

PPPL-1986

UC20-G

PPPL-1986

Dr. 1269

①
I-8454

SOME NOVEL FEATURES OF THE ORDINARY-MODE ELECTRON-
CYCLOTRON-RESONANCE HEATING OF TOKAMAK PLASMAS

By

V. Arunasalam, P.C. Efthimion, J.C. Hosea,
H. Hsuan, and G. Taylor

MARCH 1983

PLASMA
PHYSICS
LABORATORY

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

MASTER

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76-CBO-3073.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America.

Available from:

National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151

Price: Printed Copy \$: Microfiche \$3.50

<u>*PAGES</u>	<u>NTIS</u>	<u>Selling Price</u>	
1-25	\$5.00		
26-50	\$6.50		
51-75	\$8.00		
76-100	\$9.50		
101-125	\$11.00		
126-150	\$12.50		
151-175	\$14.00		
176-200	\$15.50		
201-225	\$17.00		
226-250	\$18.50		
251-275	\$20.00		
276-300	\$21.50		
301-325	\$23.00		
326-350	\$24.50		
351-375	\$26.00		
376-400	\$27.50		
401-425	\$29.00		
426-450	\$30.50		
451-475	\$32.00		
476-500	\$33.50		
500-525	\$35.00		
526-550	\$36.50		
551-575	\$38.00		
576-600	\$39.50		
			For documents over 600 pages, add \$1.50 for each additional 25 page increment.

PPPL--1986

DE83 008972

SOME NOVEL FEATURES OF THE ORDINARY-MODE ELECTRON-
CYCLOTRON RESONANCE HEATING OF TOKAMAK PLASMAS

V. Arunasalam, P.C. Efthimion, J.C. Hosea,
H. Hsuan, and G. Taylor

Princeton University, Plasma Physics Laboratory
Princeton, New Jersey 08544

ABSTRACT

It is shown that the finite k_{\parallel} linear theory of absorption predicts: first, that the Doppler effect splits the $k_{\parallel} = 0$ resonance into two closely spaced resonances instead of the usual Gaussian broadening; and second, that although the total absorption is due to the finite size of the electron Larmor orbits, it is mainly determined by T_{\parallel} and is only weakly dependent on T_{\perp} via cyclotron overstability type terms. Some consequences of these unique features on plasma heating and rf current drive are also examined.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

gcf

Recent success in producing high-power gyrotrons has dramatically raised the importance of electron-cyclotron resonance heating (ECRH) for tokamak research. In comparison with other supplementary heating schemes, ECRH has several major advantages: quasi-optical propagation allows for low-loss power transmission; simple antenna structures with small dimensions facilitate the engineering; penetration to the ECR zone is relatively independent of density, temperature, and conditions at the plasma edge; and, power deposition is localized near the ECR zone. The localized absorption property of ECRH permits local power deposition much higher than the ohmic value in tokamak plasmas, and hence offers a hitherto unattainable degree of control over the evolution of the electron temperature profile which may improve tokamak MHD behavior and confinement. Further applications of ECRH to tokamak problems include studies of electron energy transport, plasma initiation, enhancement of neutral beam heating, improvement of divertor action, steady-state rf current drive, etc.

In this paper we are primarily interested in discussing some of the novel and unique features of the ordinary (0) mode ECRH. We will show that the finite k_{\parallel} linear theory of 0-mode absorption predicts: first, that the Doppler effect splits the two-fold degenerate $k_{\parallel} = 0$ resonance into two closely spaced resonances instead of the usual Gaussian broadening; and second, that although the total absorption is due to the finite size of the electron Larmor orbits, it is mainly determined by T_{\parallel} and is only weakly dependent on T_{\perp} via cyclotron overstability type terms. Here \parallel and \perp refer to directions parallel and perpendicular, respectively, to the confining magnetic field $\vec{B} = B \hat{i}_z$. Finally, we will examine some of the consequences of these unique 0-mode absorption features on plasma heating, MHD behavior, and steady-state rf current drive in tokamaks.

