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We consider broken chiral SU{4) X SU (4) symmecry. From the observed 

mass spectrum of pseudoscalar charmed mesons, we are able to solve for the 

symmetry breaking parameters of the theory . We find that both vacuum 

anrl Hamiltonian breaking play an important role as far as charmed states 

are concerned. Purely from the masses of D and F mesons we deduce the 

current algebra mass ratio me ~ 5. This differs greatly from values 
ms 

obtained using linear or quadratic mass formulae. Considering n, n', and 

nc mixing we further obtain a good solution with me 
ms 

(cc) 
3.2 and (uu>" 5.67. 
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I. INTRODUCTION 

Recent observati~,Z 'ol charmed pseudoscalar mesons 
0 

D 

as well as Yl 
lc 

prompts us to reexamine the question ofhow the 

Chiral Su(4) X Su(4) Symmetry is broken
4
. c t "d f i i urren 1 eas o strong nteract ons 

based on Quantum Chromodynamics (QCD) and Unified Theories of Weak and 

Electromagnetic interactions suggest that chiral SU(4) x SU(4) symmetry is 

a Global symmetry of the Lagrangian associated with the flavor group. Further 

this symmetry is broken both by the vacuum and explicitly in the interaction 

Lagrangian by the quark mass terms which transform according to (4,4•-, 6) 

(4 * ,4) representation. Our knowledge of Quantum Chromodynamics is not yet 

at a stage which will allow us to calculate directly the true vacuum of the 

chiral group. Nevertheless, we can use current algebra techniques and the 

observed mass spectrum of the pseudoscalar mesons and their decay constants 

F TT, Fk, etc. to determine the properties of the vacuum as well as the mass 

ratios of the quarks. 

The 'charm' quark to 'strange' quark mass r a tio i s 

in principle simply calculated from the knowledge of the ratio of SU(4) 

breaking along the 15 direc tion t o that along the 8 direction. Thus i f 

Hamiltonian for symmetry breaking i s 

(1.1) 

2 

B5 then since (< ms '"'c 
5 

mu,md, 

TYlc. !::::..1. f,:; 
+ 

""'s 3J3. ts 3 

' 

( 1.2~ 
f,s ;i vary widely depending on 
ts 

whether we use f irs t order breaking f ormula to f it the masses or the ma s 3es 

However, the e stimates f or 

squared. Thus if linear mass f ormul a is employed we have 
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) 

and if quadratic mass for:nula
6 

is employed we find -= 2.1.f, 

These yield for the ratio the valu;es 9. 5 and 20. 7 respectively. 

Further, neither fit is satisfact~ry because they yield the 

formulae for the pseudosc.alar mesons, 

or 

M; - M~ 

(.b'15 q..Y2.) 

:: 

(1. 3) 

Thus we ueed a nore accurate treatment cf chiral breaking to yield 

more reliable estimate of 

Work based on chiral 

me 
rr>s 
SU(3) x E.TJ(3; breakinl had revealed tha: 

a) the lagrangian is approximately SU(2) x EU(2) invariant leading t~ • 

small number for the ratioS ~ , ""cl !!nd 
' m!> ms > 

b) the vacuum is to a good afpro:>imati= a SU (3) singlet in:plying 

approximate equality of decay constants as wel2. as -:he 

(mass) 2 octet broken form~la for the pseudoscalar ~osons. An extremel~ g~od 

solutio:18 f or all the parameters was obtained by so•lving the current algebra 

equations which included a general mixlng ••ith a single hypobesis 

on equality of renormalization constants .fi;. _ < o I ;_ 'i. ~ ~ 1"5 q, I F~) 

where P;. denotes the ~- th pseudoscalar meson. :n this paper we wisr to 

find a consistent set of s~lutions to th2 current algebra equations using 

similar technique in the case of SU(4) x SU(4) symmetry. We have founc, 
; 

:lowev~;r, that the requirement that ./2;. are SU(4) symmetric is CQ!Dp:etely 

. at. v~iance with the mass 3pectrum of the ps;eudoscalar mesons. We shall show ...... 
an assumption leads to an extremel:< smal: D-F mass splitting i f 

constants are assumed equal, an3 i: the : atter requirement is given 

up, a realistic valLe for l="k : 1. 28 leads to 

which is quite una.:ceptable. In the present work, we use the value of 

and as inputs and find that z~ 's have large SU(4) breaking. 

Purely from SU(3) synmetry of and the value of D and F meson masses, 

we establish that th;e ratio "'c. < 5 

With further assumptions we are able to solve the coupled set of 

equations that charac·terize the model. We allow for a general mixing for 

and A surprise is that the vacuum is not a SU(4) singlet, 

although it is still to a good approximation SU(3) symmetric. 

