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INTRODUCTION 

Under ideal conditions, disp~rsion can be 
reasonably predicted with analytical methods, 
such as Gaussian puff/plume theory (Pasquill, 
1974; Shir and Sheih, 1974 ; Gifford, 1968; anti 
Lamb and Neiburger, 1971). Gaussian puff/plume 
models still continue to be used with reasonable 
success even when pushed beyond their intended 
limits. However, analytical methods are typically 
inflexible under variable wind conditions, par­
ticularly in cases where dispersion occnrs over 
i:t-r~gular surfaces. An alternative to these 
constraints appears to be possible at the present 
time only by the use of sophisticated numerical 
models. A review of numerical methods for pre­
dicting air pollution dispersion is given by 
Pasquill (1974), Gifford (1975), and Hoffman, 
et al (1977). 

A specific need exists for more detailed 
study into the effect of surface irregularities 
on dispersion. The Pasquill-Gifford disper­
sion curves are valid only for level, nniform 
terrain -which is ideal in most instances. The 
roughness can normally be accounted for by using 
on-site turbulence data, but such data are 
usually sparse. As a consequence, many models 
omit the effect of topography. Studio~ have 
been undertaken to calcuiate flow fields and 
dispersion patterns over complex terrain. 
(Reynolds, et al, 1973; Yock~, et al, 1977; 
Lantz, et al, 1977; Anthes and Seaman, 1976; and 
Egan and Bass, 1976). 

The requirement is to establish an accurate 
and efficient numerical solution algorithm for 
th:ree-dimfm~donal me!;o~calc atn.o:;ph~ric trans­
port and diffusion over irregular terrain. 
Herein, a three-dimP.nsional method-of-moments 
technique i:; employed to calculate pollutant ad­
vection. The method is based on the calculation 
of moment distribu~ions of a concentration 
within a cell (volume), as developed by Egan 
and Mahoney (1972), and used by Pedersen and 
Prahm (1974), Fischer (1977), and Pepper and 
Long (1978). By summing moments over the solu­
tion domain, and using a Lagrangian advection 
scheme, concentration can be transported with­
out generation of numerical dispersion error. 

Because the method maintains subgrid scale reso­
lution, prohlems involving steep gradients can 
be calculated without significant computational 
damping. 

Three-dimensional diffusion is solved by 
the method of cubic splines (Price and MacPherson, 
1973; Rubin and Graves, 1975; Ahlberg, et al, 
1967). The cubic spline method is based on 
continuous-curvature cubic spline relations used 
as interpolation functions for first and sec.ond 
derivative terms. After solution of the diffu­
sion terms, the first and second moments are 
recalculated to ensure continuity with the ad­
vection terms. To reduce computer programming 
complexity, the procedure of fractional steps 
(Yanenko, 1971) is used to calculat.P. the three­
dimensional solutions. A coordinate transforma­
tion is employed to transform the terrain-lid 
variability into regular intervals in the com­
putational domain. 

Simple tests are conducted to determine 
the accuracy of the numerical methods. The· 
effect of topography on a continuous emission 
is examined under ideal conditions and the re­
sults compared with values obtained from an 
analytical Gaussian plume rP.J ati.on. 

PROBLEM STATEMENT 

The cell-averaged transport equation 
requiring solution is (Deardoff, 1973): 

ac 
-+ 
Clt 

a + - -.:-o 
~x. [UjC + U·c'] + S = 0 
a J J 

(1) 

where the overbar signifies the mean value, 
superss_ript prime denotes deviation ~rom th~ 
mean, Uj is the wind field (l~j$3), C is the mean 
concentration, and S is any source/sink term. 
The correlation ujc' is typically expressed in 
terms of an effective diffusion coefficient 

(2) 

wh~~·~. K~j 1S a (directional) diffusion coefficient. 
An 1n1t1al condition corresponding to a concen­
trated or continuous release is· 



' 
C (xi,t=O) = C0 (xi) (3) 

For mesoscale analysis, the solution domain 
is the three-dimensional space bounded by the 
topography, the mixed height, and a suitable box 
surrounding the rel~ase location. The coordinate 
transformation used to account for the terrain-lid 
variability is (Reynolds, et al, 1973) 

i = 1,2 (4) 

where h and H are topography and lid parameters, 
respectively. Horizontal and lateral boundaries 
are transformed as 

where xo(i) and Xb(i) denote boundaries of xi. 
Both n1 and n2 normalize the coordinate span 
of the ground plane. Hence 

a a 
--+- + 
at at 

a anj dH 
ar;-:- ~ dt 

J 

= aat + rj (H, t) a~j 

anK dH anK dh 
--- --- + --- ---aH dXj Clh dxj 

where rj and rjk are specified functions of 
their arguments and directly related to topog·­
raphy and lid parameters. 