After Fourier analysis in space and time, the Maxwell electromagnetic field equations yield, for plane waves of the form

$$\vec{E} = \vec{E}_0 \exp[i(\vec{k} \cdot \vec{r} - \omega t)] ,$$

$$\vec{k} \times (\vec{k} \times \vec{E}) + (\omega^2/c^2) \vec{D} \cdot \vec{E} = 0 . \quad (1)$$

Here $\vec{D}(\omega, \vec{k})$ is the hot plasma dielectric tensor.¹⁻² The condition for a nontrivial solution of Eq. (1) is obtained by setting the determinant of the coefficient of E_x , E_y , and E_z equal to zero. Thus knowing all the nine dielectric tensor elements D_{ij} , $i, j = x, y$, and z , one can get a closed form expression for the allowed wave number k as a function of ω . Then from the imaginary part of k (i.e., $\text{Im } k$), one obtains the optical depth τ for the mode of propagation under study.

We now consider the case of O-mode radiation ($\vec{E} \parallel \vec{B}$) of frequency $\omega = \omega_c = (eB/mc)$ propagating through a low-density (n) plasma [$\omega_p = (4\pi ne^2/m)^{1/2} < \omega_c$] nearly perpendicular to \vec{B} (i.e., $k_\perp > k_\parallel$). Then Eq. (1) becomes

$$[-(c^2 k_\perp^2 / \omega^2) + D_{zz}] E_z = 0 , \quad (2)$$

which gives the dispersion relation

$$(c^2 k_{\perp}^2 / \omega^2) \approx D_{zz} . \quad (3)$$

Using the Maxwell-Boltzmann zero-order distribution, and taking the large argument expansion for the real part of the dispersion function,¹⁻² the dielectric tensor element D_{zz} may be written

$$D_{zz} = D_{zz}^{(c)} + \Delta_{zz} = [1 + \frac{\omega^2}{p} \chi'_0] + \Delta_{zz} , \quad (4)$$

where

$$\begin{aligned} \Delta_{zz} = \lambda \frac{\omega^2}{p} & \left(-\chi'_0 + \left[\frac{\omega - \omega_c}{2\omega} \right] \left[1 - \frac{\omega_c}{\omega} \left\{ 1 - \frac{T_1}{T_{\perp}} \right\} \right] \chi'_1 \right. \\ & \left. + \left[\frac{\omega + \omega_c}{2\omega} \right] \left[1 + \frac{\omega_c}{\omega} \left\{ 1 - \frac{T_1}{T_{\perp}} \right\} \right] \chi'_1 \right) . \end{aligned} \quad (5)$$

$$\chi'_l(\omega) = P \frac{1}{\omega + i\omega_c} - \frac{i\pi^{1/2}}{|k_{\perp}|(2\kappa T_{\perp}/m)^{1/2}} \exp \left[-\frac{m}{2\kappa T_{\perp}} \left(\frac{\omega + i\omega_c}{k_{\perp}} \right)^2 \right] . \quad (6)$$

The prime denotes differentiation with respect to the argument ω , $\lambda = (k_{\perp}^2 \kappa T_{\perp} / \omega_c^2 m)$, and P denotes the principal value. In Eq. (4), $D_{zz}^{(c)}$ is the cold plasma dielectric tensor element appropriate to the retarded boundary

conditions, and Δ_{zz} is the resonant hot-plasma contribution. From Eq. (6), it is relatively easy to see that in the limit $|k_y| \rightarrow 0$, $\text{Im } \chi_g(\omega) \rightarrow -\pi\delta(\omega + i\omega_c)$, and

$$\text{Im}[(\omega + i\omega_c) \chi_g'(\omega)] \rightarrow -\pi(\omega + i\omega_c) \delta'(\omega + i\omega_c) = \pi \delta(\omega + i\omega_c)$$

since the Dirac δ -function satisfies the relation $x \delta'(x) = -\delta(x)$. Thus, the real and imaginary parts of D_{zz} are, of course, related to each other through the well-known Kramers-Kronig relations³ as a consequence of the laws of causality (i.e., the effect should not precede the cause).