We have d;etermined the ratios of quark masses and the decay 

constants. These are 

and the decay constants are, in ur.its of 

FK = 1.28, F0 = 0.9/4, FF = 1.056 

We could have started with the group U(4) x U(4) instead of 

SU(4) x SU(4). 9 
This Yould lead to the U(l) problem discussed by \Veinberg. 

(1. 4) 

(1.5) 

As noted by 't Ho oft
1? this problem can be circumvented in QC!l where presence of 

instantons leads to an anomaly in t~e divergence of 

We have added an extra term to the divergence of the current to 

take into account this ;effect. The :1et result is ·that it is possible to 

consider SU(4) x SU(4) algeb:-a itself and solve for the unknown parameters. No 

constraint is imposed 0:1 this from the UA(•) sector. On the other hand, 

4 

from the knowledge of the sol ution we can say something about the matrix elements 

of the U A (1) breaking term . 

In Section :I, we set up the basic equations of the model. The 

section also serves to define our notations. In Section III, we show how simple 

assumptions on equality of 2:;. give unacceptable values and in Section IV and V 

:. 
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we present our technique for solving the set of equations. A discussion of our 

results is contained in Section Vl. 

II. THE FUND~.NENTAL EQUATIONS 

The strong interacticn·Hamiltonian density is assumed to be of the 

form (2.1) 

where ll
0 

is invariant under chir;;l SU(4) x SU(4) symmetry, vhile the symmetry 

breaking terms U~ transform accc-rding ·to (4 • ,4) ~ (4, 4 • ) representation. 

In terms of the quark model, the£e symrr·etry breaking terms are merely the mass 

terms of the quarks. We shall neglect isospin breaking effects due to lack of 

5 

degeneracy of the mass of ~ and ~ quarks as well as conveational electromagnetic 

corrections, in this ,paper. The explicit relation between quark masses and 

Eo ; Ea and E,:; are eaEily found to be 

............ :; "'cl = -(~ ... ~ + ~) (2.2a) .·:.. ./.) ./{, 

"".s = -(~}. 2. Ea + ~) J) v6 (2.2b) 

me.. :; -l~ 3 ~) 
"" (2.2c) 

Kc·te that if m .... -1 ""d . then (2.2a) ;hould have average 

mass of light quarks, on t~e left hand side. 

The generators of su:4) x SU(4) can be expresse1 in terms of 

and , the vector and axial generators, 

which are def~ned as usual by 

F~(t) (2.3) 

Fs" (t) = . 5 cl3" A..." l• )" 
tro;. ':. 

The scalar densities u.~ (: ii >.._ q,) and pseudosca.lar densities 

satisfy the equal time commutation rules. 

[F~ (!:) • u.Jc..")] ::: 10K u-"' (.•) 
v0 ·.;.t 

[ F'• (t) . II) (•)] = ..,o._t 
· .. 

.Ljl< 
VK (x) 

[ F;tt.). "'-'(•lJ = ·-i. d.~~o;. VK(~) 
x •• t (2. 4) 

v\x) J i. <1~ .. "' ( F~ (!:) , ~ 
u., (x) 

k. ~ t 

The current divergences are given by 

?J,.._V;. 
r- ::: -i.[F~{.<), ll{.')J •• ~t ·(2.5 a) 

(2.5b) 

From Equations (2.1) and (2.5) these are found to be 

(2 .6a) 

"' _..E.~ clt.-_:k "' "' .:.,. d.,,r;l< v 
;( 

~ .. y 
/'A; :; "-~ d.~<.O<. v • . 

(2 .6 b) 

where v ~ 
G\.· 'i= ,_..-vw AQ = J:t'-.,; is the anomaly in 

1{, Ti 2 I 
current 

for QCD and is a SU(4) singlet operator. 

We take matrix elements of Eq. (2.7) between vacuum and single 

pseudoscalar or sc~lar meson states. Following conventional definitions are 

employed 

{ol 11;·.,.·" 1 n) 

(oiA ... ~.•.~Ii() 
r 

6 
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<~ 1 v' <t,ll IS '­t' IC. 1'2. I 

(2. 7) 

Our currents are so renormalized that Fn~92 Me\. States s
0 

and SF are 

membe~s. of the scalar 15-plet. 

,,, l4 
I J:) Jz~ '(ol \t -

<ol u 
. , 

Jz~ , 11·1·1t-) ::. 

