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Abstract

With analogy to the "highly accurate” summation of clustor diagrams
for hard sphere fluids a la Carnahan-Starling, we present a simple, real
space free energy density functional for arbitrary potential systems,
based on the generalization of the second virial coefficient t6 inhomo~
geneous systems which, when applied to hard sphere, soft-sphere, and
Lennard-Jones freezing, yield melting characteristics in remarkable
. agreement with experizont. Implications for the liquid-glass transition

in all three potential systems are also presented.
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I. Introduction

The study of phase transitions from a molecular viewpcint in physi-~
cal systems is one of the most challenging problems in condensed matter
physics. Although many woriers in the field have deweloped numerous
theories for the liquid-orystalline solid transition in model systess,
qestions concerning these theories still remain, in spite of the quali-
tative agreement with observation.’™3 The theoretical situation is
worse for the liquid-aperiodic solid transition. The lack of long-range
order in these glassy systems precludes the use of well-estabdlished
crystal physics techniques, and requires the application of new tech-
niques to the solid phase. In addition, the actual nature and existence
of the liquid-glass transition is unknown. The description of phase
transitions is difficult because phases with different symmetries and
structures require description within a single mathematical framevork.

It has become popular recently to approach the problea of phase
transitions from the viewpoint of liquid state physics. An early ex-
ample of this is the work of Onsager concerning the effect of particle
shape on the properties of colloids." 1In it, he examines the isotropic-
nematic 1iquid crystal phase transition using the general method of
Mayer and Mayer to evaluate the free energy of the systea in teras of
the second virial coefficient generalized from the unifora fluid to
include orientation by the introduction of an angle-dependent distribu-
tion function. Unable to evaluate higher order virial coefficients,
Onsager approximates the third virial coefficient in terms of the second

and ends the expansion at third order. This was inspired by Boltzmann's



evaluation of the third virial coefficient for hard spheres of eqal

diameter, in which he derives the relation between the two and three

body cluster integrals.
Slightly earlier, Kirkwood and Monroe® developed a theory of freez-

ing which was to become the precursor of modern density functional theo-
ries. In it they use the idea of variable coupling of one particle to
the remaining N-1 particles to develop an integral equation relating
p(X), the single-particle density, to the 1iquid pair correlation func-
tion and the interparticle pair potential. Although this theory repre-
sente!! a major advance over existing "freezing® theories, the dependence
of p(N) on the pair potential prohibited the explanation of universal
features during freezing. :

Several events motivated the rq;swance of the density functional
theory of Kirkwood and Monroe, albet In a slightly more general fora.
The unexpected observation of hard sﬁnro solidification during the
computer experiments of Alder and Hainuriaht6 attracted much theoretical
attention vis a vis hard sphere freezing. The possibility of using the
liquid state as a reference state from vhich theoreticians could study
HS freezing was realised by Wertheim’s solution of the Percus-Yevick
integral equation for the direct correlation function of hard sﬂnru.'
a fundamental advance in 1iquid state physics. The use of the hard
sphere fluid as a reference state for more realistic systems was juati-
fied initially by the classic work of Longuet-Higgins and Iutlml.° in
which they examined the effect of an attractive interaction on the melt-
ing properties of argon using the augmented van der Waals theory. Their
work indicated the predominant role of repulsive forces in detersining

structures and coexistence parameters at nelting.



In addition, Vcl"lct's9 study of the structure factor of classioal
fluids at melting, resulting in the empirical Verlet rule (analogous to
the solid state Lindemann law), showed the "universality" of melting
behavior vis a vis the structure factor, and also the legitimacy of the
hard sphere model for systems with compliant potentials. The relation
between the structure factor and the direct correlation function'® di-
rected workers, starting with Rasakrishnan and Yussourf,!' to reconsider
the Kirkwood-Monroe approach to freezing, with emphasia on free energy
perturbation expansions of the s0lid about the wmifora fluid, with the
direct correlation function, now available, as the expansion coeffi-
cients. These are the "modern™ density functional theories applied
rather widely to a variety of phenomena: the liquid-solid mterraco.'z
liquid a-yat.als.u'“ m.lcluucm.15 ;lusu.' and rr'oezlng.s"6

In general, for the freezing problem there are two common feat ues
present in these density functional theories. First, one approximates
the so0lid phase direct correlation function by that of the fluid, given
by Werthein.? This seeas empirically reasonable in light of Verlet's
melting rule. Thus, these density functional theories are better ahle
to explain "universal® melting properties, in contrast to Kirlkwood-
Monroe theory. Secondly, the periodic density distribution of the solid
1s written as a Fourier series in the reciprocal space of the nonuniform
phase.

Although these approaches have met with success, there have been
recent questions concerning the nature of that success. Baus and COIOtz
and Jones and Mt:thant,y'9 have recently addressed the use of a reciprocal
space cdescription for the hard sphere solid. They find that o(F), the
aingle particle density, when written in reciprocal space, as is done in



most density functional thooriu.“ shows regions of negative valuss, .
clearly unphysical. This bshavior results from the truncation of the
Fourier expansion after two terms, rendering questionable the descrip-
tion of sharp features in p’F) in the high density solid. They further
suggest that the good agreement seen with these theories is a conse-
quence of cancellation of errors, {.e., errors in approximating the
solid direct correlation function by the fluid direct correlation func-
tion.cancels the errors introduced via a rocurdcal space description of
p(F). Gthers (12,16) use the reciprocal space description of the solid
in a more appropriate way, with no regions of negative density. This
approach is fine for the liquid-crystalline solid transition, vhere one
has knowledge of the reciprocal lattice, and summation over tuenty or so
reciprocal lattice vectors is possible. For a description of vitrifica-
tion, however, summation over- the reciprocal lattice would correspond to

twenty or so variational paranmeters (45). This is clearly unpalatable.

Concerns about the use of fluid phase direct correlation functions
to describe solid-phase correlation and the sensitivity of transition
parameters to the direct correlation function have also recently been
addressed. Singh, et:.a]..1 presented a real-space density functional
description of the hard-sphare glass, based on t.ho} unifora fluid direct
correlation function, c(r). They found extreme sensitivity of liquid-
glass transition behavior to the form and values of the high density
c{r) used. Haynet3 finds the unphysical feature of "remelting® in the
high density hard sphere fcc crystal, and attributes this to the inade-
qacy of the liquid structure factor at these densities. Baus and Colct

g0 beyond questioning the form of the fluid c(r), and questicn the use



of the liquid c¢(r) to describe the solid phase. They indicate that the
usual procedure of expansion of the solid c¢(r) about the fluid c(r), -;d
truncation at second order, neglects density variations of c(r) in the
eritical region and thus presumabdly leads to incomplete convergence of
the functional expansion. These are the major problems assocliated with
the usual density functional descriptions of freezing. There have been
attempts to circumvent these difficulties.

The real space description of p{(F), introduced by Tarazona,'7 nas
been used by Singh et.al.! in the glass transition problem, and by Baus
and Colot,2 Mohanty and Jones,'9 and Tarazona,?0 in their analysis of
hard sphere freezing. In this desaription, p(T) is approximated as a
sum of Gaussian peaks, each centered at a lattice site of the nonmifors
solid. Experimentally, the Gaussian solid is app'ou-.tatc.z' 022 and this
form of p(T) has eliminated the problems associated with the description
of sharp features in the density distribution of solids. Tor the glass
transition problem, the switch from reciprocal to real spacs corresponds
to a reduction in the number of variational parameters (A5). Baus and
colot!® observe no remelting at high solid densities, up to close pack-
ing, when using the Gaussian solid. On this last point, there are ques-
tions. It fs not Clear that the different prescription for solid phase
correlations used by the authors is not a contributing factor to appro~
priate high density behavior. Regardless, the transition parameters
obtained for hard sphere freezing, when employing the Gaussian solid,

are in very good agreement with experimental results, despite the use of



various forms of c(r). It seems unquestionable that a real space p(¥)
offers an efficacious alternative to the reciprocal space description so
often seen.

We now turn to the problem of solid phase correlations {n density
functional theories. There are two notable attempts to deal with this
question. Baus and Colot? have approximated the direct correlation

function of the solid by an effective 1iquid direct corrolqtlm func-

tion, since one has information about this object from 1liquid state

theory. The effective liquid scales with the solid, i.e., the smallest

reciprocal lattice vector of the solid is foi‘ced to coincide uith the
position of the main peak in the effective liquid structure factor. One
finds the average density of the liquid wvhich satisfies this scaling.
Good results have been reported with this theory, especially at high
density (viz. no remelting). Tarazona’7+20 nas chosen to avoid the
difficulties with high density 1iquid c(r) values bj presenting a den-
sity functional theory in which he uses a local free energy functionai,
appropriate for slowly varying density waves, and justifies its func-
tional dependence on the rapidly varying p(F) by course-graining p(F)
over a region of configuration space given by an unspecified weight
function. The weight function is then determined by requiring self-
consistency between the Percus-Yevick direct correlation function and
Tarazona's derived c(r). The derived structure factor, at freezing, is
in good agreement with the Hansen-Verlet rule, and coexistence densities
-are well reproduced. High density behavior has not been addressed.

In ouwr pursuit of a density functional description of the liquid-
aperiodic solid phase transition, and of the thermodynamic properties of
the high density solid, we were led to a realfizatfon of the protlens



associated with solid oorrelation functions and density wave descrip- ’
tions.' In the course of trying to deal with these difficulties, we
have developed what we believe to be the simplest real space density
functional theory of hard sphere freezing, with the most proaise for
extension to the case of arbitrary potentials. Coexistence parameters
are very faithfully reproduced, and the high density solid pressures are
in remariabdle agreement with the exact compressibilities given by

Salsburg and llood.z3 both for orystalline and amorphous packings.

