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Abstract

Magnetohydrodynamic flows of liquid metals
through sharp elbow ducts with rectangular cross
sections and with thin conducting walls in the
presence of strong uniform magnetic fields are
examined. The geometries simulate the poloidal-
toroidal coolant channels in fusion tokamak
blankets.  Analysis for obtaining the three-
dimensional numerical solutions are described.
Results for pressure drop, velocity profiles and
flow distribution are predicted for the upcoming
Joint ANL/KfK sharp elbow experiment. Results
from a parametric study using fusion relevant
parameters to investigate the three-dimensional
pressure drop are presented for possible applica-
tions to blanket designs.

I. Introduction

Ina tiquid-metal-cooled blanket of a tokamak
reactor, the pressure gradient in the 1liquid
metal is proportional to the square of the mag-
netic field component which is perpendicular to
the flow direction. This is because the motion
of the 1liquid metal across the magnetic field
induces electric currents in the fluid as well as
in the electrically conducting coolant channel
walls. The currents in the liquid metal interact
with the magnetic field to produce an electro-
magnetic body force opposing the motion. In the
presence of the large toroidal magnetic field,
Tiquid metal flowing in the poloidal direction at
the first wall could result in excessive material
stresses and require large pumping power. If the
flow direction is aligned parallel to the strong
toroidal field, then the pressure gradient will
be substantially reduced, by a factor of 100 for
a typical toroidal to poleidal field ratio of 10
to 1. A blanket design with toroidal first wall
coolant channels was first proposed in the Blan-
ket Comparison and Selection Study [1] and more
recently was adopted in the blanket design for
NET [2). In both designs, the flows to the first
wall coolant channels are fed by poloidal ducts
or a combination of poloidal and radial ducts.
However, several issues were left unanswered,
which may be critical to the feasibility and

J. S. Walker, University of I1linois
Department of Mechanical and Industrial
Engineering
Urbana, I1linois 61801

attractiveness of these designs, regarding flow
distributions and the pressure drops associated
with the turning of the flow from poloidal to
toroidal.

In this paper, ve examine the flow of a
Tiquid metal through two conducting rectangular
ducts which are beveled at one end and joined
together to form a 90° miter corner. The uniform
magnetic field is almost perpendicular to one
duct, hereafter referred to as the poloidal duct,
and almost parallel to the other duct, known as
the toroidal duct. Figure 1 shows the two orien-
tations of the magnetic field relative to the
centerline axes of the ducts. The backward elbow
(Fig. 1b) is obtained by rotating the magnetic
field lines 90° clockwise in the forward elbow
geometry (Fig. la). The flow paths and flow dis-
tributions through the region near the elbow are
markedly different in these two geometries, but
our results show that the flow is never stagnant
in a large region near the bend nor in the toroi-
dal duct as was previously predicted by Hunt and
Holrolyd [3].

The scheme of analysis presented in this
paper is purely numerical in all regions of the
flow, and the finite difference solutions are
three dimensional. A hybrid analytical-numerical
scheme had been developed to treat the forward
elbow problem [4], and a particular backward
elbow problem in which the field lines form a 45°
angle with the ducts' centerline axes [5]. In
the hybrid scheme, the duct is treated as three
separate sectors; two of the three sectors are
semi-infinite straight constant cross sectional
area rectangular ducts which are joined together
by a variable cross sectional area duct sector.
Analytical solutions using eigenfunction expan-
sions are obtained for the variables in the
straight ducts, and finite difference numerical
solutions are obtained for the variable area
duct. These solutions are then matched at their
common boundaries by minimizing the sum of the
differences squared of the variables using the
Galerkin technique. The hybrid scheme is very
new for this type of problem and can be further
enhanced and refined through comparison of the



solutions with those obtained by the numerical
scheme as well as with experiments. The numeri-
cal scheme used in this paper has been previously
applied to various duct geometries and success-
tully validated by experimental data gathered at
the ALEX facility [6] over the past few years

The purely numerical scheme was developed for the
elbow problems to allow more flexibility in
specifying the physical and geometrical param-
eters in order to support the design of the
upcoming experiments which will be conducted
jointly by Argonne National Laboratory (ANL) and
Kernforschungzentrum Karlsruhe (KfK), and to
provide analytical support for the KfK blanket
design for NET. Just as importantly, the availa-
bility of the numerical solutions has since
resulted in improvement of the hybrid scheme.