(''l >'1;: 

<ol u."·~·b,71 Cf - ../zp 

(2.8) 

We then find for pseudoscalar mesons 

'l. 
Ec tg E,;; 

M.n l=n - .. - ~ 

vl..n Jz. v) J& 

7 8 

'l. E:;;. ~.s 
1"\1<. F"- ~ -1-

:=. J"2 '2../~ "" vz. .... 
~~I'D fo + fr. ~ - 7z. .Jzo 2.-1) "" 
M~~F :. ~c "-t; €,s 

;/Zr. 11'2. If) Vb 

1'1 l. I= i = c~- ~ + E,s) Jz.jS -+ ~- Jz's + €& Jz.o 
1; ,. >12.. ,P. ·Jfo '')-. o/b ,, 7i.. 1; 

~ 

"-1 '1. I= ... (~ -z ~:, 5 J Jz.'s. T ~ J7-o . + ~"' Jzs 
I '} "l· - Jt. I· 1/2. 'l' ~ 1;· 

= ~ Jz., ... f.'~ v'z~; + ~;2.s 
v2.. 1• v._ 1 v 

(2. 9) 

S.imila:-ly, Ye find for scalar. mesons 

'1. 

"> t-1c FIC ::. Ell 
'1/z.~ 2 

"l. 

~ .~ """~ 
e..~ 

:: .. 
-./z,o 2,) '1.0 

l 
~j:.SF ~ 

£;,.., 
::. ~ 2 

v'z.sf- '') •it. (2.10) 

The ab·~ve equations a-:-e exe;ct cor.seq·.>ences of the model. Further 

equations ace obtained by rlnglO! particle saturation whi·ch becomes exact in the, 

N~mbu-Go~dstone limit, i.e., Ei ~ 0. Th=n the only breaking of symmetry 

is in the vacuum, resultin~ in nassless b=sons that saturate the commutation 

rules. ~he corrections to tbes~ results are expected to be of order £ and 

except for charmed states, we m::ght expect these to be quite small. Here 

...-e assume the validity of all tine relatior.s and appeal to future experimencs 

as a way of establishing ttem. Defin~ng (oluilo) = ci. we have for 
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r 0 JZ., ::: 
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Vi 2../) -/6 

f:F jz.f'. :: s.. - ~~ S.s 
7z. ··.:> ·J(;, 

r~; Jz"' !=£ j ~ '0 J '1. ~ ~. $,, ... ;- F z
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t-')' l..,, -
1/2 1 1 1'- ' ../) ...;6 

F s i""'< F; .. h\ f$ J " ~s 
7 -1 ~ Fl'- L 1' ::: ''2 

F.., .Jz.'~- +- r: b. Jz ·~- t" ~=-'" JZ:.5 ·- ~ 
'1 I I' T ft.- 1<- •ib 

F·,s 'zc 15 J 0 f:" .s Jzc S,s 
+ F.,r zT ·-

1/2 "'l'' '] f<- , ... 

r·~- v'z.t -1- F' 5 .jzs ~ 
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T T 1 I 1c. {t ;,./lc 

F·S iz•S + F's jz's. + F'5 Jz'o; ~ - 2 
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1 ~ '1 1' "l' ft. /t.. 7z. v& (2 .11) 

Similar equations for scalar bosons can also be written. However, 

pole saturation can not be justified for these because iL the chiral limit 

the nasses ~f scalar bosons diverge. For the sake of completeness, we only 
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It is-also possible to derive relations by considering commutators of 

generators with the divergences of currents, and then taking their vacuum 

expectation values. These relations are also obtained from Eqn8. (2.9) and 
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The basic problem we address to ourselves is to solve these equations 

with reasonable assumptions. The result will be to determine symmetry 

breaking parameters, _i.e., £8/£0 , £15!£0 , and o8/o0 , o15to0 as well as 

decay constants Fi's. In the next section we examine some simple but 

10 

experimentally inadmissible solutions and then in Section IV and V we make only 

the most olausible assumotions to solve these eauations. 
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III. SIMPLE SOLUTIONS AND PROBLEMS 

The set of ,equations obtained in Section II cle~rly ~nvolve too many 

unknown parameters to obtain a complete solution. In tt.is sec·tion we snall 

make some simplifying assumptions to illustrate che difficulty in obtaining 

physically meaningful solutions. The simplest assumpticn is the generalization 

of Gell-Mann, Oakes and Rennel solution. to this enlargec group· .. The assumption 

is that the vacuum is. a SU(4) singlet, i.e. 

(3.1) 

and further that SU(4) symmetry is g3od for llr's i.e. ~ Zrr = ZK = Z0 = ZF 

z8 = z15 . We also allow the possibility of n·nc mixing becaus..a u8· in the 

Hamiltonian mixes the 8 and the 15 components of the 15 ~epresentation. 

We-shall, however, following G - 0 -· R, neglect ,any singlet ('n') mixing. Thus 

(3.2) 

A consistent set of solutions is then obtained t~ all the equations 

in Section II. The mass sum-rules are 

'l M'l .. 2. 

