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AN INTRODUCTION TO MULTIDIMENSIONAL COMBUSTION

MODELING HITH THE CONCHAS-SPRAY COMPUTER PROGRAM

P. J. O’Rourke
Theoretical Division, Group T-,3

University of California
Los Alamos National Laboratory

LOS Alamos, NM 87545

ABSTRA?T

CONCHAS-SPRAY is a finite-difference computer code for the calculation of

two-dimensional chemically reacting fluid flows. In this paper we discuss four

problem areas that are encollntered in multidimen~ional numerical combustion mod-

eling, and the numerical techniques used by CONCHAS-SPRAY to overcome these prob-

lems. Then the equations are given that are solved by the computer code, and

some results from an example problem are discussed.

INTRODUCTION

In 1975, Group T-3 ot Los Alamos National Laboratory was asked by the De-

partment of Energy to develon a multidimensional numerical model for the fluid

flow and combustion In an Internal combustion engine cylinder, One fruition of

this effort !s the CONCHAS-SPRAY computer program.1 CONCI{AS-SPRAY solves by

finite-difference techniq~es the unsteady equations fcr a multi-component, chemi-

cally reacting mixture of ideal gases, together with those for an evaporating

liquid spray. The geometry is spatially two-dimens~onal and can be either planar

or axisymnetrlc, In the latter case, the equation for the azimuthal (swfrl) ve-

locity component Is solved. Although the program Is written for internal combus-

tion engine applications, w!th llttle mod!ficat!on !t can be used for a variety

of other combustion problems. For example, CONCHAS-SPRAY is currently being used

to sim~late the combustion of hydrogen-air mixtures in large containment ves-

sels.2



This paper is intended as an introduction to the CONCHAS-SPRAY program. Ve

will describe four problm areas that are encountered in internal combustion en-

gine modeling. These are that one must calculate in complicated geometries, cal-

culate low Mach number flows with large density var ~tions, calculate the flame

s~eeds of thin flames, and calculate the dynamics of vaporizing liquid fuel

sprays. For eat:,of these areas, we will describe what the problem is and the

numerical techniques that have been used to overcome tt. The last two techniques

have been developed directly as a resuit of our involvement in the internal com-

bustion o~;:ne program, and these will be described in more detail. All four

problems share the common characteristic that they are only problems in multidi -

mensio~al combustion modeling. We will describe why these problems either ar~

not encountered or are easi”lydealt with in one-dimensional geometries. After

describing the four problem areas, we will gii” the equations that are solved by

CONCHAS-SPRAY and present some results from an example solution.

Because we will discuss four problems does not me?n that Lhere are not many

more problem areas to be dealt with in internal combustion engine modeling. A

listing of some of these outstanding problem areas follows.

1. Turbulence Modeling. The combustion in Internal combustion enqines oc-

curs in a turbulent fluid, How detailed should OUI-turbulence transport

model be, and what type of averaging should he used to obtain the turbu-

lp,lce equations?

2. Chemical Rate Equations. Due to computer time limitations,

dimensional calculation one must use simplified, global them

n a multl-

cal reac-

t!ons. I{owshould one choose these glob~l reactions and the!r rates?

The method of high activation energy asymptotic could provldc an answer

tu this difficult question.3



3. Turbulent Flame Structure. What is the

flames in engines? How should we calcu’

speeds.

structure of the turbulent

ate turbulent flmes and their

4. Wall Heat Loss. Wall heat loss is known to have a significant effect on

engine performance.
4

Do present wall-heat-loss models ~dequately pre-

dict this effect?

5. Thick Spray Effects. In engine sprays, a large class of effects, some-

times called “thick spray” effects,
5 are known to occur. Among these

are drop collisions, oscillations, and the break-up into drcplets of

ligaments that persist downstream of the atomizer. Only recently has a

method been de.leloped to calculate drop collisions,
6 and the remaining

effects are largely neglected In current spray models.

For all of these problem areas we have adopted preliminary models that must

be tested and refined in careful comparisons with laboratory experiments.

