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Abstract attractivenessof these designs, regardingflow
distributions and the pressure drops associated

Magnetohydrodynamicflows of liquid metals with the turning of the flow from poloidal to
through sharp elbow ducts with rectangularcross toroidal.
sections and with thin conducting walls in the
presence of strong uniform magnetic fields are In this paper, v,e examine the flow of a
examined. The geometries simulate the poloidal- liquid metal through two conducting rectangular
toroidal coolant channels in fusion tokamak ducts which are beveled at one end and joined
blankets. Analysis for obtaining the three- together to form a 90° miter corner. The uniform
dimensional numerical solutions are described, magnetic field is almost perpendicular to one
Results for pressure drop, velocity profilesand duct, hereafterreferredto as the poloidalduct,
flow distributionare predicted for the upcoming and almost parallel to the other duct, known as
joint ANL/KFK sharp elbow experiment. Results the toroidalduct. Figure I shows the two orien-
from a parametric study using fusion relevant tations of the magnetic field relative to the
parameters to investigatethe three-dimensional centerline axesof the ducts. The backwardelbow
pressuredrop are presentedfor possibleapplica- (Fig. lh) is obtained by rotating the magnetic
tions to blanketdesigns, field lines 90° clockwise in the forward elbow

geometry (Fig. la). The flow paths and flowdis-
I. Introduction tributionsthrough the region near the elbow are

markedly different in these two geometries,but
In a)iquid-metal-cooledblanketof a tokamak our results show that the flow is never stagnant

reactor, the pressure gradient in the liquid in a large regionnear the bend nor in the toroi-
metal 'isproportionalto the square of the mag- dal duct as was previouslypredicted by Hunt and
netic field component which is perpendicularto Holrolyd [3].
the flow direction. This is because the motion

of the liquid metal across the magnetic field The scheme of analysis presented in this
induces electriccurrents in the fluid as well as paper 'ispurely numerical in all regions of the
in the electrically conducting coolant channel flow, and the finite difference solutions are
walls. The currents in the liquidmetal interact three dimensional. A hybridanalytical-numerical
with the magnetic field to produce an electro- scheme had been developed to treat the forward
magnetic body force opposing the motion. In the elbow problem [4], and a particular backward
presence of the large toroidal magnetic field, elbow problem in which the field lines form a 45°
liquid metal flowing in the poloidaldirectionat angle with the ducts' centerline axes [5]. In
the firstwall could resultin excessivemateria'l the hybrid scheme, the duct is treated as three
stresses and requirelarge pumping power. If the separate sectors; two of the three sectors are
flow direction is aligned parallel to the strong semi-infinitestraight constant cross sectional
toroidal field, then the pressure gradient will area rectangularducts which are joined together
be substantiallyreduced, by a factorof 100 for by a variable cross sectional area duct sector.
a typical toroidal to poloidal field ratio of I0 Analytical solutions using eigenfunction expan-
to I. A blanket design with toroidal first wall sions are obtained for the variables in the
coolant channels was first proposed in the Blan- straight ducts, and finite difference numerical
ket Comparison and Selection Study [1] and more solutions are obtained for the variable area
recently was adopted in the blanket design for duct. These solutionsare then matched at their
NET [2]. In both designs, the Flows to the first common boundaries by minimizing the sum of the
wall coolant channels are fed by poloidal ducts differences squared of the variables using tile
or a combination of poloida'land radial ducts. Galerkin technique. The hybrid scheme is very
However, several issues were left unanswered, new for this type of problem and can be further
which may be critical to the feasibility and enhanced and refined through comparison of the



