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Abstract
Two dimensional lattice spin (chiral) models over (possibly
non-abelian) compact groups are formulated in terms of a gen-
eralized Pauli algebra. Such models over cyclic groups are
written in terms of the generalized Clifford algebra. An auto-
morphism of this algebra is shown to exist and to lead to the

duality transformation.
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It is known that the two-dimensional Ising model is very
closely related to the Clifford algebra [1,2]. In fact the
solubility of the Ising model is a consequence of this relation
f2]. A similar algebraic formalism is constructed for models
defined over more general groups [3]. This includes chiral models
over compact groups as well as Potts models [4]. The special
case of cyclic groups is interesting because they appear in strong
interaction physics [5]. 1In this case, the model can be form-
ulated in terms of a generalized Clifford algebra that has al-
ready been studied in the literature [6-11] in a different
context., The 't Hooft algebra [5] is a special case of this QGen-
eralized Clifford Algebra (G.C.A.).

My emphasis will be on, as Onsager said [1], '"the abstract
properties of relatively simple operators rather than their ex-
plicit representation in terms of unwieldy matrices."

The most general translation invariant and globally sym-

metric Hamiltonian for a two-dimensional lattice is
- -1 -1
H gj{fl(gijgi+l,j)+f2(gi"g'.,j+l)] (1)
Here, By is the "spin" or "field" variable at the lattice point

(1,j) and it belongs to a compact group G. f1 and f2 are real

functions on G satisfying

£(hgh™) = £(g) (2a)
£1g7h) = £(g) (2b)
The problem of finding the partition function

] '1-H
ZN f’i’j dgy ;e (3)

can be reduced to that of finding the largest eigenvalue of the
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matrix ﬁ defined by
~ -
<o gilfil ey mpmeee (] 15, Gy DA

The factor %T =8 has been absorbed into the definition
of f1 and f2‘ M is an operator in the space of square in-

tegrable functions on the group

N

G = GxG.'lG.

A a .
In order to express the transfer matrix M in a representation

invariant way, it is helpful to define following two sets of

operators
LK(h)|31°-gk~-8N> = |gl..hgk..gN> (5a)
B, ag (M 1818y 8y = Dog(Br ey -8y 8y (5b)

Thus, Lk(h) is the left-translation operator. Here Das(gk) is

the matrix representing gkeG in some faithful irreducible

(g

represéntation of G. Definc also the class function £y by the

condition

AT A
e = <g'|exp{-/dh L(h)f; (h)}|g> (6)

This function carn be explicitly computed by first expanding the
exponential in (6) to get
“£1(ge'h) = 4P
e -] =

1

Z;l*‘cfl(gg'- )

n=0
where * denotes convolution [12]. If we again expand fl and ?1

in terms of the character functions xr(g) we can get
£l(g) = - Lan I x.(g) (7)
1 ret r *r

Here,

-£,(8)
Irufdg e 1

Xy (8) (8)
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and § denotes the set of all irreducible representations of G.
Using (5) and (6) we get
~ A ._1
R “Efdhfl (h)Lk (h) '&fz (é‘k@}ﬁ'l)
M=e e (9)
The operators Qk(h) and ﬁk may'be thought of as being defined

by the following algebra:

Ly = pawhgl, (10a)
T (h Ty (hy) = Ty (nyh,) ©(10b)
Lmge, = by Kk (10¢)

D(h) is the matrix representing heG in some faithful irreducible
representation of G. This algebra reduces in the case G=2, to
the Pauli algebra, so we call it the generalized Pauli algebra
(G.P.A.)., The one-dimensional quantum Hamiltonian of a lattice

model on G is, then [3]

H = Jrdn flch)Lk(h)+Ef2c§k§;i1) (12)
In the special case G=Z, we recover the Ising model. If G=24,
the additive group of integers modulo d, we get the Potts

model, If 0<r<d is coprime to d, there is a one-dimensional

faithful representaticn of G,

D(*) (hymoxp ZLTR | g¢hed

If we call
Py = ik(l) (13a)
Q "~ & (13b)

we recover the algebra that has alroady been introduced for a

$imilar model in Ref,[13]. The transfer matrix becomes
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(14)

wher ] ©
where fi is the "dual" for f , defined by
fl
1 -f (r) 2u1r5
1 -
£!(s) = -2n)e
cl rz}( ) E (15)

