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Abstract
This paper describes a second-order projection 

method for the incompressible Navier-Stokes equations 
on a logically-rectangular quadrilateral grid. The 
method uses a second-order fractional step scheme in 
which one first solves diffusion-convection equations to 
predict intermediate velocities which are then projected 
onto the space of divergence-free vector fields. The 
spatial discretization of the diffusion-convection equa­
tions is accomplished by formally transforming the 
equations to a uniform computational space. The 
diffusion terms are then discretized using standard 
finite-difference approximations. The convection toms 
are discretized using a second-order Godunov method 
that provides a robust discretization of these terms at 
high Reynolds number. The projection is approximated 
using a Galerkin procedure that uses a local basis for 
discretely divergence-free vector fields. Numerical 
results are presented illustrating the performance of the 
method.

Introduction
This paper describes a second-order projection 

method for the time-dependent, incompressible Navier- 
Stokes equations

Ut+(U V)U =zMJ - Vp (1.1)
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VU =0 (1.2)

on a logically-rectangular quadrilateral grid where 
Rt = 1/e is the Reynolds number. The method is a 
generalization of a second-order projection method first 
introduced by Bell, Colella and Glaz Bell colella 
viscous bell glaz equations and subsequently developed 
by Bell et al. Bell Shear for the study of shear flows. 
The basic approach is a second-order fractional step 
method, similar to a method introduced by van Kan 
Kan in which (1.1) is solved with the pressure term 
lagged to determine an intermediate velocity field that 
does not satisfy (1.2). This intermediate velocity field 
is then decomposed into solenoidal and gradient com­
ponents which determine the new velocity and an 
update for the pressure, respectively. The method also 
incorporates second-order Godunov-type differencing of 
the nonlinear terms in (1.1) that provides a robust, 
high-resolution discretization at high Reynolds number.

In deriving the extension to quadrilateral grids we 
will formally assume that the grid points are defined by 
a transformation <E> from a computational space 
2 = (^.Tl) to the physical space X = (x,y); i.e.,

X = 0(S) .

When we transform the Navier-Stokes equations to the 
computational coordinate system we obtain

JUt + [C/ V3] U = eVs-(y7T‘Vst/) - r'Vsp (1.3)

Vgt/ = 0 . (1.4)

where J = det V3 <I>, U = TU and

T sj [VgO]-1 =
J'r,

m xs.
Here, Vs and Vs- denote the gradient and divergence 
operators in computational space. The quadrilateral-grid

DISTRIBUTION OF THIS DOCUMENT IS UNLI



dons (1.3) and (1.4). The metric coefficients introduced 
in the transformation are evaluated using appropriate 
differences of grid-point locations. These difference 
approximations are chosen so that the method satisfies a 
free-stream preservation property that guarantees exact 
treatment of a uniform flow independent of the grid 
variation. The algorithm is designed to be second-order 
accurate for smooth flow provided the mapping O is 
smooth. The higher-order Godunov treatment of the 
convective terms and free-stream Reservation ensure 
the robustness of the algorithm for rough data and for 
nonsmooth grid variation. We emphasize that the algo­
rithm does not explicitly use the mapping O; all that is 
actually required are the locations of the grid points in 
physical space. Consequently, an elliptic grid genera­
tion algorithm can be used to generate the grids.

In the next section we describe the basic 
fractional-step approach used for the temporal discreti­
zation in the algorithm. In section three, we discuss the 
spatial discretization of the diffusion-convection equa­
tion (1.3) mid in section four we describe the discrete 
Galerkin algorithm for approximating the projection. In 
the last section we present computational results for 
flow in a channel with a constriction and flow over a 
cylinder.

Temporal discretization
In this section we describe the second-order frac­

tional step formulation used in the quadrilateral-mesh 
projection algorithm. This formulation, which provides 
the basic temporal discretization, is the same as that 
used by Bell, Colella and Glaz [2]. Projection methods, 
originally developed by Chorin [5], are fractional step 
methods based on the decomposition of vector fields 
into a divergence-free component and the gradient of a 
scalar field. More precisely, any vector field V can be 
uniquely written as V = f/j + V<j) where <|> is a scalar 
and Ud is divergence free and satisfies specified boun­
dary conditions. Furthermore, one can define an 
orthogonal projection P such that Ud = W and 
V<|> = (I-P)y. (See Temam [6] for a more detailed dis­
cussion of the projection.) The algorithm will be 
defined in terms of the computational space where the 
vector-field decomposition becomes

v = ud+rlrv^

where Ud satisfies (1.4).
Using the projection we can rewrite the Navier- 

Stokes equations (1.3)-(1.4) in the equivalent form

U, P ■J_1(eVs (y7T'Vst/) - [£/ Vs] U) (2.1)

Equation (2.1) describes the evolution of U in terms of 
a nonlinear functional of t/; the pressure has been elim­
inated from the system. Thus, the pressure in (1.3)- 
(1.4) represents the gradient component of the vector

field that is projected in (2.1); i.e..