Later we will see that for smoothly varying density distributions,
free energy values from this functional are expscted to be quite accu-
rate for low to moderate mean densities. For moderately nonunifora
particle distributions, there is uncertainty in ow approximate density
functional. However, the reaarkable pressute agresment anudo:i to
above, and shown later in Section III, allows us to have confidence in
the relations ve assume between lower and higher order virial ocoeffi-
cients for the high density, nonuniform system as well as to speculate
as to the nature of the liquid-glass transition.

In retrospect, our present theory is very reainiscent of Onsager's
theory of the isotropic-nematic liquid crystal system mentioned earlier.
Owr theory, at the lowest level, resembles Onsager's 1f one associates

his orientational distribution function with our single particle den-



In Section 1I, we present the motivation and derivation of the free
energy functional. In Section 1II, we oonsider hard sphere freezing,
and implications for the hard sphere glass transition. Section IV
treats freezing and vitrification for the inverse-12 and Lennard-Jones

potentials. We conclude ow discussion in Section V.
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II. Theory

We begin by considering N spher’ cal atoms in a unifors fluid, of
volume V and temperature T, with mean density p,, interacting via a pair
potential #(r). When analyzing the uniform fluid-nonuniform solid phase
trangitions, one must develop an expression for the free energy which
reflects particle dutl:;wum appropriate to the stable equilibrium
phase. For example, when a 1iquid freezes into a orystal, there 1s a
discontinuous change in the single particle distribution, from one which
ifs uniforam and translationally invariant to one which is nonuniform with
then translational symmetry. An appropriate free energy functional
”uould exhibit a minimum for a unifora distribution of particles at
liquia densities, but for mean densities in excess of the melting den-
sity, the miniaum free energy should be obtained with a spatially vary-
ing density characteristic or/tho orystal. ‘

To accomplish this analysis, one requires a trial function capable
of describing the single particle distribution fin both uniform and mon-
unifora phases, aloﬁg with an expression for the free energy, considered

to be a functional of this local density.

IIA. Free Energy Functional

The following summary follows the work of Yang, Fleming, and
Gibbs.2' We assume the existence of a single particle distribution
function, p(r), which describes the local density of particles at point
¥, and leave until later the explicit specification of p(¥F). We are
therefore considering a nonuniform systea.

The total eonﬂg[ﬁratioml energy of the system ia:

i



N ¥ :
vO¥) - £ o([FF[) + T UCr,) (11.4.1)
14 i=1

there 'Fl denotes the position of the ith atom, ™ 1s equivalent to 'F'.

‘20 cees Fy, and U(F;) represents some arbitrary external single partl-
le potential which couples with the density at 'Fl. We will vork in the
rend canonical ensemble, within which particle number fluctuations are
asily treated. This is the natural choios for theories of phase tran-

itions.

Given ¥(F¥), the conf{gurational grand potential, W, is given by:

- ex,)
Z(V.T) = ¢ - £ %! s ¥ a . e @, X1 ¥ o £ ar.a.2)

N=0 1=1 155 3 4

here

1’(‘3‘i .?J) - m:[-u(Y1 .TJ)]-I

E(%,) = Bu - SUCK,)

-1
8 = (kyT)

d u is the chemical potential. W¥We have set A, the thermal deBroglie
avelength to unity in 11.A.2, since this introduces the same constant
ntridbution to the free energy of both phases, and can thus be ignored,
.thout loss of generality. Ve can imagine probing the aystea with our
ternal field, U(X), and obtaining information about the single parti-
2 distribution, o(¥). The relation between field and density is ob-

ined with the realizatfion that W, from II.A.2, is a functional of
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E(X), the effective single particle potential, and, of course, the pair
interaction, 0(&'1 .7_1). We ooncern ourselves only with single particle
properties at the moment. Functional differentation of W with respect

to £(X) ylelds, from I1.A.2, the following relation:

S )~ <Py £ o (D) (11.A.3)
where
]
oy (®) - T 6(FF) .
i=1

We will see that 1I.A.3 gives 2 trivial relation between field and den-
sity for the ideal gas. To examine thermodynamic properties of the bulk

phases, we make contact with the Helmholtz free energy:
BF = gull — 8PV = guN - W
= J dXp(X)E(X) + J dXp(XIU(X) - W | (11.a.%)
= P+ f dR(BI(T)
where
F' = [ dxp(X)E(X) - W

In 11I.A.4, we have used the definition of E£(X) and the relatfon gPV = W,
The definition of F' in I1.A.N is actually the Legendre transfora gl’ W,
from the natural variable E(X) to the variable p(X). In fact, func-

tional differentiation of F*' with respect to p(X) yields

E orwey  SECR') W =)
sy = €00 « F aie@) 45 - 1 o Sy B
- (11.A.5)
- £
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using II.A.3.
Our goal, then, is to express £(X) in terms of p(X). We would then

poaa'css a free energy, via functional integration, which is a functional

of our single particle distribution function. These are the relations

we seek.

I1.B. Ideal Gas Free Energy Functional

For a system with no intarnal interactions, 0(?1.73) = 0, and II.A.2

becomes
(1d) = £(x,)
PASLRTURE 3 WP -%, s ¥ d%,e i (I1.B.1)
N=0 1=1

where "id" indicates the ideal gas condition. If the external field,
U(X), did not exist, II.B.1 would be the usual ideal gas partition func-

tion of uniform fluids. Using II.B.! and II.A.3, we have:

{1d)
I g J¢ )

p(X) sE00) " © (11.B.2)
where we have used the fact that the grand potential is a natural func-
tion of volure, temperature, and chemical potential. From II1.B.2, a
trivial relation exists between the field and the density for the ldeal
gas. Substituting £(X) from II.B.2 into II.A.5, and functionally inte-

grating, ve obtain the following expression for the ideal gas free en-

ergy:

BF,’ = f CF p(X)(2n[p(X)] -1) (11.8.3)
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In the absence of all external fields, we see using II.A.N, that II.B.3
becomes our density functional expression for the ideal gas Helmholtz

free energy for the nonunifora system.

II.C. Interaction Free Energy Functional

In II.B, we considered the system in the absence of pair interac-
tions. We now turn on these interactions, and seek the interaction

Helmholtz free energy as a single particle density functional.
The usual way to proceed i{s to functionally Taylor expand the in-

teraction Helmholtz freclcné;gy of the nonuniform system about the uniform

24

system. The details may be obtained elsewhere. The basic point is

that the direct correlation function for the uniform phase acts like the

éxpansion coefficient. The object is not known, and so one approximates
the direct correlation function of the uniform phase. In Section I,
' we examined some of the problems associated with thig approximation.
"In a different apirit, we propose to consider explicitly the virial

expansion of the nonunifora solid, graphically represented as:

ov- @ +0—0 + ... (1Lc.1)

where field points are weighted by the single particle density, o(X),

and are connected by Mayer f-bonds of II.A.2. This is a generalization
of the uniform fluid equation of state, where field points are v.elmted
by the mean, urﬂt‘or- density, Po ‘l'he complete graphical theory of this

expansion is contained in the classic work of Morita and Hiroile.zs
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In general, the full series in 1I.C.1 cannot be evaluated. For .
clusters with three or more atoms, the fiducial site structure is not
always avallable. Even ;r these structures were at hand, the integra-
tions implied by the c].uﬁter diagrams in II.C.1 are prohibitive, given
the form for p(X) which we have used in ouwr theory. (Our choice of p(X)
will be discussed later.) We are thus left with a virial for which only
the first term is readily available. We can take these higher order
terms into account by generallzing the approach of Carnahan and Star-
111;326 to the nonuniforas systes. For continuity, we now review the
Carnahan-Starling equation of state for the uniform hard sphere fluid.

For a uniform fluid, p(X) = Po» and differentiation of II.C.1

gives:
Po 1=0

where
B, =1

B --% ! d=t(x)

B, -- % f dRdR (R, %) @R

These integrals, of course, are the first few cluster diagrams of the

uniform fluid virial series. As the order of the diagraa increases, the
difficulty in computation increases. Hence, only the lowest order terms
in the virial series can be computed. For hard spheres, the first seven

virial coefficients have been computed. 82. 83. and By are analytically
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evaluated (B, by Boltzmann!). The remaining three have been computed by
Hoover and Ree27 using the Monte Carlo technique. The results are ex-

pressed in the following seven tera yirial series:

+ 56-5“6 + oo

(11.c.3)

-97’:- =1 + ln+ 1002 + 18.365n3 + 28.24n" + 39.5n°

e n
=1+% C.(n)
n=1 0

where n = Ipo3/6.

Carnahan and Starling replaced C3 with the closest integer (i.e. C3

= 18) and assumed the following form for Cn:

Solution of II.C.4 yields the following expressing for C.:
C,=n®+3n. (11.C.5)

n

Using II.C.5 in 11.C.3, Carnahan and Starling obtained the following

hewistic equation of state:

BE o1 ez (0?4 3} (11.C.6)
p n=1 '

Expressing II.C.6 as a linear combination of the firat and second
- ’
derivatives of the geometric series, I (n)n. they obtained the famous

N=1
Carnahan-Starling equation of state:

2_3
EP _1+n¢n -n° (11.c.7)

P (1-n)3

Equation II.C.7 agrees remarkably well with computer simulation results

over the entire fluid density range.
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From standard thermodynamic fdentities,10, the interaction

Helmholtz free energy for the hard sphere fluid may be obtained in
closed form, using I1.C.T:
{int) n,"'
F d P
B LBy

N o NP’
(11.c.8)

[l-nlz

Our semiempirical interaction free energy functional derives froa
the assumption that for the nonuniform system, the relation of higher to
lower order virial coefficients has the form of the Carnahan-Starling
viria! series. Thus, comparing II.C.3, and 1I1.C.1, we arrive at the

following identification:

nlp(R)] = ~gi~ | GXaR* p(RIp (X I (TF") ' (11.€.9)

Equation II.C.9 represents a generalized packing fraction or generalized

second virial coefficient which is a function of the interparticle po-

tential and the structure of the nonuniform phase. 1In terams of nlp(X)],

the interaction Helmholtz free energy for the nonunifora systea is:

(int) _ — )
R (11.C.10)
[ 1-nlp(x)1]

If we were to consider ellipsoidal particles, f{X,X') in II.C.9 would be
orientational dependent. Replacing p(X) with an orientational distribu-
tion function, and linearizing I1.C.10, one obtains basically tha
Onsager expression for the interaction free energy of liquid crystals.

