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We predicted gravity values on a tower by upward continuing an extensive set of surface data 
in order to test the 1/r̂  dependence of Newton's Law of Universal Gravitation. We measured 
gravity at 12 heights up to 454 m on a tower at the Nevada Test Site, and at 91 locations on the 
surface of the earth within 2.5 kilometers of the tower. These data have been combined with 
60,000 surface gravity measurements within 300 Ulometers of the tower and have been used to 
predict the gravitational field on the tower via a solution of Laplace's equation. A discrepancy 
between the observed gravity values and the prediction could suggest a breakdown of 
Newtonian Gravity, but we observe none. Our preliminary results are consistent with the 
Newtonian hypothesis to within 93±95 ugals at the top of the tower, a result which conflicts 
with the previously reported 500 jigal non-Newtonian signal seen at 562 meters above the 
earth. 1' 2 

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract number W-7405-Eng-48. 
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1. Motivation 

Both theoretical3 and experimental' ' 4- 5 studies have suggested that the inverse-square law for 
gravity may be wrong over distances of 10-1000 m. The functional form has been validated on 
short scales in the lab, and on long scales by observation of orbits. However, it was noted as 
early as 19716 that lab-scale measurements determine the gravitational constant G while orbit 
studies determine only the product GMganh and therefore the asymptotic form of the force law. 
Consequently, many functions are consistent with the observations, and no experiments had 
been performed to define the law over ranges from 10 m to 10000 m. 

Recently, Newton's Law has been tested by measurements over a range of heights both below 
the ground1, and above the Earth's surface in air2 and in ice3. These approaches can be 
understood by writing the Newtonian formula for the magnitude of the gravitational 
acceleration (defined positive downward) at a point r on a non-rotating Earth as a volume 
integral over the density distribution, p,in the Earth. 

^ ) = |vru(r)| = G j i ^ . 

where G is the universal gravitational constant postulated by Newton. Ignoring the ellipricity 
of the Earth, we can describe its density distribution with two terms: p(r) .which is a model 
representing our best guess of the average density in each spherical shell of the Earth, and 
Ap (r, 6, cfi) , which represents all the dsviations from that model, including lateral variations of 

density within the Earth. The radial component of the Newtonian gravity field is given by 
integrating over these density distributions 

, ^ Gm(r) rApCr'.e',<(>•)(>*-?"')• faV Gm(r) ._. 
g r ( r ) = — y - + Gj • -j = — - j — + I(r) 

l r - r ' | (2) 

where Gauss' Theorem has been used to simplify the integral over p(r) , fh(r) is the mass of 
the model lying beneath the shell of radius r, and the n indicates a unit vector. The details of 
the average density model below the experiment are not important. 

All experiments u:e this Newtonian model to predict the difference between the gravity values 

measured at two radii. Defining the gravity anomaly to be Ag f(?) = g (F) ,— = 1(F), 
r 

we have a simple equation for an empirical test of Newton's Law 



A g ( r l ) - A g ( r 2 ) = I ( r l ) - l ( r 2 ) ( 3 ) 

where the difference in the observed gravity anomalies at different radii is compared to a 
volume integral over the density anomalies in the TZtirth. 

The integrals on the r.h.s. contain all the complexities associated with lateral variations of 
density within the Earth. If these are ignored, equation 3 describes an apparently straight­
forward test of Newton's Law, first proposed by Airy7. In this test, the difference in the 
average-Earth model at two radii is usually expressed as the sum of two terms: the free-air 
gradient term, and an integral over vertical variations in density. 

Airy method experiments in a mine4, in boreholes5-8' and in the air1 produce deviations from 
0 in equation 3 that vary linearly with radius with a derivative on the order of 1-2% of the 
normal free-air gradient. These results cm be interpreted to suggest violations of Newton's 
Law on the order of 1-4%, but the sign and magnitude of the deviation differ from experiment 
to experiment. An alternative interpretation suggested by the lateral variation integrals Ifri) 
and I(rj) in equation 3 is that the measurements in the Earth or in ice are detecting the effects of 
variations in Ap that cause anomalous free-air gradients.9-8-5. Uncertainty about these density 
variations is the greatest limitation of the Airy experiment. 