/-'T'Vsp = (I-P) J
eVsOjJT'Vst/Ht/ Vs] U

For the basic temporal discretization, we assume 
that we are given an approximation to UH. Further­
more, we assume that we have already computed a 
second-order time-centered approximation to the non­
linear terms [{U • V) f/]"+1'4. (A Godunov-type procedure 
for computing this approximation is described in the 
next section.) A straightforward second-order discretiza­
tion (2.1) can be obtained using a Crank-Nicholson 
approximation

UH^-U
At

ft
P J

•! Vs-C/^TT' Vs([/n+f/"+1))-[(f/-V) UT+'h (2.2)

However, the linear algebra problem associated with 
solving (2.2) would be extremely costly because of the 
nonlocal behavior of the Rejection.

As a less costly alternative, we construct a frac­
tional step method that approximates (2.2) to second- 
order accuracy. To accomplish this we will assume that 
we are also given an approximation to J~xTtVEpn~'h. 
We then compute an intermediate velocity field U* 
using

Ar

■J Vs-(/_17T‘ V3({/" +17*)) -[(U • V) U ]"+,/i . (2.3)

where U* satisfies the same boundary conditions as U. 
The role the the pressure gradient term in (2.3) is to 
approximate the effect of the projection in (2.2). We 
now apply the projection to decompose U* into 
divergence-free and gradient components to obtain t/n+1 
and an update for Vp

t/n+1 = Pf/* (2.4a)

rlT‘Vspn+'A = J-1T‘Vspn-'A + AT^-Pjt/* (2.4b)

Equations (2.3)-(2.4) represent the fractional step 
scheme that we have used. The relationship between 
(2.3)-(2.4) and the Crank-Nicholson scheme (2.2) can 
be seen by first observing that (2.4) is equivalent to

P ------- — + J-lT,Vspn-‘A (2.5a)

J-lT'Vpn+'/l =

(I-P) +/-‘r Vs/?"-* (2.5b)

If we use equation (2.3) to replace

V’ - {/"
Ar

+ rxrvzpn-'/i



in (2.5) we obtain
{/»+!_(/»

Vs C/^TT' Vs(C/*+f/*))-[({/V)UT+'A

h+'A .

(I-P)

J-'FVp

VsirlTT‘ Vs(t/n+f/*)) -[(£/ -V) f/ ]"+,/i

from which we can see that (2.4a) corresponds to (2.2) 
with Un+1 approximated by £/* on the right hand side 
and that J~1T,VspH+Vl represents the gradient com­
ponent of the vector field being projected.

We note that since V/>-v4 is not available, some 
procedure is required to initialize the fractional step 
algorithm. We have chosen to simply iterate (2.3) and 
(2.4) (with Vp =0 initially) on the first step to compute 
converged approximations to U1 and J~lT‘Vsp'A.

The inclusion of the J~1T‘VEpn~'/i in (2.3) makes 
the algorithm second-order accurate in time. The 
reader is referred to Bell, Colella and Glaz [1] for a 
more detailed discussion of the convergence behavior of 
the fractional step scheme. There are several alterna­
tive formulations that also give second-order temporal 
accuracy. Van Kan [4] proposes a similar scheme in 
which the pressures are not staggered in time. Kim and 
Moin [7] achieve second-order accuracy by modifying 
the boundary conditions satisfied by U*.

Before describing the spatial discretizations used 
in the algorithm we will summarize the basic approach. 
First we solve the diffusion-convection equations (2.3). 
This is _& two-step process in which we first approxi­
mate [(l/-V)t/]B+Vi using a second-order Godunov pro­
cedure. Then, we solve the two parabolic equations 
represented by (2.3) with the nonlinear term treated as a 
source term. In the second step of the algorithm, we 
apply the projection to update U and J~lT'Vsp. In 
the next section we discuss the spatial discretization of 
the diffusion-convection equations that forms the first 
step of the algorithm. In the following section we 
describe the approximation of the projection.