solutions with those obtained by the numerical In addition, in a tokamak blanket the
scheme as well as with experiments. The numeri- electromagnetic(EM) force is the dominant force
cal scheme used in this paper has been previously determiningthe flow and pressure distributions
applied to various duct geometries and success- throughoutthe liquidmetal flow, exceptfor thin
tully validatedby experimentaldata gathered at boundary layers and interior layers. This is
the ALEX facility [6] over the past few years, because the interactionparameter N, which rep-
The purely numericalschemewas developedfor the resents the ratio of the EM force to inertial
elbow problems to allow more flexibility in force, and the Hartmann number M, which repre-
specifying the physical and geometrical param- sents the square root of the ratio of the EM
eters in order to support the design of the force to viscous force, are typically of the
upcoming experiments which will be conducted order of I03-I0s [I]. Here
jointly by Argonne National Laboratory (ANL) and
Kernforschungzentrum Karlsruhe (KfK), and to
provide analytical support for the KfK blanket oB_L
design for NET. Just as importantly,the availa- N -
bility of the numerical solutions has since PUo
resulted in improvementof the hybrid scheme.

II. Problem Formulation and

M = LBo[_]Figurela shows a schematicof the elbow

and the uniform planar magnetic field, _}= B_

The centerlineaxis of the toroidal duct forms an wherep and u are the fluid densityand kinematic

angle (_ with the x-axis, where 45° < (93< 90°, viscosity,respectively. The fact that N _ I and
and the angle between the poloidal duct and the M , ] greatly simplifiesthe analysis since the

x-axis is _i = 83 - 90°, -45° <tSel< 0°. The inertial and viscous terms in the Navier-Stokesdimensionl s distances between walls which equationcan be neglectedexcept in thin boundary

intersect the field lines are a_ and a_ for the layers and interior layerswhere velocity gradi-
poloidal and toroidal ddcts, respectively. Here ents are large. There are two interiorlayers at

all lengths are normalized by L, half the dis- the x = Xo : aI cos 03 - a3 sin (93andeXp:aOtcross
tance between the pair of walls which are paral- sections• These interior layers s ar e the
lel (coplanar)to the field lines and are at z = duct into three regions [4], region I for x < xo,
.+_I.To simplify the presentationof the analy- region II for xo < x < O, and region III for
sis, we assume duct symmetry about the z = 0 x > O.
plane, so only half the duct is treated, i.e.,

A•I Governinq__E_Equationsfor -I _< z < O. The walls are electrically
conducting with uniform wall conductance ratio
c = Owt/O where oW and o are the electrical
conductivitiesof the wall and the liquid metal, The inertialess, inviscid, dimen-
and t is the dimensionlesswall thickness. The sionlessequationsgoverningthe flow of a liquid
condition of equal conductance ratio for all metal in the core (outside the boundaryor inte-
walls is only to simplify the notation in our riot layers)of the flow are
analyticalpresentationhere. In fact the analy-

sis and numerical modeling employed in this work Vp = j x _ (la)allow for different values of c for different.
walls.

The ratio of the induced magnetic field j = -V_ + v x _ (lb)
produced by currents in the metal walls and in _ - -
the liquid metal to the applied field is of _rder
of cl/P'Rmwhere V.v = O, (1c)

Rm= #°U°L' XT'j = O. (ld)

is the magnetic Reynolds number, # is the mag-

netic perm_.ability of the liquid metal, and U_ is Here p, j v and _ are the pressure electricthe coolant characLeristic velocity For a If- ' -' '• current cF'ensity, velocity, and electric potential
cooled blanket in a tokamak, cl/2Rm is at most of normalized by OUoB_oL,OUoBo, Uo, and UoBoL,
order of 10"2", therefore, it is appropriate to respectively.neglect the induced field.



In the core, the x, y, z velocity
components u,., vc, wc, and electric current den- _Jc'_fi : c_2a@w (3b)
sity componerits3xc,Jyc,Jzcare

,,,

where n is a unit vector normal to the wall into
a@c aPe the liquidmetal. The electric potentialat the

Uc(X,y,z) ....... , (2a)

Oz Ox wall, '0 uniform through its thickness ne-glecti (_) terms and _ is the two-dimensional

a¢_ ape Laplacianoperator in the plane of the wall.
wc(x,y,z)..... , (2b)

Ox Oz A.2 Reduced Governinq Equations

The three-dimensionalproblem with

i ave .[ [au: ¢_ac] many unknowns in the core (pressure,potential,(x,y,z)dy= - + dy, (F_c) threecomponentsof velocityand three components[_}xl _ of currentdensity) is completelysolvedonce the
solutions for Pc(x,z), _t(x,z) and @b(X,Z) are

apc known. The equa'tionsgoverning these variables

jxc(X,y,z)- _-_, (2d) are providedby the boundary conditions (3a, b).