Anomalous free-air gradients are seen throughout the world, and they normally are removed 
from the data when inferring density from borehole gravity surveys '0. Hammer" and later 
Kuo 1 2 collected gravity measurements in tall buildings in the eastern United States, seeking a 
calibration method for gravity meters. After accounting for a variety of effects, including the 
mass of the buildings, they found linear deviations from 0 in equation 3. Believing ir. 
Newton's Law, they looked for causes in the Earth, and suggested that the integrals I(r[) - 1O2) 
conspire to produce a correlation between the anomalous free-air gradient and the isostauc 
gravity anomaly measured on the Earth's surface. The isostaric anomaly is defined as the 
measured gravity minus the effect of a model of the Earth where the mass in each column of 
material is the same even though the columns h;\ve different heights. In This model, the mass 
of mountains is "compensated" by low-density roots that are apparently 50 to 150 km deep. A 
map of isostatic anomalies has features with wavelengths of 10 to 50 km, and indicates the 
effects of uncompensated mass or mass deficits, including shon-wavelength topography, in the 
crust and upper mantle. 

We have examined more recent data 10 see if ii is consistent with Hammer1' and Kuo's 1 2 

suggestions. Five new determinations of anomalous gradient in the United States from this 



paper and others 1 ' 8 ' 1 3 , all reported for the purpose of testing the validity of Newton's law, 
have been added to the seven earlier measurements to produce figure 1. The anomalous 
gradient, expressed as percent, is plotted as a function of the isostatic anomaly estimated from 
Woolard's isostatic gravity map of the US ' 4 . These data suggest that there are variations on 
the order of 1-2% in the gradient, and that the gradient is low over areas of mass deficit, and 
high over areas of mass excess. We musct account for the effects of these masses, and that is 
difficult for a test requiring the determination of a volume integral over un-explored depths in 
the Earth. 

We can write another test of Newton's Law which involves comparing the difference between 
gravity measurements on a tower directly to observable data, specifically a surface integral of 
the measurable gravity anomaly on the Earth's surface, rather than to a volume integral over 
unknown density distributions. Newton's Law (equation 1) implies that the surface integral 
describes all the contributions of the integral I(r) to the gravity field outside the earth. 

2. Derivation of basis of method. 
If equation 1 is correct, and the density of air is neglected, then the gravitational potential is a 
solution to Laplace's equation V U = 0 outside the Earth, and so is rV r U = r g r . Since the 
solution to Laplace's equation is uniquely determined by values on a closed boundary, we 
know there is a functional relationship F that operates on the values of rg ron the entire surface 
to produce the value at some height above the surface 

rg r(air)= F[r'g t.(surface)] ( 4 

Furthermore, that relationship holds for the Newtonian gravitational field of any proposed 
mass lying beneath the earth's surface. Using equation 3 to subtract the effect of the whole-
earth model m(r) from both sides, and dividing through by r gives 

Gmg.^fair) ] 
Ag (air) = g.(air) ; = TFfr'Ag (surface)] 

r 2 r l ( 5 

Equation 5 describes a test of Newton's Law that involves a direct comparison of observable 
data, with no assumptions about the density within the Earth. This experiment has two 
limitations: our ability to sample the gravity anomalies on the Earth's surface completely, and 
our ability to evaluate the function F witn sufficient accuracy. Previous experimenters1'2 used 
three different approaches to evaluate F, and argued they produced similar results. We have 
chosen the most simple approximation, to treat our gravity measurements as if they were 
collected at the same elevation, which turns the functional relationship into a surface integral. 
The error in this approximation is estimated from numerical studies described later. The 



advantage of this approximation is that when the surface integral is "discretized" for numerical 
evaluation, it reduces the surface sampling problem 10 the estimation of mean values of the 
gravity anomaly within areas on the earth's surface, and itallows a rather straightforward 
analysis to estimate the errors due to sampling and truncation of the integral ,6. 