M~ 0 = 14._ M., 

2. 2. 2. 2 s.:e) 4 M .. M" 3 ( M 4 C,o; e + M
1 1 < 

(M~-1'1:)2;2 = 2 . , ) s· (M"lc:.- M') ,_, 28 

'2. '2. '2. '2. '2- 2 c 2 ) 
C,Mo + M.:. 41"\fl -;: b ( M1 S,... e + 1"1")(.. o; 9 

(3.3) 

12 

These are 4 equations i~volving seven variables, 6 masses and 1 mixing 

angle. .\ general feature of th~se equations is that 'because of large nc 

nass (-2.6 GeV) we have 

M "le 

(3.4) 

':he e:<perimental value of ~ is, however, much lower, 1862 MeV''! 

~nile ~ - ~ is closer to 180 mev~··~he ;ource of the problem can be traced 

t<• (mass: 2 sum rules that emerge: with our .simplifying assumptions, while the 

heavier nasses are fit better w:.th a linen- mass formula. Thus, 

(3. 5) 

I 
lnclusion of n in our J:>ixing schi!llle does not change the basic 

situatior .. The matrix is tllen a 3X3 orthogonal 

matri>:, ~nd Eq. (2.11) yields the solution (remembering o8 

= 
(.:=a,'il "•s) · 

(3 .6) 

!'ow solving the Eq. (2. S.) is equi'!alent to the diagonalization of the 

3X3 mass matrix. We identify the physical states as 
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\"'}/ = z:''• [ Jz~1 IP0 ) + jz; IP!) · .. jz':, IP, 5 )] 
M'l = <P; I HI lj) 

I')') z;.'r,_ ["Jz.•
1 

IP. ~ • jz.g1' IPa) ~ jz.';. jP,s)] = ( I+~ ~ E'~ 
;/2. V;z_ \12. 

~~ 

t• ~c -~ ~ ~ E~ 

\ 
1/2 

"iiz. "> ""' ~ 

E:os ~ Ec:. -l~ 
vz. Vb 'Vz >16 

(3.9b) 
(3. 7) and 

where IP_.) are SU(4) symmetric un-mixed states. Since operator V is a Jz. = jzo /zs jz's 
1 1 1 

SU(4) singlet, it is reasonable to assume that matrix elements of Y in 

lowest order perturbation theory, are jzof' Jz;. jz'l, 

·. (3.8) 

jz~l'- /zs JZ's 
1<- 1<-

. ? 

••here ~- is an arbitrary constant. 

Equation (2.9) can be -..-ritten as a matrix equatior. 
(3. 9c) 

tvl"l Jz /2 
2. 

M 
Eq. (3.9b) is then written as 

., { "l. 

\ where M = M') 0 0 

l.. 

\ 
0 M')' 0 

2. ) 0 0 M1< 

Jz. ( 2. 2.) 
2 l . l 

'l •l "J. l.. .!_.., ( Mk•2.Mn • )"'o) 
["1 ;: r + i ("1o- ~"1 .... ) -- "1"'- Mn 

J) 2.J) 

--Jz.( l .,_) 1 ( 2 l.) J. . 2 'l.) 
.. .!: ("'._·Mn 

-- """' ··Mn } 41"1"- '"'n ) .J? 

is a diagonc:l matrix. · 

(3. 9a) 
( 2. 2 "L .Jz. . 'l "-) I t 2 2. 2 

'-. •'1 .~1M -Ji"\0 ) ·--(M~:-··1'1n - 'lMo•"',_-4-1'1-) 
2.v) " r. 7 

(. ,, 

(3.9d) 
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This matrix is easily diagonalized as a function cf Ill. 

Using Mn = 135 MeV, ~ = 496 MeV and ~ = 1862 MeV NE however 

find 
2 - I ' 

that .!!5!. value of 1J give masses of 1'1 n' 3 d "J. -h --- I' , · n t - at a~e close to the 

experimental values· All results heing expressed in He1, our results c:re: 

jJ 

1909.2 

1653.4 

954.6 

M 
n 

549 

543 

493 

M M 
nc n 

2879 1569 

2802 1413 

2677' 953 

Further, we still have ~ - MD= 60 MeV, which is far £rom the 

experimental value 180 MeV. .Thus, we are forced t: gi"" up our assumption 

of vacuum being a SU(4) singlet. w e next attempt a solJtion ~hat admits 

nonvanishing o8 and o
15 

though still preserve the EIJ(4:t 

The I"Z mixing matrix in Eqn.(3.9c) is taken as 

sym1112try of Z 's. 

