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A BOUNDED LIMIT FOR THE MONTE CARLO POINT-FLUX-ESTIMATOR
R. A. Grimesey (EG&G Idaho)

Ka]os1 has analyzed the so-called Next-Event-Estimator (NEE) for flux-at-a-
point by Monte Carlo and proposed the OMCFE to avoid the singularity. Kalli
and Cashwe112 and Steinberg3 and Kalos have developed a number of ingenious
schemes along similar lines with bounded variance. Recently Iida and Sek'i4
proposed the Void Detector technique as an approximation to avoid the NEE

s1ngular1ty.

The NEE estimator for the collided flux-at-a-point is derived from the
integral form of the time-independent transport equat1on .
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for isotropic scattering in a homogeneous system- R l; - r{ is

the d1stance to the detector point located at r from each collision point
at r q(r ’ nR,E) is the isotropic scattering integral over all incident
n E‘ at r to QR in the direction of the detector at energy E.

In a Monte Carlo random walk, the kernel K(R,E)} is used as an expected
value estimator at every collision for the collided flux ¢C(F,E) at the

detector point.
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where wi is the neutron weight entering the ith collision and P(ERi,E‘+E)

is the probability of a neutron isotropically scattering toward ¥ at energy E.
It is a well-known fact! that Equation (3) poseesses infinite theoretical
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variance because it is possible in a random walk for a collision to occur
infinitesimally close to the detector at ¥ with finite weight W;.

In this paper, a 1imiting value for Equation (2) is derived from a diffusion
approximation for the probability current at a radius R1 from the detector
point. The variance of Equation (3) is thus bounded using this asymptotic
form for K(R,E). The NEE kernel for the monoenergetic case is:

-ZR

L (4)

This kernel is propgrtionaT to the probability that a neutron entering
collision at ¥* will reach the detector at ¥ without another collision.
It is now assumed that the corresponding probability current J(R) can be
given by a diffusion approximation,
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J(R) = -Df - Yek(R) = -D gx (5)
where D is the diffusion coefficient. The probability current J(R)
flows only in a dire * 7n toward the detector at ¥; i.e. the probability

flow in the opposite direction from the detector is zero due to the
definition of the kernel K(R). Th:s J(Rl) can be represented as:

= Kirp) . »
J(R;) LS g{% "’-1 (6)

Inside the radius Rl’ the scalar K(R) is approximated by a linear function
¢(R) consistent with the diffusion approximation at the surface of a
blackbody.

KR <R)) = ¥(R) = ¥ +R %E- (7)

Combining Equations (6) and (7)
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Equation (8) represents a forward extrapolation of the function K(R)
to the detector point.
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A bounded non-linear representation for Y(R<R1) which is similar to
K(R) 1s
(R<R; ) 1 (12)
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Combining Equations (11) and (12) and solving for EZ as R+0,
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where ¥, is given by Equation (11). Equation (12) is discontinuous to
K(R) at the radius R, where the probability current J(R} was evaluated.
A normalization factor 8 will force continuity.
(ReR,) T (14)
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R12 + EZ
g = —R-z'— . (15)
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In the energy dependent case, the cross sections in Equations (11) and
(14) are evaluated at the exit energy E from the collision. The bounded
point flux estimator from Equation (4) corresponding to the ith collision
in Equation (3) is
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The radius Ry at which Equation (11) is evaluated has not been specified.

A simplified Monte Carlo program for a monoenergetic point source in a
two-region spherical geometry with isotropic scattering was written to
test the effectiveness of Equation (16) and {17). The point detector was
located at a radius p from the source on the boundary between the two
regions. A dimensionless parameter o = IR, was defined, then Rl = ofL.
Problems were run for 4 x 104 source histories and a wide variety of
absorption to scatter-ratios in the two regions indicate that the most
consistent results are obtained for « < 0.1. Fore =0.1 nd: =1.0,

R1 = 0.1 cm. For these parameters, . is 116.0/cm2-sec and g8 = 1.069.
Typical results for the collided plus uncollided flux 2re presented in
Table 1. An analytic so]ution6 as well as results for the NEE estimator
are also presented in Table 1. Since a is so small, it is difficult to
obtain random collisions within the radius of 0.1 cm where Equation (16)

is effective. The detector was deliberately moved to the vicinity of

a collision point in several repeated problems to demonstrate the effective-
ness of Equation (16). The very high flux from the NEE estimator for the
second case in Table 1 is such a result. The total number of "hits" within
the radius Rl is also given in Table 1.



N
- L]

REFERENCES

M. H. Kalos, Nucl. Sci. Eng., 16, 111 (1963).

H. J. Kalli and E. D, Cashwell, "Evaluation of Three Monte Carlo
Estimation Schemes for Flux at a Point", LA-6865-MS, LASL (1977).

H. A. Steinberg and M. H. Kalos, Nucl. Sci. Eng., 44, 406 (1971).
H. Iida and Y. Seki, Nucl. Sci. Tech. 17, 4 (1980).

G. I. Bell and S. Glasstone, "Nuclear Reactor Theory", Chapt 1,
p. 25, Van Nostrand Reinhold Company, Mew York (1970).

A. M. Weinberg and E. P. Wigner, "The Physical Theory of Neutron
Chain Reactors", Chapt. 8, p. 200, University of Chicago Press,

Chicago (1958).




TABLE 1. MONTE CARLD RESULTS FOR POINT SOURCE AND a = 0.1

*
o (cm) £, 61 £, Lo | Hits ¢ EXACT ¢ NEE ¢ NEED
.71064 .2 .8 .5 .5 40 0.17668 0.1707+1.1% .1704+1.1%
.71064 .2 .8 .2 .8 59 0.20878 2.5 x 109 .20793+1.46%
1.2 | .9 .1 I .9 23 0.10208 0.10016+1.97% 0.098966+1.56%
2.0 .1 .9 .1 .9 7 0.03699 0.03793+4.67% 0.03631+3.06%

* ¢ NEED is the estimator by Equations (16) and (17).




