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Abstract

This paper describes a second-order projection
method for the incompressible Navier-Stokes equations
on a logically-rectangular quadrilateral grid. The
method uses a second-order fractional step scheme in
which one first solves diffusion-convection equations to
predict intermediate velocities which are then projected
onto the space of divergence-free vector fields. The
spatial discretization of the diffusion-convection equa-
tions is accomplished by formally transforming the
equations to a uniform computational space. The
diffusion terms are then discretized using standard
finite-difference approximations. The convection terms
are discretized using a second-order Godunov method
that provides a robust discretization of these terms at
high Reynolds number. The projection is approximated
using a Galerkin procedure that uses a local basis for
discretely - divergence-free vector fields. Numerical
results are presented illustrating the performance of the
method.

Introduction

This paper describes a second-order projection
method for the time-dependent, incompressible Navier-
Stokes equations

U +UV)U =eAU - Vp (.1
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on a logically-rectangular quadrilateral grid where
R, = Ve is the Reynolds number. The method is a .
generalization of a second-order projection method first
introduced by Bell, Colella and Glaz Bell colella
viscous bell glaz equations and subsequently developed
by Bell et. al. Bell Shear for the study of shear flows.
The basic approach is a second-order fractional step
method, similar to a method introduced by van Kan
Kan in which (1.1) is solved with the pressure term
lagged to determine an intermediate velocity field that
does not satisfy (1.2). This intermediate velocity field
is then decomposed into solenoidal and gradient com-
ponents which determine the new velocity and an
update for the pressure, respectively. The method also
incorporates second-order Godunov-type differencing of
the nonlinear terms in (1.1) that provides a robust,
high-resolution discretization at high Reynolds number.

In deriving the extension to quadrilateral grids we
will formally assume that the grid points are defined by
a transformation @ from a computational space
Z = (§€,m) to the physical space X = (x,y); i.e.,

X =0 )

When we transform the Navier-Stokes equations to the
computational coordinate system we obtain

JU, + [T-Va] U = eV_:_-(%TI“VEU) —T'Vep (1.3)

E‘l_j= 0
where J = det Vz®, U = TU and

<

14

Yn “Xq
TE V:‘b—l:
7 V=9 [‘yﬁ x&]

Here, Vz and Vz- denote the gradient and divergence
operators in computational space. The quadrilateral-grid
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tions (1.3) and (1.4). The metric coefficients introduced
in the transformation are evaluated using appropriate
differences of grid-point locations. These difference
approximations are chosen so that the method satisfies a
free-stream preservation property that guarantees exact
treatment of a uniform flow independent of the grid
variation. The algorithm is designed to be second-order
accurate for smooth flow provided the mapping ® is
smooth. The higher-order Godunov treatment of the
convective terms and free-stream preservation ensure
the robustness of the algorithm for rough data and for
nonsmooth grid variation. We emphasize that the algo-
rithm does not explicitly use the mapping &; all that is
actually required are the locations of the grid points in
physical space. Consequently, an elliptic grid genera-
tion algorithm can be used to generate the grids.

In the next section we describe the basic
fractional-step approach used for the temporal discreti-
zation in the algorithm. In section three, we discuss the
spatial discretization of the diffusion-convection equa-
tion (1.3) and in section four we describe the discrete
Galerkin algorithm for approximating the projection. In
the last section we present computational results for
flow in a channel with a constriction and flow over a
cylinder.

Temporal discretization

In this section we describe the second-order frac-
tional step formulation used in the quadrilateral-mesh
projection algorithm. This formulation, which provides
the basic temporal discretization, is the same as that
used by Bell, Colella and Glaz [2]. Projection methods,
originally developed by Chorin [5], are fractional step
methods based on the decomposition of vector fields
into a divergence-free component and the gradient of a
scalar field. More precisely, any vector field V can be
uniquely written as V = U; + V¢ where ¢ is a scalar
and U, is divergence free and satisfies specified boun-
dary conditions. Furthermore, one can define an
orthogonal projection P such that U; =PV and
Vo = I-P)V. (See Temam [6] for a more detailed dis-
cussion of the projection.) The algorithm will be
defined in terms of the computational space where the
vector-field decomposition becomes

V=U;+JT'Vz¢
where U, satisfies (1.4).