(3.10) 

~ computer. This The set of Eqns. (2.9, 2.1_1) can now be solved nunericall7_ on ~ 

approach, however, leads to a problem of mass r~ver;;al, i.e. 1-D comes out 

greater than ~- The source of the problem can be s~en easily. From Eqns. 

(2.9) and (2.11) we have since Z's are equal 

15 
.. 16 

I=" - ~0 

(3.11) 

:S.imolif!'itlJ!; ue obtain 

(3.12) 

~e then see that for FK ~ 1.28. the ~ieht side is neeative orovided "n has 

·the same sien as FK. This is exoected f·rom SU(4) svmmetrv. and also found 

·to be true in the numerical so:.ution. 

We are forced 
1
thus

1
to ~bandor. th~ assumotion of eoualitv of /:f's 

Nevertheless, from SU(3) X SU(:-) soll:tio:s we know that :the equality for rz 
among SU(3) members is a g-:>od ~ssumption. Thus we can retain the restri!:tive 

a!lsumption ./2,; =- ./z.,._ -= ./Z. i and Jzo" Jz. . The simplest assumption to 

rrake nov is that the vacuum is a SU(q) sUoglet, i.e. o8 = o15 = 0. We can 

assume that I"Z are 5U(4) broJ,.en alcng ·:he 15 direction, i.e. 

(3.13) 

where i~) are pure SU(4) states. 'Ihe states, ~ ;1'· 'lc. are taken as 

linear combinations of IP0 ) , If's) and lf',s) The Eqns. (2.9) and 

(2.11) can now be solved on a computer, and we again find no acceptable 

solutioc.. We thus are forced to coneide= the very general case of symmetry 

breaking in ,/2: 's as well <:s jn the vacuum. In the next section we shall 

see the restriction that emerges fram pu=ely D and F masses on the nature of 
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symmetry breaking. 

IV. CONTBTRA!NTS FROM D AND F MESON MASSES 

In this section we obtain powerful con~traints on the 'solution to 

Eqns. (2.9) and (2.11) ~hat arise purely from our knowledge of D and F 

meson masses and the weak assumptions that the,wave functicn renormalization 

constants·, {z are SU(3) symmetric. The latter is verified to a good extent 

from previous work on SU(3) X St:(3) breaking. Consider the subset of Eqns.(2.9) 

and (2 .11) wtrlch arise from lT, II., D, and F meson pole saturation. We set 

~ = rz;. and ~ = rz;. . 
We prefer to write these equations in terms of the masses of quarks and 

quark expection values. Relations between Ei and masses are given in Eqr.s. (2.2) 

and the vacuum expectation values oi are related to(qq) by 

.:1 M;-F-it = ,..,..,...., .. 
vzit 

....... ci. = 2'W'I"" 

'2. 
2M" Foc ·- ~+ 'Y'fls 

.Jzn 

'2-MJ-Fo = Tl"'.._ + '"'c. 
.JZ-o 

2 M~FF ~ + ,..,..,(. -VZ 0 

Fn.JZ.n = < ii,"' )' + <l~) .. = 2. < U.u-) 

Fl<. Jzrt =- <U.u,..) + (:Ss) 

(4: 1) 

We assume the masses of mesons ~=135 MeV, ~ = 496 MeV, ~ = 1862 MeV, 

~ = 2039.5 MeV and the ratio FK/FTT = L23. The following relations can now 

be easily derived. 

M~ 
:: 

1'1\; 

= 

l ""c.. ·] L 
<C:.c.) 

+ 
I 1 + <.C..u..) "'.s --···-------

l me.. + ::1 [ (C:c) + <(~S) J 
"".!> <V..o-) <. v..u-) 

2 r ... - 1 

~="n 

- I 

\.Sf. 

(4.2) 

18 
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Thus to a good approximation 

L "'c. ~ I 1 l <.Z..<.) j +• 
""'2. ,~ < U.c..) 

F I. 2.. = ~ 

W\~ """ L 
< C.c..) .;- I.Sb} 

...... s <..:Lv..) 

(4. 3) 

Note this relation is insensitive to assumed equality Jf mu and ~d' 

We plot the ratio rnclrn.s as a function (c.:> I (iitn) in Fig. 1. Since 

(ss') I (iiu) is positive we expect (cc) I (_uu) to be p·~sitive and large, 

since the symmetry breaking arises from large me. As<: cc) !(uu)-+ oG we 

observe m.clin.s -+ 5. Thus for all physically meaningful valueE' of 

<cc) l(uu)we deduce the condition 

< s 

(4. 4) 

This coP.clusion is very different from the result that follows fr·:>m the 

quadratic mass formula 6that yields m I m = 20. 7, or lir.ear na5 s. formula which 
c s 0 

gives ~ciNs = g. 5. Some support for a small value for ~clm8 =omes·from 

consideration of renormalization gr·:>up in QCD vhere Ge=gi .o.n-1 Politze~~ave 

deduced the value m/ms ==4. We can make further progress onl:J after an 

estimate of (cc)l(uu) or equivalently the ratic o
15

1o
0

. 

