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Abstract

With analogy to the "highly accurate" sunaation of cluster diagrj

for hard sphere fluids a la Carnahan-Starllng, we present a staple, real

space free energy density functional for arbitrary potential systeas,

based on the generalization of the second virial coefficient to inhoao-

geneous systeas which, when applied to hard sphere, soft-sphere, and

Lennard-Jones freezing, yield aelting characteristics in reaarfcable

agreeaent with experieait. Iaplications for the liquid-glass transition

in al l three potential systeas are also presented.

•Work supported by the U.S. Department of Energy, Basic Energy *ci
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I. Introduction

The study of phase transitions from a Molecular viewpoint in physi-

cal systeas i s one of the aost challenging prohleas in condensed eatter

physics. Although aany worker* in the field have developed numerous

theories for the liquid-crystalline solid transition in model systeas,

questions concerning these theories s t i l l reaaln, in spite of the quali-

tative agreement with observation.1'3 The theoretloal situation i s

worse for the liquid-aperiodic solid transition. The lack of long-range

order In these glassy systeas precludes the use of well-established

crystal physics techniques, and requires the application of new tech-

niques to the solid phase. In addition, the actual nature and existence

of the liquid-glass transition i s unknown. The description of phase

transitions i s difficult because phases with different syaaetries and

structures require description within a single aatheaatical framework.

It has becone popular recently to approach the problea of phase

transitions fro* the viewpoint of liquid state physics. An early er-

aaple of this i s the work of Onsager concerning the effect of particle

shape on the properties of colloids.11 In i t , he enaines the isotropic-

neaatlc liquid crystal phase transition using the general method of

Mayer and Mayer to evaluate the free energy of the systea in teras of

the second virial coefficient generalized froa the unifora fluid to

include orientation by the introduction of an angle-dependent distribu-

tion function. Unable to evaluate higher order virial coefficients,

Onsager approximates the third virial coefficient in teras of the second

and ends the expansion at third order. This was inspired by Boltzatann's



evaluation of tht third virlal coefficient for hard spheres of equal

diameter, in which he derives the relation between the two and three

body cluster integrals.

Slightly earlier, Kirkwood and Monroe5 developed a theory of freez-

ing which was to become the precursor of modern density functional theo-

r ies . In i t they use the idea of variable coupling of one particle to

the regaining H-1 particles to develop an integral equation relating

pOO, the s i n g l e particle density, to the liquid pair correlation func-

tion and the interpa»ticle pair potential, although this theory repre-

sented a major advance over existing "freezing" theories, the dependence

of p(TT) on the pair potential prohibited the explanation of universal

features during freezing.

Several events not!vated the resurgence of the density functional

theory of Kirkwood and Monroe, albeit in a slightly •ore general fora.

The unexpected observation of hard sphere solidification during the

computer experiments of Alder and Walnwright' attracted much theoretical

attention vis a vis hard sphere freezing. The possibility of using the

liquid state as a referenoe state from which theoreticians could study

HS freezing was realised by Werthela*s solution of the Percus-Teviek

Integral equation for the direct correlation function of hard spheres.'

a fundamental advance in liquid state physics. The use of the hard

sphere fluid as a referenoe state for acre real is t ic systems was Justi-

fied init ia l ly by the classic work of Longuet-Higgins and tridom,* in

which they examined the effect of an attractive interaction on the melt-

ing properties of argon using the augmented van der Waals theory. Their

work indicated the predominant role of repulsive forces in determining

structures and coexistence parameters at nelting.



In addition, Verlet's' study or the structure factor of classical

fluids at aelting, resulting in the empirical Verlet rule (analogous to

the solid state Lindeaann law), showed the "universality" of Mlting

behavior vis a vis the structure factor, and also the legitimacy of the

hard sphere model for systems with compliant potentials. The relation

between the structure factor and the direct correlation function10 di-

rected workers, starting with Ra«ala*ishnan and tussouff,11 to reconsider

the Kirkwood-Monroe approach to freezing, with emphasis on free energy

perturbation expansions of the solid about the uniform fluid, with the

direct correlation function, now available, as the expansion coeffi-

cients. These are the "•extern" density functional theories applied

rather widely to a variety of phenomena: the liquid-solid interface,12

liquid crystals,13*111 nucleation,15 glasses,1 and freezing.6 '1 6

In general, for the freezing problem there are two common features

present in these density functional theories. First, one approxiaatss

the solid phase direct correlation function by that of the fluid, given

by Uertheia.7 This seeas empirically reasonable in light of Verlet*s

aelting rule. Thus, these density functional theories arm better able

to explain "universal" melting properties, in contrast to Kirkwood-

Monroe theory. Secondly, the periodic density distribution of the solid

Is written as a Fourier series in the reciprocal space of the nonunifora

phase.

Although these approaches have aet with success, there have been

recent questions concerning the nature of that success. Baus and Colot2

and Jones and Mohanty1' have recently addressed the use of a reciprocal

space description for the hard sphere sol id. They find that p(F), the

single particle density, when written in reciprocal space, as i s done in



•oat (tensity functional theories,** shows regions of negative values,

dearly unphyslcal. This behavior results from the truncation of the

Fourier expansion after two terms, rendering questionable the descrip-

tion of sharp features in pfr) In the high density solid. They further

suggest that the good agreement seen with these theories i s a conse-

quence of cancellation of errors, i . e . , errors In approximating the

solid direct correlation function by the fluid direct correlation func-

tion oanoels the errors introduced via a reciprocal space description of

p(F). ethers (12,16) use the reciprocal space description of the solid

in a sore appropriate way, with no regions of negative density. This

approach i s fine for the liquid-crystalline solid transition, where one

has knowledge of the reciprocal la t t ice , and summation over twenty or so

reciprocal latt ice vectors i s possible. For a description of vitrifica-

tion, however, sumation over the reciprocal latt ice would correspond t o

twenty or so variational parameters (45). This i s clearly unpalatable.

Concerns about the use of fluid phase direct correlation functions

to describe solid-phase correlation and the sensitivity of transition

parameters to the direct correlation function have also recently been

addressed. Singh, e t . a l . 1 presented a real-space density functional

description of the hard-sphere glass, based on the uniform fluid direct

correlation function, c (r ) . They found extreme sensitivity of liquid-

glass transition behavior to the form and values of the high density

c(r) used. Haymet̂  finds the unphysical feature of "reaelting" in the

high density hard sphere fee crystal, and attributes this to the inade-

quacy of the liquid structure factor at these densities. Baus and Colet

go beyond questioning the form of the fluid c(r) , and question the use



or the liquid e(r) to describe the solid phase. They indicate that the

usual procedure of expansion of the solid c(r) about the fluid c(r) , and

truncation at second order, neglects density variations of c(r) in the

critical region and thus presumably leads to incomplete convergence of

the functional expansion. These are the major problems associated with

the usual density funotional descriptions of freezing. There have been

attempts to cirCUB vent these difficulties.

The real space description of p(F), Introduced by Taraaona,17 has

been used by Singh e t . a l . 1 in the glass transition problem, and by Baus

and Colot,2 Hohanty and Jones,19 and Taraaona,20 in their analysis of

hard sphere freezing. In this description, p(F) i s approxiaated as a

sum of Gaussian peaks, each centered at a latt ice s i te of the nonuniform

solid. Experimentally, the Gaussian solid i s appropriate,21*22 and th i s

form of p(F) has eliminated the problems associated with the description

of sharp features In the density distribution of solids. For the glass

transition problem, the switch from reciprocal to real spaoe corresponds

to a reduction in the number of variatlonal parameters (H5)> Baus and

Colot18 observe no remeltlng at high solid densities, up to dose pack-

ing, when using the Gaussian solid. On this last point, there are ques-

tions. It i s not clear that the different prescription for solid phase

correlations used by the authors i s not a oontributlng factor to appro-

priate high density behavior. Regardless, the transition parameters

obtained for hard sphere freezing, when employing the Gaussian solid,

are in very good agreement with experimental results, despite the use of



various forms of c(r) . It seems unquestionable that a real space »(F)

offers an effioacious alternative to the reciprocal space description so

often seen.

He now turn to the problem of solid phase correlations in density

functional theories. There are two notable attempts to deal with this

question. Baus and Colot2 have approximated the direct correlation

function of the solid by an effective liquid direct correlation func-

tion, since one has information about this object from liquid state

theory. The effective liquid scales with the sol id, i . e . , the smallest

reciprocal latt ice vector of the solid i s forced to coincide with the

position of the main peak in the effective liquid structure factor. One

finds the average density of the liquid which satisf ies this scaling.

Good results nave been reported with this theory, especially at high

density (viz. no remelting). Taraaona17'20 has chosen to avoid the

difficulties with high density liquid e(r) values by presenting a den-

s i ty functional theory in which he uses a local free energy functional,

appropriate for slowly varying density waves, and Justifies i t s func-

tional dependence on the rapidly varying p(F) by course-graining p(F)

over a region of configuration space given by an unspecified weight

function. The weight function i s then determined by requiring self-

oonsistency between the Percus-Yevlck direct correlation function and

Tarazona's derived c(r) . The derived structure factor, at freezing, i s

in good agreement with the Hansen-Verlet rule, and coexistence densities

are well reproduced. High density behavior has not been addressed.