Spatial discretization
The spatial discretization is based on the stag­

gered grid system depicted in Figure 1. On this grid, 
vector quantities (U and Vp) are defined at the grid 
points, denoted by • in the figure, and scalar quantities 
(V i/ and p) are defined at the cell centers, denoted by 
x in the figure. The transformation d> is viewed as 
being defined so that the grid in computational space is 
composed of unit squares; i.e., X,y = (Thus, the
grid in computational space has = Aq = 1 so that 
difference approximations are undivided.) The cell 
centers = V4(Xy + Xi+ij + X(j+1 + X1+1j+1)

form a dual grid that associates a cell with each of the 
original grid-points. Differences of the dual grid point 
locations are used to define metric coefficients on the 
primary grid, namely,

Xt-jj = lA{Xi +1^;+>a+X,- j -vr-X; -'^j+'h-Xi -Vij-'/d

with an analogous formula for X^j. We note that this 
particular choice of difference approximations for the 
metric coefficients, although not unique, is not arbitrary. 
For example, using simple centered difference approxi­
mations fails to yield an algorithm that is free-stream 
preserving.

As noted above there are two distinct components 
of the spatial approximation of (2.3): discretization of 
the Laplacian used to model the diffusion terms and the 
second-order Godunov procedure that is used to com­
pute [(f/-V) f/]*+vi. The discretization of the Laplacian 
is done using standard, finite difference approximations. 
The Laplacian in computational coordinates, namely 
Vs (7_17TrV5{/), has the form

(at/& + (pt/ijX, + (pc/r^ + (yf/^r, (3.1)

where

a = J~\xl + y^), P = + xy,,),

and y = 7_1(x| + y|) .

Each term in (3.1) is discretized using standard second- 
order differences with coefficients computed by averag­
ing metric coefficients at grid points. The linear system 
associated with the parabolic equations (2.3) using (3.1) 
for the diffusion discretization is solved using diagonal 
scaling as a preconditioner for conjugate gradient itera­
tion.

The algorithm for computing of [(U V) U]n+'A is 
based on the unsplit, second-order upwind methods first 
proposed by Colella [8] and by van Leer [9]. Unlike 
standard upwind differencing methods, these types of 
schemes couple the spatial and temporal discretization 
by propagating information along characteristics. This 
approach leads to a robust higher-order discretization 
with excellent phase-error properties. The scheme 
described here is a cell-centered predictor-corrector 
scheme. We use the cells defined by the dual grid for 
the discretization. In the predictor step of the algo­
rithm, we extrapolate U along characteristics to obtain 
values at the cell edges at tn+'A. In the corrector step 
we compute upwind fluxes for the velocities which are 
then differenced to obtain a time-centered approxima­
tion to (U-V)U.

Predictor
In the predictor we extrapolate along characteris­

tics using solution values at r" to predict values of U 
on cell edges at time tn+'A. The basis for the extrapola­
tion is Taylor series. To second order accuracy

Utiff = Uij + \uiij + -Jt/^ (3.2a)



(3.2b) lively.

urffi =u!j +

urpz = U!) - ±u^j + fuh

(3.2c)

(3.2d)

The first two quantities denote the extrapolation of £/ to 
the left side of edge-t +14 J and to the right side of 
edge-i -Vij, respectively. The last two are the extrapo­
lation of U to the bottom side of edge-i J+lA and the 
top side of edge-i J-Vi. We now use the differential 
equations (1.3) to express the time derivatives in terms 
of spatial derivatives with the pressure gradient lagged 
to time This gives, for (3.2a)

I_al^
2 2/ y Uhi ~ -=rvf;CA

+
Ar
2J VsijTT^sU) - rVsp (3.3)

where is 1 if ulj> 0 and 0 otherwise. Analagous for­
mulae are used for (3.2b-d). In (3.3), the derivative 
normal to the edge, U$, is evaluated using central 
differences with monotonicity constraints which we 
denote by (A^C/)^. The transverse derivative is 
evaluated using an upwind difference approximation. 
More precisely, if v^>0

1 At Vjj
2 2J [(AT,C/)l7-(An{/)l7_i]

or, if Vy<0

unjj - Uij+i~Vij-
J_ At Vjj 

2+ 21
where \U denotes a monotonized central difference 
approximation in the r|-direction with all quantities 
evaluated at r".

