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INTRODUCTION

Under ideal conditions, dispersion can be
reasonably predicted with analytical methods,
such as Gaussian puff/plume theory (Pasquill,
1974; Shir and Sheih, 1974 ; Gifford, 1968; and
Lamb and Neiburger, 1971). Gaussian puff/plume
models still continue to be used with reasonable
success even when pushed beyond their intended
limits. However, analytical methods are typically
inflexible under variable wind conditions, par-
ticularly in cases where dispersion occurs over
irregular surfaces. An alternative to these
constraints appears to be possible at the present
time only by the use of sophisticated numerical
models. A review of numerical methods for pre-
dicting air pollution dispersion is given by
Pasquill (1974), Gifford (1975), and Hoffmen,
et al (1977).

A specific need exists for more detailed
study into the effect of surface irregularities
on dispersion. The Pasquill-Gifford disper-
sion curves are valid only for level, uniform
terrain — which is ideal in most instances. The
roughness can normally be accounted for by using
on-site turbulence data, but such data are
usually sparse. As a consequence, many models
omit the effect of topography. Studies have
been undertaken to calculate flow fields and
dispersion patterns over complex terrain.
(Reynolds, et al, 1973; Yocke, et al, 1977;
Lantz, et al, 1977; Anthes and Seaman, 1976; and
Egan and Bass, 1976).

The requirement is to establish an accurate
and efficient numerical solution algorithm for
three-dimensional mesoscalc atwospheric trans-
port and diffusion over irregular terrain.

" Herein, a three-dimensional method-of-moments
technique is employed to calculate pollutant ad-
vection. The method is based on the calculation
of moment distributions of a concentration
within a cell (volume), as developed by Egan

and Mahoney (1972), and used by Pedersen and
Prahm (1974), Fischer (1977), and Pepper and
Long (1978). By summing moments over the solu-
tion domain, and using a Lagrangian advection
scheme, concentration can be transported with-
out generation of numerical dispersion error.

Because the method maintains subgrid scale reso-
lution, prohlems involving steep gradients can
be calculated without significant computational
damping.

Three-dimensional diffusion is solved by
the method of cubic splines (Price and MacPherson,
1973; Rubin and Graves, 1975; Ahlberg, et al,
1967). The cubic spline method is based on
continuous-curvature cubic spline relations used
as interpolation functions for first and second
derivative terms. After solution of the diffu-
sion terms, the first and second moments are
recalculated to ensure continuity with the ad-
vection terms. To reduce computer programming
complexity, the procedure of fractional steps
(Yanenko, 1971) is used to calculate the three-
dimensional solutions. A coordinate transforma-
tion is employed to transform the terrain-lid
variability into regular intervals in the com-
putational domain.

Simple tests are conducted to determine
the accuracy of the numerical methods. The
effect of topography on a continuous emission
is examined under ideal conditions and the re-
sults compared with values obtained from an
analytical Gaussian plume relation.

PROBLEM STATEMENT

The cell-averaged transport equation
requiring solution is (Deardoff, 1973):

%
o

— +

aij [05€ + 3Te7] + 5 = 0 )

Q)
(a4

where the overbar signifies the mean value,
supersgript prime denotes deviation from the
mean, Uj is the wind field (1<j<3), C is the mean
concentration, and S is any source/sink term.

The correlation ule' is typically expressed in
terms of an effec%ive diffusion coefficient

UjC' = Kij '§'x—l— (2)

where Kij 1s a (directional) diffusion coefficient.
An initial condition corresponding to a concen-
trated or continuous release is



C (xi,t=0) = Co(x1) (3)

For mesoscale analysis, the solution domain
is the three-dimensional space bounded by the
topography, the mixed height, and a suitable box
surrounding the release location. The coordinate
transformation used to account for the terrain-lid
variability is (Reynolds, et al, 1973)

X3 - h(Xi)
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where h and H are topography and lid parameters,

respectively. Horizontal and lateral boundaries
are transformed as
X: - X
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where xg(i) and xp(i) denote boundaries of x;.
Both ni1 and nz normalize the coordinate span
of the ground plane. Hence
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where T; and Tiy are specified functions of
their arguments and directly related to topog-
raphy and 1id parameters.

For a sloping topography, for example,
Equation (7) takes the form

8 , 9 , -ng dH  ny-1 dh 3 3
9x, > an, H-h dx, * H-h dx, 9n, (8)

Using Equations'(é) and (7), Equation (1) becomes
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The boundary conditions are specified as follows

X3 = h(x3) A
- KijVC‘nh = £, (10)
X3 = H(Xl’t)
- 1(-ijvc-nH =0 (11)
X, = X_.X
i T 7o7b
- X45%Cn = 0, U550 >0

(UjC - KijVC) °n = UjCO,
where f, is the mean flux of concentration at the
surface (for puffs or plumes f, = 0}, iy is the

0jh <0 (A2)

unit vector normal to the topographic surface
while Ay is the outward directed unit vector
normal to the inversion lid surface; n is the out-
ward directed unit vector normal to the horizontal

. boundaries.

