rl

with nonstandard Poisson brackets

{¢._,¢:_)= i(1-_1¢.1'-')6m., {¢..,¢.} = {¢:.,w:.} 0, (3)

and x = ±1. For _ 1 we assume I_-] < 1. One can easily verify that the
following "norm" is conserved:

,v - _L _2 log(l _ _1¢.1-_). (4)
11

We now show that eq. (1) is completely integrable, not only for constant
Vn = V, but also in the case Vn = an+b with a :/: 0. To accomplish this

we cast eq. (1) in the form af a zero curvature condition with time-dependent
spectral parameter A. Following ref. 10, the compat, ibility conditi.on for a vector
F,_(_, ,_{t)) obeying the equations

F,+I = L,_(t,A)F,,,

dF. 8}
d"-Y= w.(_, _)F.,,

is of the following form:

d

d_L,, + Ln W,_ - Wn+ _Ln = O, 6)

With the choice

(7)

V_(,_-_. - ,_¢.__) -1 - ,_¢._0___+ a-" - I. '
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the zero curva.ture copdition (6) leads to eq. (1 with

.f. = 7n+6,
i

_(t) = )_oe_'r_, (S)

Vn - 2 -t-fn +fn+l - 27n + 2(6 + 1)+7 = an+b.

In the case of periodic boundary conditions, for example, a hierarchy of (time
dependent for Vn = an + b) integrals of motion may be constructed from the

trace of powers of the (2 x 2)-matrix

L = LMLM-I,.. L_L1, (9)

with LM+I -- LI. For example, log Idet LI leads to the norm N, whereas tr L
lead to the kinetic part of the Hamiltonian H.

3. Constant and linear onsite potentials

In what follows we will always assume attractive self-interaction and set. _ = -1.
For _/_ _= V or Vn = an + b travelling solutions exist and can be expressed in
terms of elliptic functions. Of special interest are the 1-soliton solutions. For
I/_ _= V they are of the form

O,,(t) "" sinh/3 sech(13(n- ut- xo))e -i('°t+a"+_°),

¢o - -2 cosh/3 cosa + V, (10)
2 sinh 13sin a

lt ""
3

The exisi,ence of a maximum 'velocity umax = 2 sinh f3/3 is clearly a discreteness
effect. Energy and norm for the 1-soliton solution (10) are found to be

E = -4 sinh/3 cos a, (11)
N=2/3.

For Vn = an + b the solitons have the same shape but move in a different
manner (with ao - ¢0 = 0 for simplicity):

¢.(t) = sinh/3 sech(/3(n - x(t))) e -i(_(')+v_t),
2

¢(t) = -- cosh/3 sin(at) ,_-ht, (12)a

2

x(t) = -_--_sinh/3 (cos(at)- l)+ z0.

The solitons move exactly harmonically in a linear potential (see Fig. 1). Their
norm is unchanged, N = 2/3, but their energy is given by

E = -4sinh/3 cos(at)+ 2/3(ez(t) + b)
(13)

= -4sinh/3 + 2/3(axo + b).
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The explicit 2-soliton solutions are, as usual, quite involved. Therefore
we only show the collision of two different solitons for Vn = nn. + b in Fig. 2,

thereby illustrating the complete integrability in this case. In the continutlm
limit the N LS eq. is also integrable for harmonic potentials [11]. Wllether t.his
is also true in the discrete case seems, to be unknown.

4. The 1-soliton collective variable approximation

As noted above, in the case of a linear potential solitons move in a harmonic
way without changing their shape. This is no longer true for a more general
form of the potential. But as long as the curvature of the potential felt by

the soliton is small one might assume that the soliton emits only a negligeable
amount of radiation and adjusts its parameters to comply with the constancy

of energy and norm. Introducing l/'(x) for Vn(n. = z), t_his lead to N = 2'3
being independent of V(z) and

E = -4sinh _3cosa(z) + 2/3V(z) = const. (14)

Now z is interpreted as the position of the soliton, the relevant collective vari-
able, The soliton might be regarded as a particle moving in an effective poten-
tial with a velocity u(x) = -2 sinh/3sin c_//3:

u 2 + V(_')(/3V(z)- E) 16sinh 2 B-- E 2-- = (15)
2 2_ 8B'- '

where I/_,fl.(z) = 2-_V(x)(ZV(x)- E) plays the role of the effective potential
and the r. h. s. of eq. (15) plays the role of the particle energy, both depending
on the initial conditions. A constant potential V leads to a constant effective

potential Vefl-(z), a linear potential V(z) lead to a harmonic Veff(z).
"[hat the effective potential Veff(z) is the relevant one and not the original

potential V(x) can be seen in Fig. 3, which shows the trapping of a soliton on
a maxzmum of V(z)!