Problem 1

Computing in Complicated Geometries

Shown in Fig. 1 is one design for a stratified Chdrge engine cylinder’ that

is being considered by the General Motors Corporzt!cm. The spray is injected

axisymnetrically at the cyltnder head, and the cup Irlthe piston and small clear-

ance at top-dead-center between piston and cylinder head, are designed to produce

a fluid flow that op:lmlzes charge stratification and rap!d combustion. The ge-

ometry Is a challenging one for numer~cal modellers. In addition to the compli -

cated boundary shape, the boti~dary {s

Until ten years ago, fluid dynam

formed in such a complicated geometry

movtng.

cs calculations could not be routinely per-

O!der solution procedures are divided



into two classes: Eulerian methods and Lagrangian methods. In Eulerian mel.hod~

the computational mesh is fixed in the laboratory frame, and thus the computing

region has to have a fixed shape. Lagrangian methods, in which the computational

mesh moves with the fluid, can only calculate flows with small fluid distortions,

because large fluid distortions produce large mesh distortions and give rise to

intolerable numerical errors. CONCHAS-SPRAY utilizes the Arbitrarv-Laaranaian-

~ulerian or ALE

arbitrary quadr

an

er

at

In

engine calcu

----

method. 8 In this method, the computational mesh is composed of

laterals that can move in any manner relative to the fluid. In

ation the mesh can move to follow the piston motion.

Figure 2 shows a possible computational cell V.. in an ALE mesh. In comput-
lJ

memory ars kept the values of the thermodynamic variables, wh-.ch are located

the center of the cell, and the positions and velocities of the cell {ertices.

the course of a computational cycle, these quantities are updated in time by

the computational time step dt.. The finite-difference equations that are used to

accomplish this can be viewed as approximations to the integral balance equations

for mass, momentum, and energy over the control volume V. Strict conservationIj”

of mass and momentum is observed in tl.efinit~-difference formulations. An in-

ternal energy equat!on is solv~d by CONCHAS.SPRAY, and those terms thdt are in

conservative form in this equation are difference conservatively.

Problem 2—.-—

Computing Low Mach Number Flows

with Large Density Variations

In most combustion probiems, the Mach numbers assGc!ated with the flow are

much smaller than one. When this Is true, althotigh it Is changing In time one

can show that the pressur~ is nearly uniform in space.
9

Unlike the low Mach num-



her flows that we are most accustomed to, in which the density is constant in

space, the density can vary by a factor of six or seven in space in combustion

problems.

Again, until about ten years ago, such flows could not be calculated

10existing numerical methods. Older methods are divided into two classes

stream function and vorticity methods and compressible flow methods in wh

Courant condition %+ < 1 has to be observed, Hereu_ is the flow

ty and c the adiabatic speed of sound. Stream function methods cannot be

with

ch the

veloci -

used

because no stream function exists in combustion problems. A stream functon ~

satisfies u = V x $, but this implies that V ● ~= O. V _● u is the fractional

rate of change of volume of a fluid element, and in combustion problems V ● u * O

due tc chemical heat release and a heat flux vector whose divergence is locally

large. Traditional compressible flow methods, which require satisfying the

Courant condition, ~an be used in comt)ustioc problems, but when the Mach number

is small,

t+on, the

motion In

they are extremely inefficient, Khen one observes the Courarlt condi-

computational time step is smell enough to resolve the acoustic wave

the combustion chamber. But these occur on a

much smaller than time scales of interest tu, which are

convective motion. The ratio tc/tu is the Mach number.

number of time steps Is needed to calculate for pfoblem

Mach number flows.

time scale t. that
L

those associated w“

Thus an extremely

times of interest

is

th

1arge

n low

CONCHAS-SPRAY uttllzes the ICE (Impllcit Continuous-Fluld EulerIan) meth-

od 11B which eliminates the need to observe the Courant condition on the computa-

tional time step. Although the ICE method was originally developed for EulerIan

codes and referred to a specific set of fintte-difference equations, the mne ICE



. .

is now generilly applied to any fluid flow algorithm with the following two fea-

tures: the linear momentun equations are solved (rather than the vorticity equa-

tion(s)) and implicit finite differencing is used for tht?seterms associated with

acoust!c or pressure wave mctions. These terms are the pressure gradient terms

in the momentum equations and the dilatiorl (V ● @ terms in the mass and energy

equations. Because of this implicit differencing, the same numerical algorithm

can b~ used to calculate efficiently flows with any Mach number. In the low $lach

number limit, the algorithm reduces to one that solves low Mach number equations,

in which the pressure is uniform.