To account for deposition at the surface, the
flux at the ground is expressed in terms of a depo-
sition velocity, (Calder, 1968), as
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where V;, is the actual settling velocity, p is the
deposition velocity, and r is the reflection coef-
ficient. Varying r from 0 to 1 simulates the
effect of losses at the surface by deposition
(Rao, 1976).

The three-dimensional wind field and diffusion
coefficient distribution are required for solution
of Equations (9)-(13). The winds are assumed to
be known prior to solution of the equation set; the
diffusion tensor is obtained from an empirical
model — the off-diagonal terms are assumed to be
negligible (in global coordinates).

In order to specify the wind field throughout
the three-dimensional region, a subjective analysis
and interpolation scheme is used to calculate a
first-guess wind field based on available data,
i.e., wind speeds and directions obtained from
instrumented towers and NWS data. The mean
velocity field is assumed parallel to the ground.
A mass consistent wind field model is then used to
calculate corrections to the interpolated wind
vectors at each node point such that contimiity is
satisfied, i.e., )

o5
5;; =0 (14)
Based on the techniques of Dickerson (1975) and
Sherman (1977), a Sasaki variational statement is
minimized to determine the mass-consistent correc-
tion to the initial velocity field. The Poisson
equation of Lagrangian multipliers obtained from
the Euler-Lagrange equations are solved by a
three-dimensional strongly implicit procedure
(Pepper and Harris, 1978). Only a few iterations
are normally required for each time step. The
velocity components are readjusted with the con-
verged values of the Lagrangian multipliers.
Direct solutions can also be obtained with cyclic
reduction/fast Fourier transform techniques; this
is presently being undertaken.

An O'Brien (1970) K-theory model is used
in conjunction with similarity theory to de-
termine the diffusion coefficient distribution
(Yu, 1977, and Liu and Durran, 1977). Surface
similarity theory is used to calculate Kiz
from the Monin-Obukhov universal relations with
measured wind velocities and temperatures from
an instrumented TV tower within the transition
layer region (x3 ~ 60 m). The O'Brien cubic
profile is then used to calculate the vertical
diffusivity above the transition layer region
to the top of the mixing layer. This procedure
was also used by Pepper and Kern (1978) to model
atmospheric dispersion with linear finite element
(chapeau functions) and cubic spline methods.



THE NUMERICAL MODEL

Equation (9) can be expanded and written
in global coordinates as
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where the general teﬁsor notation has been trans-
formed to x,(n;) = 8(x), x2(np) = n(y),
x3 = p(2), X = x3(1) - xp(1), Y = x54(2) - xp(2)

and Z = H(xj,t)-h(xi), i =1,2.
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The vertical velocity, W, is given as

- dh 3z o9h 37 3z

W= w-U (53 + p 5@) -V <an + P an) - P 3t (16)

Equation (15) has been reduced by neglecting terms
containing dh/3§, 9h/3n, 9Z/38, and 3Z/dn, as

done by Reynolds, et al (1973). Equation (15) is

split into two equations such that
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Successive solutions to Equation (17) give the
final solution at one time step.

The method of second moments (Egan and
Mahoney, 1972) is used to solve Equation (17).
The method calculates the zeroth, first, and
second moments of the concentration within a mesh
and then advects and diffuses the concentration
by maintaining conservation of the moments. The
moments correspond to the mean concentration,
center of mass, and scaled distribution variance
(moment of inertia), respectively, and are given
by the relations ’
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where §; denotes the relative displacement of
material within the ith cell and varies from

-0.5 to +0.5 (corresponding to the left and right
hand extreme boundaries of a cell); Fj is the
first moment, and Rj is the second moment,

For a simple rectangular mesh, the integrals are
evaluated by summation for each grid element in
terms of the concentration distributions of the

portions remaining and newly transported in for
each successive time step. Figure 1 shows
scaling parameters used to advect a distribution
in one, two, or three dimension. For illustra-
tion, the transport of a single cell of concen-
tration (peak value = 100) is shown in Figure 2
for two-dimensional advection. Note the single
cell is advected without numerical dispersion

or computational damping errors. Similar tests
on hyperbolic equations including finite differ-
ence and finite element techniques are discussed
by Long and Pepper (1976) and Baker, et al
(1978). ’ :
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c) Three Dimensional Advection