Solitons trying to percolate on a onedimensional lattice in a smooth ran-
dom potential with small curvature have to observe not only a lower bound
for their energy, but also an upper one, There exist lower and upper bounds
for the potential that the soliton is allowed to enter without being reflected,
depending on the initial condition (E = -4sinhB cosa0 + 2/3V0):

2 sinh/3 ( 1 - cos a0)- v0=
2 sinh 13 (16)

Vo- =---T--(i +
This window of allowed potential values acts as a filter for solitons having cer-
tain initial values for a and _, as long as the collective variable approximation
holds. In the continuum limit the unusual lower bound disappears.
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5. Trapping on an impurity

The case of an isolated single impurity of the form V,_ = V 6n,o is important
in two respects. First it illustrates that the stationary solutions do not tell the

full story of what is going on in the systern, as opposed to the case of the linear
SchrSdinger equation: and second it shows that a collective variable approach
can be useful even in the case when one soliton breaks in two.

Stationary solutions with the frequency w = -2cosh/3 are readily found
to be of the form

Cn(t) = sinh/3 sech(fl([n[- sgn(Y)8.)) e -i_t, (17)

where 8, > 0 and eosh/38. = 2 sinh B/x/'_ -_ - 4 - V 2. For an attractive impurity
(V < 0) the solution ¢,_ has a maximum at n -- 0; for a repulsive impurity
(V > 0) it has a minimum at n = 0 between maxima at +n0 _ 8,. For V = 0
the original soliton with 8. - 0 is recovered. In ali cases solutions (17) exist
only for sufficiently large/3: sinh B >_ fV[/2.

What really happens dynamically in the vicinity of an impurity might look
quite different from the trapped oscillatory solution (17). There may be scat-
tering and emission of phonon-like excitations as well as multi-soliton processes.
To simplify matters we choose a soliton at rest (a = 0) on top of the impurity
and assume that the main decay channel is through generation of two solitons.
As the initial condition is symmetric with respect to spatial inversion, we ex-
pect the two solitons to have the same shape but opposite velocity, Initially we
have for the norm: N = 2/3, and for the energy: E = -4 sinh/3+2V log(cosh _).

Well after the decay into 2 travelling solitons (and hopefully negligeable radia-
tion) with exponentially small overlap with the impurity we find for the norm
N' = 4/3', and for the energy E' = -Ssinh/3' cosa'. If we assume that the

amount of radiation emitted during the decay is negligeable (N = N', E = E')
we find:

cos c_' = cosh(/3/2) - V log(cosh/3) (IS)
sinh

This equation has solutions for a' only if V falls into the following interval:

. g 1) 4sinh P-(cosh _ + 1)
4sinhg(cosh_- _ <V< '' ._ - (19)

0 < -- log(coshD) log(coshB)

In the continuum limit these bounds got to 0 and +oo. The upper bound in eq.
(19) corresponds to a relatively strong potential for which more complicated
things are expected to happen than only 2-soliton decay without radiation. The
lower bound on the other hand is small for small/3 and our ansatz is reasonable
in this case, We therefore expect bound states for potentials V smaller than

the lower bound in eq. (19) -- even if V is repulsive! Fig, 4 shows how a solitoa
at rest centered at an isolated attractive impurity adjusts and stays trapped.
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Fig. 5 illustrates the same but for a repulsive impurity below the critical value
_,_ for soliton breakup (the lower bound in eq. (19)). Fig, 6 shows the breakup
into two unbound solitons, The actual value for V_ is about 10% higher than
the one given by eq, (19) because of radiative losses, reducing the kinetic energy
available for the emerging solitons. _

It is interesting to compare I_ here with the crossover suggested irl dis-
ordered "polaron" problems (with electron-phonon, exciton-phonon, magnon-

phonon coupling) discussed by Anderson [1.2] and others [13]. These authors
have considered the competition of disorder- and nonlinearity-induced localiza-

tion within a stationary approximation (Cn(t) = exp(-iwt),'(n), whereas here
we have explored the full time-dependence.

