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AN INTRODUCTION TO MULTIDIMENSIONAL COMBUSTION
MODELING WITH THE CONCHAS-SPRAY COMPUTER PROGRAM

P. J. O'Rourke
Theoretical Division, Group T-3
University of California
Los Alamos National Laboratory
Los Alamos, NM 87545
ABSTRA"T
CONCHAS-SPRAY is a finite-difference computer code for the calculation of
two-dimensional chemically reacting fluid flows. In this paper we discuss four
prohlem areas that are encountered in multidimencional numerical combustion mod-
eling, and the numerical techniques used by CONCHAS-SPRAY to overcome these prob-
lems. Then the equations are given that are solved by the computer code, and
some results fron an example problem are discussed.
INTRODUCTION
In 1975, Group T-3 of Los Alamos National Laboratory was asked by the De-
partment of Energy to develon a multidimensional numerical model for the fluid
flow and combustion in an internal combustion engine cylinder. One fruition of

this effort ‘s the CONCHAS-SPRAY computer program.1

CONCHAS-SPRAY solves by
finite-difference techniques the unsteady equations for a multi-compcnent, chemi-
cally reacting mixture of ideal yases, together with those for an evaporating
liquid spray. The geometry is spatially two-dimensional and can be either planar
or axisymmetric. In the latter case, the equation for the azimuthal (swirl) ve-
locity component is solved. Although the program is written for internal combus-
tion engine applications, with 1ittle modification it can be used for a variety
of other combustion problems. For example, CONCHAS-SPRAY i{s currently being used
to simulate the combustion of hydrogen-air mixtures in large containment ves-

sels.2



This paper is intended as an introduction to the CONCHAS-SPRAY program. Ve
will describe four problem areas that are encountered in internal combustion en-
gine modeling. These are that one must calculate in complicated geometries, cal-
culate low Mach number flows with large density var ations, calculate the flane
speeds of thin flames, and calculate the dynamics of vaporizing liquid fuel
sprays. For eac.. of these areas, we will describe what the problem is and the
numerical techniques that have been used to overcome it. The last two techniques
have been developed directly as a resuit of our involvemeni in the internal com-
bustion engine program, and these will be described in more detail. All four
problems share the common characteristic that they are only problems in multidi-
mensioral combustion modeling. We will describe why these problems either are
not encountered or ere easily dealt with in one-dimensional geometries. After
describing the four problem areas, we will giv: the equations that are solved by
CONCHAS-SPRAY and present some results from an example solution.

Because we will discuss four problems does not mean that there are not many
more problem areas to be dealt with in internal combustion engine modeling. A
listing of some of these ouistanding problem areas follows.

1. Turbulence Modeling. The combustion in internal combustion engines oc-
curs in a turbulent fluid. How dctailed should our turbulence transport
model be, and what type of averaging should be used to obtain the turbu-
lence egquations?

2. Chemical Rate Equations. Due to computer time limitations, in a multi-
dimensional calculation one must use simplified, global chemical reac-
tions. How should one choose these global reactions and their rates?
The method of high activation energy asymptotics could provide an answer

to this difficult question.>



3. Turbulent Flame Structure. What is the structure of the turbulent
flames in engines? How should we calculate turbulent flames and their
speeds.

4., Wall Heat Loss. Wall heat loss is krown to have a significant effect on
engine performance.4 Do present wall-heat-loss models adequately pre-
dict this effect?

5. Thick Spray tffects. In engine sprays, a large class of effects, some-

times called “"thick spray" effects,5

are known to occur. Among these
are drop collisions, oscillations, and the break-up into drcplets of
ligaments that persist downstream of the atomizer. Only recentiy has a

method been dereloped to calculate drop co]lisions.6

and the remaining
effects are largely neglected in current <pray models.
For all of these problem areas we have adopted preliminary models that must
be tested and refined in careful comparisons with laboratory experiments.
Problem 1
Computing in Complicated geometries

7 that

Shown in Fig. 1 is one design for a stratified chdrge engine cylinder
is being considered by the General Motors Corporetion. The spray is injected
axisymmetrically at the cylinder head, and the cup in the piston and small clear-
ance at top-dead-center between piston and cylinder head, are designed to produce
a fluid flow that optimizes charge stratification and rapid combustion. The ge-
ometry is a challeno‘ng one for numerical modellers. In addition to the compii-
cated boundary shape, the bourdary is moving.