IntegratingEq. (2c) from Yb to y,
apc we have

jzc(x,y,z)= - --_ (2e)
_)x

Vc(X,y,z) =Vc(X,Yb,Z)

jyc(X,y,z)= a@c (2f) l_2Pc
a2pc_ (4)

-- _ " aZ 2 Iay +(y-yb)I + J

where pc(x,z) is the pressure,which is constant
along magnetic field lines by virtueof Eq. (la), Conditions (3a, b) applied at the
and @c(X,y,z) is the electric potential in the bottom wall yields
core. The core potentialvarieslinearly between

the _lectric potential at the top wall, @t(x,z), vc = uc tan e, at y =yb (5a)and the electric potential at the bottom wall,
_b(x,z),

cos e ,jy_- sin 8 Jxc =

_,(x,y,z) = Cb(x,z)

y_yb(X)]yb(x) (2g) C[COS,8 a_,b a2@b (Sb)

_ + aty =YbaX_ aZ_ '

+ - - '
L

where 0 = 81 for x < 0 and e = (_sfor x > O. The
boundary conditions (3a, b) applied at the top

where = x tan 0 + a soc O, with e = 0_, a :
aI forYtx(X<) Xo, and (9: e, a = a for x > xo, wall yields• 3

defines the coord]nateof _he top wall; and Yb(X)

X tan 6, with e = 01 for x < 0 and 0 = 03 for x vc = u:tan 8, at y =yt (6a)O, defines the coordinateof the bottom wall.

The boundary conditions for the sin Ojxc - cos Ojyc =
core variables have.been derived by Shercliff

[7]. At the top and bottom walls, the boundary f (6b)

conditionfor the core velocity is c [cosZO a_@t a2_t

+ _ at y =Yt
ax 2 az2

v c • fi = O. (3a)
- At the side wall (z = -l), condi-

tion (3b) gives

If the wall thickness t . l, the boundary condi-

interfaceis Jz_ = c ]_s + __| at z =-l. (7)
Iax2 ay2|

I



where Cs(x,y)is the e!ectric potentialfunction I 8Pcl 82Pcat the side wall at z , -I. a___Sxx + a sin e3) ax] + az2 -
Substituting the core equations (9d)

into Eqs. (5-7), we arrive at the coupled partial
ac, a_b

differential equations governing Pc, Ct, _b and sin2O_ -_ + cos2 O3 -_z@,. For regions I and III, the equationsare

c Icos2 8 82@t 82@t /)Pc The boundary conditions necessary4. = sin e- for solving the above set of coupled partial

[ 8x2 8z2 8z differentialequations are provided by the pre-
(8a) scribed flow conditions at upstream and down-

cos2 O streamof the duct, the symmetryconditionat z =
- (@b-@t), 0, the continuities of electric potential and

a current density, and the conservationof total
volumetricflow rate.

c os2 O ._82_b + = -sinO .... At x : xl, upstreamof the ,duct,and
downstream of the duct, the fully

8x_ 8z2J az (8b) developeatx dX3flowconditions are prescribed. The

cos2O appropriateboundary conditions are

a Pc = PI = constant (10a)