6. Spatially periodic onsite potentials

If a soliton experiences a spatially periodic onsite potential one crucial param-
eter that governs its behavior is the ratio between the width of the soliton and
the modulation length of the potential. The other is the ratio between the
soliton amplitude maxn Itbnl' and the amplitude of the potential, Let's start
with the latter, If this ratio is large then the nonlinearity effects dorninate,
In the opposite case the soliton is expected to decay into different coherent

structures centered around the minima of the potential. But what is going t,o
happen exactly will be governed by the lengthscale ratio rnentioned first, If the
soliton is na,row compared to the wavelength of the potential then it will essen-
tially mo"e like a particle in an effective potential, as described in section 4, If
the so[iton is broad compared to the wavelength of the potential and it moves
sufficiently fast .r,hen a smoothing over the potential is likely to occur and the
soliton will only feel a reduced effective potential. A situation of major physical
interest is when nonlinearity and onsite perturbation or width of the soliton
and wavelength of the perturbation are comparable: then a breakdown of a
simple particle (soliton) picture can be anticipated, corresponding to strong
scattering, Thus the periodic potential is very important for understanding
disorder of general color.

In Fig. 7 we illustrate the case of a broad soliton (/3 = 0.1) slowly moving
(a = 0.5) in a periodic potential. The period of the potential is comparable
to the width of the soliton, the amplitude of the potential is comparable to

the height of the soliton. It is clearly visible that the soliton steepens tip each
time it encounters a maximum of the potential. It tries to adjust as it travels

over the wiggles but is able to do so only in an imperfect manner: it leaves
behind some excitations which get trapped in the minima of the potential. If
the soliton moves even more slowly initially (a = 0.3) it decays rapidly into

a couple of humps which stay trapped in the potential minima. On the other
hand if the soliton moves very fast (a = 1 57) it smoothes ove_ the potential and

is not visibly affected by it. One way to interprete these results is in terms oi"
excitation of shape modes. If the soliton moves slowly enough over the wiggler
potential there is strong excitation of shape modes, besides other excitations

6



i

i

which are left behind and get trapped. But for sufficiently large velocity of the
soliton and correspondingly higher wiggler frequency the excitatidn oi' shape
modes of that frequency is strongly reduced. A detailed stability analysis of tile
shape modes is in prQcress. The interplay between tile characteristic frequency
.,, of the unperturbed soliton, the frequency of the shape mode oscillation, and
the wiggler frequency might give rise to phenomena well known from tile circle
map, _, for example, mode locking, and chaos.

7. Spatially random onsite potentials

Of major interest is the case of a single soliton travelling along a disordered
chain. Several questions arise in this case: What are the radiative losses the
soliton suffers':' How far does the soliton travel before it decays? How does the
mean velocity of the soliton depend on the strength of the disordered potential?
Will the emitted radiation become Anderson localized ? Will it self-focus into
new solitons?

We have investigated how one or two broad solitons (fl << 1) travel in a
random onsite potential V, equally distributed in the interval [-V, VI. Slowly

travelling solitons in weak potentials decay rapidly and are soon overtaken by
the radiation they generate. Fast solitons on the other hand stay ahead of
their radiation for a longer time and .-- which seems to be more important

they dynamically smooth out the random potential. This is quite similar
to the case of periodic potentials as shown in sect. 6. Strong fluctuations
in the potential give rise to modulations in the shape of the soliton, which
become more pronounced the longer it takes for the soliton to pass over the
fluctuations. The modulations of the soliton shape are finally left behind as

excitations travelling in the opposite direction with about the same velocity
as the soliton. The velocity of a broad soliton travelling in a small random

potential is essentially unchanged in comparison to its value without disorder:
u _ -'2 sin c_. The radiation front which the soliton generates travels with a
maximum velocity u0 _ 2. Therefore only solitons with c__ _r/2 stay ahead of

: their own radiation for a sufficiently long time.

We also investigated the case of two identical solitons, travelling in the
same direction with a separation of a few soliton widths. The soliton that
travelled in the wake of the leading one was only negligeably influenced by the
wake. The superposition of the wakes of both solitons contained more pro-
nounced structures than each of the wakes alone, as is to be expected because

of the self-focussing nonlinearity. The ultimate fate of the structures and the
: radiation that is left behind is still unclear _ whether the structures decay

into radiation which in turn then Anderson localizes, or whether the structures

that are tO small for nonlinearity to have any effect are "recycled" by larger
structures. Whatever happens will be interesting to understand as it will in-
volve the full timedependenc e of the nonlinear dynamics with disorder and not,
only properties of noninteracting stationary solutions [14].