Since the ICE method can be used to calculate flows of any Mach number, it

is natural to ask whether one might sacrifice some of this capability and save

additiona’ computer time by solving equations that are specifically formulated

for low Mach number flows. Such formulations are availablegP~2 for chel,lically-

reacting flows; however, in mere than one space dimension, these low Mach number

equations are ne~rly as complicated as the general equations for compressible

flows, and no computatioi?al time can be saved by using them. In one space dimen-

sion, it is well known13 that for most practical purposes one need not solve the

momentum equation in combustl~n problems. This is a significant simplification

that allows one to save much cumputer time. In more than one space dimension,

however, when one dispenses with the momentum equations, essential infmnation

has been lost.

Problem 3

Calculating the Speeds of Thin Flames

The problem Is simply that laminar flames and some turbulent flames have

thlckness~s that are smaller than the computational cell sizes that one can af-



ford to use in multidimensional calculations. We will first describe briefly the

numerical methods that have been proposed for solving this problem, and then we

will give the method used in CONCHAS-SPRAY, which is an artificial flame thicken-

ing procedure. 9

Thin flame calculation strategies can be divided ifitothree classes: adap-

tive gridding, discontinuous flame modeling, and artificial flame thickening.

Adaptive gr

illustrated

which the c

d ~trategies can, in turn, be placed in two categories. These are

in Fig. 3. In the first category, there are those strategies in

mutational mesh is fixed, but some cells are subdivided to provide

more resolution where gradients are larger. In contrast, in the second category

the number of computational cells is fixed, but the cells move and become smaller

in regions of large gradients. Although there have been some n~table successes

in particular problems with second category strategies, 14 both strategies need

further development before they can be more universally and reliably applied to

multidimensional combustion modeling. We remark that in one-dimensional problems

second category strategies are fairly easy to implement in CONCHAS-SPRAY.

A second flame resolution strategy is to treat the flame as a discontinuil

with a prescribed flame velocity relative to the fluid ahead of the discontinue

ty. Numerical methods for convecting a material interfaces are highly devel-

Y

.

oped 15’16 The new element in flame modeli~g is that the interface moves rela-.

tive to the fluid ahead of it. A method for accomplishing this, using Huyghens

principle, has been developed by Chorin. 17 The flame speed can be prescribed us-

ing the result of analytic solutions, experimental data, or subsidiary one-

dimensional calculations. This second flame resolution strategy is a viable al-

ternative to the method we aresently use.



The method we use to resolve thin f’

to dimensions that are resolvable by the

plished without changing the flame speed

ames is to artificially thicken the flame

computational mesh.9,19 This is accom-

The method is easy to implement. One

simply multiplies the mass, momentum, and energy diffusivities by a factor 6, di-

vides the reacticn rates by 6, and uses these scaled values in the calculatiorl.

B can be a function of space and time. The effect of this transformation .

increase the computed flame thickness by a factor uf S. Thus, little computer

programming is required to implement the method, and flames are automatically

thickened whenever and wherever they occur in a calculation.

The spirit of the artificial flame thickening method is similar to that of

classical shock smearing.19 There is a big difference, however, between comput-

ing thickened shocks and thickened flames. In computing shocks, the correct

shock speed is obtained as long as one conserves mass, momentum, and energy in

the finite-difference equations and uses the correct boundary conditions. In

most applications, the detailed shock structure need not be resolvr.d. In con-

trast, to calculate the correct flame speed, one must resolve the detailed flame

structure.

structures

taking fue’

Fortunately, it has been our experience that for the simple flame

we have calculated, in which there is a one-step chemical reactior,

and oxygen to products, three or four cells are sufficient to resolve

the flame and obtain the correct flame speed.