Cleariy (fj)'=f;.
hdf we proceed analogously to the Ising model, we are led

to
to th%ZGeneralized Clifford Algebra. Define

rer-l = PPy P 4Q (16a)

2
These EZm " 1 PPl (160)
These satisfy the G.P.A. Ch [10]

F, 2rir

;dfﬁrvn e d rvru; >V (17a)

rda1; u,ve1.. 2N (17b)

lhis 31§{
AThis;glgebra was introduced by Yamazaki [6] and studied by
thA Oy Morris [7] and A. Ramakrishnan et.al. [8-11}. For d=2

isthi§ reduces to the Clifford algebra with 2N generators This
alps:.the famous relation of the Ising model to the Clifford
algpbr@ Note that
(‘.lk“i.}d " erPZk 1 (18a)
3 -1
ot W™l 2kl 2k (18b)
So that -
Meo 7 el -1 -1
S E S P S D & A R ¢ )
M=o - % 2k" 2k-1 o 2V 2k 2k+1 (19)
.in tnc ca kTS
the exponents in (19) are bilinear

v {In. the case of the Ising mudel,
¢ivin the Clifford elements, so that M can be represented by an

element of the group 0(2N). It is not known what the analogous
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Lie group is, for the general case.

1t is shown in [10] that the G.C.A. C%&r has only one
@g;educible representation, the one given in. (16). Matrices
representing Pk and Qk are given in [8] and [10].

In the limit of large N, the transformation

T (20)
is anihutomorphism of (23). Under this
v -1 -1 ‘

S ET T2k 1) LT axl 2500 (21)

Appliéd to the transfer matrix (19) we find that the free energy

of the system satisfies

TUR(E],E,) = FELLED (22)

so the map

(fl,fz) " (f',fi) must map critical points to critical
points. This is the famous duality transtformation for the model.
The self-dual case is of interest because it may be soluble
exactly [13].

It is not possible to define a self-dual model for a gen-
eral group G. This is because the dual of the function flz G+R
is a function on G. For a cyclic group of finite order, G8G
so the problem does not arise. In this case duality is an

automorphism of the algebra of Py and Q which can he implemented

by an equivalence transformation

k
-1 -1, -1 -1
DPkD °Qka+1’ DQkD alzo P, (23)
Note that D2 is the translation operator on the lattice.

Some other special cases may be of interest. If G=U(1l) and

fl(e)ffz(e)ﬂJcose




we recover the planar model, for which

HOREIIENO D (24)
h

I,(J) being the modified Bessel function of the &*" order. The

G.P.A. (10) reduces to the exponentiated version of the can-
onical commutation relations (Weyl algebra). Thus the '&2' in

(24) may be interpreted as the "momentum" of a particle moving

in a box at site 'k'. Pushing this interpretation further, we can

write
fe (P L (8 05)
e (25)

H=e
,whefe e(2)=-2n I, is a function defined on the set of integers.
It is the "kinetic energy'" of a particle of '"momentum" &. This
‘is the dual of the function f,.

For G=U(N) and

£ (U)=£,(U)=J{Tr U + Tr uh (26)

UeU(N), we recover the lattice chiral model with Wilson action.
The function f, can be calculated and is a combination of modified
Bessel functions.

Most of the general framework can be readily generalized to
the case where'.the "spin' belongs to a symmetric space like
s or cp™ 1. This will give the 0(n) o-model and the cpl
model respectively. It is clear that the statistical mechanical
problem considered here is very closely related to the theory of
random walks and quantum mechanics of a particle moving in the
space G. The G.P,A. is really the analogue of canonical com-

mutation velations for a particle moving in a space

curvature The duality transformation would have to be a can-
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onical transformation, but such a canonical transformation docs

not exist since the co-tangent space of a curved manifold is

not of the same structure as the manifold itself.
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