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Abstract

Obtaining robust phase estimates from phase differences is a problem common to several
areas of importance to the optics and signal processing community. Specific areas of appli-
cation include speckle smaging and interferometry, adaptive optics, compensated imaging,
and coherent smaging such as synthetic-aperture radar. The purpose of this paper is to
relate the equations describing the phase estimation problem to the general form of elliptic
partial differential equations, and sllustrate results of reconstructions on large M by N grids
using ezisting, published, and readily available Fortran subroutines.

An important optical and signal processing problem is that of estimating wavefront
(phase) distortions and then compensating for these distortions to obtain near diffraction-
limited performance. For example, wavefront distortions occur when imaging through
turbulent media!, or when phase errors exist because of uncompensated platform motion
or ionospheric turbulence in the case of synthetic aperture radar (SAR)?-3.

Since it is generally not possible to measure the phase directly in incoherent imaging
systems, operations on the incoming wavefront (e.g., with shearing interferometers etc.)
can provide wavefront slopes or phase difference measurements. In coherent imaging sys-
tems it is generally only possible to obtain phase estimates modulo 2x. Operations on the
complex signal can yield wrapped phases or phase differences from which the overall phase
can be estimated.

The problem is then to reconstruct an estimate of the wavefront (phase) to within an
arbitrary linear and constant term that is consistent in some sense with the noisy phase
difference measurements*~8. Much of the previous work has been applied to the solution of
the phase estimation problem on relatively small grids (i.e. 64 by 64 or less) using iterative
numerical schemes such as Jacobi iterations or successive overrelaxation (SOR). It is to
be noted that because of their slow convergence, these popular iteration schemes are only
feasible for small problems and that their extension to much larger grids requires a more
direct approach. For example, it is well known that for a fixed degree of accuracy, Jacobi
iteration requires O(N*) operations and SOR requires O(N3) °,

The purpose of this paper is to relate the equations describing the phase estimation
problem to the general form of elliptic partial differential equations (PDE’s), which can be
solved with only O(N? In N) operations'® using fast algorithms. A recent paper!! develops
a direct solution method but does not relate the method to fast PDE solvers. Results of
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reconstructions on large N by N (N = 512) grids using existing, published, and readily
available Fortran subroutines will be shown.

Suppose that we know the phase, ¢ modulo 27, of a function on a discrete grid of
points:

Yi; = ¢&ij+27k (1)
k = integer
0< ll).',,' <27

i=1.M;j=1.N

Given the values t); ; we wish to determine the phase ¢;; at the same grid locations.
To do this we require that the phase differences of the ¢;; agree with those of the v in
some “best” sense. In particular, let

Qiti1f25 = Yit1i — Vi (2)
t=1..M-1;5=1..N
Bij+1/2 = Yij+1— ¥i; (3)

i=1.M;j=1.N~-1

Thus we would like to solve

Git1,i —bij = Qig1/25 (4)
i=1.M—1;j=1.N
ij+1— bi; = Bij+1/2 (5)

t=1.M; )=1.N-1

Equations 4 and 5 constitute an overdetermined system and will be solved in a least squares
sense. We will find a solution ¢;; that minimizes

M-1 N M N-1
D 2 (Fivrg — Big — isryz)? + 20 D (biier — i = Bijarya)’
i=1 j=1 i=1 j=1

It can be shown that the least squares solution to this problem is identical to the solution
of the following linear system of equations:

ai(biv1,; — bij) — Gio1(dij — bi-15) + bi(Dije1 — bij) — bj—1(dij — ij—1) =

QiQiy1/2,5 — Gi-104-1/2,5 T+ bjﬂi,j+l/2 - j—1ﬂ.‘,j-1/zo (6)
1=1.M;5j=1.N
a=11=1..M-1

a=ap =0
bj=1;j=1...N—1
bo=b}v=0



This system of equations can be considered to be a discretization of Poisson’s equation
with Neumann boundary conditions®. Therefore, fast, direct methods for the solution of
specialized elliptic equations on rectangular grids can be applied!?. We used the subroutine
BLKTRI that is available in the SLATEC mathematical subroutine library!3-1%, This
routine is capable of solving equations other than Poisson’s, so it may be somewhat slower
than some fast Poisson solvers, but it is still extremely fast.

The images depicted in Figure 1 represent the results of simulations with noiseless data.
Figure 1a is the 512 by 512 image of an arbitrary phase function scaled between black and
white for display. Peak-to-peak dynamic range is approximately 250 radians. Figures 1b
and 1c represent the phase differences of Figure 1a in the z and y directions respectively.
The phase differences were used to construct the driving term (right hand side) of the PDE
and BLKTRI was called with appropriate coefficient arrays analagous to those in Eq. 6.
Figure 1d is the reconstructed phase superimposed with a few constant phase contours to
illustrate the quality of the solution.

Figures 2a through 2d represent the same sequence except that noise was added to
the phase differences. The signal-to-noise ratio of each phase difference array was ap-
proximately unity. Figure 2d is the solution superimposed with the same constant phase
contours to depict the quality of reconstruction (compare with Figure 1d).

We have shown that the basic problem of estimating phase from phase differences is
equivalent to solving Poisson’s equation on a rectangular grid with Neumann boundary
conditions. All the speed and power of fast elliptic PDE solvers can be brought to bear on
this problem with the result that robust phase estimates on large M by N grids are obtain-
able in O(MN In N) time. Existing, high quality Fortran subroutine libraries are readily
available that contain several fast Poisson solvers. Experiments have shown, however, that
significant precision can be lost on large problems even when using state-of-the-art algo-
rithms. One must use caution when solving large problems on computers with relatively
short word lengths (i.e. 32 bits), especially when N is a power of two (because of the high
degree of cyclic reduction performed).

This research was performed at Sandia National Laboratories and supported by the U.
S. Department of Energy under contract DE-AC04-76DP00789.
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Figure 1. a) Arbitrary phase fﬁction scaled for display. b) Phase differences in the z direction. c¢) Phase
differences in the y direction. d) Reconstructed phase from phase differences. A few constant phase contours
are superimposed.

Figure 2. a) Arbitrary phase function sc"a.vled for aisplay. b) Phase differences in the z direction with added
noise. c) Phase differences in the y direction with added noise. d) Reconstructed phase from noisy phase
differences. A few constant phase contours are superimposed.