From Eqs. (3) to (6), writing $k_{\perp} = \text{Re } k_{\perp} + i \text{Im } k_{\perp}$ and assuming that $\text{Re } k_{\perp} > \text{Im } k_{\perp}$, we obtain

$$\left(\frac{c \text{Re } k_{\perp}}{\omega} \right)^2 = \text{Re } D_{zz} = 1 - \frac{\omega_p^2}{\omega^2} \left(1 + p \frac{k_{\perp}^2 \kappa T_{\perp}/m}{\omega^2 - \omega_c^2} \right) = 1 - \frac{\omega_p^2}{\omega^2} , \quad (7)$$

and

$$2\text{Im } k_{\perp} = \left(\frac{\omega^2 \text{Im } D_{zz}}{c^2 \text{Re } k_{\perp}} \right) = \left(1 - \frac{\omega_p^2}{\omega^2} \right)^{1/2} \left(\frac{\kappa T_{\perp} \omega^2 \omega_p^2}{2mc^3 \omega_c^2} \right) \left(\left[1 - \frac{\omega_c}{\omega} \left\{ 1 - \frac{T_{\perp}}{T_{\perp}} \right\} \right] (\omega - \omega_c) \text{Im } \chi_{-1}' + \left[1 + \frac{\omega_c}{\omega} \left\{ 1 - \frac{T_{\perp}}{T_{\perp}} \right\} \right] (\omega + \omega_c) \text{Im } \chi_1' \right) . \quad (8)$$

From Eq. (6), we get

$$\text{Im } \chi'_L(\omega) = \frac{2\pi^{1/2}(\omega + i\omega_C)}{|k_{\perp}|^2 (2kT/m)^{3/2}} \exp \left[-\frac{m}{2kT} \left(\frac{\omega + i\omega_C}{k_{\perp}} \right)^2 \right] . \quad (9)$$

It is interesting and physically instructive to note that in the limit $|k_{\perp}| \rightarrow 0$, Eq. (8) becomes

$$2\text{Im } k_{\perp} \approx \left(1 - \frac{\omega_p^2}{\omega^2} \right)^{1/2} \left(\frac{\pi kT}{2mc^3} \frac{\omega^2 \omega_p^2}{\omega_C^2} \right) [\delta(\omega - \omega_C) + \delta(\omega + \omega_C)] . \quad (10)$$

The absorption coefficient per unit path length $\alpha = 2 \text{Im } k \approx 2 \text{Im } k_{\perp}$ for $k_{\perp} \gg k_{\parallel}$. Thus from Eqs. (8) and (9), it is seen that for finite k_{\parallel} there are absorption resonances having maximum values at $|\omega| = |\omega_C| \pm k_{\parallel} (2kT/m)^{1/2}$ and that the absorption approaches zero as $\omega \rightarrow \pm \omega_C$ and also for $|\omega \pm \omega_C| \rightarrow \infty$. That is, for finite k_{\parallel} the Doppler effect splits the two-fold degenerate $k_{\perp} = 0$ resonance of Eq. (10) into two closely spaced resonances of Eq. (8) instead of the usually expected Gaussian broadening. This splitting is illustrated in Fig. 1 for three different angles of propagation. The frequency integral of these curves is independent of θ and yields a value of τ of 3.8 and is the same value obtained from Eq. (10) with $R=130$ cm. It is also seen from Eqs. (8) to (10) that although this absorption

is due to the finite size of the electron Larmor orbits [i.e., note the appearance of λ in Eq. (5)], it is mainly determined by T_{\parallel} [see Eq. (10)] and is only weakly dependent on T_{\perp} via cyclotron overstability type terms [see Eq. (8)].