Corrector
In the corrector step we compute uU^ + vUri 

from the predicted values defined by (3.3). (For the 
remainder of this section we suppress n+Vt super­
scripts.) The form of the corrector is motivated by a 
physical-space interpretation of the matrix T used to 
define U. At edge-i +lAJ u = X^ U. If we let 
^ly +vij = ^• +<aj +vi—+vij-vi we see that is the
normal to the edge, scaled to the length of the edge. 
Consequendy, ui+wj Ui+Vlj represents the flux of U 
through edge-i+Vij. This suggests the following finite 
volume type differencing for the corrector:

UU$ + V Un~ +Ui )(Ui+Vij - Ui -V4 j)

+ V£(v; j+'/i+V; j-vJiUi j +>/, - Uij-rf (3.4)

where u and v are the appropriately scaled normal 
velocities at Inconstant and 1)= constant edges, respcc-

Before evaluating the flux we must first resolve 
the ambiguities in edge values introduced by (3.2). In 
particular, the characteristic extrapolation has defined 
double values of U for each edge corresponding to 
expansions from either side of the interface. We will 
restrict the discussion to the computation of and 
f/1+Vi,y for edge-i-t-ViJ from the left and right states 
Ut+<A,j and Uf+y^j. If we transform the Navier-Stokes 
equations to a local Cartesian coordinate system defined 
by the edge and its normal we see that u satisfies

u,+uux = R (3.5)

where % is the direction normal to the edge. Here R 
represents the diffusion term, the pressure gradient and 
the transverse flux. Thus, u satisfies the quasilinear 
form of Burgers’ equation with forcing terms in the 
direction normal to the edge. This suggests upwinding 
u based on the Riemann problem for Burgers’ equa­
tions, namely.

UiVAj ~ '
if uL> 0 , uL +uR>0 
if uL<0,uR>0 
otherwise

(We suppress the i +1AJ spatial indices mi left and right 
states here and for the remainder of the discussion.) We 
now upwind U based on u:

Ui+'A.j = '

UL
UR

if ui+t/lJ> 0

if
WVL +UR) if ul+Hj= 0

Note that the form of the differencing in (3.4) requires 
a value for f/,+Vij even in "sonic" cases in which 
Ui+Vi,j ~ 0.

The Godunov method is an explicit difference 
scheme and, as such, requires a time-step restriction. A 
linear, constant-coefficient analysis shows that we must 
require

m ax (
Uij At VijAt

“ ’TT
)<i (3.6)

for stability. The time-step restriction of the Godunov 
method is used to set the time step for the overall algo­
rithm.

Discretization of the projection
In this section a numerical procedure is described 

for decomposing the intermediate velocity field U* 
into its divergence-free and gradient components. 
Discrete vector decompositions of this type typically 
require that the difference schemes used to approximate 
the divergence and gradient yield skew adjoint opera­
tors over appropriate finite dimensional inner product 
spaces of discrete scalar and vector fields. This is



analogous to the situation in the continuous case when 
the vector and scalar fields have square integrable first 
order partial derivatives and satisfy specific conditions 
on the boundary of the domain. The decomposition 
considered here follows the finite difference Galerkin 
formulation used by Stephens et. al. [10]. In this 
approach, the divergence-free velocity component is 
determined directly by a Galerkin procedure using a 
local basis for the subspace of discretely divergence- 
free vector fields. An alternative procedure would be to 
compute the gradient component directly, with appropri­
ate boundary conditions for this component. This 
approach for computing the decomposition has been 
used, for example, by van Kan [4], Chorin [5], and Kim 
and Moin [7].

Hie discrete divergence is defined on the dual 
grid system of Figure 1 by transforming to computa­
tional space and using conventional difference approxi­
mations. Thus, V t/ ~DU =DU , where D is a cen­
tered approximation to Vs- defined by

[Df/]i+V4j+./4 = lM(Ui+l,j+l~ui,j+\) + (Ui+lJ~Uij)

+ (Fi+lJ+l-Vi+lj) + (4-1)
Recall that C/iy =TijUij , where the matrices 7^ are 
evaluated using the finite difference approximations 
described in the previous section. These difference 
approximations were chosen to ensure that a uniform 
vector field, Um will satisfy DU„ = 0, regardless of the 
grid being used.