In our pursuit of a density functional description of the liquid-

aperiodic solid phase transition, and of the thermodynamic properties of

the high density solid, we were led to a realization of the problem



associated with solid correlation functions and density wave descrip-

tions.1 In the course of trying to deal with these difficulties, we

have developed what we believe to be the simplest real space density

functional theory of hard sphere freezing, with the most promise for

extension to the case of arbitrary potentials. Coexistence parameters

are very faithfully reproduced, and the high density solid pressures are

in remarkable agreement with the exact compressibilities given by

Salsburg and Hood,23 both for crystalline and amorphous packings.

Later we will see that for smoothly varying density distributions,

free energy values from this functional are expected to be quite accu-

rate for low to moderate mean densities. For moderately nonuniform

particle distributions, there i s uncertainty in our approximate density

functional. However, the remarkable pressure agreement alluded to

above, and shown later in Section III , allows us to have confidence in

the relations we assume between lower and higher order virial coeffi-

cients for the high density, nonuniform system as well as to speculate

as to the nature of the liquid-glass transition.

In retrospect, our present theory i s very reminiscent of Onsager*s

theory of the isotropic-namatlc liquid crystal system mentioned earlier.

Our theory, at the lowest level , resembles Onsager*s i f one associate*

his orientational distribution function with our single particle den-

s i ty , p(r).



In Section II, we present the Motivation and derivation of the free

energy functional. In Section III, we consider hard sphere freezing,

and implications for the hard sphere glass transition. Section IV

treats freezing and vitrification for the inverse-12 and Lennard-Jones

potentials. Ve conclude our discussion in Section V.
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II. Theory

Ve begin by considering N spheri sal atoas In a unifora fluid, of

voluae V and teaptrature T» with aean density p o , interacting via a pair

potential • ( r ) . When analyzing the unifora fluid-nonunifora solid phase

transitions, one aust develop an expression for the free energy which

reflects particle distributions appropriate to the stable equllibriua

phase. For example, when a liquid freezes into a crystal, there i s a

discontinuous change In the single particle distribution, froa one which

Is unifora and translatlonally invariant to one which i s nonunifora with

broken translational syaaetry. An appropriate free energy functional

would exhibit a ainiaua for a unifora distribution of particles at

liquid densities, but for aean densities in excess of the aelting den-

s i ty , the ainiaua tvm energy should be obtained with a spatially vary-

ing density characteristic off the crystal.

To accomplish this analysis, one requires a trial function capable

of describing the single particle distribution in both unifora and aon-

unifora phases, along with an expression for the free energy, considered

to be a functional of this local density.

IIA. Free Energy Functional

The following suaaary follows the work of Yang, Fleaing, and

Gibbs.2* We assume the existence of a single particle distribution

function, p(F), which describes the local density of particles at point

7, and leave until later the explicit specification of p(F). He

therefore considering a nonunifora systea.

The total configurational energy of the systea is:



»<*") - I •<|F,-FJ) * *
i<J * J i-1

11

(II.A.1)

'hare Fj denotes the position of the 1 t h atoa, F* is equivalent to F,,

2* •••• *g» «nd U(Fj) represents soae arbitrary external single parti-

le potential which oouples with the density at T%. We will work in the

rand canonical enseable, within which particle nuaber fluctuations are

•ally treated. This is the natural ohoiot for theories of phase trans-

itions.

Given V(F*), the oonflgurational grand potential, W, is given by*

Z(¥,T) - aM - t i, f S dY. « T1

here

M-0 "l i-1 1i<j * J i-t

) - s» -

« -

nd p is the cheaical potential. Ve have set A, the theraal deBrogli*

ivelength to unity in IX.A.2, since this Introduces the saae oonstant

^ntrlbution to the free energy of both phases, and can thus be ignored,

thout loss of generality. Ve can isagine probing the systea with our

ternal field, U(7), and obtaining lnforaation about the single pertl-

3 distribution, p(7). The relation between field and density is ob-

ined with the realization that V, froa II.A.2, is a functional of
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, the effective single particle potential, and, of course, the pair

interaction, •C5"1,
<x\). He oonoern ourselves only with single particle

properties at the aoaent. Functional differentation of M with respect

to C(¥) yields, fro* II.A.2, the following relation:

where

N
- t 60HF.)
1-1 l

He will see that II.A.3 gives a trivial relation between field and den-

sity for the ideal gas. To exaaine theraodynaaic properties of the bulk

phases, we sake contact with the Kelaholtz free energy:

•F ' IwN - IPV - f IIN - H : • j ,;

- / dxpCx)cCx) • / dxp(7)U(7) - H (II

- F» • / dxpfx)U(T)

where

- H

In II.A.I, we have used the definition of COc) and the relation AFV - H.

The definition of F' in II.A. * is actually the Ugendre transrom of H,

froa) the natural variable 5f5t) to the variable »(?). In fact, func-

tional differentiation of F* with reaptct to pCS) yields

. ecu •/-.,(••>



using II.A.3*

Our goal, then, is to express €Cx) in terms of pfx). We would then

possess a free energy, via functional integration, which is a functional

of our single particle distribution function. These are the relations

we seek.

II.B. Ideal Gas Free Energy Frwctlonal

For a systea with no Internal interactions, •Oci,'3tj) - 0, and II.A.2

becoaes

2tld)(V,T) « eW - I J, / S dx.e l (II.B.1)
M-0 " 1-1

where "Id" indicates the ideal gas condition. If the external field,

UCx), did not exist, II.B.1 would be the usual ideal gas partition func-

tion of uniform fluids. Using II.B.1 and II.A.3, we have:

©Cx) - 1 ^ . .

where we have used the fact that the grand potential is a natural func-

tion of voluee, temperature, and cheaical potential. From II.B.2, a

trivial relation exists between the field and the density for the ideal

gas. Substituting £(x~) froa II.B.2 Into II.A.5, and functionally inte-

grating, we obtain the following expression for the ideal gas free en-

ergy:

*F • - / cfx p(l?mn[p(x)] -1} (II.B.3)



In the absence of all external fields, we see using II.A.*, that II.B.3

becomes our density functional expression for the ideal gas Helmholtz

free energy for the nonuniform system.

II.C. Interaction Free Energy Functional

In II.B, we considered the system in the absence of pair interac-

tions. We now turn on these interactions, and seek the interaction

Hclmholtz free energy as a single particle density functional.

The usual way to proceed is to functionally Taylor expand the In-

teraction Helmholts free energy of the nonuniform system about the uniform

24
system. The details may be obtained elsewhere. The basic point is

that the direct correlation function for the uniform phase acts like the

expansion coefficient. The object is not known, and so one approximates

the direct correlation function of the uniform phase. In Section I,

we examined some of the problems associated with this, approximation.

In a different spirit, we propose to consider explicitly the virial

expansion of the nonuniform solid, graphically represented as:

0PV - £ •+- %—% + •«• (II.C.1)

where field points are weighted by the single particle density, efx),

and are connected by Mayer f-bonds of II.A.2. This i s a generalization

of the uniform fluid equation of state, where field points are weighted

by the mean, uniform density, pQ. The complete graphical theory of this

expansion i s contained in the classic work of Morita and Hiroike.25
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In general, the full series In II.C.I cannot be evaluated, for

clusters with three or more atoms, the fiducial s i te structure i s not

always available. Even i f these structures were at hand, the integra-

tions Implied by the cluster diagrams in II.C.1 are prohibitive, given

the fora for pfx) which we have used In our theory. (Our choice of pfx)

will be discussed later.) We are thus left with a virial for which only

the f irst term i s readily available. We can take these higher order

terms into account by generalizing the approach of Carnahan and Star-

l ing 2 6 to the nonuniform system. For continuity, we now review the

Carnahan-Starling equation of state for the uniform hard sphere fluid.

For a uniform fluid, pCx) - po , and differentiation of II.C.1

gives:

(II.C.2)
1-0

where

B , E 1

- ± / dxf(x)

- " J / dxdx'ffx,Y«)f(x")f(7')

These integrals, of course, are the first few cluster diagrams of the

uniform fluid virial series. As the order of the diagram Increases, the

difficulty in computation increases. Hence, only the lowest order terms

In the virial series can be computed. For hard spheres, the first seven

virial coefficients have been computed. Bg, B3, and Bj, are analytically
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evaluated (Bj, by Boltanann!). The remaining three have been computed by

Hoover and Ree27 using the Monte Carlo techniqMe. The results are ex-

pressed in the following seven tern Virial series:

1 • «n • 10n 2 + 18 .365n 3 • 2 8 . 2 W + 3 9 . 5 n 5 + 5 6 . 5 n 6 • •••P
(II.C.3)

- 1 + z c ( n ) n

n-1 n

where n m wpo'/6.