A model for vacuum breaking which assumes ~ linear relat~on 

(4.5) 

19 

would vield 

( 
(ss) _ J 
·-- I 
<::A.v..) 

:. (, "·)'"'<-\ .- \.O.::>fo -
......,.!> 

(4.6) 

The soL1tion to Eqns.(4.3) ami (4.6) lead tomclm
5

==2.4 and (cc)l0u)= 2.3. 

However, this value fer mc!"'.sseems ra~hez: low and linear breaking can not be 

justifi~d. In the next secticn we shall consider the remaining equations 

involving n,n' •'\ mixing and solve fe-r (c;c)l<,.uu>. Our conclusion is that 

(cc)l(uu) 2. 5.6. 

This leads to 

(4. 7) 

'V. GENERAL SOLUTION 

In this section we obtain phenon-enolJgical solution of the Eqns. (2. 9) 

I 
and (2 .11) by conside:-ing ::he equati=s ~nvolving n, n .~nd nc mixing in . 

addition. to constraints ol>~ained in the :.ast section. 

Reviewing, we find that the equao::ion.3 resulting from considerations 

.~f 11, K, D, 'and F mesons have yielded a considerable amount of information 

'!hey involve 6 equations ''~th 9 unkncr.rns and we obtain values of the 6 

symmetry breakir,g parameters, e:
0

, e:S, e:1~, o
0

, o
8

, and o:.
5 

and the decay 

eonstants F
0 

and FF if we know one un~no~~ which can be chosen to be 

The value of K in terms o= can be written as, 

20 
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quadratic mass formula 6that yields m I m = 20. 7, or lir.ear na5 s. formula which 
c s 0 

gives ~ciNs = g. 5. Some support for a small value for ~clm8 =omes·from 

consideration of renormalization gr·:>up in QCD vhere Ge=gi .o.n-1 Politze~~ave 

deduced the value m/ms ==4. We can make further progress onl:J after an 

estimate of (cc)l(uu) or equivalently the ratic o
15

1o
0

. 

A model for vacuum breaking which assumes ~ linear relat~on 

(4.5) 
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would vield 

( 
(ss) _ J 
·-- I 
<::A.v..) 

:. (, "·)'"'<-\ .- \.O.::>fo -
......,.!> 

(4.6) 

The soL1tion to Eqns.(4.3) ami (4.6) lead tomclm
5

==2.4 and (cc)l0u)= 2.3. 

However, this value fer mc!"'.sseems ra~hez: low and linear breaking can not be 

justifi~d. In the next secticn we shall consider the remaining equations 

involving n,n' •'\ mixing and solve fe-r (c;c)l<,.uu>. Our conclusion is that 

(cc)l(uu) 2. 5.6. 

This leads to 

(4. 7) 

'V. GENERAL SOLUTION 

In this section we obtain phenon-enolJgical solution of the Eqns. (2. 9) 

I 
and (2 .11) by conside:-ing ::he equati=s ~nvolving n, n .~nd nc mixing in . 

addition. to constraints ol>~ained in the :.ast section. 

Reviewing, we find that the equao::ion.3 resulting from considerations 

.~f 11, K, D, 'and F mesons have yielded a considerable amount of information 

'!hey involve 6 equations ''~th 9 unkncr.rns and we obtain values of the 6 

symmetry breakir,g parameters, e:
0

, e:S, e:1~, o
0

, o
8

, and o:.
5 

and the decay 

eonstants F
0 

and FF if we know one un~no~~ which can be chosen to be 

The value of K in terms o= can be written as, 
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::: 

= 

(5.1) 

where we eKpect K to be large .and positive number. 

We now tutn to the n-midng Ec~1s. (2.9) and (2.11) and obtain 

solutions as a function of K. We shall see that not all values of K ~~e 

allowed. 

Consicer Fqn (2.9). We ~an eliminate F's which are involved 

linearly in favour of .TZ•s. It is useful here to defin.;, new variables 

.o ~ 
0 

x, =- ~ + +- 5 
2.. M;, M~ 

M') 1c.. 

2~ 
g s 

1(2 .: -~ + =-')· ~ ~ 
M2. 2. \Vj "2.. 

'1 M.,l' l 
z.'5 . tS 

IS" z. ~(. z. .-:I' 
") .· .-'12- 1- ... 