II. Problem fFormulation

A. Forward Elbow

Figure la shows a schematic of the elbow
and the uniform planar magnetic field, B = Byy

The centerline axis of the toroidal duct forms an

angle 6; with the x-axis, where 45° < 6; < 90°,
and the angle between the poloidal duct and the
x-axis is 6, = 6; - 90°, -45° < 6, < 0°, The
dimensionless distances between the walls which
intersect the field lines are a, and a, for the
poloidal and toroidal ducts, respectiveﬁy. Here
all lengths are normalized by L, half the dis-
tance between the pair of walls which are paral-
lel (coplanar) to the field lines and are at z =
+1. To simplify the presentation of the analy-
sis, we assume duct symmetry about the z = 0
plane, so only half the duct is treated, i.e.,
for -1 < z ¢ 0. The walls are electrically
conducting with uniform wall conductance ratio
¢ =o0,t/c where o, and ¢ are the electrical
conductivities of the wall and the 1iquid metal,
and t is the dimensionless wall thickness. The
condition of equal conductance ratio for all
walls is only to simplify the notation in our
analytical presentation here. In fact the analy-
sis and numerical modeling employed in this work
allow for different values of ¢ for different
walls.

The ratio of the induced magnetic field
produced by currents in the metal walls and in
the 1iquid metal to the applied field is of nrder
of ¢ "Rm where

R, = noUL,

is the magnetic Reynolds number, g is the mag-
netic permeability of the 1iquid metal, and U_ is
the coolant charac.eristic velocity. For a self-
cooled blanket in a tokamak, ¢/ R, is at most of
order of 10°%; therefore, it is appropriate to

neglect the induced field.

In addition, in a tokamak blanket the
electromagnetic (EM) force is the dominant force
determining the flow and pressure distributions
throughout the 1iquid metal flow, except for thin
boundary layers and interior layers. This is
because the interaction parameter N, which rep-
resents the ratio of the EM force to inertial
force, and the Hartmann number M, which repre-
sents the square root of the ratio of the EM
force to viscous force, are typically of the
order of 10°-10° [1]. Here

=
"
o

and
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M = LBO[fL] :
puU

where p and v are the fluid density and kinematic
viscosity, respectively. The fact that N » 1 and
M » 1 greatly simplifies the analysis since the
inertial and viscous terms in the Navier-Stokes
equation can be neglected except in thin boundary
layers and interior layers where velocity gradi-
ents are large. There are two interior Jayers at
the x = x, = a, cos 6; - a5 sin 6; and x = 0 cross
sections. These interior layers separate the
duct into three regions [4], region I for x < X,
region IT for x, < x < 0, and region IIl for
x > 0.

A.1 Governing Equations

The inertialess, inviscid, dimen-
sionless equations governing the flow of a liquid
metal in the core {outside the boundary or inte-
rior layers) of the flow are

Vp =3 x§ (1a)
J= Vg evxy (1b)
v =0, (1c)
v-j =0. (1d)

Here p, j , ¥, and ¢ are the pressure, e\ect(ic
current dénsity, velocity, and electric potential
normalized by aUOBEL, oUB,, U and UL,

O'
respectively.



In the core, the x, y, z velocity
components u., V., W, and electric current den-
s1ty components Jxer dyer Jpe ave

. o,
u.(x,y,z) = —_ 2a
L (X,Y,2) - (2a)
a9, ap,
W.(X,¥,2) = = e— - —, 2b
(X, Y,2) w % (2b)

i

av, du,  aw, .
J — (x,¥,2)dy = - f l——« + ———] dy, (ec)
ay z

ax ad
Jxe(X,y,2) = ggf (2d)
Jae(X,y,2) = - f;;» (2e)
Jye(x,y,2) = g%f (2f)

where p_(x,z) is the pressure, which is constant
along magnetlc field lines by virtue of Eq. (la),
and ¢_(x,y,z) is the electric potential in the
core. The core potential varies linearly between
the electric potential at the top wall, ¢.(x,z),
and the electric potential at the bottom wall,
$,(x,2),

p(x,y,2) = @,(x,2)

- (29)
F[Belx,2) - byx,2)] |2 Yol1) ]

Yo (x) =y () [

where y (x) = x tan @ + a sec 6, with @ =8,, a
a, for x < X, and 6 = 6;, a = a; for x > X,
defines the coordinate of ihe top wa11, and y,(x)
= % tan 6, with 6 = 6, for x < 0 and 6 = 6; for x
>0, defwnes the coordlnate of the bottom wall.

