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ABSTRACT
It is shown that the finite kl linear theory of absorption predicts:
first, that the Doppler effect splits the k' = 0 resonance into two closely
spaced resonances instead of the usual Gaussian broadening; and secaond, that
although the total absorption is due to the finite size of the electron Larmor
orbits, it is mainly determined by 'I'" and is only weakly dependent on Tl via

cyclotron overstability type terms. Some consequences of these unique

features on plasma heating and rf current drive are also examined.
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Recent success in producing high-power gyrotrons has dramatically raised
the importance of electron~cyclotron resonance heating (ECRH) for tokamak
research. In comparison with other supplementary heating schemes, ECRH has
several major advantages: quasi-optical propagation allows for low-loss power
transmission; simple antenna structures with small dimensions facilitate the
engineering; penetration to the ECR zone is relatively independent of density,
temperature, and conditions at the plasma edge; and, power deposition is
localized near the ECR zone. The localized absorption property of ECRH
permits local power deposition much higher than the ohmic value in tokamak
plasmas, and hence offers a hitherto unattainable degree of control over the
evolution of the electron temperature profile which may improve tokamak MHP
behavior and confinement. Further applications of ECRH to tokamak problems
include studies of electron energy transport, plasma initiation, enhancement
of neutral beam heating, improvement of divertor action, steady-state rf
current drive, etc.

In this paper we are primarily interested in discussing some of the novel
and unique features of the ordinary (0) mode ECRH. We will show that the
finite k' linear theory of O-mode absorption predicts: first, that the Doppler
effect splits the two-fold degenerate k“ = o resonance into two closely spaced
resonances instead of the vsuyal Gaussiin broadening; and second, that although
the total absorption is due to the finite size af the electron Larmer orbits,

it is mainly determined by T| and is only weakly dependent on T, via cyclotron

1
overstability type terms. Here 1| and . refer to directions parallel and

-

perpendicular, respectively, %to <+hz confining magnetic field E = B iz.
Finally, we will examine some of the consequences of these unigue O-mode
abgscrption features on plasma heating, MHD behavior, and gteady-state rf

current drive in tockamaks.
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After Fourler anaiysis in space and time, the Maxwell electrowagnetic

field equations yield, for plane waves of the form

E = Eo exp[i(l? g uxt]] ’

Ex (KxB) + (2rc) D=0 . (0

Here D (w,k) is the hot plasma dielectric tensor.' 2 The condition for a
nontrivial solution of Eg. (1) is obtained by setting the determinant of the
coefficient of ) Ey, and E, equal to zero. Thus knowing all the nige
dielectric tensor elements U:Lj’ i, J = x, ¥y, and 2, one can get a closed form
expression for the allowed wave number k as a function of w. Then from the
imaginary part of k (i.e., Im k}, one obtains the optical dep-h T for the mode
of propagation under study.

We now congider the case of O=pcde radiation (EIIE ) of frequency
W=~ w, = (eB/mc} propagating through a low-density (n) plasama “"p =

M'lmezlm)w2 < mc] nearly perpendicular to E (L.e., kJ. > k'). Then Eq. (1)

becomes

[-(*k 2/é?) + D ] €, = 0, (2)

which gives the dispersion relation




22,24
(ckl/m) D,, * {3

Using the Maxwell-Soltzmann zero-order distribution, and taking the large
-2

argument expansion for the real part of the dispersion function, the
dielectric tensor element D, may be written
L ptc) _ 2
Dz =Pz * 4, = [1+ “p xo] ta, (4)
where
2 . [ T
Azz=kwp (-xo+[ S —] [1-‘—{1—5‘—-;A]] |1
wt uc u’c Tl
— - —— L]
s b=V bheg i SRIERE ts)

. 1/2 w+ fuw 2
= 1 -7 __m c
XQ(W) =P T 72 exp [ 2 ( % ") ] .