Until ten years ago, fluid dynamics calculations could not be routinely per-

formed in such a complicated geometry. O'der solution procedures are divided



into two classes: Eulerian methods and Lagrangian methods. In Eulerian methods
the computational mesh is fixed in the laboratory frame, and thus the computing
region has to have a fixed shape. Lagrangian metnods, in which the computational
mesh moves with the fluid, can only calcuiate flows with small fluid distortions,
because large fluid distortions produce large mesh distortions and give rise to
intolerable numerical errors. CONCHAS-SPRAY utilizes the Arbitrary-Lagrangian-

8 In this method, the computational mesh is composad of

Eulerian or ALE method.
arbitrary quadrilaterals that can move in any manner relative to the fluid. In
an engine calculation the mesh can move to follow the piston motion.

Figure 2 shows a possible computational cell Vij in an ALE mesh. In comput-
er memory ar2 kept the values of the thermodynamic variables, wh:ch are located
at the center of the cell, and the positions and velccities of the cell vertices.
In the course of a computational cycle, these quantities are updated in time by
the computational time step ét. The finite-difference equations that are used to
accomplish this can be viewed as approximations to the integral balance equations
for mass, momentum, and energy over the control volume Uij' Strict conservation
of mass and momentum is observed in tre finite -difference formulations. An in-
ternal enerqgy equation is solved by CONCHAS -SPRAY, and those terms that are in

conservative form in this equation are differenced conservatively.

Problem 2

Computing Low Mach Number Flows
with Large Density Variations
In most combustion probiems, the Mach numbers asscciated with the flow are
much smaller than one. When this {s true, although it {is changing in time one

can show that the pressuras is rearly uniform in space.9 Unlike the low Mach num-



her flows that we are most arcustomed to, in which the density is constant in
space, the density can vary by a factor of six or seven in space in combustion
problems.

Again, until about ten years ago, such flows could not be calculated with
existing numerical methods. Older methods are divided into two classeslo:
stream function and vorticity methods and compressible flow methods in which the

oo (Ju| + c)et . .
Courant condition ~1= < 1 has to be observed. Here u is the flow veloci-

X
ty and ¢ the adiabatic speed of sound. Stream function methods cannot be used
because no stream function exists in combustion problems. A stream functon y
satisfies u = Vv x y, but this implies that Vv « u = 0. V - u is the fractiona:
rate of change of volume of a fluid element, and in combustion problems V » u # 0
due tc chemical heat release and a heat flux vector whose divergence is locally
large. Traditional compressible flow methods, which require satisrying the
Courant condition, can be used in compustior problems, but when the Mach number
is small, they are extremely inefficient, When one observes the Courant condi-
tion, the computational time step is smcll enough to resolve the acoustic wave
motion in the combustion chamber. But these occur on a time scale tc that is
much smaller than time scales of interest tu, which are thosz associated with
convective motion. The ratio tc/tu is the Mach number. Thus an extremely large
number of time steps is needed to calculate for problem times of interest in low
Mach number flows.

CONCHAS-SPRAY utilizes the ICE (Implicit Continuous-Fluid Eulerian) meth-
od.11 which eliminates the need to observe the Courant condition on the computa-
tional time step. Although the ICE method was originally developed for Eulerian

rodes and referred to a specific set of finite-difference equations, the name ICE



is now gener¢lly applied to any fluid flow »1gorithm with the following two fea-
tures: the linear momentum equations are solved (rather than the vorticity equa-
tion(s)) and implicit finite differencing is used for these terms associated with
acoustic or pressure wave mctions. These terms are the pressure gradient terms
in the momentum equations anc the dilation (V - E) terms in the imass and energy
equations. Becauce of this implicit differencing, the same numerical algorithm
can be used to calculate efficiently flows with any Mach number. In the low Mach
number limit, the algorithm reduces to one that solves low Mach number equations,
in which the pressure is uniform.