Using the projection we can rewrite the Navier-
Stokes equations (1.3)-(1.4) in the equivalent form

U =P J-l(avs-(-Jl-n'vEU) - [TVl )| @

Equation (2.1) describes the evolution of U in terms of
a nonlinear functional of U ; the pressure has been elim-
inated from the system. Thus, the pressure in (1.3)-
(1.4) represents the gradient component of the vector

field that is projected in (2.1); i.e.,
J'T*Vzp = (1-P) [—}— [eVE-(-;—TI"VSU)—[ﬁ Vg U]]

For the basic temporal discretization, we assume
that we are given an approximation to U". Further-
more, we assume that we have already computed a
second-order time-centered approximation to the non-
linear terms [(U-V) U]***. (A Godunov-type procedure
for computing this approximation is described in the
next section.) A straightforward second-order discretiza-
tion (2.1) can be obtained using a Crank-Nicholson
approximation

Uu+l_Uu N _1_
& -"[1
%Va'(-’ TV Ur+U YY) - (U VYU ]"*"‘” 2.2

However, the linear algebra problem associated with
solving (2.2) would be extremely costly because of the
nonlocal behavior of the projection.

As a less costly alternative, we construct a frac-
tional step method that approximates (2.2) to second-
order accuracy. To accomplish this we will assume that
we are also given an approximation to J'T'Vgp"™,
We then compute an intermediate velocity field U”
using

J +T'Vp"™ =

ut-u*
At

%VE-(r‘n"VE(UuU'))—[(U-V) Uyt . .3)

where U® satisfies the same boundary conditions as U.
The role the the pressure gradient term in (2.3) is to
approximate the effect of the projection in (2.2). We
now apply the projection to decompose U" into
divergence-free and gradient components to obtain U”**!
and an update for Vp

u*t=pU" (2.42)
JIT Vg p™* = J7IT Ve p™™ + A1 0-P)U" (2.4b)

Equations (2.3)-(2.4) represent the fractional step
scheme that we have used. The relationship between
(2.3)-(2.4) and the Crank-Nicholson scheme (2.2) can
be seen by first observing that (2.4) is equivalent to

r+l _ prn *_qn
v = U” _pll NU +J'1T'V3p"“'/’} (2.58)
J—lTl vp n+%4 =
* n
a-p) | L =Y +J"T'V5p"-%] (2.5b)

If we use equation (2.3) to replace

’ U‘—U” 17t n-%4
—_— 4 ] TV.;_.p
At



in (2.5) we obtain
Uu+1__un
At

P [-}— [% Ve (JITIT V(U*+U ") -[(U V) U]’””‘] ]

J—th Vp nts _

(I-P) [‘3‘ [‘2‘ Ve IT Ve (U™+U" ) -I[U-V)U ]"‘“”] ]
from which we can see that (2.4a) corresponds to (2.2)
with U**! approximated by U” on the right hand side
and that J-'T*Vzp*** represents the gradient com-
ponent of the vector field being projected.

We note that since Vp~™ is not available, some
procedure is required to initialize the fractional step
algorithm. We have chosen to simply iterate (2.3) and
(2.4) (with Vp = 0 initially) on the first step to compute
converged approximations to U' and J™'T*Vzp*.

The inclusion of the J~'T* Vg p" ™ in (2.3) makes
the algorithm second-order accurate in time. The
reader is referred to Bell, Colella and Glaz {1] for a
more detailed discussion of the convergence behavior of
the fractional step scheme. There are several alterna-
tive formulations that also give second-order temporal
accuracy. Van Kan [4] proposes a similar scheme in
which the pressures are not staggered in time, Kim and
Moin [7] achieve second-order accuracy by modifying
the boundary conditions satisfied by U".

Before describing the spatial discretizations used
in the algorithm we will summarize the basic approach.
First we solve the diffusion-convection equations (2.3).
This is a two-step process in which we first approxi-
mate [(U-V)U1*** using a second-order Godunov pro-
cedure. Then, we solve the two parabolic equations
represented by (2.3) with the nonlinear term treated as a
source term. In the second step of the algorithm, we
apply the projection to update U and J7'T'Vgzp. In
the next section we discuss the spatial discretization of
the diffusion-convection equations that forms the first
step of the algorithm. In the following section we
describe the approximation of the projection.

