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Abstract

Two dimensional la t t ic e  spin ( c h i r a l )  models over (Possibly 

non-abelian) compact groups are formulated in terms of a gen­

eralized Pauli algebra. Such models over cyc l ic  groups are 

written in terms of the generalized C l i f f o r d  algebra. An auto­

morphism of this algebra is shown to exist and to lead to the 

duali ty transformation.



I t  is known that the two-dimensional Ising model is very 

closely related to the Cl i f ford  algebra [1 ,2 ] .  In fact the 

s o l u b i l i t y  of the Ising model is a consequence of this relat ion

[2] .  A similar algebraic formalism is constructed for models 

defined over more general groups [3 ] ,  This includes chi ral  models 

over compact groups as well as Potts models [4 ] .  The special 

case of cycl ic  groups is interesting because they appear in strong 

interaction physics [5 ] .  In this case, the model can be form­

ulated in terms of a generalized C l i f f o rd  algebra that has a l ­

ready been studied in the l i te ra tu re  [ 6 - 1 1 ] in a different 

context. The * t Hooft algebra [5] is a special case of this Gen­

eralized Cl i f ford  Algebra ( G . C . A . ) .

My emphasis w i l l  be on, as Onsager said [1 ] ,  "the abstract 

properties of r e la t iv e ly  simple operators rather than thei r  ex­

p l i c i t  representation in t^rms of unwieldy matrices."

The most general translation invariant and global ly  sym­

metric Hamiltonian for a two-dimensional l a t t i c e  is

Here, g .̂. is the "spin" or " f i e l d "  variable at the l a t t i c e  point 

( i , j )  and i t  belongs to a compact group G. f^ and f 2 are real 

functions on G satisfying

fChgh'1) ® f (g )  ( 2a)

f i g ' 1) * f (g )  ( 2b)

The problem of finding the par t i t ion  function

ZN 'I d8i j e ' H W

can be reduced to that of finding the largest eigenvalue of the
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A

<g{-  *gN>aexp- { J  > [ i V ( g j g j " 1) + f 2 ( g j g j +1) ] } (4)
J

The factor ^  ®B has been absorbed into the def ini t ion
A

of f^ and f 2 . M is an operator in the space of square in-  

tegrable functions on the group 

GN -  GxG.. .G.

A
In order to express the transfer matrix M in a representation 

invariant way, i t  is helpful  to define following two sets of 

operators

LK(h)|g1 . . g k . . g N> * |gr .hgk . . g N> (5a)

S k . a e ^ l S l - ' S k - ’ V  ■ Dc 8 ( 8 k J l 8 r - 8 k " 8 N:- C5b)

Thus, Lk (h) is the le f t - t r a n s l a t io n  operator. Here Dag C ) is 

the matrix representing g^eG in some faithful  i rreducible 

representation of G. Define also the class function f^ by the 

condition
' f i ( g g  ^  a

e ■ <g1 |exp{ -/dh L ( h ) f 1 ( h ) } |g> ( 6 )
This function can be e x p l i c i t l y  computed by f i r s t  expanding the

exponential in (6 ) to get

matrix M defined by

' f i  Cgg' ’ 1) “ t .  i A. .1

11“  0
where * denotes convolution [12].  I f  we again expand f^ and f^ 

in terms of the character functions xr (g) we can get

% ( 8 )  * ’ l ^ n I r ’ Xr (g) 
re G

Here,

I r "/dg e lC8 ) xr (g) ^
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and (3 denotes the sot of a l l  i r reducib le  representations of G. 

Using (5) and ( 6 ) we get

- p h f j o o y i o
M-e K e K (9)

The operators ^ ( h )  and g^ may be thought of as being defined 

by the following algebra:

t k ( h)'gk " DCh-1) ! ^  ( 1 0 a)

( 1 0 b)

^k( h )g k , -  gfc'1̂  ^ k ’ Cioc)

D(h) is the matrix representing heG in some fa i t hf ul  i r reducible 

representation of G. This algebra reduces in the case G*Z2 to 

the Pauli algebra, so we cal l  i t  the generalized Pauli algebra 

( G . P . A . ) ,  The one-dimensional quantum Hamiltonian of a lat t ic e  

model on G i s ,  then [3]

H -  £/dh f 1 ( h H k Ch>t |f 2 C M k * 1) <12>

In the special case G»Z2 we recover the Ising model. I f  G^Z^, 

the additive group of integers modulo d, we get the Potts 

model. I f  0<r<d is coprime to d, there is a one-dimensional 

fa i t hf ul  representation of G,

DC r ) (h)»exp llLijJi , 0«h«d 

I f  we cal l

Pk • Lk ( l )  (13a)

qk -  t k (13b)

we recover the algebra that has already been introduced for a 

similar  model in R e f , [13].  The transfer matrix becomes



wher M" 6 * f14)

where f£ is the "dual” for f  ̂ , defined by 

f l *fi  ( r )  2 i r ip-

c j A } i s )  m ' i n \e e (1 5 )

