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Obtaining robust phase estimates from phase differences is a problem common to several 
areas of importance to the optics and signal processing community. Specific areas of appli­
cation include speckle imaging and interferometry, adaptive optics, compensated imaging, 
and coherent imaging such as synthetic-aperture radar. The purpose of this paper is to 
relate the equations describing the phase estimation problem to the general form of elliptic 
partial differential equations, and illustrate results of reconstructions on large M by N grids 
using existing, published, and readily available Fortran subroutines.

An important optical and signal processing problem is that of estimating wavefront 
(phase) distortions and then compensating for these distortions to obtain near diffraction- 
limited performance. For example, wavefront distortions occur when imaging through 
turbulent media1, or when phase errors exist because of uncompensated platform motion 
or ionospheric turbulence in the case of synthetic aperture radar (SAR)2-3.

Since it is generally not possible to measure the phase directly in incoherent imaging 
systems, operations on the incoming wavefront (e.g., with shearing interferometers etc.) 
can provide wavefront slopes or phase difference measurements. In coherent imaging sys­
tems it is generally only possible to obtain phase estimates modulo 2k. Operations on the 
complex signal can yield wrapped phases or phase differences from which the overall phase 
cam be estimated.

The problem is then to reconstruct an estimate of the wavefront (phase) to within an 
arbitrary linear and constant term that is consistent in some sense with the noisy phase 
difference measurements4-8. Much of the previous work has been applied to the solution of 
the phase estimation problem on relatively small grids (i.e. 64 by 64 or less) using iterative 
numerical schemes such as Jacobi iterations or successive overrelaxation (SOR). It is to 
be noted that because of their slow convergence, these popular iteration schemes are only 
feasible for small problems and that their extension to much larger grids requires a more 
direct approach. For example, it is well known that for a fixed degree of accuracy, Jacobi 
iteration requires 0(NA) operations and SOR requires 0(N3) 9.

The purpose of this paper is to relate the equations describing the phase estimation 
problem to the general form of elliptic partial differential equations (PDF’s), which can be 
solved with only 0(N2 In N) operations10 using fast algorithms. A recent paper11 develops 
a direct solution method but does not relate the method to fast PDE solvers. Results of
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reconstructions on large N by N (N = 512) grids using existing, published, and readily 
available Fortran subroutines will be shown.

Suppose that we know the phase, $ modulo 27r, of a function on a discrete grid of 
points:

0ij = + 27rfc (1)
k = integer

0 < < 27T
1 = j = 1...N

Given the values ifrij we wish to determine the phase <pij at the same grid locations. 
To do this we require that the phase differences of the faj agree with those of the V,t,j in 
some “best” sense. In particular, let

= V'.+I.i - V'.-.i (2)
i = 1...M — 1; j = 1...JV

Pij+l/2 = V'l.i+l ~ (3)
t = l...Af; j = 1...N — 1

Thus we would like to solve

- <t>i,j = Gi+l/iJ (4)
i = 1...M — 1; j = 1...N

~ = Pij+l/2 (5)
t = j = 1...N — 1

Equations 4 and 5 constitute an overdetermined system and will be solved in a least squares 
sense. We will find a solution fcj that minimizes

M-l N M N-l

- fo.1 - <Xi+l/2,j)2 + YU2 (^‘.i+1 “ 4ij - A'j+l/z)2-
1=1 }=1 t=l j=l

It can be shown that the least squares solution to this problem is identical to the solution 
of the following linear system of equations:

~ faj) ~ ~ <t>i-ij) + bj{4>i,j+i ~ </>i,3-i) =

Oi<Xi+l/2,j — Oi-1 a,-1/2 .jf + bjPij+1/2 — 6j_i/?,j_1/2. (6)
* = 1...M; j = 1...JV
a, = 1; * = 1...M — 1
Oo = aM = o
bj = 1; j — 1...JV — 1
bo = bfj = 0
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This system of equations can be considered to be a discretization of Poisson’s equation 
with Neumann boundary conditions9. Therefore, fast, direct methods for the solution of 
specialized elliptic equations on rectangular grids can be applied12. We used the subroutine 
BLKTRI that is available in the SLATEC mathematical subroutine library13-15. This 
routine is capable of solving equations other than Poisson’s, so it may be somewhat slower 
than some fast Poisson solvers, but it is still extremely fast.

The images depicted in Figure 1 represent the results of simulations with noiseless data. 
Figure la is the 512 by 512 image of an arbitrary phase function scaled between black and 
white for display. Peak-to-peak dynamic range is approximately 250 radians. Figures lb 
and 1c represent the phase differences of Figure la in the z and y directions respectively. 
The phase differences were used to construct the driving term (right hand side) of the PDE 
and BLKTRI was called with appropriate coefficient arrays analagous to those in Eq. 6. 
Figure Id is the reconstructed phase superimposed with a few constant phase contours to 
illustrate the quality of the solution.

Figures 2a through 2d represent the same sequence except that noise was added to 
the phase differences. The signal-to-noise ratio of each phase difference array was ap­
proximately unity. Figure 2d is the solution superimposed with the same constant phase 
contours to depict the quality of reconstruction (compare with Figure Id).

We have shown that the basic problem of estimating phase from phase differences is 
equivalent to solving Poisson’s equation on a rectangular grid with Neumann boundary 
conditions. All the speed and power of fast elliptic PDE solvers can be brought to bear on 
this problem with the result that robust phase estimates on large M by N grids are obtain­
able in 0(MN In N) time. Existing, high quality Fortran subroutine libraries are readily 
available that contain several fast Poisson solvers. Experiments have shown, however, that 
significant precision can be lost on large problems even when using state-of-the-art algo­
rithms. One must use caution when solving large problems on computers with relatively 
short word lengths (i.e. 32 bits), especially when JV is a power of two (because of the high 
degree of cyclic reduction performed).

This research was performed at Sandia National Laboratories and supported by the U. 
S. Department of Energy under contract DE-AC04-76DP00789.
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Figure 1. a) Arbitrary phase function scaled for display, b) Phase differences in the i direction, c) Phase 
differences in the y direction, d) Reconstructed phase from phase differences. A few constant phase contours 
are superimposed.

Figure 2. a) Arbitrary phase function scaled for display, b) Phase differences in the i direction with added 
noise, c) Phase differences in the y direction with added noise, d) Reconstructed phase from noisy phase 
differences. A few constant phase contours are superimposed.
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