Spatial discretization

The spatial discretization is based on the stag-
gered grid system depicted in Figure 1. On this grid,
vector quantities (U and Vp) are defined at the grid
points, denoted by e in the figure, and scalar quantities
(V-U and p) are defined at the cell centers, denoted by
X in the figure. The transformation & is viewed as
being defined so that the grid in computational space is
composed of unit squares; i.e., X;; = ©(i,j). (Thus, the
grid in computational space has A = An =1 so that
difference approximations are undivided.) The cell
centers Xy js = (X + Xinrj + Xiju + Xisjs0)

form a dual grid that associates a cell with each of the
original grid-points. Differences of the dual grid point
locations are used to define metric coefficients on the
primary grid, namely,

Xeij = VoXion jantXion jwXion jos—Xiv j1s)
with an analogous formula for X, ;;. We note that this
particular choice of difference approximations for the
metric coefficients, although not unique, is not arbitrary.
For example, using simple centered difference approxi-
mations fails to yield an algorithm that is free-stream
preserving.

As noted above there are two distinct components
of the spatial approximation of (2.3): discretization of
the Laplacian used to model the diffusion terms and the
second-order Godunov procedure that is used to com-
pute [(U-V)U***. The discretization of the Laplacian
is done using standard, finite difference approximations.
The Laplacian in computational coordinates, namely
Ve (J7'TTTV5U), has the form

(U + BUen + BUnJ + Wa)y (D)

where
o=J7] + 7). B =T ®oyg + x90)
and y=J"'G¢ +y¢) .

Each term in (3.1) is discretized using standard second-
order differences with coefficients computed by averag-
ing metric coefficients at grid points. The linear system
associated with the parabolic equations (2.3) using (3.1)
for the diffusion discretization is solved using diagonal
scaling as a preconditioner for conjugate gradient itera-
tion,

The algorithm for computing of [(T-V)U*** is
based on the unsplit, second-order upwind methods first
proposed by Colella [8] and by van Leer [9]. Unlike

standard upwind differencing methods, these types of

schemes couple the spatial and temporal discretization
by propagating information along characteristics. This
approach leads to a robust higher-order discretization
with excellent phase-error propertiecs. The scheme
described here is a cell-centered predictor-corrector
scheme. We use the cells defined by the dual grid for
the discretization. In the predictor step of the algo-
rithm, we extrapolate U along characteristics to obtain
values at the cell edges at t***. In the corrector step
we compute upwind fluxes for the velocities which are
then differenced to obtain a time-centered approxima-
tion to (U-V)U.

Predictor

In the predictor we extrapolate along characteris-
tics using solution values at ¢" to predict values of U
on cell edges at time ¢"**, The basis for the extrapola-
tion is Taylor series. To second order accuracy
At

> (3.2a)

URAE = UL + %Ug,,-,- + 2yn,



At

Uk =up - Ug, ; U,, ; (3.2b)
U,"JW = U,’; + -2'U-’,'|jj + —Z'Urjj (3.20)
UIP =Uj - 3 UL+ 5 Xur . 62

The first two quantities denote the extrapolation of U to
the left side of edge-i+4,j and to the right side of
edge-i—'4,j, respectively. The last two are the extrapo-
lation of U to the bottom side of edge-i,j+%2 and the
top side of edge-i,j—'%. We now use the differential
equations (1.3) to express the time derivatives in terms
of spatial derivatives with the pressure gradient lagged
to time ™. This gives, for (3.2a)

1 M At
U U,7+SL [2 2, ‘I]UQJI 174

27 57 % Unii

2

where 5. is 1 if ;2 0 and 0 otherwise. Analagous for-
mulac are used for (3.2b-d). In (3.3), the derivative
normal to the edge, Ug, is evaluated using central
differences with monotonicity constraints which we
denote by (AgU);. The transverse derivative is
evaluated using an upwind difference approximation.