The optical depth τ is given by

$$\tau = \int 2 \operatorname{Im} k_{\perp} |dR| , \quad (11)$$

and the power P_a absorbed on a single transit of the absorption region is $P_a \approx P_0 [1 - \exp(-\tau)]$, where P_0 is the incident microwave power. If the wall reflection coefficient r is large, then the fractional absorbed power $F \approx [1 - \exp(-\tau)]/[1 - r \exp(-\tau)]$, and multiple transits will enhance the ECR absorption considerably. For tokamak plasmas the confining magnetic field $B \propto R^{-1}$, where R is the major radius of the torus, and $dR = - (R/\omega_c) d\omega_c$. Then from Eqs. (10) and (11), for near perpendicular propagation of the ordinary wave through the toroidal plasma, we get

$$\tau = (1 - \omega_p^2/\omega^2)^{1/2} \left(\pi R \omega_p^2 k T_{\parallel} / 2 \omega m c^3 \right) . \quad (12)$$

This result of Eq. (12) agrees with those of Fidone *et al.*,⁴ and Antonson and Manheimer,⁵ for O-mode with $\omega \approx \omega_c$ when the plasma has no pressure anisotropy (i.e., when $T_{\perp} = T_{\parallel} = T$), and is also valid for anisotropic plasma when $k_{\parallel} \approx 0$. Equation (12) was verified in a wave propagation experiment in

the PLT.⁶ It is seen from Eq. (8) that the cyclotron overstability terms [$1 + (w_c/\omega) \{1 - (T_\perp/T_\parallel)\}$] tends to one as $T_\perp \approx T_\parallel$. Hence the result of Eq. (12) is valid also for an isotropic plasma when k_\parallel is small but finite.

For $k_\parallel = 0$, the wave absorption is localized near the resonance zone at $R = R_c$ where $\omega = \omega_c$. However, when $k_\parallel \neq 0$, there exist two closely spaced resonant layers centered at R_1 and R_2 , respectively, such that $\omega = \omega_c(R_1) + k_\parallel(2kT_\perp/m)^{1/2}$ and $\omega = \omega_c(R_2) - k_\parallel(2kT_\perp/m)^{1/2}$, and there is no absorption at $R_c = (R_1 + R_2)/2$. Thus, $|R_1 - R_2| = R_c [2k_\parallel(2kT_\perp/m)^{1/2}/\omega_c]$ and is linearly proportional to k_\parallel . This double resonant layer might prove beneficial in suppressing plasma MHD instabilities with certain wavelengths; e.g., for $|R_1 - R_2| = p\lambda$ or $(p + 1/2)\lambda$ where p is an integer. Further, in the resonant layer R_1 the wave energy and momentum are transferred to co-moving electrons (i.e., to electrons with z -velocities v_z which are parallel to $\hat{B} = B \hat{i}_z$); while in the resonant layer R_2 the wave energy and momentum are transferred to counter-moving electrons (i.e., to electrons with v_z which are antiparallel to \hat{B}). This means that in ECR current drive experiments, the induced steady-state current will flow in opposite directions on either side of R_c (i.e., the current at R_1 will be antiparallel to the current at R_2), and there is no rf-induced current at R_c . Thus it appears with finite k_\parallel O-mode ECRH one can control not only the electron pressure profile but also the current profile which may improve tokamak MHD behavior and confinement.

When $T_\perp \neq T_\parallel$ it is extremely difficult to obtain an analytic expression for τ from Eqs. (8) and (11). However, since the dominant absorption occurs only near the resonant layers R_1 and R_2 , one can show that for the R_1 layer

$$\tau(R_1) \approx (\tau/2) [1 + (k_\parallel/\omega_c) (2kT_\perp/m)^{1/2} \{(T_\perp/T_\parallel) - 1\}] .$$

and for the R_2 layer

$$\tau(R_2) \approx (\tau/2) [1 - (k_{\perp}/\omega_c) (2kT_{\parallel}/m)^{1/2} \{ (T_{\perp}/T_{\parallel}) - 1 \}] .$$

Thus, if the first absorption layer is optically thick [i.e., $\tau(R_1)$ or $R_2 \gg 2$], the wave energy never reaches the second layer. In interpreting future ECRH experiments one must bear this point in mind.