The boundary conditions for the
core variables have been derived by Shercliff
[7]. At the top and bottom walls, the boundary
condition for the core velocity is

v o ®o=0. (3a)
If the wall thickness t « 1, the boundary condi-

tion for the core current at the wall/fluid
interface is

o = T, (3b)

where n is a unit vector normal to the wall into
the 11qu1d meta]. The electric potential at the
wall, ¢, % uniform through its thickness ne-
g]ectlno 0(t°) terms and % is the two-dimensional
Laplacian operator in the plane of the wall.

A.2 Reduced Governing Equations

The three-dimensional problem with
many unknowns in the core (pressure, potential,
three components of ve]ocity and three components
of current density) is completely solved once the
solutions for P_(x,z), @.(x, z) and ¢.(x,z) are
known. The equat1ons governing these variables
are provided by the boundary conditions (3a, b),

Integrating Eq. (2c) from y, to vy,
we have

Ve (x,¥,2) =V (X,¥,2)

2
W) =t
’ [ax2 azZJ

Conditions (3a, b) applied at the
bottom wall yields

v, = u, tan 6, at y =y, (5a)

cos 8 j,. - sin 8 j,. =

aZ 62 (Sb)
clcos? @ —~f3 + b , aty =y
az?

-

ox*

where 6 = 6, for x < 0 and @ = 6; for x > 0. The
boundary conditions (3a, b) app\1ed at the top
wall yields

v, =u tan 6, at y =y, (6a)

sin 6 J,. - cos € J,. =

P 2 (6b)

0

¢ lcos® 6 ——?ﬁ ——ff at y =y,
ax?® 322

At the side wall (z = -1), condi-
tion (3b) gives

3 2
Jpe =C { ¢S- + ¢5] at z = -1. (7)
ax? dy?




where ¢_(x,y) is the electric potential function
at the side wall at z = -1.

Substituting the core equations
into Eqs. (5-7), we arrive at the coupled partial
differential equations governing P_, ¢, ¢, and
¢,. For regions I and III, the equations are

L 2 P
¢ lcos? @ -—ff + 2 = sin 8 —
x: 9z Az
‘ (8a)
cos® 8
- a (¢b ¢t>’
& & P
clcos? @ m—fg + __?E = —sin @ -t
ax? 3z° az
(8b)
cos? 6
+ (B - )
a
° 9’ ap
c ¢s + ¢s - ¢ (X,—l), (BC)
x?:  dy? ax
a’p. &% : ) )
c + c _ sin 6 ._.?_t B ﬁ , (8d)
ax? 3z a dz az

where 6 = 61, a = a, for region I, and 6 = 6, a
= 3; for region III. In region II the correspond-
ing equations are

a? & aP
c lcos2 6; P, ¢‘] =sin 6y —

ax? 822 9z
(%a)
- sin 65 cos® 6 -—»———————-¢b _,¢t )
X +asin 6,
a9, & aP,
clsin® 6 o, 20 . cos 6, —=
éx? az? oz
(9b)
+sin2 6; cos 6, ;F—Eﬁ_—,
X +asin 6
& & ap
c és + & = - —= (x,-1), (9c)
ax® 9y’ 0%

1t

.| &
8 %x +a sin 6) __E] +

ax X 3z
(9d)
a 2
sin? 6, B, st e iy
T ooz dz

The boundary conditions necessary
for solving the above set of coupled partial
differential equations are provided by the pre-
scribed flow conditions at upstream and down-
stream of the duct, the symmetry condition at z =
0, the continuities of electric potential and
current density, and the conservation of total
volumetric flow rate.

At x = x,, upstream of the duct, and
at x = xy, downstream of the duct, the fully
developed flow conditions are prescribed. The
appropriate boundary conditions are

P. = P, = constant (10a)
0 0 )

-..?_t. = _?_b = ¢5 = 0, at x = X4 (IOb,C,d)
aIx ax X

and

P. =P, = constant (l1a)
0 d a9,

% _ %, %, at x = x; (l1b,c,d)
ax ax ax

The constants P, and P, (P, > P,)
are arbitrarily chosen. After the solution 1s
found, every variable is multiplied by a scaling
factor to get the desired volumetric flux such
that

Y. 0
f { U(X,y,Z) dz dy =a1
Yo ~

at every cross section.