Carnahan and Starling replaced C, with the closest Integer (i.e. C-%

« 18) and assumed the following fora for CR:

C n » a^n
2 + a2n + a, (II.C.H)

Solution of II.C.4 yields the following expressing for Cn:

C n - n
2 + 3n . (II.C.5)

Using II.C.5 in II.C3. Carnahan and Starling obtained the following

heuristic equation of state:

^ - 1 • Z (n2 + 3n)(n)n (II.C.6)
p n-1

Expressing II.C.6 as a linear combination of the first and second
m

derivatives of the geometric series , £ (n) • they obtained the famous
n-1

Carnahan-Starllng equation of state:

(iix.T)

Equation II.C.7 agrees remarkably well with computer simulation results

over the entire fluid density range.
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From standard thcraodynaalc Identities,1 0 , the Interaction

Helaholtz free energy for the hard sphere fluid may be obtained in

closed fora, using II.C.7:

. . ( i n t ) n „ • -p

(II.C.8)

ti[1-3n]
Ci-n32

Our sealempirical Interaction free energy functional derives froa

the assumption that for the nonunifora systea, the relation of higher to

lower order virial coefficients has the fora of the Carnahan-Starling

virial series. Thus, comparing II.C.3, and II.C.1, we arrive at the

following identification:

nCpOO] - - g ~ J dxtfx* pOc)p(lc')fOc.x') (II.C.9)

Equation II.C.9 represents a generalized packing fraction or generalized

second virial coefficient which i s a function of the interpartide po-

tential and the structure of the nonunifora phase. In terms of

the interaction Helnholtz free energy for the nonunifora systea i s :

III.C.IOJ

If we were to consider ellipsoidal particles, ffx.T') in II.C.9 would be

orlcntational dependent. Replacing pCx) with an orientational distribu-

tion function, and linearizing II.C.10, one obtains basically the

Onsager expression for the interaction free energy of liquid crystals.

Rather than stop at third order, as Onsager did, we have presumably
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Incorporated higher order free energy clusters via the fora of II.C.7

and II.C.10. Equation II.C.10, ooabined with II.B.3* furnishes us with

a density functional expression for the Helaholtz free energy of the

nonunifora systea. To proceed, one requires an expression for the

single particle distribution, p(x"). We now consider this .

II.D. The Local Density

In order to apply our free energy functional, we need an expression

for the local density, pCx). In aost previous treataenta of freezing

involving density functional theory, the periodicity of the solid lat -

tice i s incorporated in pCx) by Fourier expansion into plane waves. This

yields the well-known density wave or order paraaeter expansion. Typi-

cally, then, this expansion i s truncated for nuaerical tractability.

This approach, however, i f applied to disordered sol ids, has difficul-

t i e s , as discussed in Section I.

Previously,1 we used the real space description of p(5f) suggested

by Tarazona.17 He adopt this description in our present theory. Accord-

ingly, we write p(x") as an expansion of Gaussian density peals centered

at each fiducial s i te in the nonuniform systea:

pfx) - 0 s ) 3 ' 2 E e"a( ir"Y) (II.D.l)
* If

In II.D.I, fin i s the set of fiducial s i te positions, (xl the set of

particle positions, and a measures the peak width. The normalization

ensures that the integrated density peak i s unity, so that the lattice

constant i s fixed by the aean density. Computer simulation results2 '*2 2
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indicate that a harmonic description of particle displacements, seen in

II.D.I. i s appropriate, even at Ml ting. The periodicity of the lattice

i s incorporated via the SUM over lattice vectors.

For the high densities considered in freezing theories, the width

of these Gaussian peaks i s very small ( i . e . , particle displacements are

small), making overlap negligible. Thus, the expansion II.D.l convert—

more rapidly than reciprocal space expansions. The rapid converaraoe of

II.D.I was demonstrated previously,1 with regard to the large-a approxi-

mation for the Ideal gas free energy, equation II.B.3. There, i t was

found that, for a i 5, the approximated ideal free energy (with only

nearest-neighbor overlap taken Into account in pCD) and the "exact"

ideal free energy (with the full p(x~) expansion) were essentially iden-

t ica l .

In the large a l imit, particle excursions from fiducial s i tes are

small, and as a approaches infinity, the particles localize at the

fiducial s i tes . It i s clear that

llm pCx) - Z 6(x-V) (II.D.2)
R

which can be recognized as the single particle distribution of a low

temperature, high density classical solid.

In the opposite a l imit, particle excursions are infinite, and the

single particle distribution becomes uniform by adding f lat , overlapping

Gaussian density peaks, i . e . ,

l i » p(3c) - p (II.D.3)

This limit nay be considered a description of the uniform fluid.
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Given a aet of fiducial sites, {R}, on* now has a looal density

description in terns of a single paraaeter, a.

XI. E. Large and Saall a Behavior

Substitution of II.D.1 into ZI.B.3 and II.C.10, using II.C.9, gives

an a-dependent Kelanoltz free energy.

Ve now exaaine the large and saall a Halts to this free energy,

starting with the ideal gas tern, equation XX.B.3* As discussed previ-

ously1 substitution of II.D.1 into II.8.3 yields nuMrioally ooapliceted

expressions for the ideal gas free energy for general a. To proceed,

approximate expressions, for saall and large a, can and have been devel-

oped which yield easily to coaputation. For ooapleteness, Appendix I

reviews the large and saall a Halts . The upshot of this analysis Is

that, for saall a, the unifora fluid i s the appropriate Halt , as In

XI.D. 3, and II.B. 3 reduces to the well-known ideal g*s free energy of a

unifora fluid

IF• • ,
l i a - j ~ - l n ( p o ) -•* (II.E.1)

In the opposite Halt we obtain

•P.
l i a r - 4 tag) - 4 (II.E.2)

The consideration of both Halting expressions shows that the Ideal gas

free energy i s a aonotonioally Increasing function of a. This behavior

i s expected. The saall a fluid phase i s one of aaxiaua entropy.

He consider now the saall a Halt of the interaction free energy,

equation II.CIO. In this Halt p(T) - eo , and we have
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p

li* n(o) - - -§ / dxf(x) (II.E.3)
o*0 8

for the hard sphere potential, the integration leads to the usual pack-

ing fraction as the appropriate l imit. For a general repulsive poten-

t i a l , one obtains an effective packing fraction.

In liquid state perturbation theory, the repulsive potential would

be replaced by a hard sphere potential, with an effective hard sphere

diameter, and thus, an effective packing fraction. In our theory, there

Is no need to invoke the idea of an effective hard sphere dia«eter.

Equation II.E.3 incorporates the effects of potential energy compliance

on the packing fraction.

In this Uni t , II.C.10 becomes the Carnahan-Starling interaction

free energy, employed so successfully in the theory of uniform fluids.

In the opposite limit* substitution of II.0.1 into II.C.9 gives

n(a) - -I" + constant (II.E.4)
a— 8

In Appendix III, we see what this constant is.
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For an arbitrary repulsive potential, the value of n(a) obtained

depends on two length scales: the range of the pair potential and the

nearest'neighbor fiducial s i te separation.

II.F. The Variation*! Procedure

At this point, we possess the ideal gas and Interaction free ener-

gies as functions of a. Variation of a fro» aero to infinity corre-

sponds to the structural transition from the uniform fluid to the non-

uniform phase [cf. Eqn. II.D.2-II.D.33- By evaluating the total

Helfflholtz free energy as a fur , on of a, we can determine the Minima

free energy and the correspondin0 non-zero a value, and, thus, the equi-

librium structure, of the solid system.

Characteristically, we observe no finite a free energy minimum for

densities below a critical value p c . The system i s uniform fluid. Dor

p I p c , a f inite a minimum appears. We therefore have a nonunlform

equilibrium system, whose, structure i s described by II.D.1, a spatially

varying density distribution. Comparison of uniform fluid (o-O) and

nonuniform solid free energies determines which state i s thermodynemic-

ally stable, and which i s metastable.

For comparison with the fluid, we use the zero a limit to evaluate

he fluid free energy. We specify the fluid free energy in this way for

ie following reasons. If one evaluates the total free energy as a

.notion of a, for al l a, one needs to interpolate between the small-and
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large-a forms of the ideal fas free energy* given tqr A. 1.5 (or A. 1.6),

A.I.It, A,1.15 (or A.1.16). When we use a third degree polynomial in-

terpolation, we obtain, for all relevant densities, a saooth ideal gas

free energy, for 0 i a & • . However, the total free energy shows two

non-zero a ainima, aj and ag (aj < o^), for p < 1.3. Oj versus p is

nonnonotonic, with a fractional free energy charge, relative to the o-O

free energy, of .03' He therefore choose the aero a free energy as our

description of the fluid free energy, and regretfully report that an

unconstrained free energy ainlaization will not yield the zero a free

energy and structure for the fluid. For p > 1.3, the a, ainiaua disap-

pears, and free energy ainiaization yields, two ainiaa, one at e-0. and

one at a?* The minium at a? i s physically reasonable, and serves as

the basis for all solid phase results reported herein. In all cases

considered, the a1 value l i e s in the interpolation region. Thus, the

slight alniaua at oj (relative to the a-0 free energy) Is possibly due

to numerical error. The o2 value always l i e s in the large-a region,

where no uncertainty in free energy exists . We are thus confident of

our 02 values. The equilibrium coexistence parameters can be deterained

by equating the pressures and chemical potentials of both phases at the

transition, viz .

" "n(pn)

where

•f(po)



and f(po) Is the density deptnd«nt free energy per particle. In II.P.1,

the subscripts "u" and "n" denote unifora and nonunifora phases, raspee-

tively. The free energy per particle, used in II.F.I to evaluate cheai-

eal potential and pressure, i s determined for the nonunifora fluid by

the following equation:

ft(po) - «f (a-o . i n )
where aB l n denotes the ainiaua free energy a value.

In aunaary, we now possess what we believe to be the simplest dm-

s i ty functional expression for the Helaholtz free energy of an arbitrary

repulsive potential systea. The extension to arbitrary potentials ( i . e .

repulsive and attractive forces) will he presented in the application

sections of this paper. Given any nonunifora systea, knowledge of the

zero temperature structure and pair interaction allows a trivial de-

scription of the single particle distribution and theraodynaaics of both

phases on the same Mathematical footing. There la no need to invotot

different theories to describe the unifora fluid and nonunifora solid.