We now define a discrete gradient operator that is 
numerically consistent with the pressure gradient term 
in (1.3) and is skew adjoint to D. Consider a domain 
covered by the staggered grid system with the indices 
t=0, /=/, j=0, and j=J corresponding to the boundaries 
of the domain in physical space. On this mesh, D 
satisfies the summation-by-parts identity

i =-£ iuij iGmij (4.2)
i=0 j=0 i=0 j=0

where

(G<t>)y = V6
<t)i+l/2w/+l/2-<t>i-l/2v/+l/2+<t,i+l/2j-l/2_<t)i-l/2./-l/2

§i+U2J+U2-<bi+U2J-V2+<bi-V2J+l/2-<bi-\l2,j-in

and E<|> is the extension of <]) by zero, (i.e. 
(EttOi+vij+vi = <t>i+'/i,y+v4 f°r I=l. ■ ■ ■ and
E<|>=0 elsewhere). Note that the operator G is a cen­
tered difference approximation to V3 . The identity 
(4.2) and (4.1) imply that

I EKDt/Wi+vw+vi = -E Ef/,r[r,G(E(t>)]i;(4.3)
j=0 j=0 i=0 /=0

The discrete gradient, G defined by

(G<t))iy - 7)'[G(E<t>)]iy (4.4)

represents a centered difference approximation to

rv3(|> at interior nodes i=l......... 7-1; j=\,. . . ,/-l.
Furthermore, it follows from (4.3) and (4.4) that G and 
D are skew adjoint with respect to the spaces and inner 
products defined as follows. Let V denote the space of 
discrete vectors {t/,y : i=0, ... ,7; 7=0,...,/} and 
W the space of discrete scalars

: J=0> • • • J-U 7=0......... 7-1}

with inner products
i-i j-i

(4,»V)w = E E <t)‘+,/4.y +v>Y; +'aj +'A

(U,V)y * £ ZUij-Vy
i=o 7=0

on W and V, respectively. Then

(Df/,(|»)w = -(£/,G<t»)v (4.5)
foraU Ue\ and <|>eW .

The specific form of the discrete decomposition 
depends on the boundary conditions for the problem 
under consideration. In this paper, we consider a class 
of problems for which the velocity is specified on a 
portion of the boundary, FB, while the remainder of the 
boundary represents an outflow condition. Discrete 
Galeikin projections for problems of this type with the 
outflow modeled using homogeneous Neumann condi­
tions on the velocity have been considered by Solomon 
and Szymczak [11]. In the formulation of [11], the 
specified Dirichlet data must satisfy compatibility con­
ditions associated with the discrete divergence condi­
tion. The present treatment of the outflow boundary 
differs from that of [11] in that no conditions are expli­
citly imposed on the velocity at an outlet and there are 
no compatibility conditions on the specified data. The 
present treatment is analogous to imposing "natural” 
boundary conditions in a variational form for the pro­
jection.

The problem can be reduced to one with homo­
geneous data on the Dirichlet boundary by subtracting a 
boundary mesh vector VB e V satisfying the specified 
Dirichlet data and DV^ = 0. A procedure for comput­
ing such boundary mesh vectors is described in 
[10,11]. Since the intermediate velocity U* satisfies 
the Dirichlet conditions, it follows that

T/’-V^eV*^ [FeV : V=0on r*,} .

To obtain an orthogonal decomposition of V°, we apply 
(4.5) to 7/ e V° to obtain

(Dt/,4>)w = - (U ,G0<t>)v
where G0 is defined to be zero on the Dirichlet boun­
dary and given by (4.4), elsewhere. We therefore have 
the following direct sum decomposition of V°

V° = D + G (4.6)



where D = ker D and G = range G°. A local basis for 
the subspace D is given by

:(*,/)£ 1}

where I is a set of indices defined by

I : i=-l........../.7=-l.......... J and

for ii^O.l; y 1=0,1}

and the mesh vectors yt+,/W+V4 are defined by

Tij'¥ii+'A'l+'A = ■
((-l),-;,(-l)*-i+1

(0,0)

) fori=ibJk+l; 
;=/,/+l 

for all other i J

In the above, the index k+l/i,l+Vi corresponds to the 
cell that forms the support of the particular basis vector, 
and it is understood that each basis vector is an element 
of V° by restriction where necessary.

To compute the projection of £/*eV we note that 
from (4.6) it follows that U*-VB = Ud+G% where 
<|>gW and

«J)el
The coefficients oti+v^+v* are determined by solving the 
linear system

(»V)eI

'¥****% (4.7)

for all (kj)sl . Note that the boundary mesh vector 
VB is not unique, however, the sum VB + Ud is 
uniquely determined regardless of the choice of VB. 
Therefore we can write YU* = VB + Ud.

The linear system (4.7) has an algebraic structure 
of the type associated with a nine point discretization of 
the transformed Laplacian. This system is solved using 
a preconditioned conjugate gradient algorithm with a 
modified MILU(0) preconditioner. This step comprises 
the bulk of the computational work of the algorithm.