"a2_s 8z_sl 8Pc
c + = - -- (x,-l), (8c) ()@t 8¢b @Cs _ 0, at x = xI (10b c,d)

axZ 8y2J 8x 8x - @x - 8x '

and

a2Pc 82Pc sin e _@t a@bl
+ - -- - l, (Bcl)

ax 2 az 2 a az -a_zj Pc = P2 = constant (lla)

where (9 = (_, a _ a for region I, and 8 : e3, a 8@t - 8@b- 8@s -0 at x = x3 (11b,c,d)_ a3 for reglon ILl. I In region II the correspond- 8x 8x _)x
ing equations are

The constants PI and P2 (PI > P?)
are arbitrarily chosen. After the solution _s

c 82@t 82@t SP: found, every variable is multiplied by a scaling
_-- + _ = sin (_3 factor to get the desired volumetric flux such

c °s2(_3ax2 azO_ Tz that

(ga)

' _ _ u(x,y,z)dz dy = aI
sin 83 c°s203 x + a sin 03 y_-I

Is ,, a2_ apc at every cross section.
c in_ (938_@b + - = cos (_

6x _ 8z_ -_z At z : O, the symmetry conditions
(9b) apply

+ sin2 03 cos (9_ , 8P_
x + a sin (_ - 0, (12a)

Sz

a2_ a_@_ aPc
c _ + _ - " (x,-1), (gc) _ =_b = 0 at z = 0 (12b,c)

ax_ 8y_ ax

At each cross section,the continu-
ities of electric potential and currents at the

corners requirethat at y = y:.



with their boundaryconditionsare solvednumeri-
Cs(x,yt)=Ct(x, -I), (13a) cally using the finite difference method. The

numericals_},_meis similar to that presented in

a@_ a@t Ref. 8. Numericalsolutions are obtained in all
cos e C_'_s- sin 0 - (x -I) (13b) regions of the duct

ay _)x _)z

and at y = Yb: B. ,BackwardElbow

The coordinatesystem, the duct and mag-

_s(X,Yb)=¢_(X, -I) (13C) netic field orientationsare shown in Fig. Ib,, here e_ < 0 and 81 > O. The reduced governing
equations in ¢t, Cb, ¢_ and Pr and their boundary

_@s _@s a@b conditionscan be simllarlyderived and will not
sin e w - cos e - (x, -I) (13d) be repeated. In the backward elbow there is only

ax ay az one interiorlayer at x = O. The lower part of
the layer (0 < y _<aI sec 0_) separates the flow
in region I and the lower part of region II,

where 0 = eI for region I, e = 8 for region III;

_nd for region IIe= 81 in condition (13b),while while the upper part of the layer separatesthe= e3 in condition (13d). upper part of region II and region III. In the
backward elbow, the value of _)Pc/_)xis not con-
tinuous across the layer as is the case in theThe velocity in the O(M"I/z)

thickness of the side layer (Fig. Ic) at z = -I forwardelbow,insteadthe integralof _)Pc/@Xover
is O(M'_);thus the side layer carries an 0(I) y from bottom to top must be the _ame on both
volumetric flux (see, for example, Ref. 8 for a sides of the layer [i01. This can 'Jeobtained by
more detaileddiscussionof the side layer). The integrating the conservation of mass equation
flow rate in the side layer is determinedby the over a z = constant section on both sides of the
electric potential at the side wall and the layer
electric potential in the core at z = -I:

SP:

f u dz =@:(x,y,-l) -@s(x,y) (14) aI sec eI --_ (O,z)ll
s.l.

SP:

a_ sec 03 -_- (O-,z)I,,i : (16)where ]" indicates integration across the side
sot.

layer. Detailsof the side layer solutioncan be aPc )I
ignored provided that the total flow in the side (aIsec (_ + a._sec (_3)_-_ (0., z zi"
layer plus the core remains constant at every
cross section,namely

A jump in 8Pc/8ximplies a jump in uc and
an 0(6"I)vc insiJethe layer, so there is an 0(I)

oia u dz + f uc d dy O. (15) field line insidethe layer. The flow entering
8x y_ s.. -I the layer from region I is split into two parts:

one part enters region II, and the other part
flows upward inside the ir,terior layer then

Condition (15) is necessarybecause the solutions enters region III.

for _t, _b, c_hS,gand hP_ completely determinew_(x,y,-l)whi ivest flow int- or out of the III. Results and Discussions
sld_ layer.