Coexistence parameters, in the case of phase transformation, say also be

obtained easily. He now apply our density functional theory to specific

systems, beginning with the hard sphere potential.



III. The Hard Sphere gystoa

H« oonslder first the problea of hard sphere (HS) freezing, la

Motion III.B, applloatlon to ths RS aperiodic solid Is presented.

III. A. Hard Sphere Freeting

la this osse, the set of fiducial sltas, (I), which oharaetcrlaM

the looal density, eflO, Is given by tht travels lattlo* vectors of tte

faoe-ocntcred oubio lattice (foe). This s«t lnoorporatss th« traasla-

tlonal sjaastry of .ths lattlot. torn only othsr rsqalrsasnt for tat

specification of lattice structure Is the lattice oonstaat, a, flaMl by

the aean density po:

a3

Vlth this inforaatlon, the single particle distribution la mom. In

order to proceed, the pair potential auet be given. For the Rt ajstoa,

we have<

#(r) - • . r i, *m

(III. A. 2)

•(r) - 0 . r >

where egg Is the hard sphere disaster. He are now able to evaluate

-xsressions II.C.9* II.C.10. and II.B.3, i . e . , the ideal and interao-

ion Helaholtz free energy, as a function of «• lor general *• tUC.9

3 evaluated numerically, appendix II presents Equation IIX.9 la

?ady-to-uee fora. For the calculation of II.B.3* the ideal gas free

iergy, i t i s found that for all potentials and structures studied



hartin, usa or II.E.2, tha larga-a formula, to approximate XI.B.3 iaoura

an error of ltss than a par oent for all a valuta consistent with a

•echanlcally atable nonunifora phase.

Aa an exaaple of the variational procedure, we show, in Figure I,

the competition between the Ideal gas and interaction free energies, the

foraer minimum at a « 0, the latter at o • •. It la the balance of

antropic and energetic foroea which generatea tha equilibrlua state.

Also shewn ia the a-dependent total free energy. If(a), lor the aesa

density considered <PO<»H3^ - 1.0) a ainiaua exists at a - 71. Therefore,

this equilibrium state ia nonunifora solid, whose free energy per parti-

cle, at this density, is 0fn(po* - 1.0) - 0.27.

The uniform liquid free energy la given am the o -» 0 limit of

0f(o), according to II.E.I and II.B.3. For this exaaple, the unifora

fluid free energy is 0fu(po* -1.0) -4.09. Consequently, although fluid

and solid are both predicted equilibrium states, tha unifora fluid Is

the theraodynaaically atable atate.

By use of this variational aethod, at each denaity, we proceed to

evaluate the density dependent free energy par particle for both unifora

and nonunifora phases viz.

CIII.A.3)

*rn(po>

with Og£n fixed by the a * 0 minimum of 0f(a). In Figure 2, we show the

free energy denaity as a function of density. ff(po), for both unifora

liquid and nonunifora, fee solid. Below p 0 - .92, no finite a ainiaaa



exists and thus the aystea is pure liquid. For .92 < po < 1.025. the

crystal exists, though i t i s aetastable. Above po * 1.025. the crystal

Is the stable equillbritsi phase.

The ooexistenoe densities for the liquid-crystalline solid phase

transition, as well as the Melting pressure. PB, may be obtained via

II .P.I . We have also calculated the entropy change upon freezing, given

in general by

where Aw i s the change in grand theraodynaaic potential per particle.

Aw - A<^) (III.A.5)
P

In addition, we have evaluated the Lindeaann ratio, defined as:

6 - L < Y J -T75 (III.A.6)
d d(2a) 1 / 2

where 7 is the particle displacement vector froa the fiducial site, and

d is the fiducial site nearest-neighbor distance, which, for the fee

crystal, is given by

<2>
d - •i£i-r/, (III.4.7)

( P o )
1 / 3

These quantities are all shown In Table I, along with results froa

puter simulation and other freezing theories.

In Table I, p f and p 8 are the fluid and solid coexistence densi-

ties, respectively, Pa is the aelting pressure, and AS/Nkg is the en-

tropy change on freezing. The variables 8j, «t, and ea are the
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Lindeaann ratios for the following three conditions, respectively: (1)

The point of Marginal Mechanical stability of the solid, (2) the point

of Marginal theraodynaaic stability relative to the fluid at the saae

density. I . e . , fluid and solid free energies are equal, and (3) the

point of phase coexistence.

The "experimental" results labeled by A in Table I are the Monte

Carlo results of Hoover and Ree,2^ and also the Molecular dynaaics re-

sults of Young and Alder.22

In row C, we present the results of Jones and MolantyJ' These

authors use the real-space, Gaussian description of the solid, equation

II.D.1, and the free energy density functional obtained via theraodynaa-

1c expansion about the uniform fluid. For solid phase correlations, they

use the liquid state Percus-Yevick direct correlation function. Treating;

the Gaussian peak width and latt ice constant as varlational paraMeters,

they alnlMize the Helaholtz free energy to obtain the results shown.

They therefore allow for variation in the set of fiducial sites* (I) ,

and thus are able to Incorporate latt ice inhoMOgeneltles In their ap-

proach.

Notice that Tarawna obtains three sets of coexistence densities,

labeled D, E, and F. The values shown In D were obtained by using a

constant value for his weight function when course-graining afx"), as

explained in Section I. In E, he uses a linear fora for the weighting.

Row F presents his most recent results, obtained with a density depend-

ent weighting function, written as a Taylor series In density. The ex-

pansion coefficients are determined via the self-consistency criterion

alluded to in Section I .
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The results of Baus and Colot are shown in row G. Their approach

to hard sphere freezing has already been explained (Section I ) .

Haymet16 has recently treated hard sphere freezing, using the re-

ciprocal space description of the solid density wave. For his density

functional, he uses the theraodynamic expansion of the free energy about

the uniform fluid, with solid phase correlations approximated by the

uniform liquid direct correlation function. With use of the

Wertheim-Thiele solution to the Percus-Yevick approximation for fluids,

he finds the coexistence parameters labeled by H.

Subsequently,3 Hayaet has used the more accurate Henderson-Grundke

direct correlation function,3° and finds improved results, shown by row

I in Table I .

Notice, in table I , that a l l reported density functional theories

predict eB values which are considerably lower than those obtained from

computer simulation. A possible explanation for this Is Implicit In the

work of Hoover and Ree (29). They suggest that solid phase pressure,

near melting, nay be underestimated In their calculations, due to unphy-

aical cell constraints. This, i f true, would certainly overestimate

free volume and Lindemann ratios, since the authors approximate solid

phase pressures via a free volume expansion.

By appropriate differentiation of the solid free energy density, we

have obtained the pressure behavior of the hard sphere crystal and have

-plotted this in Figure 3. Also shown for comparison i s the pressure

obtained from free volume theory,'* and known to be exact in the high

density solid as close-packing i s approached,2^ viz.

(III.A. 6)



Clearly, the agreement in pressure i s remarkable. Not only do we see

this agreement numerically, but, as shown in Appendix III. we expect

such behavior analytically in the high density H a l t .

Given the extreme accuracy in solid phase pressure, liquid phase

free energy, and coexistence parameters, we can be assured of the appro-

priateness of the solid phase description offered by p(7) in II.D.1.

In light of this presumably correct description for the hard sphere

crystal, we show, in Figure 4, the density dependence of the equilibrium

a value, written in terms of the Lindemann ratio, t , given in III.A.6.

At the solid coexistence density, Og^ • 150, which corresponds to den-
•

s i ty fluctuations occurring on a length scale of • .053 o ^ . As density

increases, this length scale obviously diminishes. As discussed before.

such short-ranged behavior necessitates the inclusion of very high order

reciprocal latt ice vectors in any reciprocal space density functional

treatment of hard sphere freezing. This numerical restriction limits

these theories to low solid densities. In view of the results obtained

with our density functional theory, the description of the extremely

high density crystal i s within the capability of this new approach.

III.B. Aperiodic Hard Sphere Solid

It i s perhaps not surprising that a density functional theory of

hard sphere freezing with uniform, harmonic atomic displacements from

known equilibrium sites works remarkably well for the high solid densi-

t ies considered in the homogeneous environment of the fee latt ice . After

a l l , the assumption of homogeneity and harmonicity of lattice displace-

ments i s the basis of all theories of lattice dynamics in the crystal-

line solid state.



The hallmark of the aperiodic solid state i s , for our purposes,

topological disorder. As one moves from one fiducial s ite to the next,

the environment changes, and we therefore expect a distribution of aver-

aged atomic displacements throughout the system. This i s in contrast to

the crystalline case, where all equilibrium sites have identical aver-

aged environments. These s i te inhomogeneities present in the disordered

solid bring into question the use of a one-parameter theory in the de-

scription of the solid state. The assumption of linearity i s presumably

s t i l l appropriate, as we are dealing with tery small particle displace-

ments at these high solid densities. S t i l l , I t i s enlightening to begin

any analysis with the simplest possible description, generating informa-

tion which will further guide one to future considerations and refine-

ments. It i s for this reason that we consider now the present density

functional theory applied to disordered lat t ices .