More precisely, if v;=0

+ & [Va-(%TT‘VEU) ~T'Vg p} (3)

At ¥;
Unij=Uij~Uij+ [%——L] [(AnU )ij—(AgU ).,—1]

or, if ¥;;<0

At vy
Unij = Uiju=Uy- [%*“2";4 ] [(A“U Jijn—(AnU);; ]

where AU denotes a monotonized central difference
approximation in the m-direction with all quantities
evaluated at ¢”.

orrector

In the corrector step we compute ¥ Ur + v U,
from the predicted values defined by (3.3). (For the
remainder of this section we suppress n+% super-
scripts.) The form of the corrector is motivated by a
physical-space interpretation of the matrix T used to
define U. At edge-i+i4,j #=X,U. If we let
XT]J-P‘&.j = i+Vz,i+Vz—Xi+V1J-‘A we see that Xﬂj+l/“j is the
normal to the edge, scaled to the length of the edge.
Consequently, .,y ;U;.,; represents the flux of U
through edge-i+%,j. This suggests the following finite
volume type differencing for the corrector:

WUg +VUyq = Vo, j 4, ) Ui j — Ui j)

+ YoV joit Vi jod (Ui s — Ui jos) 34

where ¥ and ¥ are the appropriately scaled normal
velocities at E=constant and n= constant edges, respec-

tively.

Before evaluating the flux we must first resolve
the ambiguities in edge values introduced by (3.2). In
particular, the characteristic extrapolation has defined
double values of U for each edge corresponding to
expansions from either side of the interface. We will
restrict the discussion to the computation of i, ; and
U,m_, for edge-t +%,j from the left and right states
U,,%, and U,w,., If we transform the Navier-Stokes
equations to a local Cartesian coordinate system defined
by the edge and its normal we sec that @ satisfies

(3.5)

where i is the direction normal to the edge. Here R
represents the diffusion term, the pressure gradient and
the transverse flux. Thus, ¥ satisfies the quasilinear
form of Burgers’ equation with forcing terms in the
direction normal to the edge. This suggests upwinding
@ based on the Riemann problem for Burgers’ equa-
tions, namely,

% + @iy =R

al if gtz0,7t +af=20

0 if wt<0,7@%>0

7® otherwise

Bippj =

(We suppress the i +'4,j spatial indices on left and right
states here and for the remainder of the discussion.) We
now upwind U based on &:

Ut if Byp;>0
Uiw,j = {U*

UL + UR) if Ba=0
Note that the form of the differencing in (3.4) requires
a value for U;.,; even in "sonic" cases in which

Ui = 0.

The Godunov method is an explicit difference
scheme and, as such, requires a time-step restriction. A

linear, constant-coefficient analysis shows that we must
require

(—ITU e )<t 3.6
max N S B
ij Jll Jll

for stability. The time-step restriction of the Godunov
method is used to set the time step for the overall algo-
rithm, '

Discretization of the projection

In this section a numerical procedure is described
for decomposing the intermediate velocity field U”
into its divergence-free and gradient components.
Discrete vector decompositions of this type typically
require that the difference schemes used to approximate
the divergence and gradient yield skew adjoint opera-
tors over appropriate finite dimensional inner product
spaces of discrete scalar and vector ficlds. This is



analogous to the situation in the continuous case when
the vector and scalar fields have square integrable first
order partial derivatives and satisfy specific conditions
on the boundary of the domain. The decomposition
considered here follows the finite difference Galerkin
formulation used by Stephens et. al. [10]. In this
approach, the divergence-free velocity component is
determined directly by a Galerkin procedure using a
local basis for the subspace of discretely divergence-
free vector fields. An altemative procedure would be to
compute the gradient component directly, with appropri-
ate boundary conditions for this component. This
approach for computing the decomposition has been
used, for example, by van Kan [4], Chorin [5], and Kim
and Moin [7].

The discrete divergence is defined on the dual
grid system of Figure 1 by transforming to computa-
tional space and using conventional difference approxi-
mations. Thus, V-U =DU =DU , where D is a cen-
tered approximation to Vz- defined by

DU Lisvsjos = Al 41 jar—i j1) + (i1 j—14i5)

+ (Vinjar Vi) + (Vi =il @.n
Recall that U; = T;;U;; , where the matrices T;; are
evaluated using the finite difference approximations
described in the previous section. These difference
approximations were chosen to ensure that a uniform
vector field, U.., will satisfy DU, = 0, regardless of the
grid being used.