Problem 4

Fuel Spray Modeling

To calculate the essential dynamics of a vaporizing fuel spray, one needs to

Include the effects of a distribution of drop sizes, velocities, and tempera-

tures. Thus one must solve what is called20 the “spray equation:”

~+ Vxc(fv) + Vv~(fF) +& (fR) ++ (fid) = O .
d

(1)



This is a stochastic equation for the probability distribution f of drop posi-

tions ~, velocities ~, radii r, and temperatures Td. ~ is the drop acceleration,

R is the rate of drop radius change, and ;d is the rate of drop temperature

change. We have given here a simple form of the spray equation that expresses

conservation of drop numbers in volumes that move with the drop velocities in a

hyperspace, called “drop-space,” whose coordinates are (~, ~, r, Td). In more

complicated forms of the equation, there are source

of (1) due to the turbulent transport of drops, CO1’

basic problem of fuel spray modeling is that Eq. (1

terms on the right-hand-side

isions, or break-ups. The

9 in conjunction with the

gas-phase equations, is very difficult to solve. Three methods have been pro-

posed for numerically solving the coupled spray and gi5-phEiSe e~utItifXIS: direct

solution methods, moment equation methods, and parcel methods. We now describe

tilethree methods and tell why we use a parcel method in CONCHAS-SPRAY.

In direct solution methods, one subdivides drop-space into computational

cells, in each of which a value of f is stored. The values of f are updated in

time by approximating (1) by finite-differences. Ths problm with direct solu-

tion methods is that computer storage requirements are exce~sive in multidimen-

sional calculations. In problems with two space dimensions, drop space 1s six

dimensional, and if one uses ten cells to resolve each coordir,ate direction in

drop space, then there will be a total of 106 computational cells. This much

storage is available on the largest of today’s computers, but with the addition

of more dimensions to drop-space, such as a swirl velocity component as we have

in CONCHAS-SPRAY, or when more resolution is required, computer storage is ex-

ceded.

In moment equation methods, one reduces the number of independent variables

by integrating Eq. (1) over one or more coordinates of drop-space. Usuaily (1)



is multiplied by functions of ~, r, and Td and integrated over these sme coordi-

nates, and usually only mzss, momentum, and energy equations are used for the

21spray. These mment equations contain terms which give the total exchange

rates of mass, momentum, and energy between the two phases.

The problem with nnment equation methods is that these exchange rates are

difficult to evaluate accurately. In order to calculate the exchange rates, one

needs to know the distribution function f, and accurate approximations to f can-

not be constructed from the small number of moments of f that are known.

In CONCli.4S-SPRAY,we use a stochastic parcel method developed by Dukowicz. 22

The spray is represented by computational parcels, each parcel oeing composed of

a number of drops of identical size, velocity, and temperature. There is a sto-

chastic sampling of the assumed probability distribution of drop properties at

injection and of the distributions governing drop behavior at downstream loca-

tions. An additional feature of the method is that drop and gas accelerations

are calculated by an implicit scheme that circumvents time-step limitations due

to the close-coupling of drop and gas velocities. The distribution function f is

obtained by ensemble-averaging over man, calculations in m unsteady problem or

by time-averaging in a steady problem.

itl practice, it is found that with less than cne thousand parcels, computa-

tional results are obtained that do not change when one uses different random

number sequences to generate the results, One reason for the economy of parcel

methods is that since parcels follow drop trajectories, the parcels move where

the drops move, automatically providing more resolution (i.e. more parcels) where

it is needed.



The CONCHAS-SPRAY Equations

In this section we give the equations solved by CONCHAS-SPRAf and briefly

describe some of the terms. The equations are given in vecior notation. The

spra~ equation has already been given, and we suppy here

rates of drops velocity, radius, and temperature change.

in Table I.