FIGURE 1. Scaling Parameters Used in the
Advection of a Cell of Concentration

Bquation (17b) is recast as an algebraic
equation system using cubic spline interpolation
to establish derivatives. For example, the
equation

ac _ ?%
ot - BXZ =0 (2})
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is solved by letting F = =z such that
b
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F values are solved by the relation

Axy Axy + Axi4q )
< Fi—l + —————3—————-F1 +
Axj41 Fi = (C341-€i) _ (€5-Ci-1)
6 1 - A.‘(i+1 A.xi
(23)

where Axi = xj-xq_1 and Bxj.1 = Xj41-%X5



A slightly different expression is obtained for
first derivative values but the recursion rela-
tion still retains its tri-diagonal nature as in
Equation (23). Equation (17b) can either be
solved by time-splitting the equation into three

one-dimensional relations, or solved with a tri-tri-

diagonal algorithm (von Rosenberg, 1969) in an
alternating direction sequence. The method of
cubic splines was chosen in lieu of other methods
(e.g., chapeau functions) because of its ability
to easily accommodate variable grid spacing with
minimal computational dispersion errors (Pepper
and Kern, 1978) and ease in handling boundary
conditions.*
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FIGURE 2. Advection of a Cell of Concentration
(C=100) in Twn Dimensions; U=(1,-1,0),
AX=AY=1; At=0.5

NUMERICAL RESULTS

The computational domain normally consists
of 10,890 cells; 33 cells in the longitudinal
direction (§), 33 cells in the lateral direction
(n), and 10 levels in the vertical direction (p).
Mesh spacing can either be arbitrarily set (such
as a telescoping grid network) or equally spaced
with A8 = An. The vertical spacing 1s estab-
lished between ground level values for topography
and the height of the lid. User input values
for the remaining levels, i.e., levels corre-
sponding to instrumented tower locations, are
automatically transformed to non-dimensional’
values such that 0 < p < 1 throughout the compu-
tational domain.

¥ In instances where advection is the dominant
means of transport, second order central
difference techniques are adequate in repre-
senting the diffusion terms, ’

To assess model accuracy, the advection of
a continuous area source was analyzed using a
six cell source, each with a unit release

" advected in a two-dimensional constant wind

field. Figure 3 compares numerical predictions
to the analytical solution (Pedersen and Prahm,
1974). The results are nearly identical, with
computed peak centerline values as well as the
width of the plume accurately maintained. All
remaining values in the computational domain are
zero, in contrast to predictions using standard
finite difference proccdures (which tend to
produce wider plume width and associated loss of
centerline concentration). The numerical values
are identical to those of Pedersen and Prahm
(1974) obtained using a two-dimensional method
of moments technique. In both cases, a width
correction procedure has heen used to eliminate
small lateral dispersion at the plume edge.
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Analytical Solution (Pedersen & Prahm, 1974)
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Numerical Solution

FIGURE 3. Advection of an Area Source (Q=1/cell)
U=(1,1,0); AX=AY; At=0.5

A test of two-dimensional advection-diffusion
in the x-y plane is shown in Figure 4 for a con-
tinuous area source emission comsisting of four
cells each containing 250 units. Analytical
results (assuming Fickian diffusion) were obtained
by Christensen and Prahm (1976). Lateral diffu-
sion (Ky) was set equal to 0.10 m®/s with Ky =
Kz = 0. Advection occurred only in the longitudi-
nal direction (§) with U =1 m/s, V = W =0 m/s.
This test case was also analyzed by Christensen
and Prahm (1976) with a pseudospectral method.
Peak ccnterline values are predicted by the
numerical model within 3 percent (average) of the
analytical values. The lateral spread of concen-
tration is nearly identical, deviating by only a
few percent within each cell.
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FIGURE 4. Advgction-Diffusion from Four Sources
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Dispersion of a continuous source over a hill
is shown in Figure 5. The effect of source loca-
tion and downwind dispersion pattern about bluff
bodies has been analyzed by Hunt and Mulhearn
(1973) and Brighton (1978). 1If the source is be-
low the peak of the hill and the velocity light,
part of the concentration will bifurcate around
the hill (Figure 5Sa,b). When the source is at
peak height or above, the ground level concentra-
tion is perturbed such that the maximum value
occurs at peak height. As the wind velocity in-
creases, entrainment of the concentration begins
to occur in the wake of the hill (providing recir-
culation occurs). In these two tests, = 100
m?/s with neutral stability. Emphasis has not
been placed on the appropriate turbulence diffu-
sion coefficients (or methodology) but on the
ability of the transformed moment/cubic spline
code to portray physically realistic dispersion
patterns. Other tests were conducted but are rot
shown because of space limitations. In order to
visualize the spread of concentration about the
hill, particles* are used to represent discrete
amounts of concentration. The scatter of
particles downwind of the hill is due to the per-
turbation of the wind field about the hill.

a. RELEASE HEIGHT = 50m

b. RELEASE HEIGHT = 150m

FIGURE 5. Dispersion Over a H111; U=lg/s;
k=F(2)5 k=100 m?/s

*Particles within each cell based an the
total mass wWithin each cell volume.