Numerical results
In this section we present computational results 

illustrating the performance of the method. The first 
example is for flow in a channel with a constriction. 
The constriction is given by a smooth Gaussian profile 
which, at its maximum extent, reduces the width of the 
channel by a factor of 2. A 400x50 grid was generated 
using a biharmonic grid generation algorithm [12]. No 
clustering terms were used so the grid is essentially uni­
formly distributed.

Computational results for parabolic inflow with 
no slip walls are presented in Figs. 2-4 for 
Rt = 50, 500 and 5000. Here Rt is based on the max­
imum inflow velocity and the inlet channel width. For 
Re = 50 the flow quickly converges to the steady profile

shown in Fig. 2 which shows a small recirculation 
region behind the constriction. For Re = 500, shown in 
Fig. 3, the recirculation region has become much larger 
than in the previous case, extending approximately 7 
"bump-heights" downstream before reattaching. A 
second separated region has also formed along the top 
of the channel. Similar phenomena were reported by 
Armaly et. al. [13] for the backward-facing step at a 
comparable Reynolds number. We note that this profile 
is still slowly changing after several thousand time 
steps; whether a steady state will eventually be reached 
or not is unknown.

In Fig. 4, we show a time sequence of the flow 
for R, = 5000 after the initial transients have disap­
peared. This Reynolds number is well into the tur­
bulent regime and the resulting flow is quite complex. 
The dominant features of the flow are the large vortices 
being alternately shed from the top and bottom walls. 
A number of smaller secondary structures are also 
apparent The flow directly behind the constriction is 
particularly complex, involving a number of counter­
rotating vorticies that participate in shedding cycle.

Our second example is flow over a cylinder. We 
specified uniform horizontal flow at the left, top and 
bottom boundary conditions corresponding to a cylinder 
pulled through quiescent fluid in a channel 8 cylinder 
diameters wide viewed in a frame of reference moving 
with the cylinder. We discretized a section of the chan­
nel 25 cylinder diameters long with a 600x160 grid. In 
this case the grid is given by an inverse Joukowski 
transformation from a rectangular computational space 
with a slit, again with no clustering of grid-points 
around the cylinder. Some minor modifications were 
made to the algorithm to enforce no flow boundary con­
ditions along the cylinder. In Fig. 5, we show a time 
sequence for an established flow at Rt = 400. (The top 
and bottom halves are plotted separately causing a 
break in some of the contour lines along the centerline.) 
The computations exhibit the expected vortex street 
formed by the alternate shedding of vortices from the 
top and bottom of the cylinder. The numerical results 
provide good resolution of the flow with no sign of 
oscillations in spite of a cell-Reynolds-number greater 
than 20.

Assessing the computational efficiency of the 
algorithm requires some caution. The dominant cost in 
the algorithm is the solution of the linear system associ­
ated with the projection. This system is solved itera­
tively and the performance of the iterative method 
depends on a number of factors including the problem 
size, the complexity of the flow, the boundary condi­
tions and the level of distortion of the grid. For the 
constricted channel problem described above the 
method required approximately 25 nsec per zone on a 
Cray-XMP using one processor. This figure is based on 
the time spent in the main integration loop during the 
first 20 time steps at Reynolds number 500 and does



not include initialization, grid generation and other 
start-up costs. This particular case is ideally suited to 
the method and typical timings are likely to be some­
what higher.

Conclusions
In this paper we have described a numerical 

method for solving the incompressible Navier-Stokes 
equations on a logically-rectangular quadrilateral grid. 
The method uses a second-order projection formulation 
and incorporates a Godunov-type discretization of the 
convective terms that is second-order accurate for 
smooth flow and is sufficiently robust to treat strongly 
sheared flows without loss of stability or oscillations 
independent of Reynolds number. In future work we 
plan to use this integration scheme as the basis for an 
adaptive mesh refinement algorithm in which regions 
where additional accuracy is required are locally 
refined.
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Fig. 1. Staggered grid structure. 
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Fig. 2. Steady flow in constricted channel at Re = 50.
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Fig. 3. Flow in constricted channel at = 500.
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Fig. 4a. Time sequence of flow in constricted channel at Re = 5000 - streamfunction

TIME = 16.7

TIME = 17.9

TIME = 19.0

Fig. 4b. Time sequence of flow in constricted channel at R, = 5000 - vorticily
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Fig. 5. Flow past a cylinder at Re = 400.