Continuity Equation for Species K—— .-

the forms used for the

The symbols are defind

(2)

Momentum Equations

(3)

o V“u ~= = I.J[VU+ (VU)T]VOU I -: v__—— --=

Internal Energy Equat~on

[

olf+=+ VO(PUI) + Pvmu
at - - --

‘g:~+~*K_~+pt)~ hV— + ~ Lrqr
~ k-p J r

(4)



qr = -~(bkr
k’

- ak,r)hk,o

Equations of State——

(5)

I(T) = )(:)Ik!T)
K

Transport Coefficients

u = ‘t + ‘o

‘o
=pvo where v

o = co~stant

‘C=+i= constant

Pr=?= constani

Chemical Rate Equations——

Kinetic Reactions——

. ()“k’a~,r ()

ok %,r
%- ❑ Kf,r(T) [ ~

h.
- Kb,r(T) ~ ~

(6)

(7a)



Equilibri~ Reactions

()P~ bk,r-ak,r = ~
n T-
kk

c.r(T) (7b)

(8)

Rates of Dro& Velocity, Size, and Temperature Change—— —

3P Jg-yl(u
~=~~ ~ --L)CD+S

Y; - Y~
!?=-

+1-y;sh

3“
: “r c2Td ❑ L~Td)~nr2R + Q

Q = 2nr A(T - Td)Nu

The continuity equation for species k has convection, turbulent diffusion, and

chemical reaction terms. In addition, species 1, which is the vapor phase of the

liqu

form

dens

d fuel, has a source term due ‘:0vaporization of the spray. This has the

of a sum over all drops of the rate of mass loss of each drop. The liquld

ty PI Is assumed to be constant in time and space, The momentum equaticn

(3) has convection, pressure gr~dient, t~rbulent stress, and body force terms,

and a source term a.e to momentum exchange with the spray. The latter has the

form of a sun over all drops of the rate of momentum loss of each drop. The tur-

bulent stress tensor Is assumed to be Newtonian In form.

An Internal energy equation Is solved by CONCHAS-SPRAY. “I” IS the speclflc

internal energy of the gas mixture relative to zero internal energy at absolute



zero. This equation has terms due to convection, pressure work, dissipation due

to the turbulent stress, turbulent heat flux, chemical heat release, and energy

exchange with the spray.

The equations of state are those for a mixture of ideal gases, and the spe-

23ties internal energies are obtained from the JANNAF thermochemical tables. The

viscosity coefficient u is the sum of contributions from a constant diffusivity

24V. and a sub-grid scale turbulent viscosity IJt.

Chemical reactions are divided into two classes: kinetic reactions, whose

rates are explicitly prescribed, and equilib~ium reactions for which the rate of

change of the reaction progress tariable ~r is determined implicitly by an equi-

librium constraint. An Arrhenius law temperature dependence is used for the

rates of kinetic reactions.

A drag coefficient CD corvelatiol, is

drop velocity~. The rate of ciropradius

used t~ determins thl:rate of change of

change R is the product of a Snerwood

number Sh and the value R would have if the drop were vaporizing in spherlcally-

symmetric surroundings, Y; is the fuel vap~r mass fi-action a: the drop’s surface

and is found from the surface equilibrium approximation. 13 The heat transfer to

each drop Q is determined from a Nusselt number Nu correlation. Finally, t~o
.

rate of drop temperature change Td is determined from an energy equation for the

drop. It is assumed that the drop temperature Td !s uniform within each drop.

The precise correlations used for Cd. Sh, and Nu are gfven tn Ref. 1.

A Computational Example

Ne now gtve a some of the results from a CONCHAS-SPRAY calculation of a typ-

ical compression and power stroke for the stratlf!ixl charge engine of Fig, 1. So

much information is available that to Jescrfbc all the results fran such a calcu-

lation would require a paper in Itself. Our intent here 1s only to indicate the



detailed nature of

the care that must

preliminary nature

the information obtainable from such a calculation, to show

be exercised in interpreting the results, and to emphasize the

of the numerical model.

Figure 4 shows the computational mesh at the beginning of the calculation.

The left boundary is the axis of synmetry; the top boundary is the cylinder head;

the right boundary is the cylinder wall; and the bottom boundary shows the out-

line of the piston with its chamfered bowl

head and top of the piston is 9.7 cm. The

20 cells in the radial direction and 32 ce’

The distance between the cylinder

computational region is resolved with

1s In the axi{lldirection. Some of

the cells in the lower right hand corner of the mesh d~ not appear In the plot.