The aperiodic structure which we investigate i s the set of fiducial

s i tes given by Bennett using his computer packing algorithm.^ The only

other Ingredient needed for the description of the nonuniform solid i s

the nearest-neighbor separation of fiducial s i t e s , d c , and this i s de-

termined by requiring that a system of hard sphere particles, with di-

ameter dc , be close-packed at the mean density p o , i . e .

where i^ i s the upper limit to the hard sphere packing fraction for the

dense random packing of Bernal.** yfe use i^ * .636, although there Is

controversy as to what r̂  actually equals.3*



Vith p(x") now prescribed, we evaluate the tree energies or uniform

fluid and disordered solid, as in Section III.A. Figure 2 shows the

free energy density for the solid. Of course, the fluid free energy i s

already given in Figure 2, evaluated with the previously discussed crys-

tal free energy.

Although an equilibrium solid phase exists , for po > .97. these

solid states are netastable, relative to the unifora fluid. This behav-

ior i s in contrast to that observed for the saae system, analysed using

a free energy expansion about the unifora f luid.1 In that approach,

using the Henderson-Grundke liquid direct correlation function, the

Bennett lattice i s found to be ini t ia l ly net as table, but for po > 1.14,

the disordered solid becomes the stable phase. Indicative of a f irst-

order transition. As previously noted, however, this result i s sugges-

t ive, and certainly, in light of the sensitivity of results to liquid

state correlations, one must be cautious of the numerical results and

implications. In fact, the authors note that, although they obtain

liquid and solid free energy curve crossing, they are unable to deter-

mine transition parameters via a Maxwell construction, due to the nega-

tive pressures obtained for the liquid branch. They attribute the over

estimate of solid stabil i ty to the ad hoc ta i l used in the direct corre-

lation function.

In view of the accuracy with which hard sphere freezing parameters

are obtained, the suggestion of metastablllty for the aperiodic solid

throughout the entire solid density range, within the limitations of the

present theory, appears to be on firmer ground than that given previ-

ously.
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Further evidence that thla praaant thaory say faithfully dasoriba

the apariodie solid la givan by tha pressure bahavior obtained* and

shown in Figure 3> The pressure of the disordered solid should be eom-

pared with that obtained fro* III.A.8 with p c p -1.216. The derivation of

III.A.8 ia quite general, without regard to the exact dose-packed

structure, and requires only the value of the Halting close-packed

density. The agreement seen between the"e»ct" pressure ( i . e . III. 1.8)

and the calculated pressure of the Bennett lattice indicates that our

density functional properly describes the shape of the solid free em-

ergy. Whether or not the free energy values are correct Is not known. A

real aperiodic solid contains deviations In fiducial s i te positions, as

well as a distribution of Gaussian peak widths. It i s conceivable that

a free energy minimization in the disordered sol id, treating the

fiducial s i te positions and Gaussian peak widths in p(7) as variational

parameters, could yield a more real is t ic aperiodic solid structure and

free energy values which admit a true thtrmodynamlc transition, yet

leaving the shape of the free energy curve unchanged.

This approach would be similar in spirit to the calculations of

Jones and Mohanty1 ,̂ in their theory of hard sphere freezing. A diffi-

culty which would be present in the aperiodic solid calculation, and I s

not present in the crystal calculation, i s the specification of the

Initial fiducial structure, about which fiducial s ite deviations are

Incorporated in the variational procedure. Until such a calculation i s

complete, the aperiodic latt ice Is thermodynamically metastable, within

the present theory.



In Figure *, wt show tht density dependence of tht Llndeaann ratio

for the apsrlodic solid. It i s interesting that, for both the fee and

Bennett structures, the Llndeaann ratio i s 6j • .115* suggesting that,

regardless of structure. Mechanical stabil ity i s destroyed when atoalc

displacements reach a certain fraction of the fiducial s i te separation.

He now exaaine the temperature dependence of coexistence paraae-

ters, as well as the effect of temperature on the theraodynaale proper-

t ies of the fee and Bennett sol ids, via tht inverae-12 and Lennard-Joaes

potentials.
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If. Soft-Sphere Potentials

IV.A The Perturbation Calculation

In general, a soft-sphere potential differs froa the hard sphere poten-

tial , equation III. A.2, in two ways: (1.) the repulsive force poten-

tial is not impulsive, but rather teaperature dependent, allowing

particle penetration to separations less than the particle diaaeter, and

(2.) there exists a tail to the potential. The aoat popular way to

treat such a potential, in liquid state theory, Is to separate the full

potential into a reference systea and a perturbation, TIZ.

•(r) - #r(r) • # (r) (flr.A.1)

The reference system, with strictly repulsive forces, i s then replaced

by an equivalent hard sphere systea, with an effective teaperature and

density dependent hard sphere disaster. The perturbation potential Is

treated in perturbation theory, typically averaged over the pair oorre-

lation function of the fluid. It i s the perturbation potential, then,

which predominately determines the teaperature dependence of ooextstenee

paraaeters and bulk phase theraodynaalc properties during freezing.

In this spirit, we treat the soft-sphere potential in the aanaar of

Taraaona (17), i . e .

»fCp.(x)3 - BfpCp(x)3 • 1/2 JdBfiT' pOc)pO?») • (!¥-¥• I) (IT.4.2)

vhere BfCpCx)] is the total Helaholtz free energy per particle,

tfrtpCx)] is the free energy of the repulsive potential reference sja-

m. and the last tera in IF.A.2 treats the perturbation potential la



mean field fashion. Equation IV.A.2 i s an augmented van der Haals the- ,

ory, analogous to the theory of Longuet-Higglns and Widom discussed

earlier, and also to the various perturbation theories of l iquids.1 0

Therefore, we expect IV.A.2 to be an adequate free energy approximation

for weak and long-ranged perturbations, especially at the high densities

which we are presently considering.

In IV.A.2, 0fr[pfx)] i s given by II.E.2, II.C.9, and II.C.10, using

the actual repulsive reference potential, • r ( r ) , in the specification of

the Mayer f-bond. There Is no need to reduce the reference system to an

equivalent hard sphere system, as Is done In liquid state perturbation

theory. Although the mean field term in IV.A.2 treats particle correla-

tions in the nonuniform phase implicitly, through the imposition of a

lat t ice structure, particle correlations arm not Incorporated in the

uniform fluid phase. At high temperatures, where the effect of the ta l l

i s negligible, this lack of correlation will not be a problem. At lower

temperatures, though, It may be a drawback.

He now need to consider the question of how to seDerate the full

potential into a reference system potential and a perturbation poten-

t ia l . To date, the most successful separation scheme and perturbation

theory for classical equilibrium fluids i s that of Kang, et a l . 3 5 The

method consists of dividing the potential into a reference potential and

a perturbation potential at a break point, A, which may depend on den-

sity. Mathematically,

(IV.A.3)

(IV.A.*)

•(r) -
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• (r) - F(r) i f rO (IV.A.5)

• Or) - • (r ) i f r>A

where A and F(r) are arbitrary. For A, they use the following prescrip-

tion:

A-Min(dfccfr») (IV.A.6)

where r» la the interparticle separation at the ainlaia of »(r), and

d f c c i s the nearest-neighbor separation in the fee lat t ice , given by

III.A.7. For F(r), they use the following fora:

F(r) - #(A) - •*(A)(A-r) (IV.A.7)

where

• t ( A ) ^ dr Ir-A.

The fora chosen for F(r) in equation IV.A.7 ensures the continuity

of * r(r) and •p(r), as well as their derivatives, at r-A.

The choice of A i s reasonable. At high densities, particle separa-

tions comparable to r* are rare. Each atom i s confined to a cage foraed

by the repulsive forces of i t s neighbors. Therefore, the equilibrlua

separation of the atoas will be roughly d f c c . This choice of A has the

effect of reducing the range of * r(r) with increased density. This al-

lows the calculation of equivalent hard-sphere diameters, for use in

liquid state perturbation theory, which are physically reasonable and

lead to excellent predictions of theraodynamic properties for classical

fluids throughout the entire density and temperature range, when
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bined with IV.A.7 and IV.A.3-5. Earlier separation schemes36 have lead -

to overestimates in equivalent hard-sphere diameters at high density and

low temperature, and thus, have generated metastable fluids.

Although in our density functional theory, there i s no need to

reduce the reference system to an equivalent hard sphere system, we Hill

s t i l l adopt the physically reasonable separation of Kang, et a l . Ve now

apply these general considerations to the inverse-12 and Lennard-Jones

potentials.

IV. B. The Inverse-12 System

The fee and Bennett structures are reexamined, this time with the

interpartide potential having the following form:

•Or) - e(*) (IV.B.1)

where, for our purposes, n-12, a i s the particle diameter, and c i s am

energy unit. He begin with the fee la t t ice .

Using the separation of section IV.A, we evaluate WrCpOc)] for

each reduced temperature T*[-kjjT/e] and mean density po , using # r(r) ,

in the manner of section III, and use •p (r) in the calculation of tm>

meanfield term in equation IV.A.2.

In this way, we were able to obtain coexistence parameters and bulk

phase thermodynamic properties for in verse-12 freezing and the soli*

phase, respectively.



