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- ABSTRACT

The following is a summary of work carried out at the Fusion
Engineering Design Center at Oak Ridge in thé area of equilibrium field
(EF) " coil design for the International Tokamak Reactor (INTOR).

Methods are presented for reducing ampere-turn requirements in the EF

" coil system. It is shown that coil currents in an EF coil system

external to the toroidal field coils can be substantially reduced by
relaxing the triangularity of a D-shaped plasma. Further reductioﬁs
are reélized through a hybrid EF coil system using both internal an&
external coils. Equilibrium field coils fo; a poloidally asymmetric,
single-null INTOR configuration are presented. It is shown that the
shape of field lines 1in the plasma scrapeoff region and divertdr
channel improves as trilangularity 1is reduced, but it does so at the

possible expense of achievable stable beta values.
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1. INTRODUCTION

The equilibrium . field (EF) coil system 1in a tokamak device
provides fhe necessary vertical field to position the plasma and to
maintain magnetohydrodynamic (MHD) equilibrium. An important
requirement of the International Tokamak Reactor (INTOR) EF coil system
is to shape the plasma cross section such that a poloidal separatrix is
established and its position maintained relative to a divertor channel.

1-3 that EF coils external to the toroidal field coils

It has been shown
may be. found which restrict the movemeant of the null point to less than
10 cm as beta increases from B = 0.5% (i.e., prior to heating) to
B > 5.0% (burn) . Major engineering problems, however, could be_
associated with such coil systems. It 1is well known that ampere-tufn
requirements increase rapidly as colls are moved further from the
plasma. Making these coils superconducting would significantly reduce
power requirements, but the size and cost of the poloidal field system
may be prohibitive. Further problems caused by large coil currents are
the effects of changing poloidal fields at the toroidal field (TF)
coils and the large out-of-plane forces on the TF coiis created by
poloidal fields interacting with the TF coil currents.

The INTOR design wunder consideration at the Fusion Engineering
Design Center (FEDC) in Oak Ridge is a configuration showing vertical
agymmetry. The plasma cross section is asymmetric to be cénsistent
with the option of a single-null . poloidal divertor. ’For effective
utilization of available space, the midplane of the plasma 1s above the

horizontal centerline of the tokamak, and EF coils are shown in

locations that are asymmetric with respect to the plasma.



These characteristiés have brought about the need for a numerical
computation of vertically asymmetric MHD equilibria that 1includes an
accurate estimate of the necessary EF coil currents. .The methods used
at the FEDC fo study'the equilibrium field requirements of double- and -
single-null divertors-are described briefly in Sect. 2.

In Sect. 3 we apply these methods in the study of a symmetrical,
double-null poloidal field configuration. We address  the possibility
of reducing ampere—;urns in an INTOR device by relaxing the plasma
shaping parameters and introducing some internal coils. The advanﬁages
of a hybrid EF coil system and the option of steady-state external
colls are discussed.

We consider the magnetics of an asymmetric INTOR cbnfiguration_ in.
Sect. 4. . We present a set of exterior EF coil locations and currents
for a plasma of moderate triahgularity'(é = 0.3) that fix the position
of a single~null point as beta 1is increased. These coils are
positioned té be consistent with the TF coil of a typical design
configuration.

A potential problem  associated with single-null systems is the
shape of field lines'in the scrapeoff region of D-shapéd plasmas. The
direction of field 1lines on the small major radius side may leave
inadequate space for a divertor channel. Furthermore, the proximity of
the null ' point opposite the divertor (above the midplane in current
designs) may cause the region to be disconnected. The situation is
shown to 1improve (Sect. 4) if the triangularity is reduced to about
§ = 0.1, and the implications of this on MHD stability (ballooning

modes) are discussed.



2. METHODS

To obtain estimates of the EF coil = current requirements of an
INTOR design configuration, we solve numerically the equation for MHD

equilibrium in a tokamak geometry:

a*y = £2v . (_12_ vw) = -4nry. (1)
r

where the poloidﬁl £lux function ¥ = y(plasma) + y(external) g, jqf1es

y(plasma) (p .,y = I Clryszpirsz)dp[rs¥(r,2) Jdr a2 (2)

for (rb,zb)'on the boundary of a rectangular region Q. Here, G 1is a
Green’s function giving ¥ at a point (ry,2zy) on the.bouhdary created by
a unit current density at (r,z) in 2. To properly shape the plasma
" cross section, we deterﬁine the coil currents cj (for a set of given

coil locations) such that the external field satisfies

y(external) (. .2y _ ¥(rp,0) - y(plasma) (. ) (3)

for (r,z) on a prescribed (possibly asymmetric) contour I' intersecting
the plasma midplane at a point (rL,o).
Since determining the currents 3 in Eq. (3) 1is, 1n general, an

ill-posed problem, in practice we solve "the associated approximation

problem

u;(external)(z) +.;(plasma) - ‘Y(rL,o)u2 + a“%“z = minimum , (4)



where the smoothing parametef' a 1is the weight given to reducing
ampere-turns. We try to choose a as large as possible but such that.-
the shapeA6f>tHe resulting equiliﬁrium‘remains acéeptable.