At z = 0, the symmetry conditions
apply

< =0, (12a)
¢t=¢b=0

at z =0 (12b,c)

At each cross section, the continu-
ities of electric potential and currents at the
corners require that at y = y.:



B (X, ¥) =9 (x, - 1), (134)
34 a ad
cos 8 2 _sing 2 _ P 1y (b
ay ax 9z
and at y = y,:
B (X,¥p) =8p(x, - 1), (13c)
d 2 0
sing P _cose P L) ()
Ix ay 2z
where 6 = 01 for region I, 0, for region I11;
and for region 11 & = 6, in cond1ilon (13b), wh11e

@ = 6, in condition (13d)

The velocity in the O(M"?)
th1ckness of the side layer (Fig. 1c) at z = -1
is O(M y; thus the side layer carries an 0(1)
volumetric flux (see, for example, Ref. 8 for a
more detailed discussion of the side vayer). The
flow rate in the side layer is determined by the
electric potential at the side wall and the
electric potential in the core at z = -1:

f u dz =¢c(xr.yr"1)

s.(.

- @ (x,y) (14)

where J

s.l.

layer. Details of the side layer solution can be
ignored provided that the total flow in the side
layer plus the core remains constant at every
cross section, namely

indicates integration across the side

Y.
a7 [ Judz + f U, d%} dy = 0. (15)
ax y, |s-

L. .

Condition (15) is necessary because the solutions
for ¢., ¢,, ¢, and P_ completely determine
W (x y,-1) which gives the flow int~ or out of the
side Tayer.

Finally, the interior layers at x =
Xo and x = 0 do not carry any large 0(8) velocity
or o(l) e]ectr1c current where 6 1s the 1ay
thlckness wh1ch is (M%) if N » M2 or O(N
if N o« MY 2 [9]. Thus neglecting 0(8) terms a]]
core variables with the exception of v, and w_ are
continuous across; these layers and currents a]ong
the walls are also continuous. The role of the
interior layers is to match discontinuities in v,
and w_ between adjacent core regions.

The reduced coupled partial differ-
ential equations in ¢, ¢,, @,, and P_ together

I

with their boundary conditions are solved numeri-
cally using the finite difference method. The
numerical scieme is similar to that presented in
Ref. 8. Numerical solutions are obtained in all
regions of the duct.

B. Backward Elhow

The coordinate system, the duct and mag-
netic field orientations are shown in Fig. 1b,
here & < 0 and 6, > 0. The reduced governing
equations in ¢,, ¢b, ¢ and P_ and their boundary
conditions can be s1m1]ar1y derived and will not
be repeated. In the backward elbow there is only
one interior layer at x = 0. The lower part of
the layer (0 <y < a, sec 6,) separates the flow
in region 1 and the 1ower part of region II,
while the upper part of the layer separates the
upper part of region II and region III. In the
backward elbow, the value of AP_/3x is not con-
tinuous across the layer as is “the case in the
forward elbow, instead the integral of 8P_/@x over
y from bottom to top must be the same on both
sides of the layer [10]. This can Je obtained by
integrating the conservation of mass equation
over a z = constant section on both sides of the
layer

] % (0-,2)|1
a, sec —— ,Z
! ' ox
) % (0~ z)] (16)
- a. sec —_ , =
3 3 aX I

apP,
(a, sec B, + a; sec 6;) m (0*, zﬂ‘r

A Jump in @P_/8x implies a Jump inu, and
an 0(8™") v, inside the layer, so there is an 0(1)
volumetric flux f]ow1ng parallel to the magnetic
field line inside the layer. The flow entering
the Tayer from region I is split into two parts:
one part enters region II, and the other part
flows upward inside the interior Tlayer then
enters region III

I11. Results and Discussions

A joint ANL/KfK experiment to investigate
MHD flows in both the forward and backward elbows
will be conducted in 1991 at KfK. Some numerical
results from the pretest analysis are presented
in this section. The parameters of the test sec-
tion are a, = 2, a; = 1.33, and ¢ = 0.057. The
experiment will 1nc1ude severa1 orientations of
the test section relative to the magnetic field
lines. The main results presented here are for 6;
= 185° aind fully developed flow conditions are
imposer upstream and downstream in the analysis.