As a raault of tha fom of tba potantial in IT. 1.1. tha partition

ftatetion, and hanoa tharaodfnanlo propartiaa, of thaaa aystaaa dapanda

net on tanparatura and danaity aaparataly, but on a diaanalonlaaa pe-

* # X*

X -

rcaaauaa or thia aoaling, tha tharaodynanio propartiaa and ooaxli

paranatara for thaaa ayatana in tha antira T-» pi ana oan ba datwlnad
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arainad ia daacribad by tha aoaling aqoationa I f . 1.3* • • aqiaotad,

h tha following valuta for %n, X rt



* • " 1

X f - 1

The errors in solid phase and fluid phase densities along the aelt-

Ing line are less than .5 percent and 2 peroent, respectlveljr.

Other coexistence parameters calculated by Hoover e t . a l . are Belt-

ing entropy and pressure, and the Lindeaann ratio. For transition en-

tropy, they find

He obtain the value .96 for this same quantity froa equation III.A.4.

The Lindeaann ratio calculated by thea is

• - .15

As in the hard sphere systea, we have evaluated the three Lindeaann

ratios t1, «T, and •„. They are

•1- .128

#T« .07

•M - -068

Coaparing the inverse-12 data to that in Table I for the hard sphere

potential, we see the effect of coapllance on • and entropy. Teaptrattre

increases the nuaber of conf iguratlonal states available to the systea,

thus lowering the freezing entropy and raising the Lindeaann ratio at

acltlng. It is interesting, though, that at the point of solid Bechaal-

o»l instability, the Lindeaann ratios for inverse-12 and hard sphere



systems art very siailar. In Figure 5, we show the density dependence

of the Lindeaann ratio for the lnverse-12, fee systea, for the tempera-

ture T»-2.75.

As with ooexistenoe densities in equation IV.B.3. the pressire at

Belting i s given as a function of temperature, as a result of scaling,

according to the following expression:

•PB« C<T*)3/n (IV.B.*)

The computer generated value of C Is 22.6, while we obtain the value 38.

This discrepancy in Belting pressure say not be as bad as i t seeas,

since pressure behavior i s notoriously sensitive even to saall errors in

free energy curves. This understanding explains the excellent values

for coexistence densities and freezing entropy, in the face of pressure

differences. Undoubtedly, the errors in free energies are due to the

lack of liquid correlations in the aean-field tern of the free energy.

As the density of the solid i s Increased away froa the ooexistenoe re-

gion significant errors In the free energy and pressure arise. This

occurs because the aean-fleld contribution to the free energy Increases

as the fiducial site lattice contracts. The lack of correlation i s

noticed acre at high densities than at low. In order to address thermo-

dynaaic properties of the high density solid, above the aeltlng density,

we will need to incorporate these correlations in a acre realistic

iMer. This was not a problea with the hard sphere systea, where high

density behavior was predicted quite accurately. Evidently, In the

ooexistenoe region, these correlation errors are not



We now turn our attention to the aperiodic lattice, described In

section III.B. When evaluating quantities for this lattice, the separa-

tion of the potential is given by equation IV.A.6, with d f c c replaced by

dQ, defined in equation III.B.1. With this lattice and potential sepa-

ration, we have evaluated the systems free energy density, as a function

of density, for a series of temperatures, from T*-.1 to T*-10. For all

temperatures, the aperiodic solid i s aetaatable, relative to the unlfora

fluid. In figure 6, we show the degree of aetastabllity versus density

for this systea, for T*-2.75. As density Increases, the aetastabillty

increases, as in the hard sphere systea. Also shown i s the saae quantity

for the inverse-12, fee systea at the saae temperature. The difference

in behavior seen between the periodic and aperiodic lattices, for the

saae Interaction potential. Indicates the iaportant dependence of ther-

modynamics on structure. In light of this, future inclusion of fiducial

site fluctuations in the aperiodic lattice will presumably change the

behavior of the aetastablllty seen in figure 6. It would be aost inter-

esting to quantify this change.

We also have evaluated «A, the Llndeaam ratio at the point of

mechanical instability of the solid. This quantity Is shown in figure

5, along with the density dependence of the solid phase Lindeamn ratio.

The teaperature is also T»-2.75. When comparing this curve to that

shown for the same potential, but with the fee lattice, i t i s evident

that the Bennett lattice i s "tighter" than the fee lattice at any given

density. This fact i s manifest in the lower Instability density and the

lower e values of the Bennett lattice vis a vis the crystal, at all



densities. This behavior i s consistent with the difference in close-

packed densities between the two lattioe structures, viz. pr c_ * 1.216,

Peep - I

Given a specific interaction potential i . e . the inverse-12 poten-

t i a l , we have examined, in figures 5 and 6, the effect of structure on

coexistent* and thermodynaaic properties of these systeas. The influ-

ence of attractive foroes on these sane quantities within a specific

latt ice structure, can be examined via the Lennard-Jones potential,

which we study now.



IV.C Lennard-Jonealua

V* examine ooexistence behavior and theraodynaaic properties for

the foe and Bennett (aperiodic) latt ices under the Influence of the

Leonard-Jones (LJ) potential, given by:

•(r) - He UfVc-lffl (W.C.I)

where o Is the diameter of the Lennard-Jones particle, and e i s an en-

ergy unit.

The difference between IV.C.1 and IV.B.I l i e s In the attractive

force, which i s absent In the inverse-12 potential and present in the

Lennard-Jones system, for r> rB - (2)1 . This value represents the

position of the potential minimum. The existenoe of this minimum at

finite separation means that, when separating the potential into refer-

ence and perturbation parts, according to equation IV.A.6, the value of

r* in IV.A.6 i s f i » d and equal to r a , and not temperature dependent, as

It i s for the inverse-12 potential.

For the fee la t t ice , we have obtained coexistence densities for a

series of temperatures, and display our results in the LJ phase diagram

shown in figure 7. Also displayed are some values obtained from the

computer simulation work of Hansen (38) and Hansen and Verlet (39).

indicated by crosses.

It i s evident from the results that, at high temperatures, agree-

ment i s excellent. This i s to be anticipated, since, at high tempera-

tures, the attractive potential i s negligible relative to the repulsive

branch, thus minimizing the error Incurred through the use of the aean-

field term in the free energy expression, since this tern i s numerically



Mall . Also, at high temperatures, the LJ potential, IV.C.I, reduces to

the in verse-12 potential, IV. B.I, if we simply redefine the energy

soale. Even at T*-1.35, the error in coexistenoe densities between

simulation and our theory does not exoeed 5 percent. At lower tempera-

tures, the attractive force becomes more dominant, the mean-field term

Is nunerically more significant, and correlation errors become notice-

able. The simulation value for the LJ triple point i s T t-.7, while we

obtain the value T t- .8.

Although the low temperature phase diagram shows errors, the gen-

eral feature of the phase diagram i s correct. The fractional density

change i s largest at the triple point and decreases with increasing

temperature, tending towards the values obtained for the inverse-12

potential.

For the temperatures T*«1.15, 1.35, 2.74, 5, and 10 melting pres-

sure values from simulation^8 are: 5.68, 9.0, 33, 86, and 231. From our

theory, we obtain the following values: 4.4, 6.2, 21.2, 29, and 38. As

In the inverse-12 potential system, correlation errors in the fluid free

energy are presumably responsible for these differences in melting pres-

sures. In addition, at these high coexistence densities, the Carnahan-

Starling virlal for the uniform fluid i s known to be inaccurate.

Computer simulation at the temperatures T»-1.15, 1.35, and 2.74,

for the LJ crystal, gives the following values for the Lindemann ratio:

.139, .137, and .149. As with the HS and inverse-12 systems, we have

computed the three Lindemann ratios e 1 , 6T, and 6B. For tiie same three

temperatures as above, we obtain, for 6 j , the values: .142, .144, and

.137. In fact, from T*-.8 to T*-10, we obtain 6j • .14. The average

values of eT and 6a averaged over sixteen temperatures, are: eT - .075.



• a - .066. In figure 5, we show the density dependence of 6 for the LJ,

foe latt ioe, at the temperature T*-10. At this temperature, 6 i happens

to have the value ô  - .13*

For the aperiodic, Bennett lat t ice , we show the difference in free

energy density between uniform fluid and nonunifora sol id, versus den-

s i ty , for T*-10, in figure 6. Obviously, the aperiodic solid, in our

theory, i s metastable for the LJ interaction, as i t i s for the HS and

inverse-12 systems. For all temperatures considered, including values

within the range reported by simulation of glassy systems, we obtain the

•etastable aperiodic solid.

In figure 5, we shown 8 versus density for the aperiodic, LJ system

at T*-10. The value of BL obtained for this system, for all tempera-

tures investigated, i s remarkably constant around the value ê  - .14.

When comparing, in figure 5, the stiffness of the LJ crystal and LJ

aperiodic sol id, we observe the same behavior as that seen in the in-

verse-12 systems viz. larger fluctuations in the crystal latt ioe , for a

given Interaction potential.



V. Discussion and Conclusion

We have developed and presented a new density functional theory which

possesses a number of virtues: (1.) simplicity, (2 . ) reaarkable repro-

duction of HS freezing parameters and high density HS crystalline ther-

modynamic properties, (3.) a real space description of the nonuniform

solid, (1.) the lack of ambiguity concerning the approximation of solid

phase correlations with liquid state direct correlation functions, and

(5.) the ability to simply extend the analysis to real ist ic potentials.