R PRIPE WL

The prime denotes dJdifferentiation with respect to the argument w, A =
(ki~ x‘rl/mim), and P denotes the principal value. In Bg. (2}, D;‘z’)is the cold

plasma dielectric tensor element appropriate to the ratarded boundary



conditiong, and Azz is the resonant hot-plasma contribution. From Eq. {6), it
is relatively easy to see that in the limit Ik,‘l +0, Im xplw) + - né{w +

Emc), and

Im{(w + lmc) xz'(m)] + - n(w + l"E) §' (w+ luE) =7 8(w + 1mc) .

gince the Dirac S-function satisfies the relation x §'(x) = - &(x). Thus, the
real and imaginary parts of D,, are, of course, related to each other through

3 as a consequence of the laws of

the well=known XKramers-Xronig relations
causality (i.e., the effect should not precede the cause).
From Egs. (3) to (6), writing kl = Re kl + i Im kl and assuming that

Re k, > Im k we obtain

1 I

(7)

§4 c
TN

2 2
S_Ef_ié z = Re D =1+~ _:E 1+pP _t%_fzfgn w1 -
zz w we - (llc

and

u:c TI mc TI
[1 v {1 -T_L H otw - w,) Im xl, + (1 +T{1 -,I—,—l}] {w+ w }m x] .

(8)



From Eg. (6), we get

21:1/2(w+ R ) wt R 2
Im x% (w) = < exp |- =D (--——'g - (9)
2 lkllxzn (2)(1"/m)3/2 2T\ K, [

It is interesting and physically instructive to note that in the 1limit

Ikll » 0, Eg. (8) becomes

2 1/2
[~ T w
2m k, ~ (1~ —B- [8ly - w) + 6w+ w)] -
1 Al 3 2 (+ (o]
me
<
(10)
The absorption coefficient per unit path length g = 2 Imk = 2 Im kl

for k >> kﬂ- Thus from Eqs. (8) and (9), it is seen that for finite k" there

are absorption resonances having maximum values at | wl lmcl t

1
kn {2«T /m) /2 and that the absorption approaches zero as y + * w, and also

for |y ¢ wci + o, That is, for finite kn the Doppler effect splits the two-
fold degenerate X = 0 resonance of Eg. (10) into two closely spaced
regonances ©f Eq. [(8) instead of the usually expected Gaussian broadening.
This splitting is illustrated in Fig:. 1 {for three different angles of
propagation. The frequency integral of these curves is independent of § and

yvields a value of ¢ of 3.8 and is the same value obtained from Bg. (10) with

k=130 cm. 1t 1s also seen from Eqs. (8) to {(10) that although this absorption



is due to the finite size of the electron Larmor orbits [i.e., note the
appearance of A in Eg. (5)], it i3 mainly determined by T, [see BEg. (10)) and
is only weakly dependent on T 1 via cyclotron overstability type terms [see Eq.
(B8}].

The optical depth T is given by

'r=f21mkl|dR|, (11)

and the power Py absorbed on a single tramsit of the abscorption region is
Py, * Py [1 - exp{~1}], where B, is the incident microwave power. If the wall
reflection coefficient r is large, then the fractional absorbed power F [t -
exp(=-T)]/{1 - r exp (-1}], and multiple transits will enhance the ECR
ahsorption considerably. For tokamak plasmas the confining magnetic field B =
R", where R is the major radius of the torus, and dR = = (R/wc)duc- Then

from Egs. (10) and (11), for near perpendicular propagation of the ordinary

wave through the toroidal plasma, we get

= (1~ m;/mz)'/z (mm;wrl/zm me®) . t12)

This result of Egq. (12) agrees with those of Fidone _ei_a_]:.,‘ and Antonson and
Hanheiner,s for O-mode with w = w, when the plasma has no pressure anlstropy

{i.e., when T.I. = 'rl = T), and 1is also wvalid for anisotropic plasma

when k' » 0 « BEguation (12) was verified in a wave propagation experiment in



the PLT.® It is seen from Eq. (8) that the cyclotron overstability terms [1 t
(w /@) {1 - (T /7)) h tends to one as T, ~ T,. Hence the result of Eq. (12)
is valid also for an isotropic plasma when kl is small but finite.