A joint ANL/KfK experiment to investigate
Finally,the interiorlayersat x = MHD flows in both the forward and backwardelbows

xo and x = 0 do not carry any large 0(6) velocity will be conductedin 1991 at KFK. Some numerical

or 0(i) electric current where 6M3i/sthe laver(N.T/3) results from the pretest analysis are presentedthickness which is O(MI/2) if N , or 0 in this section. The parameters of the test sec-
if N _ M3/2 [9]. Thus neglecting 0(6) terms, all tion are a_ : 2, a3 : 1.33, and c = 0.057. The
core variables with the exception of vc and wc are experiment will include several orientations ofcontinuous acros; these layers and currents long the test section relative to the magnetic field
the walls are also continuous. The role of the lines. The main results presented here are for 03
interior layers is to match discontinuities in v: : _+85°ind fully developed flow conditions are
and w= between adjacent core regions, imposed upstream and downstream in the analysis.

The reduced coupled partial differ-
enti_l equations in @_, @b, @_, and P: together



A. Forward Elbow pressure drop resulting from the upstream and
downstream fully developed pressure gradients for

Figures 2a-e show the profiles of the x < Xo/2 and x > Xo/2, respectively. The pressure
velocity tangential to the top wall spanning from drop due to three-dimensional effects, Z_P3_, is
z = -I to z = I at various distances from the defined as the difference between the actual ,_nd
elbow. The variable "s" is the dimensionless reference pressure drops between two points far
distance measured from the elbow along the wall, upstream and downstream:
s < 0 indicates distance along the poloidal duct
while s > 0 indicates distance along the toroidal
duct. Initially at s : -2.44, the flow is fully _P =Z_Pref +Z_P_.
developed, and velocity is uniform across z.
(The fully developed boundary conditions were
applied at s : -2.8. The results indicate that For ease of practical applications, we
this location was sufficiently upstream for the define
flow to be fully developed.) As the flow

approaches the elbow the three-dimensional _J)3D
effects cause the velocity to decrease near the d3D -
center and increase near the sides (Fig. 2b, s : dPl

-0.14) which results in higher flow rate in the d---xlfd,po_side layers. The velocity is markedly higher
when the flow turns into the toroidal duct (Fig.
2c, s = 0.67), decreases gradually along the
downstream direction (Fig. 2d, s : 9.94), and where dp/dxlfd,po_ is the fully developed pros-
finally reaches the fully developed profile at s
: 21.85 in Fig. 2e. Note that because of the sure gradient in the poloidal duct. Thus the
smaller toroidal duct cross section, the fully pressure drop due to three-dimensional effects is
developed velocity is higher than that in the equivalent to the fully developed pressure drop
poloidal duct. over an added dimensionless length d in the

poloidal duct. The results in Fig _D. yield a
Figures 3a-e show the profiles of the value of 1.1 for d3D. A parametric study was

velocity tangential to tile bottom wall. In these performed to provide analytical data for d3D for
figures s = 0 is defined at the elbow of the bor- various angles of 03, for conductance ratio ranges
tom wall, and s =-3.44,-1.10, 1.72, 5.14, 17.21 from 0.01 to 0.1 which are expected in tokamak
in Figs. 3a,b,c,d,e, respectively. Because of blankets, and for various values of "a"(= aI :
the much weaker transverse component of the meg-- as). Results are presented in Fig. 5 for a : 2,
netic field in the toroidal duct the flow e_ = 85° and 75° . Although the amount of three