A. Forward Elbow

Figures 2a-e show the profiles of the
velocity tangential to the top wall spanning from
z = -1 to z =1 at various distances from the
elbow. The variable "s" is the dimensionless
distance measured from the elbow along the wall,
s < 0 indicates distance along the poloidal duct
while s > 0 indicates distance along the toroidal
duct. Initially at s = -2.44, the flow is fully
developed, and velocity is uniform across z.
(The fully developed boundary conditions were
applied at s = -2.8. The results indicate that
this location was sufficiently upstream for the
flow to be fully developed.) As the flow
approaches the elbow  the three-dimensional
effects cause the velocity to decrease near the
center and increase near the sides (Fig. 2b, s =
-0.14) which results in higher flow rate in the
side layers. The velocity is markedly higher
when the flow turns into the toroidal duct (Fig.
2c, s = 0.67), decreases gradually along the
downstream direction (Fig. 2d, s = 9.94), and
finally reaches the fully developed profile at s
= 21.85 in Fig. 2e. Note that because of the
smaller toroidal duct cross section, the fully
developed velocity is higher than that in the
poloidal duct.

Figures 3a-2 show the profiles of the
velocity tangential to the bottom wall. In these
figures s = 0 is detined at the elbow of the bot-
tom wall, and s = -3.44, -1.10, 1.72, 5.14, 17.21
in Figs. 3a,h,c,d,e, respectively. Because of
the much weaker transverse component of the mag-
netic field in the toroidal duct, the flow
bacomes fully developed after a much longer dis-
tance than in the poloidal duct. Since the tan-
gential velocity is never zero along the bottom
wall or the top wall; and since velocity in the
core at a cross section parallel to the field
Tines varies linearly between velocities at the
bottom and top walls, results from Figs. 2 and 3
indicate that there is no region with stagnant
fluid anywhere. This has positive heat transfer
implications in tokamak blankets in which the
bottom walls of the toroidal ducts constitute the
blanket first walls where high surface heat
depositions are expected. Stagnant pockets of
coolant there would produce undesirable "hot
spets.”

Pressure drop, particularly the pressure
drop due to the bend, is another important issue
in tre poloidal-toroidal flow geometry. Figure 4
shows the pressure variation along x at z = -1
and z = 0 (pressure is constant along magnetic
field lines, i.e., in the y direction). In con-
trast to fully developed fiow for which pressure
is uniform across z and there are no axial
currents, the pressure a. the center is smaller
than that at the side iu the region where the
flow dis perturbed due to three-dimensional
effects. The difference arises from the inter-
action between axial currents and the magnetic
fields. Also shown in Fia. 4 is the reference

pressure drop resulting from the upstream and
downstream fully developed pressure gradients for
X < Xg/2 and x > x4/2, respectively. The pressure
drop due to three-dimensional effects, bPy, s
defined as the difference between the actuaq and
reference pressure drops between two points far
upstream and downstream:

ap =A'Pref +APSD.

For ease of practical applications, we
define
apy,
dp
dX {¢d, pot

dyp =

where dp/dx\,d,pol is the fully developed pres-

sure gradient in the poloidal duct. Thus the
pressure drop due to three-dimensional effects is
equivalent to the fully developed pressure drop
over an added dimensionless length d,; in the
poloidal duct. The results in Fig. 3 yield a
value of 1.1 for dy;. A parametric study was
performed to provide analytical data for d, for
various angles of 8;, for conductance ratio ranges
from 0.01 to 0.1 which are expected in tokamak
blankets, and for various values of "a"(= a, =
a;). Results are presented in Fig. 5 for a = 2,
6, = 85° and 75°. Although the amount of three
dimensional pressure drop varies with "a," d;; was
found to vary insignificantly among a = 2, I, 0.5
for a given angle and conductance ratio as shown
in Fig. 6. In general the additional pressure
drop is of the order of the fully developed pres-
sure drop over 1 characteristic length of the
poloidal duct. This is relatively small compared
to the overall pressure drop in the tokamak blan-
ket, and should not be a concern in the design of
the poloidal-toroidal coolant channels blanket.