Rather than stop at third order, as Onsager did, we have presunably



incorporated higher order free energy clusters via the form of II.C.‘I’
and I11.C.10. Equation II.C.10, combined with II.B.3, furnishes us with
a density functional expression for the Helmholtz free energy of the
nonuniform system. To proceed, one requires an expression for the

single particle distribution, p(X). We now consider this.

II1.D. The Local Density

In order to apply ow free energy functional, we need an expression
for the local density, p(X). In most previous treatments of freezing
involving density functional theory, the periodicity of the solid lat-
tice 1s incorporated in p(X) by Fourier expansion into plane waves. This
yields the well-known density wave or order parameter expansion. Typi-
cally, then, this expansion 1s truncated for numerical tractability.
This approach, however, if applied to disordered solids, has difficul-
ties, as discussed in Section I.

Previously.‘ we used the real space description of p(X) suggested
by Tarazona.” We adopt this description in our present theory. Accord-
ingly, we write p(X) as an expansion of Gaussian density peaks centered

at each riducial site in the nonuniform systea:

.2
1372 § oa(FX) (I1.D.1)

p(X) = (2
d R

In II.D.1, {R} is the set of fiducial site positions, {X] the set of
particle positions, and a measures the peak width. The normalizatfon
ensures that the integrated density peak is unity, so that the lattice

constant s fixed by the mean density. Computer simulation resultsz"zz



indicate that a harmonic desoription of particle displacements, seen in
I11.D.1, is appropriate, even at melting. The periodicity of the lattice

is fncorporated via the sum over lattice vectors.

For the high densities considered in freezing theories, the width
of these Gaussian peaks is very small (i.e., particle displacements are
small), making overlap negligible. Thus, the expansion II.D.1l converges
more rapidly than reciprocal space expansions. The rapid convergenocs of
II.D.1 was demonstrated previously,’ with regard to the large-a approxi-
mation for the ideal gas fres energy, squation II.B.3. There, it was
found that, for a 2 5, the approximated ideal free energy (with only
nearest-neighbor overlap taken into accownt in p(X)) and the "exact®
ideal free energy (with the full p(X) expansion) were essentially iden-
tical.

In the large a limit, particle excursions from fiducial sites are
small, and as a approaches infinity, the particles localize a. the

fiducial sites. It {s clear that

lim p(X) = £ §(X-R) (11.D.2)
a+= R

which can be recognized as the single particle distribution of a low

temperature, high density classicai solid.
In the opposite a l1imit, particle excursions are infinite, and the

single particle distribution becomes unifors by adding flat, overlapping

Gaussfan density peaks, 1.e.,

a+*0

This 1imit may be considered a description of the uniform fluid.



Given a ast of fiducial aites, {R}, one now has a local density

description in terms of a single parameter, a.

II.E. Large and Small c Behavior

Substitution of IITD.! into 1I.8.3 and II..C.ID. using IITC.,. gives
an ag-dependent Helmholtz free energy. .

We novw omlm. the larps and ssall o limits to this free energy,
starting with the ideal gas terw, equation II.B.3T As discussed previ-
ously! substitution of II.D.1 {nto II.B.3 yields numericslly complicated
expressions for the ideal gas free energy tor "mrn a. To proceed,
approximate expressions, for samall and large a, can and have been devel-
oped vhich yleld easily to computation. For completeness, Appendix I
reviews the large and small a limits. The upshot of this analysis {s
that, for small o, the unifora fluid is the appropriate limit, as in
I1.D. 3, and II.B.3 reduces to the well-inown ideal gas free energy of a

wmifora fluid

sF_ *
(] 3 S
lin — «tn{p ) - (11.5.1)
asg ¥ o' 2 .

In the opposite 1limit we obtain

gF_*
1 2. g i) - 2 ‘ (IL.E.2)

are

The consideration of both limiting expressions shows that the ldeal gas
free energy is a monotonicelly increasing function of a. This bshavior
is expected. The small a fluid phase is one of maximum entropy.

We consider now the small g limit of the interaction free smergy,

equation I1.C.10. In this limit p(X) « p,, and we have
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1im nla) = - f% J dxr(x) (I1.E.3)

o+0
for the hard sphere potential, the integration leads to the usual pack-
ing fraction as the appropriate limit. For a general repulsive poten-
tial, one obt;ins an effective packing fraction.

In 1iquid state perturbation theory, the repulsive potential would
be replaced by a hird sphere potential, with an effective hard sphere
diameter, and thus, .an effective packing fraction. In our theory, there
is no need to invoke the idea of an effective hard sphere diameter.
Equation II.E.3 ineorporqtes the effects of potential energy compliance
on the packing fraction.

In this 1limit, II.C.10 becomes the Carnahan-Starling interactioa

free energy, employed so successfully fin the theory of unifora fluids.

In the ol;posite limit, substitution of II.D.l into IL.C.9 gives

1im n(a) = 'al' + constan (I1.E.6)
Qo :

In Appendix III, we see what this constant .:ls.



For an arbitrary repulsive potential, the value of n(a) obtained
depends on two length scales: the range of the pair potential and the

nearest-neighbor fiducial site separation.

II.F. The Variational Procedure

At this point, we possess the ideal gas and interaction free ener-
gies as functions of a. Var;atlm of a from zero to infinity corre-
sponds to the structural transition from the uniform fluid to the non-
uniform phase’ [cg,. Eqn. II.D.2-II.D.3]. By Enluating the total ‘
Helmholtz free energy as a fur ..on of a, We can determine the minimum
free energy and the correspondir, hon-zero a value, and, thus, the equi-
1ibrium struct;u:e, (;f t\):;e solid ;yaten. '

Characteristically, we observe no finite g free energy mininum for
densities beloﬁ a critical value p,. The system ifs unifora fluid. Por
p 2 Por» 2 finite o minimum appears. We therefore have a nonunifora
equilibrium system, uhose( st.ructwé is descri\bed by II.D.1, a spatially
varying density distribut‘ion. Comparison of uniform fluid (a=0) and
nonuniform solid free energies determines which state is thermodynsmic-
ally stable, and which is netastabie.

For comparison with the fluid, we use the zero a limit to evaluate

he fluid free energy. We specify the rluld- free energy In this way for
1e following ;'easons. If one evaluates the total free energy as a

netion of a, for all @, one needs to interpolate between the small-and
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large-a forms of the ideal gas free energy, given by A.1.5 (or A. I.6).,
A.I.11, A.I.15 (or A.I.16). Hﬁn we use a third degree polynomial in-
terpolation, we obtain, for all relevant densities, a smooth ideal gas
free energy, for 0 S a S ». However, the total free energy shows two
non-zero « sinima, o, and a, (u1 < "2)' for p < 1.3. o versus p is
nonngébtonlc, with a fractional free energy chargs, relative to the a=0
frec snergy, of .03. We therefore choose the zero a free energy as ow
description of the fluid I'ree energy, and regretfully report that an
unconstrained free energy minimization will not yield the zero a free
snergy and structure for the fluid. For p > 1.3, the o) minimum disap~
pears, md free energy minimization yields two minima, one at u-p. and
one at a,. The minimum at ay 1s physically reasonable, and ser;;s as
the basis for all solid phase results reported herein. In all cases
considered, the o, value lies in the interpolation ruidn. Thus, the
slight minimum at a; (relative to the a=0 free energy) is possibly dus
to numerical error. The a value always lies in the large-g region,
where no uncertainty in free energy exists. We are thus confident of
“our @y values.  The equilibrium coexistence parameters can be determined

by equating the pressures and chemical potentials of both phases at the

transition, viz,

u,(p,) = u, (o))
P,(p,) = P lp) (II.F.1)

where
, af(po)
v

o

= -
P2 up, - flp,)



f(po) H pof(po)
and r(po) is the density dependent free energy per particle. 1In II.F.1,

the subscripts "u” and "n" denote uniform and nonuniform phases, respsc-
tively. The free energy per particle, used in II.F.1 to evaluate chemi-

cal potential and pressure, is determined for the nonunifors fluid dy

the-following equation:

Bf (py) = 8f(amagyy,) (11.7.2)

whare Guin denotes the minimum free energy a value.

In sunmary, we now possess what we believe to be the simplest den-
sity functional expreasi\;n for the Helnhoitz free encrgy of an arbitrary
repulsive potential system. The extension to arbitrary potentials (i.e.
repulsive and attractive‘forcea) will be presented in the application
sections of this paper. Given any nonuniform system, lnowledge of the
zero temperature structure and pair interaction allows a trivial de-
scription of the single particle distribution and thermodmamics of both
phases on the same lg;m-atical footing. There is no need to inwie
different theories to describe the uniform fluid and nonunifora solid.
Coexistence parameters, in the case of phase transformation, may a.so be

obtained easily. We now apply ow density functional theory to specific

systems, beginning with the hard sphere potential.