' "_ II II

becomes fully developed after a much longer dis- dlmensional pressure drop varies with a, d3owas
tance than in the poloidal duct. Since the tan- found to vary insignificantly among a = 2, I, 0.5
gential velocity is never zero along the bottom for a given angle and conductance ratio as shown
wall or the top wall; and since velocity in the in Fig. 6. In general the additional pressure
cole at a cross section parallel to the field drop is of the order of !Lhe fully developed pres-.
'lines varies linearly between velocities at the sure drop over i characteristic length of the
bottom and top walls, results from Figs. 2 and 3 poloidal duct. This is relatively small compared
indicate that there is no region with stagnant to the overall pressure drop in the tokamak blan-
fluid anywhere. This has positive heat transfer ket, and should not be a concern in the design of
implications in tokamak blankets in which the the poloidal-toroidal coolant channels blanket.
bottom walls of the toroidal ducts constitute the
blanket first walls where high surface heat B. Backward Elbow
depositions are expected. Stagnant pockets of
coolant there would produce undesirable "hot Figures 7a-e slhow the profiles of the
spots." velocity tangential to the inner wall at various

distances from the elbow. Far upstream (Fig. 7a,
Pressure drop, particularly the pressure s =-3.0) and downstream (Fig. 7e, s = 13.8), the

drop due to the bend, is another important issue velocity is uniform across z. Negative values of
in tFa poloidal-toroidal flow geometry. Figure 4 velocity indicate reversed flow as is the case._ in
shows the pressure variation along x at z = -i Fig. 7c at s = 0.01. The fluid flows from the
and z = 0 (pressure is constant along magnetic core in the toroidal duct into the interior layer
field lines, i.e., in the y direction). In con- parallel to the field lines at s : O. In the
trast to fully developed flow for which pressure forward elbow, the role of the interior layer_ is
is uniform across z and there are no axial to match discontinuities in the transverse core

currents, the pressure a_ the center is smaller velocities V=eandWt'bow but the interior layer inthan that at the side iJ_ the region where the the backward 1 carries a substantial fraction
flow is pert,Jrbed due to three-dimensional of the total flow rate. Part of the flow in
effects. The difference arises from the inter- region I completely bypasses region II, flows
action between axial currents and the magnetic upward in the interior layer then enters region
fields. Also shown in Fin. 4 is the reference III. The amount of flow flowing within the



interior layer increases with increasing 83 and 3. J. C. R. Hunt and R. J. Holroyd, "Applica-
reaches a maximumwhen _ : -45 . As a result, tions of Laboratory and Theoretical MHDDuct
there would be discontinuities in the axial core Flow Studies in Fusion Reactor Technology,"
velocity across the layer. This is illustrated Culham Laboratory Report CLM-R 169,
in Figs. 8a-e showing profiles of the velocity Abingdon, Oxfordshire (1977).
tangential to the outer wall. In these figures,
s : 0 is defined at the elbow of the outer wall, 4. T. J. Moon and J. S. Walker, "Liquid Metal
the lower and upper parts of the interior layer Flow through a Sharp Elbow in the Plane of a
intersect the wall at s : -1.51 and s = 17.2, StrongMagnetic Field," J. Fluid Mech. 21___33,
respectively. The profiles along the wall in 397 (1990).
regions I and II just across the interior layer
are given in Figs. 8a (s = -1.52) and 8b (s = -- 5. T. J. Moon, T. Q. Hua, and J. S. Walker,
1.48); the abrupt decrease of velocity follows "Liquid Metal Flow in a Backward Elbow in
from the dlscontinuityin total flow rate. Simi- the Plane of a Strong Magnetic Field,"
larly,Figs. 8d (s = 17.1)and 3e (s = 17.3) show accepted for publicationin J. Fluid Mech.
the profilesjust acrossthe interiorlayer join-
ing regions II and III, here the flow from the 6. C. B. Reed, B. F. Picologlou, and P. V,
interiorlayer contributesto the abruptincrease Dauzvardis, "Experimental Facility for
in axial velocity. Near the elbow (s = 0.67, StudyingMHD Effects in LiquidMetal Cooled
Fig. 8c) the flow is reversed and almost stag- Blankets," Fusion Technol. 8, Part 2A, 257
nant. However the stagnant flow is confined to (1985).
only a small pocket around the elbow at the outer
wall and would not be a concern, lt can be 7. J. A. Shercliff, "The Flow of Conducting
easily eliminated by rounding the corner there. Fluids in Circular Pipes under Transverse