B. Backward Elbow

Figures 7a-e show the profiles of the
velocity tangentiai to the inner wall at various
distances from the elbow. Far upstream (Fig. 7a,
s = -3.0) and downstream (Fig. 7e, s = 13.8), the
velocity is uniform across z. Negative values of
velocity indicate reversed flow as is the case in
Fig. 7c at s = 0.01. The fluid flows from the
core in the toroidal duct into the interior layer
parallel to the field lines at s = 0. In the
forward elbow, the role of the interior layer< is
to match discontinuities in the transverse core
velocities v_ and w_, but the interior layer in
the backward elbow carries a substantial fraction
of the total flow rate. Part of the flow in
region I completely bypasses region II, flows
upward in the interior Tayer then enters region
I11. The amount of flow flowing within the



interior layer increases with increasing 6; and
reaches a maximum when & = -45°. As a result,
there would be discontinudities in the axial core
velocity across the layer. This is illustrated
in Figs. 8a-e showing profiles of the velocity
tangential to the outer wall. In these figures,
s = 0 is defined at the elbow of the outer wall,
the Tower and upper parts of the interior layer
intersect the wall at s = -1.51 and s = 17.2,
respectively. The profiles along the wall in
regions I and II just across the interior layer
are given in Figs. 8a (s = -1.52) and 8b (s = -
1.48); the abrupt decrease of velocity follows
from the discontinuity in total flow rate. Simi-
larly, Figs. 8d (s = 17.1) and 8e (s = 17.3) show
the profiles just across the interior layer join-
ing regions Il and III, here the flow from the
interior layer contributes to the abrupt increase
in axial velocity. Near the elbow (s = 0.67,
Fig. 8c) the flow is reversed and almost stag-
nant. However the stagnant flow is confined to
only a small pocket around the elbow at the outer
wall and would not be a concern. It can be
easily eliminated by rounding the corner there.

The flow rate distributions through the
interior layer, at far upstream and at downstream
are presented in Fig. 9. The total dimensionless
flow rate integrated over any cross section par-
allel to the field Tines is 2. Note that there
is a negative flow in the core of region III
adjacent to the upper part of the interior layer.
The velocity in the core there varies linsarly
between velocities at the bottom wall (Fig. 7c)
and at the top wall (Fig. 8e). Since the veloc-
ity is more negative at the bottom wall, the net
core flow when integrated over the cross section
is negative.

The pressure drops due to three-
dimensional effects, or equivalently d;,, in the
backward elbow were found to be similar quali-
tatively and quantitatively to those obtained for
the forward elbow shown in Figs. 5 and 6.
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Figure 1. Schematics of the poloidal-toroidal
duct cross sections (a) in the Xy plane for the
forward elbow, (b) in the Xy plane for the
backward elbow, and (c) in the yz plane of both

elbows,
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Figure 2. Profiles of velocity tangential to the

top wall in the forward elbow fromz = -1 to z =
1 at five different distances from the top wall
elbow where s = 0 is defined, (a) s = -2.44, (b)
s =-0.14, (¢c) s = 0.67, (d) s = 9.94, and (e) s
= 21.85
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Figure 3. Profiles of velocity tangential to the

bottom wall in the forward elbow from z = -1toz
= 1 at five different distances from the bottom
wall elbow where s = 0 is defined, (a) s = -3.44,
(b) s =1.10, (c) s = 1.72, (d) s = 5.14, and (e)
s = 17.21. ‘
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Figure 4. Pressure variation at z = -1 and z =

0. The reference pressure drop (dashed 1ine) and
three-dimensional  pressure drop are also
indicated.
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Eigure 5. The three-dimensional pressure drops
in the forward elbows expressed in terms of dj,
for a, = ay = 2.
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Figure 7. Profiles of velocity tangential to the
inner wall in the backward elbow from z = -1 toz
= 1 at five different distances from the inner
wall elbow where s = 0 is defined, (a) s = -3.00,
(b) s = -0.15, (c) s = 0.01, (d) s = 3.44, and s
= 13.80.
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Figure 6. The three-dimensional pressure drops
in the forward elbows expressed in terms of dy,
for 6; = 85°.
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Figure 8. Profiles of velocity tangential to the
outer wall in the backward elbow from z = -1 to z
= 1 at five different distances from the outer
wall elbow where s = 0 is defined, (a) s = -1.51,
(b) s = -1.48, (c) s = 0.67, (d) s = 17.1, and
{e) s = 17.3. The interior layer intersects the
wall at s = -1,51 and s = 17.2.
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Figure 9. Flow rate distributions through the
interior layer as well as in the core and the
side layer in different regions of the backward
elbow.