The theory upon which O-mode ECRH experiments in toroidal plasmas are currently based is the linear theory for hot plasmas. For $T_{\perp} = T_{\parallel}$, it is shown elsewhere⁴ that the result of Eq. (12) is unaltered even if one takes account of the broadening due to the relativistic mass variation when $k_{\perp} \neq 0$. Since the relativistic effect broadens the resonance only towards lower values of ω_c , the Doppler splitting will always occur even for small k_{\perp} . But, when

$$(k_{\perp}/k) \leq [k(2T_{\perp} + T_{\parallel})]/[3(mc^2)^{1/2} (2kT_{\parallel})^{1/2}] ,$$

$\tau(R_1)$ will differ significantly from $\tau(R_2)$ keeping $\tau(R_1) + \tau(R_2) = \tau$. We have not taken this effect into account since the gross features presented here are always there even for very small k_{\perp} . For very small k_{\perp} one must take account of the relativistic broadening in evaluating $\tau(R_1)$ and $\tau(R_2)$. In this paper we have examined the results of a finite k_{\perp} linear theory as a first step toward prescribing the conditions needed for efficient application

of ECRH in tokamak plasmas. However, it should be noted that the quasilinear and nonlinear theories must be developed in conjunction with experiments to determine fully the effectiveness of ECR for the heating regimes of interest and for steady-state rf current drive in tokamaks.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, Contract No. DE-AC02-76-CHO-3073. We thank K. Bol, T.K. Chu, I. Fidone, R.W. Motley, T.H. Stix, and King-Lap Wong for useful comments.

REFERENCES

¹T.H. Stix, The Theory of Plasma Waves, (McGraw-Hill, New York, 1962).

²G. Bekefi, Radiation Processes in Plasmas, (John Wiley & Sons, Inc., New York, 1966).

³C. Kittel, Elementary Statistical Physics, (John Wiley & Sons, Inc., New York, 1958); N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields, English translation by G.M. Volkoff (Interscience Publishers, Inc., New York, 1959), Sec. 46.2.

⁴I. Fidone, G. Gravata, G. Ramponi, and R.L. Meyer, Phys. Fluids 21, 645 (1978).

⁵T.M. Antonson and W. Manheimer, Phys. Fluids 21, 2295 (1978).

⁶P.C. Efthimion, V. Arunasalam, and J.C. Hosea, Phys. Rev. Lett. 44, 396 (1980).

FIGURE CAPTIONS

FIG. 1 Plots of $2 \operatorname{Im} k_{\perp}$ of Eq. (8) as a function of ω/ω_0 for three different angles of propagation: _____ is for $\theta \approx 0.5^\circ$, _____ for $\theta \approx 2^\circ$, and _____ for $\theta = 10.0^\circ$, where $(\pi/2 - \theta)$ is the angle between \vec{k} and \vec{B} . Conditions are $n = 3 \times 10^{13} \text{ cm}^{-3}$, $T_{\perp} = 3 \text{ keV}$, $T_{\parallel} = 2 \text{ keV}$, and $(\omega_0/2\pi) = 9.0 \times 10^{10} \text{ cps}$. The frequency integral of these curves is independent of θ and yields a value of τ of 3.8 and is the same as the value obtained from Eq. (10) with $R = 130 \text{ cm}$.