For a sloping topography, for example, 
Equation (7) takes the form 

__ a_ + __ a_ + .::..!ll. ciH + .!l.L:.!_ dh a 
ax 2 an 2 H-h dx 2 H-h dx 2 ~ 

(5) 

(6) 

(7) 

(8) 

Using Equations (6) and (7), Equation (1) becomes 

ae 
-- + at 

+ s = 0 (9) 

The boundary conditions are specified as follows 

x3 = h(Xi) 
Kij'YC·~h fo (1 0) 

x3 H()ci, t) 

K · · 'VC •n 1.J H 0 (11) 

x. xo,xb 
~ 

Kij'VC•n 0, oj.r; > 0 

cujc K · · 'VC) 
A 

iijc 0 , uj·n < 0 0 n lJ (12) 

where f 0 is the mean flux of concentration at the 
sul'fat:~ (fuT puffs or plumes f 0 = U), flh is the 

unit vector normal to the topographic surface 
while nH is the outward directed unit vector 
normal to the inversion lid surface; n is the out­
ward directed unit vector normal to the horizontal 
boundaries. 

To account for deposition at the surface, the 
flux at the ground is expressed in terms of a depo­
sition velocity,. (Calde~ 1968), as 

ac ac 
Kii axi "" (1-r) Kii axi ' i = 3 

(13) 

where Vg is the actual settling veloc,ity, pis the 
~eposit1on velocity, and r is the reflection coef­
ficient. Varying r from 0 to 1 simulates the 
effect of losses at the surface by deposition 
(Rao, 1976). 

The three-dimensional wind field and diffusion 
coefficient distribution are required for solution 
of Equations (9)-(13). Thc·winds are assumed to 
be known prior to solution of the equation set; the 
diffusion tensor is obtained from an empirical 
model - the off-diagonal terms are assumed to be 
negligible (in global coordinates). 

In order to specify the wind field throughout 
the three-dimensional region, a subjective analysis 
and interpolation scheme is used to calculate a 
first-guess wind field based on available data, 
i.e., wind speeds and directions obtained from 
instrumented towers and NWS data. The mean 
velocity field is assumed parallel to the ground. 
A mass consistent wind field model is then used to 
calculate corrections to the interpolated wind 
vectors at each node point such that continuity is 
satisfied, i.e., · 

(14) 

Based on the techniques of Dickerson (1975) and 
Sherman (1977), a Sasaki variational statement is 
minimized to determine the mass-consistent correc­
tion to the initial velocity field. The Poisson 
equation of Lagrangian multipliers obtained from 
the Euler-Lagrange equations are solved by a 
three-dimensional strongly implicit procedure 
(Pepper and Harris, 1978). Only a few iterations 
are normally required for each time step. The 
velocity components are readjusted with the con­
verged values of the Lagrangian multipliers. 
Direct solutions can also be obtained with cyclic 
reduction/fast Fourier transform techniques; this 
is presently being undertaken. 

An O'Brien (1970) K-theory model is used 
in conjunction with similarity theory to de­
termine the diffusion coefficient distribution 
(Yu, 1977, and Liu and Durran, 1977). Surface 
similarity theory is used to calculate K~ 3 
from the Monin-Obukhov universal relations with 
measured wind velocities and temperatures from 
an instrumented TV tower within the transition 
layer region (x3 ~ 60 m). The O'Brien cubic 
profile is then used to calculate the vertical 
diffusivity above the transition layer region 
to the top of the mixing layer. This procedure 
was also used by Pepper and Kern (1978) to model 
atmospheric dispersion with linear finite element 
(chapeau functions) and cubic spline methods. 