We realize, though, that all i s not well in Camelot. One must be

cautious when dealing with high density and/or low temperature behavior

in soft-sphere systems, due to the present lack of correlations in the

mean-field contribution to the Helmholtz free energy. We believe i t

would be profitable to incorporate these correlations in a manner con-

sistent with the spirit of the present theory. Perhaps "optimized"

choices of the division into repulsive and attractive forces are possi-

ble. Until such time, we must view this theory as a moderate to high

temperature [T*2.1.15] density functional theory of LJ potential systems

for densities in the coexistence region. For the Inverse power poten-

t i a l s , the only constraint, at present, i s on density: we should limit

our Investigations to densities in the coexistence region, for general

temperatures.

In these temperature and density regimes, our results for the In-

verse-12 and LJ liquid-crystalline solid transitions show excellent

agreement with computer simulation results. For higher densities, the .

correlation errors become important.



Consequently* i f we restrict our view to these regions, we can be

eonfident of our results for the thermodynamics of aperiodic solids,

within the limitations of the theory, which are: (1.) we neglect

fiducial s i te fluctuations, which will presumably affect the thermody-

namics of the nonuniform solid, in light of the comparisons shown be-

tween crystalline and aperiodic solids for the LJ and Inverse-12

potentials CSection IV.B and IV.C], and (2.) uncertainty in high density

free energy behavior as a consequence of the mean-field approximation.

Within the appropriate temperature and density regions, the affect

of an attractive force on the thermodynamics of a repulsive force system

may be determined. He have done this by using the correspondence be-

tween the inverse-12 potential and the LJ potential at high LJ tempera-

tures [T*-10]. Comparing equations IV.B.I and IV.C.1, one sees that LJ

results for T*-10 correspond to inverse-12 results for T**2.5. These

results are shown in figures 5 and 6. Comparison of data for similar

latt ice structures allows one to determine the affect of the LJ attrac-

tive force on the properties of the repulsive force reference system,

for that particular structure.

The computer simulation of Hansen (38) shows that, even at T"-10,

where one would expect the influence of the LJ attractive force to be

weak, coexistence densities and pressures for the crystal latt ice are

increased [3.5* for pL, H.5% for paL and decreased 122% 1 respectively,

with the Inclusion of attractive forces in the la t t ice . Ve find similar

behavior with our density functional theory. From figure 7 and our

inverse-12 results, we find that coexistence densities increase [2JC for

pL, 2.5* for p s ] and melting pressures decrease [2H%] when we introduce

the attractive force into the crystal lat t ice , at T>«10. In addition.



flfure 5 Indicates increased particle fluctuations as the attractive

force i s included in the lattice for both the aperiodic and crystalline

solids.

Coaputer simulation (33*39) also observes Increased mean-squared

displacements of particles from fiducial sites when the attractive

branch of the LJ potential is included in the system.

One important final point must be made concerning the affect of the

attractive force on the properties of repulsive force systems. The

Bennett lattice i s more closely pacted, at a given density, than the fee

lattice, and therefore, should be less affected by attractions than the

crystal structure. This is clearly evident in figure 5, where i t is

observed that particle fluctuations from fiducial sites increase more

for the crystalline lattice than for the aperiodic lattice, at the same

density and temperature, when incorporating attractive farces into the

•olid phase.

Now, when one looks at figure 6, one sees that attractive forces

have a larger Influence on the aperiodic lattice, in terms of free en-

ergy differences, than on the crystal lattice. This behavior under-

scores the need to treat uniform fluid phase correlations more adequate*

ly than we have done here, due to the presently demonstrated sensitivity

of fluid free energies to attractive perturbations.

Finally, we should mention a limitation in the theory. The direct

correlation function derived from our free energy functional yields a

structure factor for the uniform fluid which would show a divergence for

a sufficiently flexible trial function. For the densities for which we
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find a ••chanioally stable solid* thought our density fluctuations for •

the solid art incojnaens irate with those which yield a diverging fluid

structure factor.

In future work we Intend to treat fluid phase correlations in a

consistent and more real is t ic Banner, as well as, to profitably use the

siaple structure of this theory in the study of various phenomena, among

the*: freezing in Molecular fluids, the liquid-rotator transition, ener-

getlos of the Pcnrose lat t loe . For US system, these probleas auiy be

addressed immediately and confidently with our new density functional

theory.
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Appendix I

In this appendix, we show^0 how equations II.E.I and II.E.2 are

obtained in the small and large a limits, respectively.

Substitution of II.D.1 into II.B.3 gives:

N -a(x-TT >2 "
• in [ I • 3 ]] (1.1.1)

J-1

- I D| tn{S)- n + (4)3/2 j / < f f e

i-1 ^ * w i-t

N -aCx-TT.)2

x In [ I e J ] (A.I.2)
J-1

In the large a limit, Gaussian overlap in pOc) i s negligible. There-

fore, we need consider only nearest-neighbor overlap. Consequently, the

second term in equation A.I.2, which we denote T2, becomes:

, . « N -afx-TT.)2 N -afx-TT.)2

T2 - (*)3 / 2 I S dx e i toll • j 3
w

-o(x-TT.)2 -o(x-Tf ) 2 -oCx-TT ) 2

4 l j( ) I / dx e 4 in[e
* i-J

(")3 / 2 I
-adc-TT.)2 -o(x-Tf.)2 -o (x-TT.)2 -o dT.-TT.)2

J dx e A »n[e A • e i e 4 j

. ) -or .Tr.)
x e i i J 3

,M -.«, -o(x-TT ) 2 -aR2 - |
- - I s + C^)372 I / dx e * tn[1 • e i j e *

2 ' i*j
(1.1.3)

where
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Continuing, we have:

1 -<*R2. -2axyR..
x {/ dy ln[1 + e 1 J e J ]

21 -aR., 2axyR..
+ / dy tn[1 + e 1 J e 1J]> (A.I.*)

0
Therefore, combining terms A.1.2 and A.I.4, we obtain for the large a

limit

o, 5, , o_/^3/2 r r -2,
i-1 Z * Z * i*j 0

1 -oR?. -2oRf.
x / dy in {1 + 2e 1 J cosh(2axyR..) + e 1 J } (A.I.5)

0 J

I [ | tn (^) - h * w<7)3/2 Npo / dff g(R)
i-1 * * *

" J> ~ a x 2 1 -«R 2 -2«R 2

/ xZdx e / dyln{1 + 2e aK cosh(2axyR) + e "OK }
0 0

(A.1.6)

where, in A.1.6,
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•pea A. 1.5. one obtalna tha large-* ideal gas free energy per particle

or a lattioe atrueture deaorlbed by a aet of dlsorete fiducial ait*

•ators *.g. the fee lattloa. When the lattloa structure Is statistical

n aatur*, on* uses aquation A. 1.6 to obtain »ro'/« in tha large-* l ialt .

pflioatlon of this denaity functional theory to aperiodic solids would

a an exMiple of a aituatlon In which one would us* A. 1.6.

In the saall-a Unit, the overlap of Gauaaian peaks In pOt) la

xaanaivt. To deal with thia, we us* tha Poiaeon SUB formula111 to re-

al* tha r*al spaoa density peak •xpansion and the Fourier spaos density

\m deaoriptlon of eOD, vlst

9

*(*> - (J) 3 7 2 I e
w 1 - 1

- I P,. J*
G

I •- F * (A.I.7)
G "

JS * 0 in A.I.7. m A.I.7 ao la the infinite-wavelength

aft* wave state, and oan be Identified with tha seen density of the

The co*ffici*nta in aquation A.I.7 are given by

(A. 1.8)
w * 1-1

•r* f la the ayst*aa volua*. Substitution of A.I.7 into II.B.3

elds:

0 *o c *G

) - I * aG *1I?-¥n CA.I.9)



He writ* 0FO* in Fourier spaoe, as in equation A. 1.9, so that on* say

ua« th* orthogonality property of the density waves, to simplify the

evaluation of the ideal gas free energy. Sinot the density distribu-

tion, p(¥), in the saall-a l'isiit i s very flat, a plane wave represent**

tion of pfx), offered by a low order Fourier expansion, is appropriate.

Using the expansion of the logarithm, and noting that

I* P0 «(O - 0

where 6(G) is the Dirae delta function, we have, after SOB* Manipula-

tions,

Wj - MCtn(po) - 1] * po / df C - - L I I p p
2po C, C2 1 2

tr1 I I P
PO 0 , G2

- . . .3 (a.1.10)

In A.1.10, we hav* ignored tern that involv* SUBS over three or

reciprocal space vectors, due to the plane wave nature of pOD In the

snall-o Halt. He write A.1.10 as

«FQ - MUn(po)-i] • T3 (A.I.ll)

where

13 "IT J< W2 (A.I.t2)
o C

Expression A.1.12 is obtained with the us* of the integral representa-

tion of the delta function. Substitution of A.Z.8 into A.1.12 yields
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2Tv * I XZ po V G i-1 J-1

Ha now rawrita tha raatrictad SUM in A.I.13 in terms of the unreatrietad

SUB and tha zero wavevector coaponent, i.e.

/ dy a XJ - - £ - <A.I.1»)

-1 z

In A.1.11, we have expreaaed the unreatricted SUB in term of an inte-

gral, in tha Halt of infinite systea alze. Performing the aiaple

Gaussian integrals, and writing the double SUB as a self-tem (i-J) and

a distinct tera (ii*J). we finally obtain:

where the distinct tern involves a sua over a lattice described by s aet

of discrete fiducial sites, as in equation A.Z.5. For a statistical

lattice, we express A.I.15 In teras or a statistical distribution of

fiducial sites in the systea:

where T in A. 1.16 was given before in A. 1.6.