If the surface data are collected on a sphere of radius a, then equation 4 becomes Poisson's 
equation: 

r g r ( r , 0 ,0 )= ^ Jgr(a,e,<t>) 
( r 2 + a 2 -2arcos(9)) (6) 

where d£2 is an element of solid angle and r the distance of the point of observation from the 
center of the sphere . If z is the elevation of the point on the tower above the surface (z=r-a) 
and r' is the distance along the surface of the sphere to a measurement point (r' = a8) then we 
can expand Equation 6 in powers of z/a, keep leading terms, and find 

ea2n 
z(l - 2z/a) r r r'dr'dd) 

Ag(z,0,0) = , / J J Ag(0,r' ,<!»— 
<^ + z 2 ( l - z / a » 3 ' 2

 ( ? ) 

where the whole-Earth model has been eliminated as in equation 5. The perturbations caused 
by ignoring the terms 0((z/a)2) are small, about 1 pan in 70 million, as is the effect of the 
ellipsoidal shape of the Earth. Equation 7 describes a relationship between values measured 
with a gravity meter on the Earth's surface and on a tower, and we use this spherical 
approximation to test the validity of Newton's Law. 

Gravity meters measure the magnitude of the gravity force vector, described here in units of 
gals, where 1 gal = 1 cm/sec2. The force vector is dominated by the 980-gal attraction of m(r) 
but also includes the effects of mass anomalies and topography(<50 mgal), the centrifugal 
effect due to the Earth's rotation (<4 gal), and the tidal forces(<0.3 mgal). The magnitude of 
the force vector is always nearly the sum of the radial components of these effects. Centrifugal 
effects are not harmonic, and tidal forcer change with time; so these effects do not obey 
equation 7 and are removed from all gravity daia. 

Gravity cannot be measured continuously over the surface of the Earth. Thomas'^ has 
described the steps involved in approximating the integral in equation 7 based on a finite set of 
samples over a limited portion of ihe Earth and quantified the size of the resulting errors. The 
samples are collected in sectors lying in rings around the tower. Several steps are involved in 



surveying is required to achieve meaningful values of Ag. We consider the elevation 
uncertainties in detail in the sections on the tower survey and the surface survey. 

The BREN (Bare Reactor Experiment-Nevada) Tower, located on the Nevada Test Site, is an 
excellent platform for gravity measurements. Built to support a massive reactor, it is stable and 
free from radio-frequency signals, which might interfere with measurements. The tower rises 
above Jackass Flats, on gently sloping alluvial deposits from a ring of hills that cover about 
50% of the horizon. The slope of 1.5° is nearly constant out to 2 kilometers from the tower, 
the nearest hills, whose summit is 5 kilometers away, rise to about the same elevation as the 
tower. Thus, near our tower the topography is more gentle than in the previous tower 
experiment1-2. At a distance of 8-10 tower heights, where it is less important but not 
negligible, there is more terrain in our experiment. 

Measurements on the lower. 
Our tower measurements were done with two model D gravimeters in order to check for 
systemmatic errors of the measurements. The tower measurements were collected at 
12 elevations in a series of 11 loops for a total of 42 observations. A typical loop was 1.8 
hours long: the drift, nevermore than 31 (igal, was removed from the data as if it occurred 
linearly in time. For the 6 stations in the upper half of the tower, each station had 3 or 4 
repeated measurements, the average of the sample standard deviations was only 6 Ugal, and the 
maximum excursion from the mean was only 24 ugal. In the lower half of the tower, stations 
had higher variability: the average sample standard deviation was 22 jigal, and the largest 
excursion was 52 jigal. 

We made our measurements only at sunrise during July through October, when the wind 
velocities are typically below 3 mph. There were no perceptible tower motions when the wind 
velocity was that low, and we were able to collect repeatable readings with the more sensitive 
D meters. 

Elevations were measured with a Leitz REDmini 2 EDM system, which was bolted to the 
railing at each level on the tower. We measured the distance from the railing to five comer 
reflectors set on the concrete base of the tower, and the distance from the base of the gravimeter 
to the railing was measured in order to determine the height of the gravimcter. The height 
measurements were repeated for each gravity measurement, and all repeats at each height fell 
within + 15 mm of the mean. There was no delectable correlation of gravity with variations in 
height at each platform, so we believe that atmospheric changes in the light path are the cause 
of these distance variations. After the measurements, we had the meter re-certified; its 



choosing the ring radii and sector sizes. We define the experimental observable to be the 
difference in Ag at two heights on the tower. This modifies the integral in equation 7 by 
making the integrand the difference of two terms. Next, we reduce the integral to a sum over 
sectors where the average gravity value must be measured. We derive the expression for the 
error in the sum based on the uncertainty in estimating the mean gravity of each sector, using a 
preliminary dataset to estimate how well a single measurement of gravity represents the average 
value as a function of sector size. 