83X0068

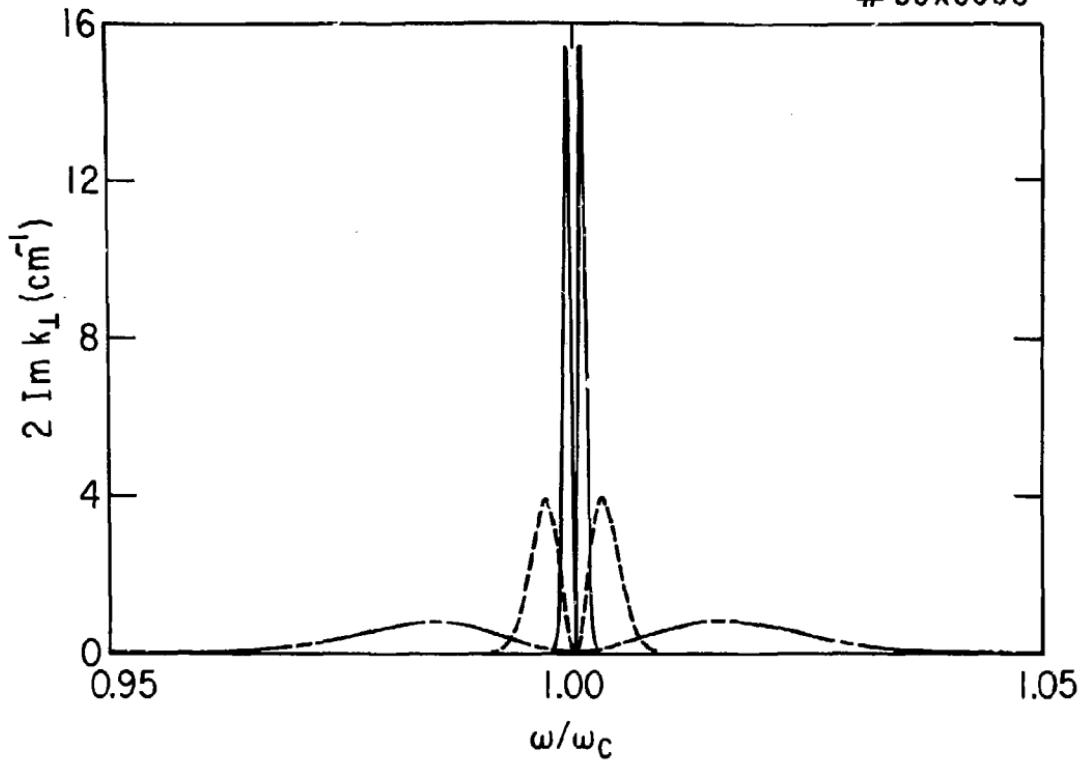


Fig. 1

EXTERNAL DISTRIBUTION IN ADDITION TO TIC UC-20

Plasma Res Lab, Austr Nat'l Univ, AUSTRALIA
Dr. Frank J. Padoin, Univ of Wollongong, AUSTRALIA
Prof. I.R. Jones, Flinders Univ., AUSTRALIA
Prof. M.H. Brannan, Univ Sydney, AUSTRALIA
Prof. F. Cap, Inst Theo Phys, AUSTRIA
Prof. Frank Verhaest, Inst theoretische, BELGIUM
Dr. D. Pelumbo, Dg XII Fusion Prog, BELGIUM
Ecole Royale Militaire, Lab de Phys Plasmas, BELGIUM
Dr. P.H. Sakakura, Univ Estadual, BRAZIL
Dr. C.R. James, Univ of Alberta, CANADA
Prof. J. Teichmann, Univ of Montreal, CANADA
Dr. H.M. Skarsgard, Univ of Saskatchewan, CANADA
Prof. S.R. Greenlysan, University of Calgary, CANADA
Prof. Tudor W. Johnston, INRS-Energie, CANADA
Dr. Hannes Bernard, Univ British Columbia, CANADA
Dr. M.P. Bachynski, MPB Technologies, Inc., CANADA
Zhangwu Li, SW Inst Physics, CHINA
Library, Tsing Hua University, CHINA
Librarian, Institute of Physics, CHINA
Inst Plasma Phys, SW Inst Physics, CHINA
Dr. Peter Lukac, Komenskoho Univ, CZECHOSLOVAKIA
The Librarian, Culham Laboratory, ENGLAND
Prof. Schatzmann, Observatoire de Nice, FRANCE
J. Radet, CEN-BPC, FRANCE
AM Dupas Library, AM Dupas Library, FRANCE
Dr. Tom Muat, Academy Bibliographic, HONG KONG
Preprint Library, Cent Res Inst Phys, HUNGARY
Dr. A.K. Sunderam, Physical Research Lab, INDIA
Dr. S.K. Trehan, Panjab University, INDIA
Dr. Indra, Mohan Lal Das, Banaras Hindu Univ, INDIA
Dr. L.K. Chaudhury, South Gujarat Univ, INDIA
Dr. R.K. Chhajlani, Var Ruchi Marg, INDIA
B. Buti, Physical Research Lab, INDIA
Dr. Phillip Rosenau, Israel Inst Tech, ISRAEL
Prof. S. Cuperman, Tel Aviv University, ISRAEL
Prof. G. Rostegnoli, Univ Di Padova, ITALY
Librarian, Istit Cnr Theo Phys, ITALY
Miss Clelia De Palo, Assoc EURATOM-CNEN, ITALY
Biblioteca, del CNR EURATOM, ITALY
Dr. H. Yamato, Toshiba Res & Dev, JAPAN