I1I. ‘The Hard ere Systea

We consider first the problem of hard sphere (HS) freezing. In
Section 111.B, application to the aperiodic solid is presented.

III.A. Hard Sphere Preezing

In this oase, the set of fiducial sites, {N}, which characterisss
the local density, o(¥), is given by the Brawais lattios wectors of the
face-ocentered cubioc lattics (foc). This set incorporates the transla-
tional symmetry of the lattice. The only other requirement for the
specification of lattice structure is the lattiocs constant, a, fimd by

the mean density Pot

L] v
o "3 IL.A.1)
a
With this information, the single particle distribution is lmown. In
order to proceed, the pair potential must bes given. For the HS systesm,

#r)=o,r 4 ne
(IIL.A.2)

’(P)‘O.l‘).&

where epye 18 the hard sphere diameter. We are now able to evaluate
‘xpressions II1.C.9, II.C.10, and I1.B.3, 1.s., the ideal and interac-
fon Melmholtz free energy, as a function of . For general ¢, II.C.9
s evaluated numerically. Appendix II presents Equation II.C.9 ia
eadr.f.o-mc fora. For the calculation of 11.B.3, the ideal gas free
10rgy, it is found that for all potentials and structures studied

Sy 9




herein, use of II.E.2, the large-a formula, to approximate 11.B.3 lms‘
an error of less than a per cent for all a values consistent with a
mechanically stable nonunifora phase. |

As an example of the variational procedure, we show, in Figure 1,
the competition between the ideal gas and interaction free energies, the
former minimum at a = 0, the latter at a + =. It is the balance of
entropic and energetic foroces which generates the equilibrium state.
Also shcewn is the a-dependent total free energy, qrtc). For the mean
density considered (’o"ﬁss = 1.0) a minimum exists at a ~ 71. Therefore,
this equilibrium state is nonunifora solid, whose free energy per parti-
cle, at this density, is srn(paf = 1.0) - 4.27.

The uniform liquid free energy is given as the a + 0 1limit of
g8f(a), according to II.E.1 and II.E.3. For this example, the uniform
fluid free energy is gf (p,* =1.0) -4.09. Consequently, although fluid
and solid are both predicted equilibrium states, the unifors fluid is

the thermodynamically stable state.

By use of this variational method, at each density, we proosed to

evaluate the density dependent free energy per particle for both uniform

‘and nonunifora phases viz.

8f,(py) = 8f(py; @ = 0)
(III.A.3)

Bfn(po) = B (poi agyp)

with ag,, fixed by the a « O minimum of 8f(a). In Figure 2, we show the
free energy density as a function of density, m.o). for both uniform

1iquid and nonunifora, fcc solid. Below Po = .92, no finite a mnini=m



exists and thus the system is pure liquid. For .92 < p, < 1.025, the

crystal exists, though it is metastable. Above o = 1.025, the crystal

is the stable equilibrium phase.
The coexistence densities for the liquid-crystalline solid phase

transition, as well as the melting pressure, P.. may be obtained via

II.F.1. We have also calculated the entropy change upon freezing, given

fn general by

- (k T) k ﬂ- (I1I.A.%)

'"‘a
where Aw is the change in grand thermodynamic potential per particle,

AW = A(‘L:) (1I11.4.5)

In addition, we have evaluated the Lindemann ratio, 28 defined as:

172
0 L2 (111.4.6)

d a(20)'/?

where X ia the particle displacement vector from the fiducial site, and

d is the fiducial site nearest-neighbor distance, which, for the fcec
crystal, is given by

176 :
d= ELTB (111.4.7)
(po)

These quantities are all shown In Table I, along with results from com-
puter simulation and other freezing theories.

In Table 1, Pr and pg are the fluid and solid coexistence densi-
ties, respectively, Py is the melting pressure, and AS/Nkg i{s the en-

tropy change on freezing. The variables §;, O0¢s and 0, are the



Lindemann ratios for the following three conditions, respectively: (1)
The point of marginal mechanical stability of the solid, (2) the point
of marginal thermodynamic stability relative to the fluid at the same
density, 1.e., fluid and solid free energies are equal, and (3) the
point of phase coexistence.

The "experimental®™ results labeled by A in Table I are the Monte
Carlo results of Hoover and Itn,29 and also the molecular dmamics re-
sults of Young and Alder.22

In row C, we present the results of Jones and !lolanl:y.'9 These
authors use the real-space, Gaussian description of the solid, equation
' II1.D.1, and the free energy density functional obtained via thermodmam-
ic expansion about the uniform fluid. For aol{d phase correlations, they
use the liquid state Percus-Yevick direct correlation function. Treating
the Gaussian peak width and lattice constant as variational parameters,
they minimize the Helmholtz free energy to obtain the results shown.
They therefore allow for variation in the set of riducial sites, (X},
and thus are able to incorporate lattice inhomogeneities in their ap-
proach.

Notice that Tarazona obtains three sets of coexistence densities,
labeled D, E, and F. The values shown in D were obtained by using a
constant value for his weight tmctﬁion when course-graining p(X), as
explained in Section I. In E, he uses a linear foram for the weighting.
Row F presents his most recent results, obtained with a density depend-
ent weighting function, written as a Taylor serfies in density. The ex-

pansion coefficients are determined via the self-consistency criterfon

2lluded to in Section 1.



The results of Baus and Colot are shown in row G. Their approach.
to hard sphere freezing has already been explained (Section I).

l'layller.16 has recently treated hard sphere freezing, using the re-
ciprocal space description of the solid density wave. For his density
functional, he uses the thermodynamic expansion of the free energy about
the uniform fluid, with solid phase correlations approximated by the
uniform 1iquid direct correlation function. With use of the
Wertheim-Thiele solution to the Percus-Yevick approximation for fluids,
he finds the coexistence parameters labeled by H.

Subeeq.lently.-" Haymet has used the more accurate Henderson-Grundike
direct correlation fmction.3° and finds ilp'oveﬁ results, shown by row
I in Table I.

Notice, in table I, that all reported density functional theories
predict op values which are considerably lower than those obtained from
computer simulation. A possible explanation for this is implicit in the
. work of Hoover and Ree (29). They suggest that solid phase pressure,
near melting, may be underestimated in their calculations, due to unphy-
sical cell constraints. This, if true, would certainly overestimate
free volume and Lindemann ratios, since the authors approximate solid
phase presswes via a free volume expansion.

By appropriate differentiation of the solid free energy density, we
have obtained the pressure behavior of the hard sphere crystal and have
‘plotted this in Figuwe 3. Also shown for comparison is the pressure

obtained from free volume I:heor-y.31 and known to be exact in the high
density solid as close-packing is lpproaehed.23 viz,
s, 3 (1II..8)

p ('- _L)
pcp



Clearly, the agreement in pressure is remarkable. Not only do we see -
this agreement numerically, but, as shown in Appendix III, we expect
such behavior analytically in the high density limit.

Given the extreme accuracy in solid phase presswre, liquid phase
free. energy, and coexistence parameters, we can be assured of the appro-
p'iat.eness of the so0lid phase description offered by p(X) in II.D.1.

In light of this presumably correct description for the hard sphere
crystal, we show, in Figure ¥, the density dependence of the equilibrium
a value, written in terms of the Lindemann ratio, 8, given in III.A.6.
At the solid coexistence density, Cuin = 150, which wrrémnds to den-
sity fluctuations occurring on a length scale of = .053 oyg. As densi.ty
increases, this length scale obviously diminishes. As discussed before,
such short-ranged behavior necessitates the inclusion of very high order
reciprocal lattice vectors in any reciprocal space density functional
treatment of hard sphere freezing. This numerical restriction limits
these theories to low solid densities. In view of the results obtained
with our density functional theory, the description of the extreaely
high density crystal is within the capability of this new approach.

III.B. Aperiodic Hard Sphere Solid

It is perhaps not surprising that a density functional theory of
hard sphere freezing with uniform, harmonic atomic displacements from
known equilibriun sites works remarkably well for the high solid densi-
ties considered in the homogeneous enviromment of the fce lattice. After
all, the assumption of homogeneity and harmonicity of lattice displace-

ments is the basis of all theories of lattice dmamics In the crystal-

line soliad statq.
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“The hallmark of the aperiodic solid state is, for our purposes,
topological disorder. As one moves from one fiducial site to the next,
the environment changes, and ve therefore expect a distri bution of aver-
aged atomic displacements throughout the system. This is in contrast to
the crystalline case, where all equilibrium sites have fdentical aver-
aged environments, These site inhomogeneities present in the disordered
solid bring into question the use of a one-parameter theory in the de-
scription of the solid state. The assumption of linearity is presumably
still appropriate, as we are dealing with very small particle displace-
ments at these high ao;ld densities. Still, it is enlightening to begin
any analysis with the simplest possible description, generating informa-
tion which will further guide one to future considerations and refine-
ments. It is for this reason that we consider now the present deasity
functional theory applied to disordered lattices.

The aperiodic structure which we investigate is the set of fiducfal
~ sites given by Bennett using his computer packing alprltl'-.” The only
other ingredient needed for the description of the nonunifora solid is
the nearest-neighbor separation of fiducial sites, dc, and this is de-
termined by requiring that a system of hard sphere particles, with di-

ameter d,, be close-packed at the mean density Por i.e.

(II1.B.1)

3
n, -% po(dc)

where Ne is the upper 1limit to the hard sphere packing fraction for the

dense random packing of Bernal.33 We use n, = .636, although there is

controversy as to what n, actually eqxals.”



With o(X) now presoribsd, we evaluate the free energies of unifora.
fluid and disordered solid, as in Section III.A. Figure 2 shows the
free energy density for the solid. Of course, the fluid free energy is
already given in Figure 2, evaluated with the previously discussed orys-
tal free energy.