Based on that preliminary sampling information, we chose sector sizes to minimize the 
expected sampling error, subject to 2 conditions: a fixed number of nearly square sectors, and a 
decreasing error with distance so the sum converges. In addition, we estimated the truncation 
error resulting from limiting the integral to a finite distance. 

Thus, we have reduced the test of Newton's law to a problem of estimating the average gravity 
value in rings around the tower, using a weighted sum of those averages to predict the 
difference in gravity anomaly values at different heights on the tower. 

3. Measurements 
All gravity measurements were made with standard LaCoste-Romberg gravity meters17. One 
standard model G meter, and three model D meters, which measures a smaller range of gravity 
values, and has less systemmatic error, were used. Many measurements were repeated to 
check reproducibility. One of the model D meters was rebuilt and calibrated by the 
manufacturer before this experiment. The other meter was borrowed from Los Alamos 
National Laboratory and had been used routinely in the field. 

The sources of error in the LiCoste-Romberg instrument and the procedures needed to keep 
them small are generally well understood. The largest source of error is thermal drift of 100's 
of |igal, but standard surveying practice reduces its effect to a few ugal for small-scale studies. 
Drift is removed from the observations by collecting data in loops with repeated stations and 
assuming that the drift occurred at a constant rate between those stations. Standard tidal 
corrections'8 based on the station location, date and time but not local structures or oceanic 
loading, are also removed from each observation. 

From each data point, we removed the effect of a standard "whole-Earth" model WGS84, 
which places the entire mass of the earth (excluding the average atmosphere above the 
measurement point) below the geoid. The latitude dependence of that model includes the radial 
component of the centrifugal effect. This step included the 1/r2 factor to produce Ag, as is 
described in equation 3. Because of the strong dependence of 1/r2 on elevation, accurate 



calibration was within specifications of ± 5 mm + 5 ppm, or a maximum calibration error of 
12 mm at the top of the tower. 

Our results are shown as a solid line labeled "BREN data" in Figure 2. The line through the 
data is a straight line fit to the individual points, whose scatter is not visible on this plot. We 
make two observations: the data set on the tower is linear and shows no obvious curvature due 
to non-Newtonian effects. The second observation is that the data do not agree with the 
predictions of the globally symmetric model of the earth, differing by 2.8 mgal at the highest 
station. The gravity gradient on the BREN tower, 0.3030 mg/m, is about 1.8% lower than the 
model predicts. Very litte can be concluded from these observations alone because topographic 
effects or geologic variations could conspire to produce an anomalous gradient or mask an 
exponential gravitational field. In fact, about 50% of the anomalous gradient is predicted by 
calculating the effect of topography, with an assumed density of 2.2 g/cw?, out to 300 km. 
These results illustrate that other measurements are needed to determine the effects of lateral 
variations before one can study the reliability of the 1 /r 2 force law from a measurement of the 
vertical variation of gravity 

Surface Survey. 
We used the method described above to design two surface surveys sampling the gravity field 
with sufficient density to predict the gravity on the tower within chosen uncertainties. In the 
first Phase of our experiment, described here, we used a sampling density that limited the 
uncertainty at the top of ihe tower to ±100 Ugals. For our ultimate survey, to be completed by 
August of 1989, we will collect nine times as many surface points, which will reduce that 
uncertainty to about ±30 ugals. 

We designed a radially symmetric survey pattern described in Table I 

Table I: Parameters for surface survey 
Phase I Phase n 

Our measurements 
inner zone (<170 m) 

rays 9 27 
rings 3 9 

outer zone (200-2655 m) 
rays ! 2 36 
rings 5 15 

Existing Database 
(2.6-300km) 

rays 12-76 36-76 
rings 33 40 



To ensure that our sampling within 2.5 km of the tower was not biased by inaccessibility of 
locations with either high or low elevation, we placed all stations ./ithin ± 1 m of locations 
determined from the regular radial grid pattern. This was easily accomplished, because of the 
simple terrain and limited vegetation. A square board dug into the alluvial soil was used as a 
base for both gravity and elevation measurements. All board locations were measured with 
uncertainties of ± 1 cm near the tower increasing to ± 10 cm at 2.5 km using a theodolite 
located on a small bunker about 30 m from she tower base. The location accuracy was checked 
using ten independently surveyed benchmarks lying within 2 km of the tower. 