Since the ICE method can be used to calculate flows of any Mach number, it
is natural to ask whether one might sacrifice some of this capability and save
additiona’ computer time by solving equations that are specifically formulated

9,12 for chewmically-

for low Mach number flows. Such formulations are available
reacting flows; however, in more than one space dimension, these low Mach wumber
equations are nearly as complicated as the general equatiorns for compressible
flows, and no computatioinal time can be saved by using them. Ir one space dimen-

13 that for most practical purposes one need not solve the

sion, it is well known
momentum equation in combustion problems. This is a significant simplification
that allows one to save much cumputer time. In more than one space dimension,
however, when one dispenses with the momentum eguations, essential information
has been lost.
Problem 3
Calculating the Speeds of Thin Flames

The problem is simply that laminar flames and some turbulent flames have

thicknesses that are smaller ihan the computational cell sizes that one can af-



ford to use in multidimensional -alculations. We will first describe briefly the
numerical methods that have been proposed for solving this problem, and then we

will give the method used in CONCHAS-SPRAY, which is an artificial flame thicken-
ing procedure.9

Thin flame calculation strategies can be divided into three classes: adap-
tive gridding, discontinuous flame modeling, and artificial flame thickening.
Adaptive grid strategies can, in turn, be placed in two categories. These are
illustrated in Fig. 3. In the first category, there are those strategies in
which the computational mesh is fixed, but some cells are subdivided tc provide
more resolution where gradients are larger. [In contrast, in the second category
the number of computational cells is fixed, but the cells move and become smaller
in regions of large gradients. Although there have been some notable successes
in particular problems with second category strategies.14 both strategies need
further development before they can be more universally and reliably applied to
multidimensional combustion modeling. We remark that in one-dimensional problems
secnnd category strategies are fairly easy to implement in CONCHAS-SPRAY.

A second flame resolution strategy is to treat the flame as a discontinuity
with a prescribed flame velocity relative to the fluid ahead of the discontinui-
ty. Numerical methods for convecting a material interfaces are highly devel-
oped.ls'16 The new element in flame modeling is that the interface moves rela-
tive to the fluid ahead of it. A method for accomplishing this, using Huyghens

principle, has been developed by Chorin.17

The flame speed can be prescribed us-
ing the result of amalytic solutions, experimental data, or subsidiary one-
dimensional calculations. This second flame resolution strategy is a viable al-

ternative to the method we prasently use.



The method we use to resolve thin flames is to artifically thicken the flame
to dimensions that are resolvable by the computational mesh.g’18 This is accomn-
plished without changing the flame speed. The method is easy to implement. One
simply multiplies the mass, momentum, and energy diffusivities by a factor 8, di-
vides the reacticn rates by B8, and uses these scaled values in the calculation.

B can be a function of space and time. The effect of this transformation
increase the computed flame thickness by a factor of 8. Thus, little computer
programming is required to implement the method, and flames are automatically
thickened whenever and wherever they occur in a calculation.

The spirit of the artificial flame thickening method is similar to that of
classical shock smearing.19 There is a big difference, however, between comput-
ing thickened shocks and thickened flames. In computing shocks, the correct
shock speed is obtained as long as one conserves mass, momentum, and energy in
the finite-difference equations and uses the correct boundary conditions. In
most applications, the detailed shock structure need not be resolved. In con-
trast, to calculate the correct flame speed, one must resolve the detailed flame
structure. Fortunately, it has beed our experience that for the simple flame
structures we have calculated, in which there is a one-step chemical reaction
taking fuel and oxygen to products, three or four cells are sufficient to resolve
the flame and obtain the correct vlame speed.