Coabining A. 1.11 and A.I.I6 gives the saall-a Halt to the ideal

gas free energy per particle.



Appendix lit

He start by substituting II.D.I into II.C.9. The result is:

n(o)--4r: t (f)3 / dr <F» f(lr^r'l) e * e *

(A.II.1)

The suaartion in A.IZ.1 i s over all values of 1 and j . He therefore can

separate n'o) into a self-tera, with i-J, and a lattice tera, i * j .

The self tera will obviously be independent of the fiducial s i te

lattice* while the latt lot tera will deptnd on the assuaed lattice

structure. Therefore, we writes

?s(o) - n (a) + n,(a) (A.II.2)

For the self tera, we have:

M * > - - "55 I £> 3 / <&<&' f(l«r-«rf b • l

S ON • « m

T.)2 (A.II.3)

Hit bout loss of generality, we aay set all F t to aero. Therefore*

A.II.3 bscoaes:

n.(«) - " I s (*)3 / dFdr1 f(lF-F«I) e*"* «'a(r*) (A.II.*)
S ON T

Letting "x - F - Ff, substituting in A. II.4, and performing soae staple

Gaussian Integrals gives:

Equation A.II.5 is the working equation for i^fa). Given any arbitrary

repulsive potential, e(x), one aay trivially evaluate 11,(0) for each •

value. Continuing with the lattice tera, we have:
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V B ) - " 8 " W I Cj>3 / drdF' f ( l r - F ' l )

-a(F-F.)2 -a(F'-F.)2F.)
J (A.II.6)

Defining TT - Fj - Fj , and setting Fj to zero, as in ns(a), one obtains

(f )3 / dFdF* f (IF - F'l)."*"2 . - o ( F t + i r ) 2 (A.II.7)
R

Letting "x - F - F f , substituting in A.II.7, and evaluating soae Gaussian

Integrals yields a working expression for

»PO - i/» * - | ( r -x ) 2 f{rx)
n,(o) - - - ^ (fr> / rdr g(r) / xdx f(x) {e 2 - e 2 J
* z *" 0 0

(A.II.8)

In A.II.8, pog(r) is the probability distribution of fiducial sites.

For the disordered solid, i t is given by Bennett (32). for the fee

crystal, It is a sun of delta functions, centered at each lattice site.

In this case, A.II.8 transforms to:
1 a 1/2 r 1 X , -f(R-x)2 -f(R>x)2

n,(o) - - i ( f-)1 / 2 I 4 ) / xdx f(x) {• 2 - e 2 !
1 a 2» H R 0

(A.II.9)

vhere IT is a Bravais lattice vector in the fee crystal.

With these expressions for ns(o) and it^Ca), one can easily evaluate

II.C.9, for any repulsive potential and any fiducial site distribution,

and thus iapleaent this convenient density functional theory.
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Appendix III

We would like to demonstrate that, In the Halt of close-packing,

the pressure of the solid phase behaves like that or free volume theory

i .e . equation III.A.8. We start with the a-dependent free energy, given

by

- | in <£) -
2 ** 2 [1-n(a)r

In order to find pressure, one needs the density-dependent free energy.

Thus, one needs to find aa|in(po), where <*„,£„ Is found froa Minimization

Of A.III.1.

Minimization of A.III.1 gives the following:

2 a Ci-n(a)]3 3flt

Froa A.II.2, differentiation of n(a) implies differentiation of lattice

and self terms. Proceeding, we have, froa A.II.5, the following:

- 3 / a f d - f M -ax2/2
—* 5751 / a* f (x) e

>s(tt> - 3 / a f

ST— - —* 5751 /
3 o 16(2*)3/2

* ( ^ 6 ) ( l ? ) 3 / 2 S X2Q1

Par the hard-sphere system, evaluation of the integrals in A.III.3 end

cancellation of terms results in:

where o is the hard-sphere diaaeter. For the lattice tera, we need SUB

only over nearest-neighbors, since for large a, overlap of Gaussians is

negligible. Therefore, froa A.II.9, we obtain:

i 1/2 z • . - | W - X > 2 - | C d * x ) 2

(A.III.5)
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where z is the number of nearest-neighbors, and d is the nearest-

neighbor fiducial site separation. Differentiation of A.III.5. and

retention of the maximum term gives:

an,(a) 1/9
 X2 _«v2/?

{
*1

where A, - d-o» X2 • d. <nd y - d-x. Evaluation of A.III.6, in tern of

error functions and exponentials, gives, in the limit of large a, the

following expression for n^'Ca):

1 16 (2wo)t/2

In the large a limit, n(a) reduces to the following expression:

n(a) - j+fg-

whereV-2 (d-o) • constant (* .9) as a • ».

Therefore, from A.II.2, A.III.*, A.III.7, and A.III.8, A.III.2 becomes:

2« 1 8 2w 16(2,a)

where C, is some constant.

Rearranging A.III.9 gives:

)2D (d-o) e" o ( d" o ) 2 / 2 (A.III.10)

where D is a constant. Graphical solution of A.III.10 yields the fol-

lowing expression for

C , (A. III.11)
(d-o)2

2 —
•ihvre c - 1.67
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In general,

d 7̂7=- (A. III . 12)

For the fee crystal . III.A.7 obtains. For the Bennett l a t t i c e , we use

II I .B .1 . Substitution of A.III.12 into A.III.11 gives the density

dependent equilibrium a value in the high density l imit :

where pc_ designates the close-packed state and E2 - 1.32. Substitution

of A.III.13 into A . I I I .1 , and neglecting the interaction terns at these

high densi t ies gives the following free energy behavior:

Bf(p ) - £ n ( p ) - 3in[1 - ( — ) " J ] + constants (A.
o o o

Fcp

Expansion of the argument in the second term of equation A.III.1k to

second order about the close-packed state, and further expansion of the

logarithm of the quadratic term, yields the following pressure behavior,

after appropriate differentiation:

£ 00 P P \ P P /
0 O O CD CD C

o

Alder; e t . a l . (3D write the high density virial in the following form:

BP 3fio

"^ " <PC -Po
) * C° + '** (-.111.16)

where the higher order virial terms vanish as the close-packed state i s

approached. Comparison of A.III.16 and A.III.15 shows that our theory
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predicts the value of Co to be 2. "Exact" simulation results determine

Co to be 2.56. The value of Co which we obtain i s also that given by

self-consistent free voluae theory. In addition, equations A.III.15 and

A.III.16 indicate that our free energy density functional provides the

proper pressure behavior, that of ZZI.A.6.
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Table I. Coexistence paraaeters for ths KS freezing transition froa
various thsorlss and oaaputer slaulatlon

Souroe p f p. (pa-pf )/pf * IP-
<ref)

.939- 1.036-
A(29) .918 1.0115 .103 11.7 1.16 — — .126

B
(This
work) .96 1.07 .111 13. 1.3 .125 .068 .053

CC19) .9*61 1.0525 .112 — — — .0*8

D(17) .8917 .9662 .08* — — — — .08*

E(17) 1.0635 1.1903 .119 — _ _ _ _ _

P(20) .9*33 1.061 .125 — _> —

C( 2) .993 1.083 .091 12.3(v) 1.03(v) .1*9 .088 .07*
1.36(c)

HC16) .976 1.035 .06 — — — .05

I (*2) .9*6 1.03 .089 11.6 1.0 — — —

pf - fluid phase ooexistsnoe density

pc - solid phase ooexlstenoe density

|P_ - Melting pressure

AS/Nk - entropy change at aelting

01 - Lindenann ratio at Mechanical Instability

6- - Lindeaann ratio at Marginal theraodynaaic stabil ity

8_ - Lindeaann ratio at coexistence

?(v) - use of compressibility (virlal) PY equation of state.
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Figure Captions

Figure 1t For po* - 1.0, the ideal gas Helaholtz free energy per par-

t ic le (solid l ine ) , the Interaction Helmholtz free energy

per particle (dotted l ine) , and the total Helaholtz Tree

energy per particle (dashed l ine) , versus a.

Figure 2: HS free energy density, versus density, for the following

structures: uniform fluid (solid curve), fee crystal

(dotted curve), and Bennett lattice (dashed curve).

Figure 3: HS compressibility (BP/pQ), versus pQ. We show the

Salsburg-Wood pressure, equation III.A.8, with p c p - 1.216

(solid curve) the high density pressure in the Bennett lat-

tice (dashed curve), and both the high density crystal

pressure along with equation III.A.8, with por. VZ (dotted

curve).

Note: the dotted curve i s actually both curves super-

imposed.

Figure 1: HS Lindemann ratio versus po for: crystal (dotted curve) and

Bennett latt ice (dashed curve).

'igure 5: Soft-sphere Lindemann ratio versus pQ for: inverse-12 po-

tential and Bennett lattice (dashed curve), the LJ potential

and Bennett lattice (solid curve), the inverse-12 crystal

(dotted curve), and the LJ crystal (dashed-dotted).



Figure 6: Free energy density difference, relative to the uniform

fluid, versus p0 , for the following systems: inverse-12

potential and Bennett lattice (dashed curve), LJ potential

and Bennett lattice (solid curve), the LJ crystal (dashedh

dotted), and the inverse-12 crystal (dotted).

Figure 7: Phase diagram (solid curves) for the liquid-crystalline

solid phase transition in the LJ system. Also shown

(crosses) are values obtained from computer simulation.
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