THE NUMERICAL MODEL 

Equation (9) can be expanded and written 
in global coordinates as 

a czc) ... ~ (uzc\ ... ~ (vzc) ... ~ewe) 
at Cl§ x 1 an Y Clp 

:2 ()()§ (KxZ ~~) + fr Cl(ln (KYZ ~~) + Clap (K; ~~) + SZ 

(15) 

where the general tensor notation has been trans­
formed to x 1 (n 1 ) = §(x), x2Cn 2) = n(y), 
x 3 =_p(z), X= xa(l) - Xb(l), Y = xa(2) - xb(2) 
and Z = H(xi,t)-h(xi), i = 1,2. 

The vertical velocity, W, is given as 

(
ah az) (ah az) az w = w-u TI ... p TI - v an ... p an - p at (16) 

Equation (15) has been red~ced by neg!ecting terms 
containing Clh/Cl§, Clh/Cln, ClZ/Cl§, and ClZ/Cln, as 
done by Reynolds, et al (1973). Equation (15) is 
split into two equations such that 

a CZc) ~ fuze_\ ... ~ (vzc \ ... ~ ewe) 
~ + a§ \ x j an \ Y I ap 

aczc) 
Clt 

sz = 0 

(17a) 

(17b) 

Successive solutions to Equation (17) give the 
final solution at one time step. 

The method of second moments (Egan and 
Mahoney, 1972) is used to solve Equation (17). 
The method calculates the zeroth, first, and 
second moments of the concentration within a mesh 
and then advects and diffuses the concentration 
by maintaini.ng .conservation of the moments. The 
moments correspond to the mean concentration, 
center of.mass, and scaled distribution variance 
(moment .of inertia), respectively, and are given 
by the relations 

cJ!+l 
~ 

2: Cn(§i) 

F~+l 2: cnC§;i) Fl) 
~ 

~ c~+l 
~ 

where §i denotes the relative displacement of 
material within the ith cell and varies from 

(18) 

(19) 

-0.5 to +0.5 (corresponding to the left and right 
hand extreme boundaries of a cell); Fi is the 
f:i,:rst mnment, and Ill is Lh~ seconci momt:nt, 
For a slm]Jle rectangular mesh, the integrals are 
evaluated by summation for each grid element in 
terms of the concentration distributions of the 

portions rema~n~ng and newly transported in for 
each successive time step. Figure 1 shows 
scaling parameters used to advect a distribution 
in one, two, or three dimension. For illustra­
tion, the transport of a single cell of concen­
tration (peak value = 100) is shown in Figure 2 
for two-dimensional advection. Note the single 
cell is advected without numerical dispersion 
or computational damping errors. Similar tests 
on hyperbolic equations including finite differ­
ence and finite element techniques are discussed 
by Long and Pepper (1976) and Baker, et al 
(1978). 

i+l 

-0.5 

a) One Dimensional ~dvection 

Jtl 

i+l 

b) Two Dimensional Advection 

y 

L. 1+1. j+l 

i.j 

c) Three DimeF1sion11l Arlvectton 

FIGURE 1. Scaling Parameters Used in the 
Advection of a Cell of Concentration 

Equation (17b) is recast as an algebraic 
equation system 11si.ng cubic !3pline interpolation 
to establish derivatives. For example, the 
equation 

ClC a 2c 
at- --0 Clx 2 -

(21) 

is solved by letting F a 2c such that a? 
ac F 0 at- (22) 

F values are solved by the relation 

ili<i b.x· ... b.xi+l 
-6- Fi-1 + ~ Fi + 

3 

(Ci+l-Ci) _ (C; -Ci-1) 
8xi+l 8-'-;_ 

(23) 

where ili<i_ 



A slightly different expression is obtained for 
first derivative values but the recursion rela-
tion still retains its tri-diagonal nature as in 
Equation (23). Equation (17b) can either be 
solved by time-splitting the equation into three 
one-dimensional relations, or solved with a tri-tri­
diagonal algorithm (von Rosenberg, 1969) in an 
alternating direction sequence. The method of 
cubic splines was chosen in lieu of other methods 
(e.g., chapeau functions) because of its ability 
to easily accommodate variable grid spacing with 
minimal computational dispersion errors (Pepper 
and Kern, 1978) and ease in handling boundary 
conditions.* 
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FIGURE 2. Advection of a Cell of Concentration 
(C=lOO) in Two Dimensions; U~(l,-1,0), 
AX=t:.Y=l; t.t=0.5 

NUMERICAL RESULTS 

The computational domain normally consists 
of 10,890 cells; 33 cells in the longitudinal 
direction (§), 33 cells in the lateral direction 
(n), and 10 levels in the vertical direction (p). 
Mesh spacing can either be arbitrarily set (such 
as a telescoping grid network) or equally spaced 
with ll§ • t:.n. The vertical 3paci1~ is estab­
lished between ground level values for topography 
and the height of the lid. User input values 
for the remaining levels, i.e., levels corre­
sponding to instrumented tower locations, are 
automatically transformed to non-dimensional· 
values such that 0 < p < 1 throughout the compu­
tational domain. 