We now define a discrete gradient operator that is
numerically consistent with the pressure gradient term
in (1.3) and is skew adjoint to D. Consider a domain
covered by the staggered grid system with the indices
i=0, i=I, j=0, and j=/ corresponding to the boundaries
of the domain in physical space. On this mesh, D
satisfies the summation-by-parts identity

I-1 J-1

3 S (DU )W) s js = -Z Z

i=0 j=0 i=0 j=0

;i [GED); (4.2)

where

_ i1z j+v2-0i-12 5020 j-12- 012 j-112
(Ge)ij =

Oi+12,j+12-0i 12, j-120i12 j 11212, j-12

and E¢ is the extension of ¢ by =zero, (ie.
(E¢)i+th+l/z = ¢i+‘/z,j+'/: fori=1,...,I; j=1,__ ..,J and
E¢=0 elsewhere). Note that the operator G is a cen-
tered difference approximation to Vz . The identity
(4.2) and (4.1) imply that

1-1 J-1

Y 2IDUWisnjm = -Z ZU., [T*G(EP];(4.3)
i=0 j=0 i=0 j=0
The discrete gradient, G defined by
(Go);j = T5IGED);

represents a centered difference approximation to

@.4)

T'Vz ¢ at interior nodes i=1,...,/-1; j=1,...,J-1.
Furthermore, it follows from (4.3) and (4.4) that G and
D are skew adjoint with respect to the spaces and inner
products defined as follows. Let V denote the space of
discrete vectors {U;; :i=0,...,I;j=0,...,J} and
W the space of discrete scalars

{4),'.',%_]'.,,% :i=0,...,I-1; j=0, PN ,.’—1]

with inner products
-1 J-1

Z Z¢L+‘h./+‘/:‘vl+’b,/+%
i=0 j=0

(¢’W)W
and

1
UVw=3 JU;V;

i=0 j=0
on W and V, respectively. Then

(DU 9w = —(U .Go)v
forall UeV and ¢ W .

The specific form of the discrete decomposition
depends on the boundary conditions for the problem
under consideration. In this paper, we consider a class
of problems for which the velocity is specified on a
portion of the boundary, ', while the remainder of the
boundary represents an outflow condition. Discrete
Galerkin projections for problems of this type with the
outflow modeled using homogeneous Neumann condi-
tions on the velocity have been considered by Solomon
and Szymczak [11]. In the formulation of [11], the
specified Dirichlet data must satisfy compatibility con-
ditions associated with the discrete divergence condi-
tion. The present treatment of the outflow boundary
differs from that of [11] in that no conditions are expli-
citly imposed on the velocity at an outlet and there are
no compatibility conditions on the specified data. The
present treatment is analogous to imposing "natural” .
boundary conditions in a variational form for the pro-
jection.

The problem can be reduced to one with homo-
geneous data on the Dirichlet boundary by subtracting a
boundary mesh vector Vp € V satisfying the specified
Dirichlet data and DVz =0. A procedure for comput-
ing such boundary mesh vectors is described in
[10,11). Since the intermediate velocity U® satisfies
the Dirichlet conditions, it follows that

U'-VgeVP= (VeV:V=0onTp) .

@.5)

To obtain an orthogonal decomposition of V°, we apply
(4.5) to Ue V° to obtain

(DU 9¢)w == (U sG0¢)V

where G° is defined to be zero on the Dirichlet boun-
dary and given by (4.4), elsewhere. We therefore have
the following direct sum decomposition of V°

V'=D+G 4.6)



where D = ker D and G = range G° A local basis for
the subspace D is given by

(PEHAIYE (k1) e 1)
where 1 is a set of indices defined by
I=(@y):i=-1,....I,j=-1,...,J and
Xivij+i, €D for i =0,1; j;=0,1}
and the mesh vectors W**/** are defined by
(1) 1Y) for i=k k+1;

j=ll+1
for all other i j

T,‘ ; \Ili7+%,l +a _
0.0

In the above, the index k+%,/+% corresponds to the
cell that forms the support of the particular basis vector,
and it is understood that each basis vector is an element
of V° by restriction where necessary.

To compute the projection of U* eV we note that
from (4.6) it follows that U'-Vy = U,+G% where
éeW and

U, = Z a,'.',%’j*,%‘PH-%’iM .
Gl
The coefficients o;,14 41 are determined by solving the
linear system

Y, Oy jass (P AT PAIE
(ij)el

(7D Shaauo™ “.n

for all (kJ)el . Note that the boundary mesh vector
Vs is not unique, however, the sum Vz + U; is
uniquely determined regardless of the choice of Vjp.
Therefore we can write PU" =V + Uj,.