The effect of a series of surface irregular-
ities on a continuous elevated emission is shown
in Figures 6-7. Figure 6 shows the distribution
of the ground plane, along with concentration
isopleths and mass consistent wind field in the
§-p plane of the computational domain. The con-
tinuous release occurs at a height of 200 m at
the left-center cell denoted with a dot (Figure
6a). A 200 m peak surface elevation occurs 11 km
downwind from the source. The height of the 1lid
is kept constant at 650 m; grid intervals are
Ax =A y = 1000 m and Az = 100 m (equally incre-
mented). The source rate is equal to 1 gm/s and
the atmospheric stability condition assumed neu-
tral. The transport coefficients are Ky = 33 m?/
sec and K, obtained from Pasquill stability curves
at 1000 m distances (Slade, 1968). The initial
velocity field is given as U = [5(z/0.2)°:'%, o,
0] m/s. 1In Figure 6b, the length of an individual
vector denotes the magnitude of the wind speed;
the vertical scale is increased to enhance visual-
ization of the small vertical velocities. The
wind field is held constant after readjustment.
Essentially steady-state concentration isopleths
are shown in Figure 6c. For reference, Figure 6d
illustrates centerline topography; maximum ground
level concentration occurs at the peak elevation.

S |!. ;s -mun Mn\ [
b) Concentration Isopleths at t = 1 hour; Wind Vectors
Drawn for Steady State Velocities (Vertical Velocity
Component Increased to Enhance Visualization)
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c) Concentration Isopleths at t = 4 hours (. Steady State)

20 e release point

7
(m)
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d) Topography in the x-z Plane at y = %

FIGURE 6. Concentration Isnpleths in the §-p
’ Plane at n=1/2 (Dotted Lines Denote C/Q

Values in m~3)



For steady-state (non-varying winds and flat sur-
faces) concentration isopleths generally become
smoothly distributed throughout the vertical
plane. At this specific release height, the to-
pography causes the vertical distribution to be
perturbed at locations corresponding to surface
peaks. A decrease in lid height also causes an
increase in ground level maximum at peak height
since the effective mixing region over the peak
is decreased (Anthes and Seaman, 1976).

The effect of this topography is more
evident in Figure 7 where ground level center-
line C/Q values are plotted as a function of
longitudinal distance. The computed solutions
in both cases agree reasonably well with the
Gaussian plume analytical solution adjusted for
topography by Kao (1977).

Validation tests of actual releases of
85kr from the Savannah River Plant (SRP) for
which experimental data are available are
presently being undertaken. Data which has been
accumulated over a two-year period consists of
wind speeds and directions (from the seven tower
network within SRP and the 330 m WJBF-TV tower),
ground level concentrations at 13 receptor sites,
source terms (combined) from the two release
areas, vertical temperatures (TV-tower), and
acoustic sounder records (inversion height
determination). Detailed comparison will be
prescnted at a later date, (Pendergast, 1977,
1978).
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FIGURE 7. Ground Level Centerline C/Q Values
With and Without Topography

CONCLUSION

A three-dimensional method of moments

_ numerical solution algorithm has been used

to predict pollutant advection within the envi-
ronment. The algorithm employs a quasi-
Lagrangian scheme to minimize numerical disper-
sion error, with the moment distribution
providing sub-grid scale resolution. Cubic
spline interpolation functions are used to
calculate spatial derivatives appearing in the
diffusion terms. Both techniques are computa-
tionally efficient and relatively easy to use.
The technique of fractional steps is used to
reduce programming complexity. Topography and
variable lid height are incorporated into the
model by transforming the governing equations.
Either assumed wind field values or measured
wind data are made mass-consistent by performing
a Sasaki variational analysis over the entire
mesh.

Model results agree with analytical solu-
tions for simple releases over flat surfaces
under ideal conditions. Similarly, the three-
dimensional numerical results agree with steady
state analytical results for ground.level values
over a horizontal variable terrain. However,
the principle advantage of the three-dimensional
model is its ability to calculate concentration
values for variable wind conditions over complex
terrain, with a minimum of numerical error.

The embedding of moment distributions within
finite element basis functions is currently being
investigated. Further generalization of the
computer code is also being undertaken for use in
water transport and engineering reactor problems.
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