C l e a r y

to we proceed analogously to the Ising model, we are led

to ttye Generalized Cl i f f o rd  Algebra. Define

^2m- 1 " P1P2**,Pm-l^m (16a)
•)

These ŝ 511 * P1 ‘ ' * Pm - l Pm̂ m (16b)

These satisfy the G.P.A. C^M [10]
2 v i l

• c j / v -  e < \ , V  K>v (1 7a)

■Ihls  al^H* 1 ’ y ’ v = 1 ’ ’ -2N C1™ )

A.^i i^j^lgebra was introduced by Yamazaki [ 6 ] and studied by 

th4s°Tc^?:r r i s  anci A* Radakrishnan e t . a l .  [8 -11] .  For d-2

reduces to the Cl i f ford  algebra with 2N generators. This

aljieb£he famous relat ion of the Ising model to the Cl i fford

algpbr^. Note that

o " r 2kr 2k - l  (18a)

So t ) , . :  W r r 2kr 2k + 1 ( 18b^

So that . ■

M .  e ' J f i ( r 2 k r 2 k - l ) e "^ f 2 Cr2 k r 2 k n ) (1 „
i !> the  case  ;
i : <J,n. the. case of the I'sing model, the exponents in (19) are bi l inear  

c u  iiA,the C l i f f o r d  elements, so that M can be represented by an 

element of the group 0(2N).  I t  is not known what the analogous
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Lie group is ,  for the general case.

I t  is shown in [10] that the G.C.A. has only one

^.reducible representation, the one given in (16).  Matrices 

representing and Qk are given in [ 8 ] and [ 1 0 ] .

In the l i m i t  of large N, the transformation

, r -*-r +1 ( 2 0 )
u u+i

is an automorphism of (23).  Under this

:££( r 2 k r 2 L l > ~ j i f <r 2 kr 2 L l >  (21 )

Applied to the transfer matrix (19) we find that the free energy 

of the system satisfies

J 1 - F ( f x , f 2 )  -  F ( f ^ f { )  ( 2 2 )

so the map

( f 1 , f 2) (f£,f j , )  must map c r i t i c a l  points to c r i t i c a l

points.  This is the famous duali ty  transformation for the model. 

The self -dual  case is of interest because i t  may be soluble 

exactly [13],

I t  is not possible to define a self*dual model for a gen­

eral group G. This is because the dual of the function f ^ : O R  

is a function on G. For a cyc l ic  group of f in i t e  order,  S*G 

so the problem does not arise.  In this case duali ty  is an 

automorphism of the algebra of Pk and Qk , which can Se implemented 

by an equivalence transformation

“ V K v V  (23 )

Note that is the t ranslation operator on the l a t t i c e .

Some other special cases may be of interest.  I f  G“U(1) and

f l ( e ) » f 2 ( 6 ) » Jc os 0
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we recover the planar model, for which 
+ 00

?(0 ) - - I (243
A,

I ^ ( J )  being the modified Bessel function of the I  order. The 

G.P.A. (10) reduces to the exponentiated version of the can­

onical commutation relations (Weyl algebra) .  Thus the *5,* in 

(24) may be interpreted as the "momentum" of a part ic le  moving 

in a box at site *k 1. Pushing this interpretation further,  we can 

write
„  - i « c v  - f w w
M ■ e e k (25)

whejre e(£)*-£n 1  ̂ is a function defined on the set of integers.

I t  is the "kinetic  energy" of a part ic le  o f  "momentum" I .  This 

is the dual of the function f ^

For G“ U(N) and

f 1 ( U ) - f 2 ( U ) » J { T r  U + Tr  i f 1} (26)

UeU(N), we recover the l a t t i c e  chi ral  model with Wilson action.

The function f^ can be calculated and is a combination of modified 

Bessel functions.

Most of the general framework can be readily generalized to 

the case where’.the "spin" belongs to a symmetric space l ike 

g(n*l)  or cPn’ *. This w i l l  give the 0(n) a-model and the CPn * 

model respectively.  I t  is clear that the s t a t i s t i c a l  mechanical 

problem considered here is very closely related to the theory of 

random walks and quantum mechanics of a part ic le  moving in the 

space G. The G.P.A. is rea l l y  the analogue of canonical com­

mutation relations for a part ic le  moving in a space 

curvature The duali ty  transformation would have to be a can-
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onical  transformation, but such a canonical transformation does 

not exist  since the co-tangent space of a curved manifold is 

not of the same structure as the manifold i t s e l f .
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