The linear system (4.7) has an algebraic structure
of the type associated with a nine point discretization of
the transformed Laplacian. This system is solved using
a preconditioned conjugate gradient algorithm with a
modified MILU(0) preconditioner. This step comprises
the bulk of the computational work of the algorithm.

Numerical results

In this section we present computational results
illustrating the performance of the method. The first
example is for flow in a channel with a constriction.
The constriction is given by a smooth Gaussian profile
which, at its maximum extent, reduces the width of the
channel by a factor of 2. A 400x50 grid was generated
using a biharmonic grid generation algorithm [12]. No
clustering terms were used so the grid is essentially uni-
formly distributed.

Computational results for parabolic inflow with
no slip walls are presented in Figs. 24 for
R, =50, 500 and 5000. Here R, is based on the max-
imum inflow velocity and the inlet channel width. For
R, =50 the flow quickly converges to the steady profile

shown in Fig. 2 which shows a small recirculation
region behind the constriction. For R, = 500, shown in
Fig. 3, the recirculation region has become much larger
than in the previous case, extending approximately 7
"bump-heights” downstream before reattaching. A
second separated region has also formed along the top
of the channel. Similar phenomena were reported by
Armaly et. al. [13] for the backward-facing step at a
comparable Reynolds number. We note that this profile
is still slowly changing after several thousand time
steps; whether a steady state will eventually be reached
or not is unknown.

In Fig. 4, we show a time sequence of the flow
for R, = 5000 after the initial transients have disap-
peared. This Reynolds number is well into the tur-
bulent regime and the resulting flow is quite complex.
The dominant features of the flow are the large vortices
being alternately shed from the top and bottom walls.
A number of smaller secondary structures are also
apparent. The flow directly behind the constriction is
particularly complex, involving a number of counter-
rotating vorticies that participate in shedding cycle.

Our second example is flow over a cylinder. We
specified uniform horizontal flow at the left, top and
bottom boundary conditions corresponding to a cylinder
pulled through quiescent fluid in a channel 8 cylinder
diameters wide viewed in a frame of reference moving
with the cylinder. We discretized a section of the chan-
nel 25 cylinder diameters long with a 600x160 grid. In
this case the grid is given by an inverse Joukowski
transformation from a rectangular computational space
with a slit, again with no clustering of grid-points
around the cylinder. Some minor modifications were
made to the algorithm to enforce no flow boundary con-
ditions along the cylinder. In Fig. 5, we show a time
sequence for an established flow at R, = 400. (The top
and bottom halves are plotted separately causing a
break in some of the contour lines along the centerline.)
The computations exhibit the expected vortex street
formed by the alternate shedding of vortices from the
top and bottom of the cylinder. The numerical results
provide good resolution of the flow with no sign of
oscillations in spite of a cell-Reynolds-number greater
than 20,

Assessing the computational efficiency of the
algorithm requires some caution. The dominant cost in
the algorithm is the solution of the linear system associ-
ated with the projection. This system is solved itera-
tively and the performance of the iterative method
depends on a number of factors including the problem
size, the complexity of the flow, the boundary condi-
tions and the level of distortion of the grid. For the
constricted channel problem described above the
method required approximately 25 psec per zone on a
Cray-XMP using one processor. This figure is based on
the time spent in the main integration loop during the
first 20 time steps at Reynolds number 500 and does



not include initialization, grid generation and other
start-up costs. This particular case is ideally suited to
the method and typical timings are likely to be some-
what higher.

Conclusions

In this paper we have described a numerical
method for solving the incompressible Navier-Stokes
equations on a logically-rectangular quadrilateral grid.
The method uses a second-order projection formulation
and incorporates a Godunov-type discretization of the
convective terms that is second-order accurate for
smooth flow and is sufficiently robust to treat strongly
sheared flows without loss of stability or oscillations
independent of Reynolds number. In future work we
plan to use this integration scheme as the basis for an
adaptive mesh refinement algorithm in which regions
where additional accuracy is required are locally
refined.
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Fig. 2. Steady flow in constricted channel at R, = 50.
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Fig. 3. Flow in constricted channel at R, = 500.
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Fig. 4b. Time scquence of flow in constricted channel at R, = 5000 -- vorticity
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Fig. 5. Flow past a cylinder at R, = 400.