The toroid;l current density 1is related to the plasha pressure

P(Y) and the toroidal magnetic flux F(¥) = rBt by

dp F dF (
= f —— b ———— .
e = ' ¥ Grr a¥ ()

Pressure profiles are of the form

pop €0+ (1 -wa) - X o )
' ° a(e™ - 1)

¥ - Waxis
- Y

'“wedge axis

and Fz(x) is feprésented by a cubic spline function such that q(¥) can

be prescribed4 and Je will go continuousiy to zero at the plasma edge.



3. EQUILIBRIUM FIELD COIL CONCEPTS

3.1 COIL LOCATIONS FOR A SYMMETRIC CONFIGURATION

The EF coils provide the vertical field necessary for plasma
equilibrium and serve to shape the plasma cross section to the extent
that 1s required for MHD stability. Equilibrium field coils for
D-shaped plasmas generally fall into diétinct grogfs dependingLon their
position and.'the direction of current'relative to the plasma current.
Equilibrium field coils external to the TF coils would be desiraBle
from a maintenance standpoint, but other engineering considerations.may
require some internal coils.

A set of typical EF coil locations, listed in Table i, ha&e been
specified so that they are compatible with a symmetric 10-TF coil
design configuration with major radius Rp = 5.42 m and wminor radius
a= 1.3 m. Coils I, and E, are shaping coils and carry current in the

same direction as the plasma current.
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Table 1. " Equilibrium field coil locations
R (m) Z (m)
I, 3.20 0.75
' I, 4.55 . V 3.30 interﬁal coils
I 8.20 1.90
E, 1.45 1.16
E, 4;z0 6.30 external coils
‘E3 hs7




In computing equilibria, the coil locations used are symmetric
about the midplane. The prescribed contour of constant poloidal flux,
I', is chosen to be somewhat inside the plasma boundary in order to

create a double-null plasma cross section.

3.2 EFFECT OF TRIANGULARITY |

It has been seermz'3 ‘that large shaping currents are needed to
produce a low beta and highly D~shaped plasma Qsing external EF coils.
The International Tokamak Reactor requires that a separatrix be
established prior to heating, resulting in the need for 1low beta
shaping.

By varying the position of E, within the constraints of'the

present design configuration (see Fig. 1), the effect of reduced

triangularity & in a low beta (B = 0.5%, I

p = 4.9 MA, B, = 5.5 T)

plasma is seen in the external coil currents (see Table 2). The
triangularity parameter 1is defined as § = c/a, where c is the radial
shift of the tip of the D and a is the minor radius. Reductions in
excess of 50% in ampere-turns are possible by relaxing this parameter
from § > 0.5 to § = 0.36.

Another advantage of lower 8 is the évailability of more space on
the inboard side of the torus for a divertor channel. The disadvantage
is in theoretically lower stable beta values; the implications of this

with respect to a current design will be addressed in Sect. 4.4.
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" Table 2. The effect of rélaxiﬁg the friangularity'is
_.seen 1n greatly reduced external EF currents

?

8 E; (MA) Ey (MA) E3 (MA) L|Ey|

0055 "10-2 3400 “4'6 97-6
0.43 -7.3 17.7 ~4.7  59.4

0.36 "26.5 9.7 -5.1 42 .6
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3.3 HYBRID EF COIL SYSTEM

In this section we consider the possibility of further reductions
in ampere~turns by introducing some internal EF coils. ~In such a
hybrid syst:em,5 by wusing both external guperconducting and internal
cofper coils, the relative magnitude of the equilibrium field supplied
by each coil “éet would be variable and depend on engineering
considerations. As an example of such a system, we make t&o
assumptions: (1) external currents at low beta are set to
approximately half their high beta wvalue 1in order to extend their
current rise time, and (2) internal currents are limited to about
1.6 MA to restrict their size. The.resulting current requirements are
shown in Table 3 for a low beta plasma and in Table 4 for the high beta
case.

Another consideration in determining the finél contributions 6f
external and internal coils to the‘)reqhireA' equilibrium field is
divertor désign and the shape of the poloidal field in the region of
the divertor channel. The 1low beta free~boundary equilibrium
calculation using hyhrid EF coils 1is shown in Fig. 2, whereas Figs. 3,
4, and 5 exﬂibit the high beta equilibria using internal, external, and
hybrid coil sets, respectively. These show roughly the range of flux
patterns that can be produced in the divertor region with the hybrid EF
coil system. Finally, the approximate current waveforms are presented
in Fig. 6. Note that the use of hybrid coils reduces the size of the
external shaping coil E) by 50% and will significantly reduce its

required power by extending the current rise time.
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Table 3. Coil currents (MA) for a low beta (B = 0.5%,
= 4.9 MA, B, = 5.5 T, § = 0.36) equilibrium using
;_tge coil locations of Table 1 -