Problem 4
ruel Spray Modeling

To calculate the essential dynamics of a vaporizing fuel spray, one needs to

include the effects of a distribution of drop sizes, velocities, and tempera-

20

tures. Thus one must solve what is called®” the "spray equation:"

.g{. * 9 e(fy) + 0, (7E) + 3 () + wag (ffd) =0 . (1)



This is a stochastic equation for the probability distribution f of drop posi-
tions x, velocities v, radii r, and temperatures Td' F is the drop acceleration,
R is the rate of drop radius change, and %d is the rate of drop temperature
change. We have given here a simple form of the spray equation that expresses
conservation of drop numbers in volumes that move with the drop velocities in a
hyperspace, called "drop-space," whose coordinates are (5,.1, r, Td). In more
complicated forms of the equation, there are source terms on the right-hand-side
of (1) due to the turbulent transport of drops, collisions, or break-ups. The
basic problem of fuel spray modeling is that Eq. (1), in conjunction with the
gas-phase equations, is very difficult to solve. Three methods have been pro-
posed for numerically solving the coupled spray and gas-phase equatinns: direct
solution methods, moment equation methods, and parcel methods. We now dezcribe
tiie three methods and tell why we use a parcel method in CONCHAS-SPRAY.

In direct solution methods, one subdivides drop-space into computational
cells, in each of which a value of f is stored. The values of f are updated in
time by approximating (1) by finite-differences. The problem with direct solu-
tion methods is that computer storage requirements are excessive in multidimen-
sional calculations. In problems with two space dimensions, drop space 1s six
dimensional, and if one uses ten cells to resolve each coordirate direction in
drop space, then there will be a total of 106 computational cells. This much
storage is available on the largest of today's computers, but with the addition
of more dimensions to drop-space, such as a swirl velocity component as we have
in CONCHAS-SPRAY, or when more resolution is required, computer storage is ex-
ceded.

In moment equation methods, one reduces the number of independent variables

by integrating Eq. (1) over one or more coordinates of drop-space. Usudily (1)



is multiplied by functions of v, r, and Td and integrated over these same coordi-
nates, and usually only meass, momentum, and energy equations are used for the
spray.21 These moment equations contain terms which give the total exchange
rates of mass, momentum, and energy between the two phases.

The problem with moment equation methods is that these exchange rates are
difficult to evaluate accurately. In order to calculate the exchange rates, one
needs to know the distribution function f, and accurate approximations to f can-
not be constructed from the small number of moments of f that are known.

In CONChAS-SPRAY, we use a stochastic parcei method developed by Dukowicz.22
The spray is represented by computational parcels, each parcel being composed of
a number of drops of identiral size, velocity, and temperature. There is a stc-
chastic sampling of the assumed probability distribution of drop properties at
injection and of the distributions governing drop behavior at downstream loca-
tions. An additional feature of the method is that drop and gyas accelerations
are calculated by an implicit scheme that circumvents time-step limitations due
to the close-coupling of drop and gas velocities. The distribution function f is
obtained by ensemble-averaging over man, calculations in an unsteady problem or
oy time-averaging in a steady problem.

In practice, it is found that with less tnan cne thousand parcels, computa-
tional results are obtained that do not change when one uses different random
number sequences to generate the results. One reason for the economy of parcel
methads is that since parcels follow drop trajectories, the parcels move where
the drops move, automatically providing more resolution (i.e. more parcels) where

it is needed.



The CONCHAS-SPRAY Equations
In this section we give the equations solved by CONCHAS-SPRAY and briefly
describe some of the terms. The equations are given in vecior notation. The
spray equation has already been given, and we suppy here the forms used for the
rates of drops velocity, radius, and temperature change. The symbols are defind
in Table I.