Recently Newell and coworkers gave an account of their work on the trans-

7
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mission properties of the nonlinear SchrSdinger chain with disorder [15]. They
show that the _ransmission properties are only improved by the nonlinearity if
it contributes to self-focussing into soliton pulses,

8. The periodically kick_ d NLS chain

The different kinds of disorder we introduced so far were time independent

Now we allow for a periodical driving of a NLS chain with periodic boundary
conditions (_M+,_ = _,,). We choose a driving which facilitates the analysis
in terms of a 1-soliton collective variable approximation, namely time periodic

6-kick perturba ion:

+co

i¢. = -(¢.+, + ¢.. + I¢.12)+ Kv.¢. 6(t- mT) (20)
rn--- oo

with Vn+M = 1_, The continuum limit of this equation for Vn = cos(27rn/M)
was recently investigated by Casati and coworkers [16]. They found sensitive
dependence of the time evolution on the initial conditions not only for single
solitons, but also for more general initial conditions. For vanishing nonlinearity
their model is equivalent to the quantum kicked rotor which shows dynamical
localization in momentum representation -- in striking contrast to the deter-
ministic diffusion observed in the classical limit for sufficiently large kicking
constant K The connection between this dynamical localization and Ander-
son localiz,.tion in tight binding models was pointed out by Fishman, Grempel

and Prange [17]. Casati and coworkers claim that the dynamical localization
persists even in the case with nonlinearity, which certainly deserves further
investigation,

We propose to use the discrete model (20) to investigate these questions
in greater detail. Here we present some first results. We assume that the state
of the chain is given at time mT- 0, i. e. immediate{y before the kick at time
mT. Upon integrating eq. (20) from mT - 0 to mT + 0 one finds the following
map

_n(mT + O) = Cn(mT- O)e -igy" (21)

This map is succeeded by the completely integrable evolution from mT + 0 to

(m + 1)T - 0, completing one iteration step. For the special case of a single,
narrow soliton at time mT - 0 the effect of the kick can be calculated in 1-

soliton collective variable approximation. Neglecting the unimportant overall

phase factor ¢0 (see eq. (10)) the important soliton parameters are z0(t), a(t),
and 3(t) with t = mT. Neglecting the curvature of Vn over the soliton hump
we can approximate the kick by

,l_n(mT + O) = ,ph(mT --O) exp -i/< (v(_°)+v'(_°l(n-_'°)) (22)

8



Neglecting again overall phases this shows that xo and 3 are left unchanged by
the kick: x0(mT + 0) = z0(mT - 0) and 13(mT + 0) =/3(mT - 0), The phase
modulation cxon the oi;her hand does change:

 (mT + o)=  (mT - 0)+ KV"( o(mT- 0)), (23)

The integrable evolution between the kicks leaves ¢/unchanged, too. Therefore
,3 is an adiabatic invariant for the dynamics (20), The integrable evolution also

leaves c_, the velocity parameter, unchanged: ot((m .+I)T - 0) = o_(rnT + 0),
But the position of the soliton changes:

2Tsinh _ .

zo((m + I)T-0)=zo(mT+O)-_sma(mT+O), (24)

Now we introduce position and momentum variables, both ranging be-
tween 0 and 2_':

27r

qm = ..-_mo(mT - 0), (25)
Pm = -c_(mT - 0).

With these new variables the soliton motion in 1-soliton collective variable

approximation is described by a symplectic map:

= pm- z<P'(q.,), (26)
qm+l = qm + T(/3) sin(pm+ t),

where _'(qm)= V(zo(mT-O)) and T(_) = 47rTsinh_/M_. For l)(q) .=cosq
and in the region [pi << 1 the standard map is recovered. The full map then
takes the doubly periodic form

Pm+l = Pm + K sin(qm), (27)
qm+l = qm + T(#)sin(pm+L),

with T(,3) = T(0)sinh B/#, upon skipping the wiggle. T(#) takes into account
that narrow solitons move faster than broad ones.

Eq. (27) is non-integrable for KT(13) _ O. For K = T - 2, for example
(see Fig. i0), regions of regular and chaotic motion coexist, We place a single
soliton in a regular region near an elliptic fixed point (Fig, 11, with q shifted
by ,'1"in comparison with Fig. I0), and in a chaotic region near a hyperbolic
fixed point (Fig. 12). The solitons display clearly different kinds of behavior.

]

Fig. 13 shows that the motion of the soliton in the second case closely follows
the chaotic classical iteration. Surprisingly it does so without breaking apart.
The amount of radiation that is emitted is small and the shape of the soliton
is practically unchanged.

