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Kajos has analyzed the so-called Next-Event-Estimator (NEE) for flux-at-a-

point by Monte Carlo and proposed the OMCFE to avoid the singularity. Kalli
? 3

and Cashwell and Steinberg and Kalos have developed a number of ingenious

schemes along similar lines with bounded variance. Recently Iida and Seki

proposed the Void Detector technique as an approximation to avoid the NEE

singularity.

The NEE estimator for the collided flux-at-a-point is derived from the

integral form of the time-independent transport equation .

= f K(R,E)q(r',JJR,E)dvt
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where

K(R,E) =
4irR2
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for isotropic scattering in a homogeneous system; R * \r' - r[ is

the distance to the detector point located at r from each collision point

at r1. q(r', nR,E) is the isotropic scattering integral over all incident

n'.E1 at r1 to nR in the direction of the detector at energy E.

In a Monte Carlo random walk, the kernel K(R,E) is used as an expected
value estimator at every collision for the collided flux *c(r,E) at the
detector point.

*c(r,E) (3)

,th collision and P(fiRj,E'->-E)where W. is the neutron weight entering the i R

is the probability of a neutron isotropically scattering toward r at energy E

It is a well-known fact that Equation (3) possesses infinite theoretical
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variance because it is possible in a random walk for a collision to occur
infinitesimally close to the detector at r with finite weight W.,.

In this paper, a limiting value for Equation (2) is derived from a diffusion
approximation for the probability current at a radius Rj from the detector
point. The variance of Equation (3) is thus bounded using this asymptotic
form for K(R,E). The NEE kernel for the monoenergetic case is:

K(R) = i — y . (4)

This kernel is proportional to the probability that a neutron entering
collision at ?' will reach the detector at r without another collision.
It 1s now assumed that the corresponding probability current J(R) can be
given by a diffusion approximation,

J(R) = -D $ R • VRK(R) = -D ^ (5)

where D is the diffusion coefficient. The probability current J(R)
flows only in a dire' in toward the detector at r; i.e. the probability
flow in the opposite direction from the detector is zero due to the
definition of the kernel K(R). Th: s J(R,) can be represented as:

Inside the radius R p the scalar K(R) is approximated by a linear function
f(R) consistent with the diffusion approximation at the surface of a
blackbody.

K(R < Rj) » T(R) * *Q + R 4* (7)

Combining Equations (6) and (7)

R dK m dK
o 1 dft" Rj ~cu dR" Rj . (8)



Equation (8) represents a forward extrapolation of the function K(R)
to the detector point.

A bounded non-linear representation for *(R<R,) which i s similar to
K(R) i s

(9)

dK I (z R, + 2) .
where $ 1 ^ ^ K (Rj) . (10)

.-ZR, -
(2D+Rj) (zRj+2) * f (11)

T(R<R ) » * . . (12)
1 4ir(RZ+E

Z)

n

Combining Equations (11) and (12) and solving for e as R-»0,

(13)

where ?0 is given by Equation (11). Equation (12) is discontinuous to

K(R) at the radius Rj where the probability current J(R) was evaluated.

A normalization factor 6 will force continuity.

e t g (14)
Z)

where
2 2

8 - - J - 5 • (15)
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In the energy dependent case, the cross sections in Equations (11) and
(14) are evaluated at the exit energy E from the collision. The bounded
point flux estimator from Equation (4) corresponding to the 1 t h collision
in Equation (3) is

4ir(Ri
2+E

Z)

The radius Rj at which Equation (11) is evaluated has not been specified.
A simplified Monte Carlo program for a monoenergetic point source in a
two-region spherical geometry with isotropic scattering was written to
test the effectiveness of Equation (16) and (17). The point detector was
located at a radius p from the source on the boundary between the two
regions. A dimensionless parameter a * ER-, was defined, then R-. * a/E.

4 r

Problems were run for 4 x 10 source histories and a wide variety- of
absorption to scatter ratios in the two regions Indicate that the most
consistent results are obtained for o < 0.1. For a * 0.1 nd i » 1.0,
Rj « 0.1 cm. For these parameters, tQ is 116.0/cm

2-sec and & • 1.069.
Typical results for the collided plus uncollided flux ?re presented in
Table 1. An analytic solution as well as results for the NEE estimator
are also presented in Table 1. Since o is so small, it is difficult to
obtain random collisions within the radius of 0.1 cm where Equation (16)
is effective. The detector was deliberately moved to the vicinity of
a collision point In several repeated problems to demonstrate the effective-
ness of Equation (16). The wery high flux from the NEE estimator for the
second case 1n Table 1 is such a result. The total number of "hits" within
the radius Rj 1s also given in Table 1.
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TABLE 1. MONTE CARLO RESULTS FOR POINT SOURCE AND a = O.I

P (cm)

.71064

.71064

1.2

2.0

hi

.2

.2

.1

.1

hi

.8

.8

.9

.9

hz

.5

.2

.1

.1

Zs2

.5

.8

.9

.9

Hits

40

59

23

7

4 EXACT

0.17668

0.20878

0.10208

0.03699

+ NEE

0.1707+1.1%

2.5 x 109

0.10016+1.97%

0.03793+4.67%

* NEED*

.1704+1.1*

.20793+1.46%

0.098966+1.56%

0.03631+3.062

NEED 1s the estimator by Equations (16) and (17).