Although an equilibrium solid phase exists, for p, > .97, these
solid states are metastable, relative to the uniform fluid. This behawv-
lor is in contrast to that observed for the same system, analyzed using
a free energy expansion about the uniform fiutd.! In that approach,
using the Henderson-Grundke 1iquid direct correlation function, the
Bennett lattice is found to be initially metastable, but for Po > 1.14,
the disordered solid becomes the stable phase, indicative of a first-
order transition. As previously noted, however, this result {s sugges-
tive, and certainly, in 1ight of the sensitivity of results to liquid
state correlations, one must be cautious of the numerical results and
. I-plicauc;ns. In rfact, the authors note that, although they obtain
limic_l and solid free energy curve crossing, they are unable to deter-
mine transition parameters via a Maxweil construction, due to the hega-
tive pressures obtained for the 1iquid branch. They attribute the ov&
estimate of solid stability to the ad hoc tail used in the direct corre-
lation function.

In view of the accuracy with which hard sphere freezing parameters
are obtained, the suggestion of metastability for the aperiodic solid
throughout the entire solid density range, within the limitations of the

present theory, appears to be on firmer ground than that given previ-

ously.
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Further evidence that this present theory may faithfully desaribse
the apesriodic solid is given by the pressute behavior obtained, and
shown in Figure 3. The pressure of the disordered solid should be com-
pared with that obtained from III.A.8 with Pep =1.216. The derivation of
I1I1.A.8 i3 quite general, without regard to the exact close-packed
structure, and requires only the valus of the limiting close-packed
density. The agreement seen between the"exact” pressure (i.s. III.lJ)
and the calculated pressure of the Bennett lattice indicates that ouwr
density functional properly describes the shape of the solid free ea-
ergy. Whether or not the free energy values are correct is not inown. A
real aperiodic solid contains deviations in fiducial site positions, as
well as a distribution of Gaussian peak widths. It is conceivable that
a free energy minimization in the disordered solid, treating the
fiducial site positions and Gaussian peak widths in p(X) as variational
parzmeters, could yield a more realistic aperiodic solid structure and
free energy values which admit a true thermodynamic transition, yet
leaving the shape of the free energy curve unchanged.

This approach would be similar in spirit to the oalculations of
Jones and Mohanty'?, in their theory of hard sphere freszing. A diffi-
culty which would be present in the aperiodic solid calculation, and is
not present' in the crystal calculation, is the specification of the
initial fiducial structli'e, about which fiducial site deviations are
incorporated in the varfational procedure. Until such a calculation is

complete, the aperiodic lattice is thermodynamically metastable, within

the present theory.
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In Figure N, we show the density dependence of the Lindesann rauo‘
for the aperiodic solid. It is interesting that, for both the fce and
Bennett structures, the Lindemann ratio is 6 = .115, suggesting that,
regardless of structwe, mechanical stabdbility is destroyed when atomic
displacements reach a certain fraction of the riducial site separation.

We now examine the temperature dependence of coexistence parame—
ters, as well as the effect of tempsratue on the thermodynamic proper-
ties of tho fce and Bennett solids, via the inverse-12 and Lennard-Jones

potentials.



IV. Soft-Sphere Potentials

IV.A The Perturbation Calculation

In general, a soft-sphere potential differs from the hard sphere poten-
tial, equation III. A.2, in two ways: (‘l.') the repulsive force poten-
tial is not impulsive, but rather temperature dependent, allowing
particle psnetration to separations less than the particle diaseter, and
‘(2.) there exists a tail to iho potential. The most popular way to
treat such a potential, in liquid state theory, is to separate the full

potential into a reference system and a pertubation, viz.

or) = ’r(') + op(r) : | (IV.A.1)

The reference systea, with strictly repulsive forces, is then replaced
by an equivalent hard sphere system, with an effective temperaturs and
density dependent hard sphere diammeter. The perturbation potential is
treated in perturbation theory, typically averaged over the pair oorre-
lation function of the fluid. It is the pérturbation potential, thenm,
which predominately determines the temperature dependence of coexistence
parameters and bulk phase thersodynamic properties during freezing.

In this spirit, ve treat the soft-sphere potential in the mahmer of

Tarazcna (17), i.e.

8e0p(T)] = 82, [p(D)] + 172 Sa@a®* oD (®') o (Ixw])  (v.a2)

+here Brip(X)] is the total Helmholtz free energy per particle,
If.{p(X)] is the free energy of the repulsive potential reference sys-
.om, and the last term in IV.A.2 treats the psrturbation potential ia
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mean field fashion. Equation IV.A.2 is an augmented van der Waals the-
ory, analogous to the theory of Longuet-Higgins and Widom discussed
earlier, and also to the various perturbation theories of 1iquids.'®
Therefore, we expect IV.A.2 to be an adequate free energy approximation
rogj weak and long-rangsd perturbations, especially at the high densities
wméh ve are presently considering.

In IV.A.2, Bf,.[p(X)] is given by II.E.2, II.C.9, and II.C.10, using
the actual repulsive reference potential, ¢.(r), in the spscification of
the Mayer f-bond. There u,_no need to reduce the reference aystem to an
equivalent hard sphere system, as is done in liquid state perturbation
theory. Although the mean field term in IV.A._Z tresats particle corrsla-
tions in the nonuniform phase implicitly, through the imposition of a
lattice structure, particle correlations are not incorporated in the
uniform fluid phase. At high tcmperatures, where the effect of the tall
is negligible, this lack of correlation will not be a problem. At lower
temperatures, though, it may bs a drawback.

We now need to consider the question of how to sepsrate the full
potential into a reference system potentfial and a perturbation potem—
tial. To date, the most successful aeparation scheme and pertwrbation
theory for classical equilibrium fluids is that of Kang, et a1.3% e
method consists of dividing the potential into a reference potential and

a perturbation potential at a break point, A, which may depend on den-

sity. Mathematically,
or) = ’r") + op(r) (Iv.a.3)
¢.(r) = o(r) - F(r) 1f r&a (Iv.a.%)

QP(P) =0 if r»n



o (r) = F(r) 1t raa (Iv.4.5)

op(r) = ¢(r) ir r>a

where A and F(r) are arbditrary. For A, they use the following prescrip-

tion:

A.Hin(drcc .l’"’) (Iv. ‘06)

where r* is the interparticle separation at the minimum of ¢(r), and
dpee 18 the nearest-neighbor separation in the fce lattioce, given by

III.A.7. For F(r), they use the following form:

Fi(r) = #{2) - ¢*(A){2-r) (IV.A.T)
where

¢ ()= ggg)' rei.

The foram chosen for F(r) in equation IV.A.7 ensures the continuity
of ¢.(r) and Qp(r'), as well as their derivatives, at r-Ar‘.j

The choice of A is reasonable. At high densities, particle separa-
tions comparable to r* are rare. Each atom is confined to a cage formed
by the repulsive forces of its neighbors. Therefore, the equilibrium
separation of the atoms will be roughly drcc' This choice of A has the
effect of reducing the range of ¢.(r) with increased density. This al-
lows the calculation of equivalent hard-sphere diameters, for use in
liquid state perturbation theory, which are physically reasonable and
lead to excellent predictions of thermodynamic properties for classical

fluids throughout the entire denaity and temperature range, when'eon-
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bined with IV.A.7 and IV.A.3-S. Earlier separation schemes3S have lead
to overestimates in equivalent hard-sphere diameters at high density and
low temperature, and thus, have generated metastable fluids.

Although in our density functional theory, there is no noctl/i‘to
reduce the reference system to an squivalent hard sphere system, ve will
still adopt the physically reasonable separation of Kang, st al. We now

apply these general considerations to the inverse-12 and Lennard-Jones

potentials.

IV. B. The Inverse-12 System

‘The fcc and Bennett structures are recx'ulned. this time with the

interparticle potential having the following form:

or) = c&:)“ (IV.B.1)

‘uhore. for owr purposes, n=12, ¢ is the particle diameter, and ¢ ia an
energy unit. We begin with the fcc lattice. H
Using the scparaubn of section IV.A, we evaluate 8f.[p(%X)] for
sach reduced temperature T*[=kpT/c] and mean density p,, using Qr(r).'
in the manner of secu;n 111, and use op(r) in the calculation of the

meanfield term in equation IV.A.2.

In this way, we were able to obtain coexistence parameters and bulk

phase thermodynamic properties for inverse-12 freezing and the solid

phase, respectively.
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As a result of the fora of the potential in IV.B.1, the mmq
funoction, and henoe thermodmanic properties, of these systems depends
not on teaperature and density separately, but on a diasnsionless pa-

remeter, x:

} .o(i:-r')yn .3 ‘I'o'oz,
Secause of this socaling, the thermodmamic properties and coexistence
oarapeters ror these systems in the entire T-p plane can be detersined
‘rem a single isothers. Specifically, once the walues of x, and xo for
1 single temperature - density point at selting have been determined,
:he entire phase diagram may be produced via the relations:
”" x.('l")yn _
(Iv.3.3)

o xr('l")yn

here the subscripts refer to fluid and solid phases.
The constants x,, xo have been determined by Noover et. al. (37)
sing Monte Carlo calculations. They obtain the following values:

x. - ’.’93

X ° .14

We have used our density funotional theory to ewluate the coexis~
100 densities as a function of tempsratwe. The phase diagram thus
erained is described by the soaling equations IV.B.3, as expected,

h the following values for Xge Xpt
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xr L ’0’65

The errors in solid phase and fluid phase densities along the melt-
ing line are less than .5 perocent and 2 perocent, respectively.

Other cosxistence parameters calculated by Hoover et. al. are selt-
ing entropy and pressure, and the Lindemann ratio. For transition en-
tropy, they find

4S_
kg = *

We obtain the value .96 for this same quantity from equation III.A.4.