9



Finally we address the question whether the dynamics of the chain is re-
versible and how this depends on the motion of the solitort, We monitor the

spread of the soliton plus emitted radiation (x/< q'-'> - < q >2) over a aura-
ber of time steps and then we time-reverse the dynamics, Because of inevitable
numerical errors maps like the one given by eq, 27 are not reversible numerically
over say 100 iterations for initial conditions with positive Lyapunov exponets,
For the full dynamics of the chain (eq, (20)) integrated numerically with suffi-
ciently large accuracy it turns out that the system returns to its initial condition
upon time-reversal if the soliton is moving regularly (see Fig. 14), If the soliton
is moving in a chaotic manner no available numerical accuracy was found to be

sufficient to restore the initial conditions upon time-reversal, This illustrates
the sensitive dependence of the dynamics on the initial condition if the soliton
is stacted in a chaotic region. Our results clearly show that solitons can be

forced to move chaotically with only negligeable excitation of other degrees of
freedom,

Further interesting questions are for example: (i) how fast do solitons
decay when the curvature of Vn is not negligeable; (ii) does the dynamics
(20) show localization in p-directi0n when the corresponding map (26) shows
deterministic diffusion (on the torus); (iii) how do two solitons interact in t,he
presence of the kicking. These and further questions will be addressed in a
forthcoming publication [18].
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Figure captions

Fig. ], Soliton trapped on a tilted plane: Solution of eq. (1), for 'lc'hre n "- 104;
zero boundary conditions; V. = 16n./Ichain; initial soliton parameters' c_ =
-1.571, 3 = 0,4', integration time T = 90. The vertical marks indicate the
turning points given by; eq, (16).
Fig. 2. Two soliton collision on a tilted plane: Solution of eq, (1), for l_h_,n =
104; zero boundary conditions; V,_ = 16n/lchain;'initial soliton parameters: c_l =
Tr,c_ = 0., ,8_= 0.5 and _ = 0.3', integration time T = 90.

Fig. 3. Soliton trapped on potential maximum: Solution of eq. (1), for/chain "-
104; periodic boundary conditions; Vn = 2cos(27rn/lch_an); initial soliton pa-
rameters: a = --1,571, /3 = 0.4; integration time T = 90,

Fig. 4. Soliton trapped on an attractive impurity: Solution of eq. (1), for
/ch_i_ -- 314; periodic boundary conditions; Vn = V6n,o, V = -0.3; initial
parameters: a = 0.,/3 = 0.4; integration time T = 30.; [_,l-magnification: 2.
Fig. 5. Soliton trapped on a repulsive impurity: Solution of eq. (1), for lch_m =
314i periodic boundary conditions; Vn = V_5,_,0_V = 0.67; imtial soliton pa-

' rameters: a = 0., f] = 1.0; integrauon time T = 90.
Fig. 6, Sa'.:ton on a strong, repulsive impurity: Solution of eq (1), for lchain =
314; periodic boundary conditions', Vn -" V_Sn,o, V "" 0.70', initial soliton pa-
rameters: a = 0.,/3 = 1.0; integration time T = 90.

Fig. 7. Soliton in a periodic potential: Solution of eq. (1), for lch_n = 7,00;
periodic boundary conditions; Vn = _ co_(_._rn/25); initial soiiton parameters
c_= 0.5, /3' = 0.1; integration time T = 180.; [el-magnification: 10.
Fig, 8. Slo:/soliton in a random, weak potential: Solution ofeq. (1), for/chain =
500; periodic boundary conditions; l/max = 0.1; initial soliton parameters: c_ =
0.3, _3= 0.i; integration time T = 90.; ICI-magnification: 10.
Fig. 9. Fast soliton in a random, weak potential: Solution ofeq (I), for lehr,, =
500', periodic boundary conditions', l,_ax = 0.1; initial solit,on parameters: c_ =
1.57,/3 = 0.1; integration time T = 90.; ICI-magnification: 10.
Fig. 10. The "double-sine-map": phase plane for the map (27) with/( = T = 2.
Fig. 11. Soliton moving in a regular region: K - -T = -2., q0 - 2,'r/lO,
po = 0; 50 iterations forward and backward; length of the bars corresponds to
6q,_, the spread of the solution in q-direction at time n.

Fig. 12. Soliton moving in a chaotic region: K = T = 2., q0 = v/100, po = 0;
50 iterations forward and backward.

Fig. 13. Full dynamics versus collective variable approximation: r(p,_+1 -
p,_)/il versus qn compared with sin qn for the chaotic case shown in Fig. 12.
Fig. 14. Time-reversal for "regular" soliton: Spread $q,/w versus n; time re-
versal at n = 50; initial condition same as in Fig. 11.

Fig. 15. Time-reversal for "chaotic" soliton: Spread 6%/_ versus n; t;ime re-
versal at n = 50; initial condition same as in Fig. 12.
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