2- 1'1"2.. 
M'"\ MY]' 1<· 

·~'6 --~-

\ .: ~~I ~ 

Jz.oj'~~ 

M-1 •l. 

1'11' 

21 

"s ::: 
-.s­Jzo Z. 
--~ 

M.,_ 
1 

... 

f.~ 
1/2,1;~~ 

2-
M-,1' 

-~ 

Jz. ·~· _:)_ ,_ 
""1' 

r<>--=£'s 
+--
-~~~ 

1"1 <-. 
')c. 

___.-;: iz.$ 7tS 

... ..;_'1~(. 
"'2.-
\ '1' 

The new equations which take the place of n-mixing equations in 

Eq. (2.11) are then written in a matrix form, as: 

0 

0 
0 

0 0 

0 0 

0 
a· 

0 0 

0 0 
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(5.2) 

! ~c ~1<; '- -2-
i t/2. 1/1:, 
L 

(50 3) 

An examination of £-matrix reveals t~at the determinant of the matrix 

is _zero, and actually only 5 of the 6 equations are linearly independent. 

So, it is possible to find the value of the 5 of the 6 x's as a function 
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of one of them (chosen as ~) and o 'a, ~hich are l<nmm for· any given value 

of K. 

Now, since, 

the bounds on x:! are known to be: 

Further, ~ must be close to 

an octet. 

1 

' lc.. ). 

_,_ 
M)... 

'1 

~ because n is known to be nearly 
n 

Once the x's are known we have 6 equatioLs [E~. (5.2)] ::or the 

9 Z' s. There is one constraint that L z.& ~ I So "e need to 
'l; ')' 

(5.4) 

(5. 5) 

postulate 2 more reasonable constraints to solve for the ind~vidual Z's. 

Although there exists a lot of choices to select two such constraints, 

.we, here, investigate the one that seems the most reasonable. We demand that 

n and n' do not contain any charm quarks. Since cc .c. <'(, ()...,- J) >.,,)if,· , 
this requirement leads to 

(o\1/0 - V) v, 5 \vj) ;. 0 C"t .Jzo 
"') 

0. 
j •S 

J~·r z. .,1 

o....J. <o \V0 - J) v;~; \"'(/ ::..0 Cf( .Jz.;. =- . Jz.', 
v) Y 

(5.6) 

23 

K = 

Then the Z's an~ from th~m the F's are obtained as functions of 

015 

lie 
8 

and x • 
2 

Th~ so:utio~s are found numerically by choosing.~articular. 

1 
valt.:es .of K and lett:Lng :

2 
vary near ~· It was found that the set of 

equaticns yield consistent ph)'Sical solutions only for a very narrow 

ran~ of r.
2

• Besides, the solutions. do ~ot vary much in this range. 

This practically mates the whole set of solutions depend only on the 

value of F.. The least vslue olf K for wtich solutions vere found is 

arolL:ld 6. We present. a !able (Table I) to shoW the variation of the 

solutio:ts as a functfon cf K. K = 6 :lm!':.ies a large Sll(4) vacuum breaking 

bi!) '=' S.S S
9 

) CO"IlJlared to ·the almost symmetric vacuum found 

in b~oken chiral SU(~l X SU(3) models. 

Al:hough we can not ..Oeternine the ve.lue of K from these equations, 

·we feel that K = 6..-7 repcesen::s a reasoc.able solution. Larger values of 

X weald mean extremely large SU(4) breaking in the vacuum which would not 

be reasona'ole in view c.f :he ve1lidity of approximate SU(4) classification 

of states. We !List below·tha v2.rious synmetry breaking parameters, as 

well as th .. decay co03tan-:s ths.t emet:.ge ::rom our solution. (Complete 

solutior. can be found in Appeni:ix A) 

k.::::f, b.s 8.~ 
"l'Yl<-

~ 3·2. ::: 
c '\'Y15-c-z. 

<Ec) z 5.l.7 
<s::.) 

I Sf. '""~· "" ))S ~ 

<::<."'-) <:U.u-) m.._. 

j:D o.c74 F-r ,.056 
j:,K 

~ \.2% 0::: -
'Fn rro Fn 

/ 
.-' 
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l-Ie notice that although there is large SU(4) breaking beth in the 

Hamiltoniaa and in the vacuum, F's reta:i;n their approxirr.ate SU(4) symmetry. 

This predi·~tion can be tested experimentally by direct rreasurement of F0 and 

From ~ur solutions we can also obtain the expectation value of the 

operator v between vacuum and n. n' or nc states. 

find, in (:;ev) 3 

_ Q. '=:. 1 ell 

:::. 0. 0014 

From Eqn. (2. 9) we 

Since these are expectation valuez of SU(4) singlet operator 

which arises from QCD effect~, it may be possible to verify them from 

direct calculation in the futut·e. Here we observe that the contribution 

from n and n are small beCaLse these states are not predominately 
c 

singlets, while n' is large,as expected. 