Magnetic Fields," J. Fluid Mech. l, 644
The flow rate distributionsthrough the (1965).

interiorlayer,at far upstreamand at downstream
are presentedin Fig. 9. The total dimensionless 8. T. Q. Hua, J. S. Walker, B. F. Picologlou,
flow rate integratedover any cross section par- and C. B. Reed, "Three-DimensionalMHD Flows
allel to the field lines is 2. Note that there in Rectangular Ducts of Liquid-Metal-Cooled
is a negative flow in the core of reqion III Blankets," Fusion Technol. I__44,1389 (1988).
adjacent to the upper part of the interior layer.
The velocity in the core there varies linearly 9. J. C. R. Hunt and S. Leibovich, "Magneto-
between velocities at the bottom wall (Fig. 7c) hydrodynamic Flow in Channels of Variable
and at the top wall (Fig. 8e). Since the veloc- Cross Section with Strong Transverse
ity is more negative at the bottom wall, the net Magnetic Fields," J. Fluid Mech. 2__88,241
core flow when integrated over the cross section (1967).
is negative.

10. T. Q. Hua and B. F. Picologlou, "MHD Flow in
The pressure drops due to three- a Manifold and Multiple Rectangular Coolant

dimensional effects, or equivalently d3o, in the Duct of Self-Cooled Blankets," accepted for
backward elbow were found to be similar quali- publication in Fusion Technol.
tatively atld quantitatively to those obtained for
the forward elbow shown in Figs. 5 and 6.
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d . _.__ Figure 3. Profiles of velocity tangential to thebottom wall i_ the forward elbow from z : -1 to z

= I at five different distances from the bottom

wall elbow where s = 0 is defined, (a) s = -3.44,

= . (b) s : 1.10, (c) s : 1.72, (d) s : 5.14 and (e)
------ s : 17.21. '
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Figure 2. Profiles of velocity tangential to the z

top wall in the forward elbow from z = -I to z = Figure 4 Pressure variation at z nd =i at five different distances from the top wall • = -I a z
elbow where s = 0 is defined, (a) s = -2 44 (b) O. The reference pressure drop (dashed line) and

• ' three-dimensional pressure drop are alsos =-0.14, (c) s = 0.67, (d) s = 9.94, and (e) s
= 21.£5 indicated.

Ill.... "



L2 ' L4-

_k a_=a3=2 Oa = 85°

Lo kN"N. .e. = 85° t.2 ' .a =2,a=l

= LD -- '"
0.8

&B/
0.6 co

"_ 0.6-

0,4--
0,¢

0.2 - 0.2 JO.O j j 0.0 j t iooo002 0.04olo6olo8olo ,oo002 olo4 o0.06 0.10
coz,guctance ratic conductance ratio

Figure 5. The three-dimensionalpressure drops Figure 6. The three-dimensionalpressure drops
in the forward elbows expressed in terms of d3o in the forward elbows expressed in terms of d_o
for aI : a3 = 2. for _ = 85°.
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Figure 7. Profilesof velocity tangentialto the Figure8. Profiles of velocity tangentialto the
inner wall in the backward elbow from z = -I to z outer wall in the backward elbow from z : -I to z
= I at five different distances from the inner = I at five different distances from the outer
wall elbow where s = 0 is defined, (a) s = -3.00, wall elbow where s = 0 is defined, (a) s = -1.51,

(b) s = -0.15, (c) s = 0.01, (d) s = 3.44, and s (b) s = -1.48, (c) s = 0.67, (d) s : 17.1, and
= 13 80 (e) s : 17.3. The interiorlayer intersectsthe

• ' wall at s = -1.51 and s = 17.2.
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Figure 9. Flow rate distributions through the
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