For kl = 0, the wave absorption is localized near the rescnance zone at
R~ Rc where o = .. However, when k' # 0, there exist two closely spaced
resonant layers centered at R, and R,, raspectively, such that w = u)c['R,,) +

2
/ , and there 1is no absorption at

1/2

ke /m)V2 and w = Ry - k(2 ym’

R, = (Ry + Ry)/2. Thus, IRy - Rpt = R, 12k 12T /m)

. /wc] and is linearly

proportional to k i This double resonant layer might prove beneficial in
suppressing plasma MHD ingtabilities with certaln wavelengths; e.g., for IR1 -
Rz' = pAor (p + 1/2)\ where p is an integer. Further, In the resonant layer
Ry the wave energy and momentum are transferred to co-moving electrons (i.e.,
to electrons with z-velocities v, which are parallel to B=8 iz): while in
the resonant layer Rz the wave energy and momentum are transferred to counter-—
moving electrons (i.e., to electrons with v, which are antiparallel to 3).
This wmeans that in ECR current drive experlments, the induced ateady-state
current will flow in opposite directions on either side of R, (i.e., the
current at R.l will be antiparallel to the current at Rz), and there is no

rf-induced current at R,. Thus it appears with finite k, O-mode ECRH one can

1
control not only the electron pressure profile but also the current profile
which may improve tokamak MHD behavior and confinement.

When T 1 # T, it 13 extremely difficult to obtain an analytic expression

for 1T from Egs. (8) and (11). However, since the dominant absorption occura

only near the resonant layers R4y and Ry, one can show that for the Ry layer

12
R v (/) [1+ ) zergm)? e rp - 1],



and for the Ry layer

o - /2 -
UR,) = (1/2) [1 (k /) (26T /m) {(Tl/TI) 1}] . )

Thus, if the first absorption layer is optically thick [i.e., T(Ry or RZ) >>
2], the wave energy never reaches the second layer. 1In interpreting future
ECRH experiments one must bear this point in mind.

The theory upon which O-mode ECRH experiments in toroidal plasmas are
currently based is the linear theory for hot plasmas. For TJ_ = TI' it is
shown elsewhere4 that the result of Eg. (12) is unaltered even if one takes
account of the broadening due to the relativistic mass variation
when kl # 0. Since the relativistic effect broadens the resonance only
towards lower values of War the Doppler splitting will always occur even for

small klo But, when

(k k) € (k2 + T1/13tme®) V2 (2exp VP,
T(Rq} will differ amignificantly from T(Ry) keeping T(Ry) + T (Ry)} = 7. We
have not taken this effect into account since the gross features presented
here are always there even for very small kl + For very small ku one must
take account of the relativistic broadening in evaluating t(Ry} and T(R,). In
this paper we have examined the results of a finite X, linear theory as a

firast step toward prescribing the conditions needed for efficient application



of ECRH in tokamak plaamas. Houev‘(er, it should be noted that the quasilinear
and nonlinear theories must be developed in conjunction with expoerimente to
determine fully the effectiveness of ECR for the heating regimes of interest

and for steady-state rf current drive in tokamaks.
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FIG.

1

1

FIGURE CAPTIONS

Plots of 2 Im k,6 of Eq. (8) as a function of m/(qc for three

different angles of propagation: is for @ = 0.5°, _ _ for g =

2°, and _ for 6 = 10.0°, where (w2 - @) is the angle

petween K and B . Conditions are n = 3 x 10V en3, T.L =
10

3 kev, T" = Z keV, and (/27 = 9.0 x 1D cps. The Erequency
integral of these curves is independent of 9 and yields a value of ¢
of 3.8 and is the same as the value cobtained from Bg. (10) with R =

130 cm.
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