These are obstacle cells that do not participate in the calculation.

The calculation was begun at a crank angle of 180” hefore top-dead-center

(TDt). Until 52” before TDC the gas il the cylinder was compressed by the upward

piston motion, Between 52° and 39” before TDC a liquld octane spray was injected

into and vaporfzed in the compressionally heated cylinder gases, At 27’ before

TDC spark lgnltion was simulat~d by depositing energy in one computational cell

near the cylinder head and synnetry axis, af’dat TIJCmost of the fuel had been

burned. rhe calculation was terminated at 180” after TuC. The total problem

time was 3?.5 ms, corresponding to an eng~nc speed u’ 1600 rpm. The total compu-

tational time was 45 minutes on a CRAv I computer,

The fuel fn this calculation was consumed by the single-step Irrcverslblc

chemical rcactlon:

.

Zcgtja + 2502
‘r
~ 16C02 + 1LI1120 .

Subsequently, the local chemic,~l cqu~librfun composition was calcul~tcd uf a mix-

ture ot’C02, 1$0, at~dthcfr dissociation products.



At user-selected output intervals the computer program piotteclthe computa-

tional mesh, velocity vectors, spray parcel positions, and contour plots of sev-

eral flow quantities. Figures 5, 6, and 7 show some plots from the above calcu-

lation at 22° before TDC, when burning is still occurring. Figure 5 shows the

computational mesh and tne spray parcel plot; Fig. 6 gives plots of the tempera-

ture and fuel vapor mass fractions; in Fig. 7 are shown plots of the mass frac-

tion of diatomic oxygen (02) and the equivalence ratio 0. (The equivalence ratio

$ is defined by $ = R/R!it,where R is the ratio of the molar concentration of

fuel vapor to that of 0,,and Rr+ is the stoichiometric value of R.)
1: 3L

The plot of the computational

been moved. Comparison with the p’

pison cup have retained their orig’

mesh shows the manner in which the mesh has

ot of Fig. 4 shows that those CC1lS In the

nal shape and have been simply translated up-

have re-

y if;size

ward with Lhe piston vc’locity. Those cells above the top of the p!ston

tained their original rddial dimension hut have been compressed uniform’

In the axial direction. In addition, some rows of cells above the piston have

been deleted for economy.

The spray parcel plot of Fig, 5 shows that many unevaporated liquid drops
*
remalrl in the cylinder. Comparison wlti~ the temperature p!rltof Fig. 6 shows

that these drops reside in the cooler regions of the cylfnder, and Ffg, 5 shows

that sonicof these drop:,have impinged on thp piston wall, Whcti this occurs, t.hc

sprdy parcel positions ilreheld fixed in the calcul~tiun, and the drops arc evap-

orated using r.iropvaporlz~tion rctes for the gas-phaic conditions of the CP1l in

which they arc located. If an apprccidblc amount of lfquiciwere to impinyu on

the wall or if we were conccrncd with calculating trace mounts of unburned hy-

drocarbon yascs, a tuur~ ilccuratcImicl would have to k used for th~ vaporization

of a Iiqtildfilm un a wall.



At first glance, the temperature contour plot of Fig. 6 seems to show a pre-

mixed flame front surrounding a hot kernel of gases near the location of igni-

tion. lhe situation is much more complicated, however, as is revealed by an ex-

amination of the fuel vapor, oxygen, and equivalence ratio plots. In the center

of the ke?llelof hot gases there is little or no oxygen. To the right of the

kernel there is oxygen and no fuel, Thus the 1

of the hot kernel are not indicative of a prem’

hot, fuel-rich region from a cool, oxygen-rich

flame burning here.

emperature gradients to the right

xed flame, but merely separate a

one. There is some diffusion

At the bottom of the hot kernel, the temperature gradients are steeper. lhe

equivalence ratio plot shows that the mixture below the h6t kernel is nearly

stoichiornetric, ard the fuel concentration plot shows all the fuel being depleted

in this region. The steep te~perature gradients here are thus associated with

rapid, premixed burning.