The Lindemann ratfio cilculatod by thea 1is

= 0’5
As in the hard sphere systea, we have evaluated the three Lindesann

‘ratios 01. Op and 8_. They are

.1- .128

'T. .07

.H b 5068

Comaparing the inverse-12 data to that in Table I for the hard sphere
potentiil, we see the effect of compliance on ¢ and entropy. Temperature
increases the number of configurational states available to the systea,
thus loweriag the freezing entropy and raising the Lindesann ratio at
melting. It is interesting, though, that at the point of solid mechani-

cal instability, the Lindemann ratios for inverse-12 and hard sphere
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systems are very similar. In Figure 5, we show the density dependence
of the Lindemann ratio for the inverse-12, fcc system, for the teapera-
ture TH=2,75.

As with ocoexistence densities in equation IV.B.3, the pressure at

melting is given as a function of teaperature, as a result of scaling,

according to the following expression:

sp - c(m)3/" (IV.B.%)

The computer generated valus of C is 22.6, while we obtain the value 38.
This discrepancy in melting pressure may not be as bad as it seems,
since pressure behavior is notoriously sensitive even to small errors in
free energy curves. This understanding explains the excellent values
for coexistence densities and freezing entropy, in the face of pressure
differences. Undoubtedly, the errors in free energies are dus to the
lack of liquid correlations in the mean-field term of the free energy.
As the density of the solid is increased avay from the coexistence re-
gion significant errors in the fres energy and pressure arise. T7This
ocecurs bescause the mean-field contribution to the free energy increases
as the fiducial site lattioe contracts. The lack of correlation is
noticed more at high densities than at low. In order to address thermo-
dmamic properties of the high density solid, above the melting density,
we will need to incorporate these correlations in a more realistic san-
ner. 7This was not a problem uwith the hard sphere systea, gherc high
density behavior was predicted quite accurately. Evidently, in the

coexistence region, these correlation errors are not severe.




We now turn our attention to the apsriodic lattioce, described in
section III.B. When evaluating quantities for this lattice, the separa-
tion of the potential is given by equation IV.A.6, with d.., replaced by
de' defined in equation III.B.1. With this lattice and potential seps-
ration, ve have evaluated the systems free energy density, as a function
of density, for a series of tempsratures, from T¥=,1 to TE=10. For all
temperatures, the aperiodic solid is metastable, relative to the unifora
fluid. In figure 6, we show the degree of metastability Msm density
for this system, for T#=2,.75. As density inoreases, the metastability
increases, as in the hard sphere system. Also shown is the same quantity
for the inverse-12, fcc system at the same tﬁpcratm. The difference
in beshavior seen between the periodic and aperiodic lattices, for the
same interaction potential, indicates the important dependence of ther-
-odynalcs_on structure. In light of this, future iaclusion of fiducial
site fluctuations in the aperiodic lattice will presumably change the
behavior of the metastability seen in figure 6. It would be most inter-
esting to quantify this change.

We also have evaluated 0;» the Lindemann ratio at the point of
mechanical instability of the solid. This quantity is shown in figure
5., along with the density dependence of the solid phase Lindemann ratfo.
The temperature 1s also T*=2.75. When comparing this curve to that
shown for the same potential, but with the fcc lattice, it s evident
that the Bennett lattice is “tighter® than the fcc lattice at any given
density. This fact is manifest in the lower instability density and the

lower ¢ values of the Bennett lattice vis a vis the crystal, at all
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densities. This behavior is consistent with the difference in close~

packed densities between the two lattice structures, viz. Prcp = 1.216,

- 1..'”.

Pcep
Given a specific interaction potential i.e. the inverse-12 poten-

tial, wve have examined, in figues 5 and 6, the effect of structure on
ococexistence and thermodynamic properties of these systems. The influ-
ence of attractive forces on these same quantities within a specific

lattice structure, can be examined via the Lennard-Jones potential,

which we study now.

SN




IV.C Lennard-Jonesium

We examine coexistence behavior and thermodynamic properties for

the fec and Bennett (apariodic) lattices under the influence of the

Lennard-Jones (LJ) potential, given by:

or) = ke [D)'12-@)%) (wv.c.1)

where ¢ is the diameter of tht‘Lanwd-Jonn particle, and ¢ is an en-
ergy unit.

The difference between IV.C.1 and IV.B.1 lies in the attractive
force, which is absent in the inverse-12 potential and present in the
Lennard-Jones system, for r> r, = (2)1’6. This value represents the
position of the potencial minimum. The existenoe of this minimum at
finite separation means that, when scp;rat.lnz the potential into refer-
ence and perturbation parts, according to equation I'.}._G. the value of
r® in IV.A.6 is fixsd and equal to rgye 2nd not temperature dependent, as
it ia for the inverse-12 potential. '

For the fcc lattice, we have obtained coexistenocs densities for a
series of temperatures, and display owr results in the LJ phase diagram
shown in figure 7. Also displayed are some valuss obtained from the
computer simulation work of Hansen (38) and Hansen and Verlet (39),
indicated by crosses.

It is evident from the results that, at high temperatures, agree-
ment is excellent. This is to be anticipated, since, at high tempera-
tures, the attractive potential is negligible relative to the repulsive
tranch, thus minimizing the error incurred through the use of the mean-

field term in the free energy expression, since this term 15 numerically



small. Also, at high temperatures, the LJ potential, IV.C.1, reduces tq
the inverse-12 potential, IV.B.1, if we simply redefins the energy
scale. Even at T¥*=1.35, the error in coexistence densities between
simulation and our theory does not exceed 5 percent. At lower tempera-
tures, the attractive force becomes more dominant, the mean-field term
is numerically more significant, and correlation errors become notice-
able. The simulation value for the LJ triple point is Te=.Ts while we
obtain the value T =.8.

Although the low temperature phase diagram shows errors, the gen-
eral feature of the phase diagram is correct. The fractional density
change is largest at the triple point and decreases with increasing
temperature, tending towards the values obtained for the inverse-12
potential.

For the temperatures T#*=1.15, 1.35, 2.74, 5, and 10 melting pres-
sure values from simulation3® are: 5.68, 9.0, 33, 86, and 231. From our
theory, we obtain the following values: 4.K, 6.2, 21.2, 29, and 38. As
in the inverse-12 potential system, correlation errors in the fluid free
snergy are presumably responsible for these differences in melting pres-
swes, In addition, at these high coexistence densities, the Carnahan-
Starling virial for the uniform fluid is known to be inaccurate.

Computer simulation at the temperatures T¥=1.15, 1.35, and 2.74,
for the LJ crystal, gives the following values for the Lindemann ratio:
.139, .137, and .149. As with the HS and inverse-12 systems, vwe have
computed the three Lindemann ratios 05 Op» and 6_,. For tie same three
temperatures as above, we obtain, for 0;, the values: ~142, .14k, and
.137. 1In fact, from T*®=,8 to T¥=10, we obtain 6 ~ 1%, The average

values of G-r and 8y averaged over sixteen temperatures, are: 6r ~ .075,



0, ~ -068. 1In figure 5, we show the density dependence of 8 for the LJ,

foc lattice, at the temperature T#=10. At this temperature, 6; happens

to have the value o, ~ .13.
For the aperiodic, Bennett lattice, we show the difference in free

energy density between unifora fluid and nonuniform solid, versus den-
sity, for T¥=10, in figure 6. ﬁObvlously. the aperiodic solid, in our
theory, is metastable for the LJ interaction, as it is for the HS and
inverse-12 systems. For all temperatures considered, including values
within the range reported by simulation of glassy systems, we obtain the
metastable aperiodic solid.

In figure 5, we shown 6 versus density for the aperiodic, LJ systea
at T¥=10. The value of 8 obtained for this system, for all tempera-
tures invesu’gated. is remarkably constant around the value 6 - 1N,

When comparing, in figue 5, the stiffness of the LJ crystal and LJ
aperiodic solid, we observe the sam2 behavior as that seen in the in-

verse-12 systems viz. larger fluctuations in the a-iatal lattice, for a

given interaction potential.
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V. Discussion and Conclusion

We have devg;oped and presented a new density functional theory which
posaesses a number of virtues: (1.') simplicity, (2.) remarkable repro-
duction of HS freezing parameters and high density HS crystalline ther-
modynamic propertiea, (3.) a real space description of the nonuniforam
solid, (4.) the lack of ambiguity concerning the approximation of solid
phase correlations with 1iquid state direct correlation functions, and
(5.) the ability to Simply extend the analysis to realistic potentials.

We realize, though, that all is not well in Camelot. One must be
cautious when dealing with high density and/or low temperature behavior
in soft-sphere systeas, due to the present lack of correlations in the
mean-field contribution to the Helmholtz free energy. We believe it
would be profitable to incorporate these correlations in a manner con-
sistent with the spirit of the present theory. Perhaps "optimized”
choices of the division into repulsive and attractive forces are possi-
ble. Until such time, we must view this theory as a moderate to high
temperature [T¥>1.15] density functional theory of LJ potential systeas
for densities in the coexistence region. For the inverse power poten-
tials, the only constraint, at present, is on density: we should limit
our investigations to densities in the coexistence region, for general
temperatures. ‘

In these temperature and density regimes, our results for the in-
verse-12 and LJ liquid-erystalline solid transitions show excellent
agreement with computer simulation results. For higher Qnsitla. ;:he .

correlation errors become important.
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Consequently, if we restrict ow view to these regions, we can be
oonfident of ow results for the thermodynamics of aperiodic sclids,
within the limitations or the theory, which are: (1.) we neglect
fiducial site fluctuations, which will presumably affect the thermody-
namics of the nonumifors solid, in light of the comparisons shown be-
tween crystalline and aperiodic solids for the LJ and inverse-12
potentials [Section IV.B and IV.C], and (2.) uncertainty in high density
free energy bshavior as a consequence of the mean-field approximation.