• !n ·j n<;tances where advection is the dominant 
means of transport, second order central 
difference techniques are adequate in repre­
senting the diffusion terms. 

To assess model accuracy, the advection of 
a continuous area source was analyzed using a 
six cell source, each with a unit release 
advected in a two-dimensional constant wind 
field. Figure 3 compares numerical predictions 
to the analytical solution (Pedersen and Prahm, 
1974). The results are nearly identical, with 
computed peak centerline values as well as the 
width of the plume accurately maintained. All 
remaining values in the computational domain are 
zero, in contrast to predictions using standard 
finite difference procedures (which tend to 
produce wider plume width and associated loss of 
centerline concentration). The numerical values 
are identical to those of Pedersen and Prahm 
(1974) obtained using a two-dimensional method 
of moments technique. In both cases, a width 
correction procedure has been used to eliminate 
small lateral dispersion at the plume edge. 
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FIGURE 3. Advection of an Area Source (Q=l/cell) 
U=(l,l,O); t:.X=t:.Y; t:.t=0.5 

A test of two-dimensional adve-ction-diffusion 
in the x-y plane is shown in Figure 4 for a con­
tinuous area source emission consisting of four 
cells each containing 250 units. Analytical 
results (assuming Fickian diffusion) were obtained 
by Christensen and Prahm (1976). Lateral diffu­
sion (Ky) was set equal to 0.10 m2/s with Kx = 
Kz = 0. Advection occurred only in the longitudi­
nal direction (~) with U = 1 m/s, V = W = 0 m/s. 
This test case was also analyzed by Christensen 
and Prahm (lq76) with u pseuuospectral m~thod. 
Peak centerline values are predicted by the 
numerical model within 3 percent (average) of the 
analytical values. The lateral spread of concen­
tration is nearly identical, deviating by only a 
few percent within each cell. 
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FIGURE 4. Advection-Diffusion from Four Sources 
(Q=250/cell); U=(l,O,O); k =0.1; ~X=6Y=l 
~t=0.5 y 

Dispersion of a continuous source over a hill 
is shown in Figure 5. The effect of source loca­
tion and downwind dispersion pattern about bluff 
bodies has been analyzed by Hunt and Mulhearn 
(1973) and Brighton (1978). If the source is be­
low the peak of the hill and the velocity light, 
part of the concentration will bifurcate ~round 
the hill (Figure 5a,b). When the source 1s at 
peak height or above, the ground le~el coBc.:entra­
tion is perturbed such that the max1mum value 
occurs at peak height. As the wind velocity in­
creases, entrainment of the concentration begins 
to occur in the wake of the hill (providing recir­
culation occurs). In these two tests, ~ = 100 
m2 /s with neutral stability. Emphasis has not 
been placed on the appropriate turbulence diffu­
sion coefficients (or methodology) but on the 
ability of the transformed moment/cubic spline 
code to portray physically realistic dispersion 
patterns. Other tests were conducted but are riot 
shown because of space limitations. In order to 
visualize the spread of concentration about the 
hill, particles* are used to represent discrete 
amounts of concentration. The scatter of 
particles downwind of the hill is due t~ the per­
turbation of the wind field about the h1ll. 

~ .. 
a. RELEASE HEIGHT 50m 

b. RELEASE HEIGHT = 150m 

FIGURE 5. Dispersion Over d Htll; U=l9/s; 
k ~f(z)• k =100 mz;s z ' y 

*Particles within each cell based on the 
total mass Within each cell volume. 