The Phase I gravity survey of 91 stations was completed in a series of 61 loops, with a total of 
187 measurements. All stations within 1.5 km of the tower were tied directly to the tower 
base, and stations beyond that distance tied through a single intermediary station. Loop lengths 
ranged from 30 to 220 minutes; all loops longer than 175 minutes had stations done on 
independent loops for consistency checks. Typically, the instrument drifted less than 20 ugals 
during each loop, although some loops had drifts as high as 50 ugals. One loop was 
eliminated because its drift was over 100 pgals. Sample standard deviations based on stations 
with repeated measurements were typically 10 p.gals. 

Beyond 2.5 km, we used public domain datasets from the USGS 1 9 and NOAA 2 0. Based on 
our truncation error criteria, we included 60,000 data points out to 300 km from the tower. 
Multiple samples in a sector were averaged to obtain a sample mean of both gravity and 
elevation, from which the mean of Ag was calculated. The gravity values have a quoted 
uncertainty of ± 1 mgal, and the elevation uncertainty can be as large as ± 6 m in the outer 
zones. 

4. Integration of surface data to predict values on tower 

The upward continuation results, shown as circles, are compared to the observations in 
Figure 2. Most of the anomalous gradient is predicted from the upward continuation. Our 
predictions are within 93 (igals ° f t n e observations at all heights on the tower, and the 
uncertainties at each height are as large as 95 (igals. The error bars in Figure 2 indicate the 
single standard deviation uncertainty from sampling errors, derived as discussed above, which 
are the largest source of error in this experiment. At all heights, these errors overlap the 
observed gravity, providing no evidence for a breakdown of Newtonian gravity. 

5. Possible sources of systematic and random errov 



Spherical approximation for upward continuation. 
The surface field can be uniquely translated into a continuous surface-density distribution, from 
which the values above the Earth can be readily calculated. For an irregular surface, this 
transformation requires solution of a Fredholm integral equation that is cumbersome to solve 
over the distance scales needed for this problem21. However, in the approximation that the 
Earth's surface is a smooth sphere, this integral equation reduces to an integral (equation 7) that 
can be evaluated easily. This approximation is potentially our most significant source of 
systemmatic error. Since we cannot correctly predict what we would have measured on the 
smooth surface, some errors result from our estimates of gravity on that surface. Analysis of 
the Fredholm integral equation solution for irregular terrain does not produce insights into the 
size of this effect. 

We are using a digital model of the terrain i n a 54-km square centered on the tower to estimate 
the magnitude of the errors from the spherical approximation. Elevation contours (6.1-m 
interval) were digitized within a rectangle extending 6.1 km north, 5.2 km east, 8.3 km south 
and 12.0 km west of the tower2 2. For the rest of the square, we used digital terrain sampled 
on a 15-second grid 2\ The mass of terrain was approximated by a 300x300 grid of density 
1.8 gm/cm3, right-rectangular prisms of identical square cross section, with all bases at an 
arbitrary depth (-3318 m below sea level) and tops at the height of the smoothed terrain at their 
centers. At greater distances, the Farth's surface was assumed to be constant to large distances 
at values determined from the av rages of the nearest side of the 54km square. The vertical 
component of gravity caused by this mass was calculated24 at all observation points on the 
tower and at the model elevation in each sector. Using equation 7 to integrate the artificial 
surface numbers, we found that the spherical approximation underestimates the calculated 
magnitude of Ag(r]) - Ag(r2) by about 100 ugal for a number of different gridding options. We 
are continuing this study to include the effects of mass anomalies and to evaluate the 
effectiveness of including terrain corrections in the definition of Ag. 