Continuity Equation for Species K

apk (pk) .
3t * Tlou) = 0T ()] ¢ M DOy -y ey

- 8 11 f anRe, ar v dTy (2)
p=) 0

Kk

Momentum Equations

dpu
.a_g-_—+ Ve{puu) + Vp = Yeg + pg - I/ fpz[411r2Ri + -g. 1-rr3_fi] dr dv de
(3)
g=ultu+ (W))Tul-5urul
Internal Energy Equation
pk‘ .
.g.‘i + _V_-(p_l_.l.I) + pVeu = g:Vu + z.[K_V_T + oD z hkl<p—-)] + z w.q,
: 2nr 1 2
-fffTpz{4nrf‘h"(Td)+?(l-£) ] (4)
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Equations of State

= pk
P = AT L (W:)

(5)
(e

1 = 9 (F)rm
Transport Coefficients

u = “t + "o

Mo = P Vg where v_ = constant

= 1 2 2 r l;
D=5 (v + (w)) (6)

Pr = - ° constant

Chemical Rate Equations

Kinetic Reactions

PRAYH N bl
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Equilibrium Reactions

ey \ D -a
K k,r “k,r _
i) e 7

Rates of Drop Velocity, Size, and Temperature Change

£_=-%-B— lg_:_gd_ (u - x)CD +g

92 r
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A 1 1
R = Sh 8
szcpr 1 - Y; ( )

Fde, Ty = LTy )anrdR + q

Q= 2m AT - Td)Nu

The continuity equation for species k has convection, turbulent diffusion, and
chemical reaction terms. In addition, species l, which is the vapor phase of the
1iquid fuel, has a source term due “0 vaporization of the spray. This has the
form of a sum over all drops of the rate of mass loss of each drop. The liquid
density Py is assumed to be constant in time and space. The momentum equaticn
(3) has convection, pressure gradient, turbulent stress, and body force terms,
and a source term d.e tv momentum exchange with the spray. The latter has the
form of a sum over all drops of the rate of momentum loss of each drop. The tur-
bulent stress tensur is assumed to Le Newtonian in form.

An {nternal energy equation is solved by CONCHAS-SPRAY. "I" {s the specific

internal energy of the gas mixture relative to 2ero internal energy at absolute



zero. This equation has terms due to convection, pressure work, dissipation due
to the turbulent stress, turbulent heat flux, chemical neat release, and energy
exchange with the spray.

The equations of state are those for a mixture of ideal gases, and the spe-

23

cies internal energies are obtained from the JANNAF™~ thermochemical tables. The

viscosity coefficient u is the sum of contributions from a constant diffusivity
Yo and a sub-grid scale turbulent viscosity ut.z4

Chemical reactions are divided into two classes: kinetic reactions, whose
rates are explicitly prescribed, and equilib-ium reactions for which the rate of
change of the reaction progress variable &r is determined implicitly by an equi-
librium constraint. An Arrhenius law temperature dependence is used for the
rates of kinetic reactions.

A drag coefficient Cp correlation is used to determine the rate of change of
drop velocity F. The rate of drop radius change R is the product of 3 Snerwood
number Sh and the value R would have if the drop were vaporizing in spherically-
symmetric surroundings. Y; is the fuel vap~r mass fraction &t the drop's surface
and is found from the surface equilibrium approximation.13 The heat transfer to
each drop Q is determined from a Nusselt number Nu correlation. Finally, the
rate of drop temperature change id is determined from an energy equation for the
drop. [t is assumed that the drop temperature Td {s unitorm within each drop.
The precise correlations used for Cd' Sh, and Nu are given in Ref. 1.

A Computational Example

We now give a some of the results from a CONCHAS-SPRAY calculation of a typ-

fcal compression and power stroke for the stratified charge engine of Fig. 1. So

much informaticn {s available that to Jescribe all the results from such a calcu-

lation would require a paper in itself., Our intent here is only to indicate the



detailed nature of the iniormation obtainable from such a calculation, to show
the care that must be exercised in interpreting the results, and to emphasize the
preliminary nature of the numerical model.