Within the appropriate temperature and density regions, the affect
of an attractive force on the thersodynasics of a repulsive force systea
may be determined. We have done this by using the correspondence be-
tween the inverse-12 potential and the LJ potential at high LJ teapera-
tures [T*=10]. Comparing equations IV.B.1 and IV.C.1, one sees that LJ
results for T¥=10 correspond to inverse-12 results for T¥#«2.5. These
results are shown in figures 5 and 6. Comparison of data for similar
lattice structures allows one to determine the affect of the LJ attrac-
tive force on the properties of the repulsive force reference systea,
for that particular structure.

The computer simulation of Hansen (38) shows that, even at T%=10,
where one would expect the influence of the LJ attractive force to be
weak, coexistence denaities and pressures for the crystal lattice are
increased [3.5% for PLe §.5% for p,], and decreased [221] respectively,
with the inclusion of attractive forces in the lattice. We find similar
behavior with our density functional theory. From figure 7 and our
inverse-12 results, we find that coexistence densities increase [2% for
Prs. 2.5% for p,] and melting pressures decrease [24%2] when we introduce

the attractive force into the crystal lattice, at T*=10. In addition,



figure 5 indicates increased particle fluctuations as the attractive
force 1s included in the lattice for both the aperiodic and crystalline

solids.
Computer simulation (34,39) also observes increased mean-squared

displacements of particles from fiducial sites when the attractive
branch of the LJ potential is included in the system.

One important final point must be made concerning the affect of the
attractive roroo on the properties of repulsive force systems. The
Bennett lattice is more closely pacled, at a given density, than the fec
lattice, and therefore, should be less affected by attractions than the
crystal structue. This is clearly evident in figure 5, where it is
observed that particle fluctuations from fiducial sites fncrease more
for the erystall,\.%ne lattice than for the aperiodic lattice, at the same
density and teaﬁ;ratu'e, when incorporating attractive forces into the
solid phase.

Now, Qhen one looks at figure 6, one sees that sttractiwe forces
have a larger influence on the aperiodic lattice, in terms of free en-
orgy differences, than on the crystal lattice. This behavior under-
scores the need to treat uniform fluid phase correlations more adequate~
ly than we have done here, due to the presently demonstrated sensitivity
of fluid free energies to attractive pertwbations.

Finally, we should mention a limitation in the theory. The direct
oorrelation function derived from our free energy functional yields a

structwre factor for the unifora fluid which would show a divergencs for

1 sufficlently flexible trial function. For the densities for which we



find a mechanically stable s0lid, though, ow density fluctuations for
the solid are inconn,gnurato with those which yleld a diverging fluid
structue rfactor.

In futuwre work we intend to treat fluid phase correlations in a
oonsistent and more realistic manner, as well as, to profitably use the
simple structure of this theory in the study of various phenomena, among
them: freezing in molecular fluids, the liquid-rotator transition, ener-
getiocs of the Penrose lattioce. For HS systems, these problems may be .
addressed immediately and confidently with ou new density functional

theory.
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Appendix I

In this appendix, we shou"o how equations II.E.! and II.E.2 are
obtained in the small and large o limits, reapectively.

Substitution of II.D.1 into II.B.3 gives:
: — 12

N -a(*R, )
VoL 8y32 1) 3, @
BF, = () 121 fd% e 50 ) -1
N -a(i'-‘R'J)z
+enl[] e 1] (A.1.1)
3=
2
N N -a(Xx - K,)
« ] Bm@®-12+&32 § sae 1
f=1 11
N -axE)?
xtn[] e 1 (A.1.2)
3=

In the large « limit, Gaussian overlap in p(X) is negligible. There-
fore, we need consider only nearest-neighbor overlap. Consequently, the
second term in equation A.I.2, which we denote T2, becomes:

2 2

N ~a(%-R, ) N -a(XK,)

-3 7 sda7e " gnr§ e 37
k) 1-1 I ) J-‘

2 2 2
-a(x-H,) -a(x-R, ) -a(x-K,)
= (%:-)3/2 ) Jdx e i tn[e 1, e J )]
1=}

i i

-2(FEK, )2  -a(®E )’ - (7—171)2 -a (KK )2
Ln[e: + e e J

~@¥2 7 sdxe
n 1e]

-2a(x-X, )-(R,-R,)
xe i 173 ]

2 2 —
-a(X-K, ) -aR -2a({x-K, )R,
- @32 ] sawe 1" gn[1+e He 17713,
i=j

(A.1I.3)

where



Continuing, we have:

x {f dy tn[1 + e e
0

‘ 2

1 -aR 2axyR

+ f dy an[1 + e 1) o 1JJ}
0

(A.1.%)

Therefore, combining terms A.I.2 and A.I.%, we obtain for the large a

limit
v ¥ 3 e 5 a,3/2 * 2 -ax
BF, = 121 [5 enE) - 51 + 2x(0)° 1§j g x“dx e
1 | -aRy, -ZQRfJ}

x [ dy 2n {1 + 2e coah(Zuxynij) + e
0

N
-1 B @ -2+, 1 E )

1-1
. 5 -uxz 1 -aR2
J x"dx e J dytn{1 + 2e cosh(2axyR) + e

0 0

where, in A.I.6, b

R= H}Z .

(A.1.5)

2
-2
aR }

(A.I1.6)
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Tem A.1.5, one obtains the large-e« ideal gas fres ensrgy per particle
oF a lattioce structwe desoribed by a set of discorete rfiducial site
egtors e.g. the fcc lattioce. When the lattiocs structure is statistiosl
n msture, one uses equation A.1.6 to obtain $F,°/N in the large-a limit.
ppiication of this density fumctional theory to aperiodic solids would
2 an emmple of a situation in which one would use A.I.6.

In the small-a limit, the overlap of Gaussian peaks in p(X) 1is
Aensive. To deal with tkis, we use the Poisson sum forsa"' o re-
k@ the real space density psak expansion and the Pourier space deasity

e desaription of p(X), viz:

2
N -e(¥FX,)
.m-(-')”"’ Y e 1
* 1=1

L] o’
-p +1's, & : (A.1.7)
o F G

wre £° means U » 0 in A.X.7. In A.I.7 #o 18 the infinite-wavelength
ahe wvave state, and oan be identified with the mean density of the
‘tea. The coefficients in equation A.I.T are given by

N -m-l'l

2
-1 { e .—Gl‘c
L

(aA.1.8)
ore ¥ is the systems wolume. Substitution of A.I.T imto II.B.3

elds:
s, -1l o 1y T Ftane ) - 1

ETHES -z— I. ’ .ﬂf-'f'] (l. 1.9)

oG




5

We urite 8F,p' in Fourier space, as in equation A.1.9, so that one may
use the orthogonality property of the density waves, to simplify the
evaluation of the ideal gas free energy. Since the density distribu-
tion, p(X), in the small-a limit is very flat, a plane wvave rojrcuuta-
tion of p(X), offersd by.a low order Fourier expansion, is appropriate.

Using the expansion of the logaritha, and noting that

[ §
é Pg §(G) = 0

vwhere §(G) is the Dirac delta function, we have, after some manipula-

tions,

6F < M(tn(p ) -11+p SaE[-—= 5 ¥ o. »
(1] (] (-] 2%2 6162 G‘ Gz

1x- (G, +G,)

1
e +...1+57ax[— Y Y o. o
% G, G, G, G,

1X- (G, +0,)
e 172 (A.I.10)

- o..]
In A.1.10, we have ignored terms that involve sums over three or sore
reciprocal space vectors, dus to the plane wvave natwre of p(X) in the

soall-a limit. We write A.I1.10 as
BFy = N[tn(p )-1] + T3 (A.I.18)

vwhere

R SR LR P
TS %, g °e (A.I.12)

Expression A.I.12 is obtained with the use of the integral represemta-

tion of the delta function. Substitution of A.I.8 into A.I.12 ylelés



NN 2, -i0-(F-W)
ey I ] «0/2, + (A.1.13)
o' G 1=1 =1

We now rewrite the restricted sum in A.I.13 in terms of the unrestricted

sum and the zero wavevector component, i.e.
N N - 2
.!.3--21_ 2 z 213 Iczm..GIZG
Po a1 §=1 (2¢)° O

1 -iGyR oV
Jdye H_o
-1

(A.1.78)

In A.1.14, we have expressed the unrestricted sum in terms of an inte-
gal, in the limit of infinite system size. Perforaing the simple
Gaussian integrals, and uriting the double sum as a self-tera (l-j) and

a distinct term (14j), we finally obtain:

2,>

-al [ IR 4
a,3/72 N 1 ,a,3/2 A 13 '“_Yo
S &) ('o) ],Ej e > u.:‘.ts)

-3

where the distinct tera involves a aum over a lattice described by z set
of discrete fiducial sites, as in equation A.I.5. For a statistioal

lattice, we express A.I.15 in terms of a statistical distribution of
fiducial sites in the systesm:
1 ,e3/2K . N ,a3/2 -38° oy
T3 = Yy, J (;) "; v (‘;) J dR g(R)e -~ (A.1.16)
where ¥ in A.I1.16 was given before in A.I1.6.
Combining A.I.11 and A.I.16 gives the saall-a limit to the ideal

gas free energy per particle.



Appendix II:

We start by substituting II.D.t1 into I1I.C.9. The result {is:
— 2 — 2
-a(f-r, )" -a(r¥'-F,)
M) m-4= I @3 rF @ edrrhe 1 e J
1,3

(A.I1.1)
The summ:tion in A.II.1 is over all values of i and j. We therefore cnn
separat: n’a) into a self-term, with i=j, and a lattice term, 1£j.