Random errors and bias due to sampling. 
Because gravity is strongly correlated with elevation, the observations must adequately sample 

the topography, as well as the effects of density variations. Variations in topography and 
density on a scale large compared to the sectors do not contribute to errors in estimating the 
sector means. We bound the uncertainty in estimating a sector mean by calculating the sample 
variance of all the gravity values in a ring of n sectors about the mean gravity for the ring, 
m ri n g . Using the assumption that sampling errors in different sectors are independent: 



Exr/——rTfAg. - m . } )= — ~ Y f m . -m . \ + a . 
(8) 

The sample variance is a useful bound on the ring variance of the ring mean. In practice we 
improve this estimate by removing long wavelength effects on the scale of the ring radius. 
This is done by fitting one or two intersecting planes through Ag(8) around a ring and 
removing that "regional" from the data before the ring uncertainty is estimated. 

To estimate the uncertainties in the ring means, we assumed that the effects of sampling were 
uncorrected from sector to sector. That assumption is valid for our data within 2.6 km of the 
tower, because the locations were chosen independently of the topography. However, because 
it may be easier to take measurements in either the valleys or the highlands, there may be a 
sampling bias in the elevations of measured points beyond 2.6 km. It is important to estimate 
the magnitude of elevation bias. 

We reduce the effect of the sampling by taking averages of many sectors per ring, but the 
average in each sector can be biased if the sectors are larger than the topographic features 
influencing the sampling distribution. We used our large"! sectors, in the ring from about 270 
to 300 km from the tower, to study the magnitude of bias. Here, the sectors are large 
compared to the data density, and comparable in size to many topographic features in the 
western US. In many of these sectors, there is a preponderance of data in valleys, but the 
mountains are sampled on a 4-5 km spacing. We estimated the elevation bias in our outermost 
ring by subdividing each sector into nearly sr/.iare subsectors, determining the sector means 
from the sum of the means in the subsectors, and calculating the ring average as a function of 
the size of the sub-sectors. The maximum or minimum value as a function of subsector size 
represents the best averaging we can do with our dutaset. 

We found that the best subsector size was about 7 km, and that the ring-averaged total gravity 
and elevation differed from our original values by -7 mgal and 31 m. These numbers indicate 
that for *his ring, Ag is biased by approximately 2.5 mgal. We believe that this represents a 
reasonable estimate of the elevation sampling bias beyond 80 km, and if it were applied to the 
data beyond SO km, it would change the prediction at the top of the tower by only 25 Ugal. 
Inside 80 km, the sector size is below 7km, and more than 85% of the sectors in each ring are 
filled, except for the ring at 6.3 km, which has only 63% of its sectors filled. Based on the 
studies of the outermost ring, this data density appears to eliminate much of the bias in 
sampling topography. 



The effects of other sources of error on gravity at the top of the tower have been estimated 
These sources include ignoring the ellipsoidal shape of the Earth, uncertainties in gravity meter 
calibration and measurement error, surveying errors near the tower, changes in geoid height 
over the range of our surface survey, and the effect of cur trucks on the measurements in the 
tower. Only those discussed in detail above are important. 

6. Status and future work 
We have used the inverse-square dependence of the force of gravity to successfully predict 
gravity measurements up to 454 m in the air, within an uncertainty of the order of 100 Ugal. 
To this accuracy level, we see no conflict with Newton's Law. This is in contrast with earlier 
results from North Carolina1'2, which are included in figure 2. We are continuing to improve 
our experiment by collecting more data on the surface and on the tower, by performing 
numerical studies to better evaluate the uncertainty resulting from our approximations, and to 
improve our method of upward continuation 
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Figure 1. Measured anomalous vertical gradients in the USA are correlated with isostatic 
gravity anomalies. Data from buildings"' 1 2 and towers' (circles) support Hammer and Kuo's 
conjecture that vertical gradient anomalies correlate with isostatic gravity anomalies. Data from 
boreholes8'1 3 (squares) are less well-correlated, probably because of limitations in our 
knowledge of the sub-surface density. 

Figure 2. Results for two tests of Newton's Law. Observed values of the change in Ag as a 
function of height for experiments on the BREN tower in Nevada, described in this paper, and 
the WTVD tower in North Carolina' ' 2 . The solid lines indicate linear fits to the observations, 
which are represented by triangles. The dashed lines are linear fits to the predictions based on 
Newton's Law (equation 7), and those predictions are shown as circles and squares. The 
measurement errors are negligible on this scale. The slated errors in the predictions are 
represented by vertical bars. The anomalous gradient we observe on the BREN tower is 
predicted from the surface survey within our sampling uncertainty. 
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