Figure 4 shows the computational mesh at the beginning of the calculation.
The left boundary is the axis of symmetry; the top boundary is the cylinder head;
the right boundary is the cylinder wall; and the bottom boundary shows the out-
line of the piston with its chamfered bowl. The distance between the cylinder
head and top of the piston is 9.7 cm. Tne computational region is resolved with
20 cells in the radial direction and 32 cells in the axial direction. Some of
the cells in the lower right hand corner of the mesh do not appear in the plot.
These are obstacle cells that do not participate in the calculation.

The calculation was begun at a crank angle of 180° hefore top-dead-center
(TDC). Until 52° before TDC the gas in the cylinder was compressed by the upward
piston motion. Between 52° and 39° hefore TDC a liquid octane spray was injected
into and vaporized in the compressionally heated cylinder gases. At 27° before
TOC spark fgnition was simulated by depositing energy in one computational cell
near the cylinder head and symnetry axis, ard at TDC most of the fuel had been
burned. The calculation was terminated at 180° after TDC. The total problem
time was 37.5 ms, corresponding to an engine speed o’ 1600 rpm. The total compu-
tational time was 45 minutes on a CRAY [ computer,

The fuel in this calculation was consumed by the single-step irreversible

chemical reaction:

Ee-

r
2C8H18 + 2502 - 16C02 + 18”20

Subsequently, the local chemical equilibrium composition was calculated of a mix-

ture of COZ' H20. and their dissociation products.



At user-selected output intervals the computer program piotted the computa-
tional mesh, velocity vectors, spray parcel positions, and contour plots of sev-
eral flow quantities. Figures 5, 6, and 7 show some plots from the above calcu-
lation at 22° before TOC, when burning is still occurring. Figure 5 shows the
computational mesh and tne spray parcel plot; Fig. € gives plots of the tempera-
ture and fuel vapor mass fractions; in Fig. 7 are shown plots of the mass frac-
tion of diatomic oxygen (02) and the equivalence ratio ¢. (The equivalencec ratio
¢ is definad by ¢ = R/Rst' where R is the ratio of the molar concentration of
fuel vapor to that of 02 and Rst is the stoichiometric value of R.)

The plot of the computational mesh shows the manner in which the mesh has
been moved. Comparison with the plot of Fig. 4 shows that those cclls in the
pison cup have retained their original shape and have been simply translated up-
ward with Lhe piston velocity. Those cells above the top of the piston have re-
tained their original radial dimension but have been compressed uniformly in size
fn the axial direction. In addition, some rows of cells above the piston have
been deleted for economy.

The spray parcel plot of Fig. 5 shows that many unevaporated liquid drops

‘remain in the cylinder. Comparison with the temperature pint of Fig. 6 shows
that these drops reside in the cooler regions of the cylinder, and Fig. 5 shows
that some of these drops have impinged on the piston wall. Whe. this occurs, the
spray parcel positions are held fixed in the calculation, and the drops are evap-
orated using drop vaporization rates for the gas-phase conditions of the cell in
which they are located. If an appreciable amount of 1iquid were to impinge on
the wall or {f we were concernced with calculating trace amounts of unburned hy-
drocarbon gases, a more accurate mode! would have to be used for the vaporization

of a liguid film on a wall.



At first glance, the temperature contour plot of Fig. 6 seems to show a pre-
mixed flame front surrounding a hot kernel of gases near the location of igni-
tion. 1he situation is much more complicated, however, as is revealed by an ex-
amination of the fuel vapor, oxygen, and equivalence ratio plots. In the center
of the kernel of hot gases there is little or no oxygen. To the right of the
kernel there is oxygen and no fuel. Thus the temperature gradients to the right
of the hot kerne! are not indicative of a premirxed flame, but merely separate a
hot, fuel-rich region from a cool, oxygen-rich one. There is some diffusion
flame burning here.

At the bottom of the hot kernel, the temperature gradients are steeper. 1lhe
equivalence ratio plot shows that the mixture below the hot kernel is nearly
stoichiometric, ard the fuel concentration plot shows all the fuel being Jdepleted
in this region. The steep temperature gradients here are thus associated with
rapid, premixed burning.