VI. RESULTS 

We have found a good phenomenolop.;ical solution for the ~roken chiral 

SU(4) X SU(4') model that ince>rporates the masses of the cha:rmed pseudoscalar 

mesons D and F and nc exactly. The values for the symmetry breaking 

parame~ers reveal that·the v&cuum is not a SU(4) single• and a large 

value for ·the ratio of the v<:ocuum ·expectations of the scalar dens'ities, 

u15 to u
8 

was observed. Further, the renormalization constants lzi's for 

25 

the pseudoscalar meson wave functions are found not to be SU(4) symmetric 

although the SU(3) symmetry is pre.served. 

From the observed D and F meson masses we reached a strong ~onstraint 

on the mass ratio of the 'current' quarks me ( 5. 
ms 

With two more 

plausible assumptions, namely that n·and n1 
do not contain any charm 

quarks, we obtain 1\1<.. 2, ).2 
IV\~ . 

This value of :C. comes very close 
s 

to the value Georgi and Politze~1found 

from renormalization group consideration in QCD. This value differs sharply 

from the linea~ or quadratic mass fitting for SU(4) multiplets, both of 

which give much larger values for this ratio. 
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Table I 

6 ITo ms nc ·~ <cc) K = 15 Ffj/FTT F /F 
/268 F TT 

{ziT 
~ ns (uu> (uu) 

p 0.430 0.540 2.545 1.884 1.186 
1 0.541 0.644 2. 711 2.233 1.933 
2 0.642 0.793 2 C67 2.508 2.679 
3 0.734 0.827 3.015 2.130 3.~28 

.4 0.819· 0.908 3.157 2.914 4.173 
5 o.S99 0.984 3.292 3.058 4.919 
6 0.974 1.056 3.421 33.5 3.B9 :..56 5.656 
7 1.045 1.124 3.547 3.311 6.413 
8 1.113 1.189 3.667 3 •. ao 7.159 
9 1.177 1.251 3.784 '3.496 . 7.906 

10 '1.238 1.310 3.a9a 3.572 8.653 
11 1.297 1.367 4.008 3.640 9.399 
12 1. 354 1.422 . 4.115 3.701 :10.146 

·i 

28 

APPEND:X A 

In 3ectic·n IV and V w.e hav~ discussed haw the solution to Eqns. '(2.9) and (2.11) 

i.s obtahed. Our inpc.te were t·~e masses .UTT =135 MeV, MK =496 MeV, ~ =1. a62 GeV, 

1\- = 2.0395 GeV, Mn= 54~ l~eV, ~11 = 958 MeV, "\,c = 2.83 GeV; the decay 

eonstant; of rr and K meeons in .mits of ET, Frr= 1, FK = 1.28. Here we. list 

the complete set of parameters Eor ou~ sc:.ution with K ,::: ~ "' 
~ 

= 6 

s
0 

= so.5:: Ea = -1a.8o E15 = -58.47 

50 = 3. 26:. 08 = -0.3233 615 = -2.4743 

(as) = 1.56 <c:) = 5.67 
(uu> 0> 

ms = 33.5 me = 3.2 
mu liS 

FK = 1. 28 F
0 

= 0.974 F = 1.056 
F 

Fa = 1.45e. 3 Fa = 0 n Fill' = 0.0611 
nc 

F
15

n = -o.4~9a Fl5 
n' = -.0233 Fl5 

nc 
= -1.019 

Fo = -.03<.6 F) 
n ill' 

= -7.369 Fo = 0.5aa4 
nc 

,IZK = 1 ,.,.1> = 3.42 /z = 
F 

3.42 

lzo = -0.1!·07 ,tzo = -0.1542 lz0 = 1. 981 
n "' nc 

,lz8 = o. 94:, ·,tz8 1 = 0.016 ,lz8 = -0.333 
n n nc 

lzl5 = -0.0&7 
• 15 

= -0.039 ,~z15 
= -4.416 

n 
rZ 

71
, 

nc 

~ = 13.71£ ~I =-369.26 ~c = 0.8106 
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Fig. 1. 

of <C:e) 
(C.u.> 

FIGURE ::APTION 

The cur1e repr2sen·:s the variation of me as s function 
"'s 

which is obtained by uo;.ing the !D3sses of D and F mescns as inpt>t. 

The numbers on the curve are the va~ues of tha parameter K de~ine4 t~ be 

& 15 •· The straight line repres<!nts linear breaking for the vacuum 
,/2 l>g 
e~~ectation values. 
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