The temperature gradients to the left of the hot kernel are also associated

w:th a premixed flame, but here the flame is propagating into a region whose

equivalence ratio is 4.5. Due to the low oxygen concentration here, chem!cal

reaction is slower, and the competition of the slow chemical reaction with turbu-

lent heat and mass diffusion results in a slower, thicker flame than at the bot-

tom of the kernel. In addition as the flame on the left passes over the unburned

mixture, all the oxygen is consumed, leaving hot, fuel-laden gases.

It is, of course, physically unrealistic to have unburned octane present in

a rcgiun with ternpcraturcs higher than 2000 K, In reality, when a premixed flame

passes over a region of equivalence ratio $ > 1, all tllcfuel reacts, and tho

mixture behind the flame contains partially oxidized combustion products that are



necrly in chemical equilibrium. The fault here lies with our chemical Kinetics

model in which tt!efuel can only directly react tc form complete combustion prod-

ucts. We are currently looking at improveo chemical kinetics models that over-

come this difficulty.
25

Despite this and other kncwn difficulties with the model, it can predict in-

cylinder pressure histories with reasonable accuracy, as weil as the correct

trends in gressure change with changes in operating conditions. 26’77 Thus

CONCHAS-SPKAY is currently a useful design tool for automobile manufacturers and

re~earch tool for many combustion problems.
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Synbols

ak,r’ bk,r

CD

CP

D

f

F

‘k

‘k.

I

I
:

K

Table I

List of ~.mbols

Definition

Furwarci and backward stcichiometric coefficients

k in reaction r

Orders of the forward and backward reactions r w’

to s?ecies k

Droplet drag coefficient

Specific heat of the liquid fuel

Gas specific heat at constant pressure

Turbulent mass diffusion coefficient

Rate-of-strain tensor

Droplet distribution function

Dr6plet acceleration

Acceleration due to gravity

Enth~lphy of species k

Heat of formltion of species k at absolute zero

Liquid fuel enthalp~

Internal energy

Identity tensor

Turbulent heat transfer coefftcnt

of species

th respect

Kc,r

‘D

Equillbr!um constant for concentrdtlons of equilibrium ~’e-

actim r

Dimensionless coefficient in subgrid scale turbulc,lt I.Ifs-

Cosfty



SyrrbolS

‘f,r’ ‘b,r

L

u[1

P

qr

Q

r

R

Sh

t

T

‘d
.

‘d

u

v

‘K

‘1

Y?

A

u

Table I (continue)

Definition

Forward and backward temperature dependencies of reaction r

Latent heat of vaporization of the fuel

Droplet Nusselt number

Gas static pressure

Heat release of reaction :

Heat trdnsfer rate to a droplet

Droplet radius

Rate of droplet radius change

Droplet Sherwood number

Time

Gas temperature

Droplet tercpe}.ature

Rate of droplet temperature change

Gas velocity

Droplet velocity

Molecular weight of species K

Mass fraction of gas species 1 (fuel vapor)

Mass fract!on of fuel vapor at a drop’s su~fdce

Ie:lgth scale used in calculating subgrid scale t~rbulent

viscosity

Dirac delta function

Gas molecular heat conduction coefficient

Gas turbulent viscosity coefficient



Synbols

Table I (continue)

Definition

Subgricl scale turbulent viscosity

Turbulent viscosity due to constant diffusivity W.

Gas density

Density of gas species k

Liquid fuel density

Turbulent stress tensor

Reaction rate of reaction r



Fig. 1.

Fi3. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig, 6.

Fig, 7.

Figure Captions

Stratified charge engine cylinder with a chamfered bowl in the piston.

Computational cell !n an ALE mesh and the locations of some of the cell
variables.

Adaptive mesh strategies. Top: Subdividing a fixed
Moving the mesh.

Iritial CONCHAS computational mesh in the example ca”

Computational mesh (top) and spray parcel positions
fore TDC in the examp~e calculation.

mesh. Bottom:

culation.

bottom) at 22” be-

Contours of fuel vapor mdss fraction (top) and temperature (bottom) at
22a before TDC in the example calculation.

Contours of oxygen mass fraction (top) and equivalence ratio (bottom) at
22° before TDC in the exanmle calculation.
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