The temperature gradients to the left of the hot kernel are also associated
with a premixed flame, but here the flame 1is propagating into a region whose
equivalence ratin is 4.5, Due to the low oxygen concentration here, chemical
reaction is slower, and the competition of the slow chemical reaction with turbu-
lent heat and mass diffusion results ir a slower, thicker flame than at the bot-
tom of the kernel. In addition as the flame on the left passes over the unburned
mixture, all the oxygen 1s consumed, leaving hot, fuel-laden gases.

It s, of course, physically unrealistic to have unburned octanec present in
a region with temperatures higher than 2000 K. In reality, when a premixed fiame
passes over a region of equivalence ratio ¢ > 1, all the fuel rcacts, and the

mixture behind the flame contains partially oxidized combustion nroducts that are



neerly in chemical equilibrium. The fault here lies with our chemical kinetics
model in which the fuel can only directly react tc form complete combustion prod-
ucts. We are currently looking at improveao chemical kinetics models that over-
come this difficulty.2>

Despite this and other kncwn difficulties with the model, it can predict in-
cylinder pressure histories with reasonable accuracy, as weil as the correct

26,27 Thus

trends in oressure change with changes in operating conditions.
CONCHAS-SPRAY is currently a useful design tool for automobile manufacturers and
research tool for many combustion problems.
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Table |

List of __mbols

Definition

Furward and backward stcichiometric coefficients of species

k in reaction r

Orders of *he forward and backward reactions r with respect

to species k

Droplet drag coefficient

Specific heat of the liquid fuel

Gas specific heat at constant pressure
Turbuient mass diffusion coefficient
Rate-of-strain tensor

Druplet distribution function

Droplet acceleration

Acccleration due to gravity

Enthelphy of species k

Heat of formation of species k at absolute zero
Liquid fuel entha]px

Internal energy

Identity tensor

Turbulent hecat transfer coeffient

Equilibrium constant for concentrations of equilibrium ve-

action r

Dimensionless coefficient in subgrid scale turbulc.ui vis-

cosity



Table I (continue)

Symbols Definition

Kf,r' Kb,r Forwerd and backward temperature dependencies of reaction r

L Latent heat of vaporization of the fuel

M, Droplet Nusselt number

P Gas static pressure

A Heat release of reaction -

Q Heat trdnsfer rate to a droglet

r Droplet radius

R Rate of droplet radius change

Sh Droplet Sherwood number

t Time

T Gas temperature

Td Droplet temperature

%d Rate of droplet temperature change

u Gas velocity

v Droplet velocity

Wy Molecular weight of species K

Y1 Mass fraction of gas spacies 1 (fuel vapor)

YI Mass fraction of fuel vapor at a drop's s tace

A length scale used in calculating subgrid scale turbulent
viscosity

§ Dirac delta function

A Gas molecular neat conduction coefficient

u Gas turbulent viscosity coefficient



Table I (continue)

Symbols Definition

My Subgrid scale turbulent viscosity

M, Turbulent viscosity due to constant diffusivity ‘0
[ Gas density

P Density of gas species k

Py Liquid fuel density

Turbulent stress tensor

Reaction rate of reaction r



Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Figure Captions
Stratified charge engine cylinder with a chamfered bowl in the piston.

Computational cell in an ALE mesh and the lorations of some of the cell
variables.

Adaptive mesh strategies. Top: Subdividing a fixed mesh. Bottom:
Moving the mesh.

Iritial CONCHAS computational mesh in the example calculation.

Computational mesh (top) and spray parcel positions (bottom) at 22° be-
fore TDC in the exampie calculation.

Contours of fuel vapor mass fraction (top) and temperature (bottom) at
22° before TDC in the example calculation.

Contours of oxygen mass fraction (top) and equivalence ratio (bottom) at
22° before TDC in the example calculation,
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