The self term will obviously be independent of the fiducial site
lattioe, while the lattioces term w;n depsnd on the assumed lattioe

structure. Therefore, we vwrite:

n(a) = n (a) + n,(a) (A.11.2)
For the self term, we have:
N -a(FF, )2
nle) = - o= ) @3 s e e(drrh e !
-a(?'-?i )2 (A.11.3)

Without loss of generality, we may set all ‘F! to zero. Therefors,
A.1I.3 becomes:

2 2
n(a) = - & @3 5 e r(lrFel) & o000 (A.IL.K)

Letting X = ¥ - F*, substituting in A.I1.¥, and performing some simple

Gaussian integrals gives:

2

_1 @32 -ax‘/2
ns(c) --3 (2') J dX £(x) e (A.II.‘S)
Equation A.IL.5 is the working equation for n,{a). Giﬁn any arbitrary
repulsive potential, #(x), one may trivially evaluate ny(a) for each ¢

valuse. Continuing with the lattice term, we have:



nl(u)--%? ZJ @3 s o & eclF -7
ie .

) —alF?
. . (A.I1.6)

Defining X = F; - FJ, and setting ¥; to zero, as in ng{a), one obtains

: 2 2
nta) = -3 I @35 & olr-mhe™ T gy
R

Letting X =« F - ¥', substituting in A.II.7, and evaluating some Gaussian

integrals yields a working expression for ng(a):
2 2
T - A - E(p-x) - &(rex)
n,_(c) - - _z_o (5'2;)1"2 S rdr g(r) f xdx £(x) {e 2 - 2 }
0 0

, - (A.11.8)
In A.IL.S8, pog(r) is the probability distribution of fiducial sites.
For the disordered solid, it is given by Bennett (32). Por the fecc
crystal, it is a sum of delta functions, centered at each lattice site.

In this case, A.II.8 transforas to:
- -%(ll-x)2 - -%(ll*x)z

A
nta) = -3 &2 1 ) 7 xx £ fo . }
R

0
(A.1I.9)

where R i1s a Bravais lattice vector in the fcc orystal.
With these expressions for ng{a) and n‘(c). one can easily evaluate
11.C.9, for any repulsive potential and any fiducfal site distribution,

and thus implement this convenient density functional theory.
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Appendix III

We would like to deuonstrd{-’:.e that, in the limlt of close-packing,
the pressure of the solid p‘has'e"’ beshaves 1ike that of free volume theory

f.e. equatfon III.A.8. We start with the a-dependent free energy, given

by
gf(a) = 3 g (&) - 2 4 Aa)[¥-3n(a)] (A.III.1)
2 ¥ 2 [l-n(a)]z

In order to rind pressure, one needs the density-dependent free energy.
Thus, one needs to find a.m(po). where a,,, {8 found (ro- minimization
of A.III.1.

Minimization of A.III.1 gives the following:

0 = -23— . Mﬂ%a—gz—“l (A. III.2)
« [1-n(a)]

From A.II.2, differentiation of n(a) implies differentiation of lattice

and self terms. Proceeding, we have, from A.I1I.5, the folloving:

an (a) 2
3 —3Va__ % r(x) e /2

da 16(2:)3/2

2 N

For the hard-sphere system, evaluation of the integrals in A.1II.3 and
cancellation of terms results in:

ana(a)
da

where o is the hard-sphere diameter. For the lattice term, we need sum

2
1,,a 172 a0 /2 .
- (8)(21) e (A.II1.N)

only over neareét-nelghbora. since for large a, Overlap of Gaussians {s

negligible. Therefore, from A.II.9, we obtain:

a 2 a 2
o - %0 - Sden)
ny(a) 5 - )&% &) I xax rxle 2 -e 2

(A.IIL.S)
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where z is the number of nearest-neighbors, and d is the nearest-
neighbor fiducial site separation. Differentiation of A.III.5, and

retention of the maximum term gives:

A
2 2
12 1 yPaya-yre™™ /2 (A.1IL.6)

3nl(a)
a (lﬁd

where A, = d-o0, A\, = d, and y = d-x. Evaluation of A.I11.6, in terams of
error functions and exponentials, gives, in the limit of large o, the

following expression for n,‘'(a):

- _ 2
z (d-o) o a(d-0)"/2 (A.IIL.7)

n'a) s ~
2 16 (2!0)"2

In the large a limit, n(a) reduces to the following expression:
nta) -1+ Z pr-ertf®e-03]1 (A.1I1.8)
8 *16 2%
uhere‘zg (d-0) + constant (= .9) as a + =,
Therefore, from A.II.2, A.III.N, A.IIL.7, and A.IIL.8, A.ILII.2 becomes:

2 |
y1/2 gab /2 _ z_(d-o .-a(d'oi /23 (a.111.9)

..3_
0 +C [8 2% 16500y 172

where c, is some constant.

Rearranging A.III.9 gives:
: -a(d-0)2/2
D = /a (d-0) e (A.III.10)

where D is a constant. Graphical solution of A.III.10 yiclds the fol-

lowing expression for Com®

2
a, = e (A.IIL.11)

min (d-o)2

4ﬁQre e = 1.67



In general,
1
da ~ P 173 (A.111.12)
)

For the fcc crystal, III.A.7 obtains. For the Bennett lattice, we use
III.B.1. Substitution of A.III.12 into A.I1II.11 gives the density

dependent equilibrium o value in the high density limit:

(po) £ (A.1I1.13)

a - - =

where Pop designates the close-packed state and g2 = 1.32. Substitution
of A.III.13 into A.III.1, and neglecting the interaction terms at these
high densities gives the following free energy behavior:
Po .1/3
8f{p ) =~ tn(p ) - 3¢nf1 - () "“] + constants (A.II1.1%)
o o ’cp

Expansion of thé argument in the second term of equation A.III.1N to
second order about the close-packed state, and further expansion of the

logarithm of the quadratic term, yields the following pressure behavior,

after appropriate differentiation:

BP__afsr) A 1 3 (A.III.15)
2 3, Po  Pep (pcp-po)

Po

Alder, et. al. (31) write the high density virial in the following foram:

3
P "o
0o - (pgppg) 0" "t (A.1I1.16)

where the higher order virial terms vanish as the close-packed state is

approached. Comparison of A.III.16 and A.III1.15 shows that our theory



(9]

predicts the value of co to be 2. "Exact" simulation results deteraine

Co to be 2.56. The value of C, which we obtain is also that given by

self-consistent free volume theory. In addition, equations A.III.1S5 and

A.1II.16 indicate that ow free energy density functional provides the

proper presswre behavior, that of III.A.8.
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Table I. CoeXxistence parameters for the HS freezing transition from
various theories and ocomputer simulation

Sowrce g ps (pgpp)oe BP, AS/Nkg 8y 0y 0,
(rer) ,

«939- 1.036-
A(29) 948 1.085 103 1.7 1.16 -— == 126
B .

(This
work) .96 1.07 114 13. 1.3 .125 .068 .053
C(19) .9461 1.0525 112 —— —— - == 0M8
D (1 7) -891 1 . “62 -Ou hatednd ~— - - .08.
E(17) 1.0635 1.1903 119 e e
F(20) .9¥33 1.061 125 —_— m— e = -
G( 2 .993 1.083 091 12.3(v) 1.03(v) .1%9 088 .07%

‘ : 16.1(c) 1.36(c) - .
H.(1 6) 0916 1.035 006 ——— - - - .05
I(82) 946 1.03 .089 1n.6 1.0 - = -

pg = fluid phase coexistence density

Pe = s0lid phase coexistence density

8P, = melting presswre

AS/Nk = entropy change at melting

8y = Lindemann ratio at mechanical instability

"l' = Lindemann ratio at marginal thermodynamic stability
6, = Lindemann ratio at coexistence

n
2(v) = use of compressibility (virial) PY equation of state.



65

Figure Captions

Pigure 1:

Plgure 2:

Figure 3:

Figure i:

‘jgure 5:

For b’oi = 1.0, the ideal gas Helmholtz free energy per par-
ticle (solid line), the interaction Helmholtz free energy
psr particle (dotted 1ine), and the total Helmholtz free

energy per particle (dashed line), versus a.

HS free snergy density, versus density, for the following

structuwres: wifora fluid (solid curve), fcc crystal

(dotted curve), and Bennett lattice (dashed curve).

HS compressibility (8P/p,), versus p,. We show the

Salsburg-Wood pressure, equation III.A.8, with Pep = 1.216

(solid curve) the high density pressure in the Bennett lat-

tice (dashed curve), and both the high density eryst:l////‘

pressure along with equation III.A.8, uith/gcpéfi/{/; (dotted
e

curve). o

Note: the dotted curve is aq;{yally both curves super- '

imposed.

HS Lindemann ratio versus p, for: crystal (dotted curve) and
Bennett lfétia {dashed curve).

Soft-sphere Lindemann ratio versus Po for: {inverse-12 po-
tential and Bennett lattice (dashed curve), the LJ potential
and Bennett lattice (solid curve), the inverse-12 crystal

{dotted curve), and the LJ crystal (dashed-dotted).



Figure 6:

Figure T:

Free energy density difference, relative to the unifora
fluid, versus Po» fOor the following systems: inverse-12
potential and Bennett lattice (dashed curve), LJ potential
and Bennett lattice (solid curve), the LJ crystal (dashed-

dotted), and the inverse-12 crystal (dotted).

Phase diagram (solid curves) for the liquid-crystalline
solid phase transition in the LJ systea. Also shown

(crosses) are values obtained from computer simulation.
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