Prof. M. Yoshikawa, JAERI, Tokai Res Est, JAPAN
Prof. T. Uchida, University o. Tokyo, JAPAN
Research Info Center, Nagoya University, JAPAN
Prof. Kyoji Nishikawa, Univ of Hiroshima, JAPAN
Sineru Mori, JAERI, JAPAN
Library, Kyoto University, JAPAN
Prof. Ichiro Kawakami, Nihon Univ, JAPAN
Prof. Satoshi Itoh, Kyushu University, JAPAN
Tech Info Division, Korea Atomic Energy, KOREA
Dr. R. England, Ciudad Universitaria, MEXICO
Bibliothek, Fom-Inst Voor Plasma, NETHERLANDS
Prof. B.S. Liley, University of Waikato, NEW ZEALAND
Dr. Suresh C. Sharma, Univ of Calabar, NIGERIA
Prof. J.A.C. Cetra, Inst Superior Tech, PORTUGAL
Dr. Octavian Petrus, ALI CUZA University, ROMANIA
Dr. R. Jones, Nat'l Univ Singapore, SINGAPORE
Prof. M.A. Hellberg, University of Natal, SO AFRICA
Dr. Johan de Villiers, Atomic Energy Bd, SO AFRICA
Dr. J.A. Tegla, JEN, SPAIN
Prof. Hans Wilhelmsson, Chalmers Univ Tech, SWEDEN
Dr. Lennart Stenflo, University of UMEA, SWEDEN
Library, Royal Inst Tech, SWEDEN
Dr. Erik T. Karlsson, Uppsala Universitet, SWEDEN
Centre de Recherches, Ecole Polytech Fed, SWITZERLAND
Dr. W.L. Waisan, Nat'l Bur Stand, USA
Dr. W.M. Stacey, Georg Inst Tech, USA
Dr. S.T. Wu, Univ Alabama, USA
Mr. Norman L. Dleson, Univ S Florida, USA
Dr. Benjamin Ma, Iowa State Univ, USA
Magne Kristiansen, Texas Tech Univ, USA
Dr. Raymond Askew, Auburn Univ, USA
Dr. V.T. Tolok, Kharkov Phys Tech Ins, USSR
Dr. D.O. Ryutov, Siberian Acad Sci, USSR
Dr. M.S. Rablnovich, Lebedev Physical Inst, USSR
Dr. G.A. Ellseev, Kurchatov Institute, USSR
Dr. V.A. Stukhikh, Inst Electro-Physical, USSR
Prof. T.J. Boyd, Univ College N Wales, WALES
Dr. K. Schindler, Ruhr Universitat, W. GERMANY
Nuclear Res Estab, Jülich Ltd, W. GERMANY
Librarian, Max-Planck Institut, W. GERMANY
Dr. H.J. Kaeppler, University Stuttgart, W. GERMANY
Bibliothek, Inst Plasmaforschung, W. GERMANY