The effect of a series of surface irregular­
ities on a continuous elevated emission is shown 
in Figures 6-7. Figure 6 shows the distribution 
of the ground plane, along with concentration 
isopleths and mass consistent wind field in the 
§-p plane of the computational domain. The con­
tinuous release occurs at a height of 200 m at 
the left-center cell denoted with a dot (Figure 
6a). A 200m peak surface elevation occurs 11 km 
downwind from the source. The height of the lid 
is kept constant at 650 m; grid intervals are 
~x =~ y = iooo m and ~z = 100 m (equally incre­
mented). The source rate is equal to 1 gm/s and 
the atmospheric stability condition assumed neu­
tral. The transport coefficients are Ky =33m 2

/ 

sec and K obtained from Pasquill stability curves 
at 1000 mzdistances (Slade, 1068). The initial 
velocity field is given as U = [5(z/0.2) 0 '

14
, 0, 

0] m/ s. In Figure 6b, the length of an individual 
vector denotes the magnitude of the wind speed; 
the vertical scale is increased to enhance visual­
ization of the small vertical velocit]es. The 
wind field is held constant after readjustment. 
Essentially steady-state concentration isopleths 
are shown in Figure 6c. For reference, Figure 6d 
illustrates centerline topography; maximum ground 
level concentration occurs at the peak elevation. 

l 
(m) 

a) Topographic Surface 
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b) Concentration Isopleths at t = 1 hour; Wind Vectors 
Drawn for Steady State Velocities (Vertical Velocity 
Component Increased to Enhance Visualization) 
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c) Concentration Isopleths at t = 4 hours (- Steady State) 

l. km 

d) Topography in the x-z Plane at y = ~ 

FIGURE 6. Concentration Isnpleths in the 9-p 
Plane at n=l/2 (Dotted Lines Denote C/Q 
Values in m- 3 ) 



ror steady-state (non-varying winds and flat sur­
faces) concentration isopleths generally become 
smoothly distributed throughout the vertical 
plane. At this specific release height, the to­
pography causes the vertical distribution to be 
perturbed at locations corresponding to surface 
peaks. A decrease in lid height also causes an 
increase in ground level maximum at peak height 
since the effective mixing region over the peak 
is decreased (Anthes and Seaman, 1976). 

The effect of this topography is more 
evident in Figure 7 where ground level center­
line C/Q values are plotted as a function of 
longitudinal distance. The computed solutions 
in both cases agree reasonably well with the 
Gaussian plume analytical solution adjusted for 
topography by Kao (1977). 

Validation tests of actual releases of 
85 Kr from the Savannah River Plant (SRP) for 
which experimental data are available are 
presently being undertaken. Data which has been 
accumulated over a two-year period consists of 
winrl speeds and directions (from the seven tower 
network within SRP and the 330m WJBF-TV tower), 
ground level concentrations at 13 receptor sites, 
source terms (combined) from the two release 
areas, vertical temperatures (TV-tower), and 
acoustic sounder records (inversion height 
determination). Detailed comparison will be 
presented at a later date, (Pendergast, 1977, 
1978). 
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FIGURE 7. Ground Level Centerline C/Q Values 
With and Without Topography 

CONCLUSION 

A three-dimensional method of moments 
numerical solution algorithm has been used 
to predict pollutant advection within the envi­
ronment. The algorithm employs a quasi­
Lagrangian scheme to minimize numerical disper­
sion error, with the moment distribution 
providing sub-grid scale resolution. Cubic 
spline interpolation functions are used to 
calculate spatial derivatives appearing in the 
dUfusion terms. Both techniques are computa­
tionally efficient and relatively easy to use. 
The technique of fractional steps is used to 
reduce programming complexity. Topography and 
variable lid height are incorporated into the 
model by transforming the governing equations. 
Either assumed wind field values or measured 
wind data are made mass-consistent by performing 
a Sasaki variational analysis over the entire 
mesh. 

Model results agree with analytical solu­
tions for simple releases over flat surfaces 
under ideal conditions. Similarly, the three­
dimensional numerical results agree with steady 
state analytical results for ground.level values 
over a horizontal variable terrain. However, 
the principle advantage of the three-dimensional 
model is its ability to calculate concentration 
values for variable wind conditions over complex 
terrain, with a minimum of numerical error. 

The embedding of moment distributions within 
finite element basis functions is currently being 
investigated. Further generalization of the 
computer code is also being undertaken for use in 
water transport and engineering reactor problems. 
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