Internal : External ' Hybrid
I, ~0.93 0.00 © Z0.70
L, 128 0.00 0.96
I, | ~1.83 0.00 -1.37
E, | 0.00 652 -1.63
E) 1 0.00 9.72 2.43
Eq  0.00  -5.09 127

Total ampere-turns

8.1 42.7 16.7

Table 4. Coil currents (MA) for a high beta
(B = 5.2%, I_ = 6.1 MA, By = 5.5 T)
equilibrium using the coil 1ocations of

Table 1
Internal External . Hybrid .
I ~0.49 0.00 -0.25
I, 1.58 - 0.00 0.79
I, ‘ -3.28 0.00 -1.64
E; : 0.00 : ~4.17 - -2.09
Ey 0.00 12.18 . X 6.09
Eg . 0.00 -8.29 =4.15

Total ampere-turns

10.7 .. 49.3 30.0
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Estimates based on this system show that maximum ouﬁ-of-plane
forces on the TF coils at high beta are reduced‘ffom 59 MN/m (external
system) to 15 MN/m using the hybrid coils, with a 30% reduction in the
average moment about the ﬁajor axis of the tokamak (~260 MN-m with the

hybrid system). The average aB{eXt) /dt at the TF coils (in T/s), which

. ) . * (ext)
is 1important for cryostability, is approximately B, = 0.18,
*(ext) - L * (ext)
By = 0.12 with an all-external system and B, = 0.03,
* (ext)
By = 0.02 with the hybrid system, showing a significant reduction.

The advantage of this hybrid system over an all-internal EF coil system
is in the smaller size of internal coils and a reduction in power

losses from about 111 MW to 56 MW.

3.4 STEADY-STATE EXTERNAL COILS
An alternative hybrid scenario is one in which the external coil
currents are steady state. Such a system would minimize pulsed

poloidal fields at the TF coils created by the EF coils. The internal

coil currents in this case are found by solving the minimization

(ext) (ext) (ext) (ext)
problem [Eq. (4)] with V¥ = Yo - Y5 » where ¥p is the
(ext) ' '
required equilibrium field and TE is the field created by the
(ext)
external coils. Note that at time t = O, WR = 0, and the internal

colls would carry nonzero currents in order to cancel the flux of the
steady-state coils.

An example of this hfbrid system 1s presented in Table 5 where we
assume that the high beta EF currents are equivalent to those of the
hybrid system in Table 4. The first column (B = 0.0%) gives the coil
curreints necessary for a field that i3 null prior to startup. Note

that this concept requires a polarity change in the internal coils.
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The equilibrium flu# surfacesvgt low beta using this system "are shown
in Fig. 7, and approximate current waveforms are given in Fig. 8.

This concept could bev used to_eli@inate the problems of large
power ;equirements and pulsed fields in an external system by' setting
the steadyfsta;evcoil currents equal to their high beta exterqal‘vélues
in Table 4. Here, the internal coil currents woﬁld serve to shield the

(ext)
plasma from part of WE at low beta and go to zero at high beta.
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Table 5. Coil currents (MA) for equilibria using the
hybrid coils of Table 1 with steady-state external
coils

B = 0.0% B = 0.5% B = 5.2%
I, 0.22 -0.72 -0.25
1, ~0.75 0.52 0.79
I, 1.60 -0.22 -1.64
E, -2.09 -2.09 -2.09
E) 6.09 6.09 6.09
Eq -4.15 -4.15 -4.15

Total ampere-turns

29.8 27.6 30.0
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4. POLOIDAL MAGNETICS OF AN ASYMMETRIC CONFIGURATION

4.1 EXTERNAL EF COILS FOR A SINGLE-NULL PLASMA

In this section we consider a set of EF coils located external to
the TF coils of an INTOR configuration cfeating a mildly D-shaped
(§ =0.3) equilibrium with major radius Rp = 5.2 and minor radius
a = l.3. The plasma is vertically asymmetric, as is the case with a
single-null poloidal divertor. Such external coil locations would be
constrained somewhat by device design and maintenance considerations.

The coil locations are presented in Table 6, together with the
required amperé—turns for low beta and high beta equilibria. The coil
locations shown here are feasible with respect to the space constraints
of a current design configuration but require further optimization.
The quilibria are shown in Figs. é and 10. In these calculations we
have elongated the plasma below the midplane until a natural separatrix
defines tﬁe plasma boundary. Note that 1if coil currents are
individually coantrolled, as in Table 6, then the position of the null

point is maintained to within 10 cm through a large increase in plasma

pressureé.

4.2 THE PLASMA SCRAPEOFF REGION

Of particular interest 1in INTOR poloidal divertor design is the
shape of field lines in the plasma scrapeoff region immediately outside
the flux surface of the null point. The INTOR design assumes a 5-cm
scrapeoff width along the midplane on the large major radius side of
the plasma, based partially on' Poloidal Divertor Experiment (PDX)

results.6 Divertor design studied show that it is desirable to have a
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narrow inner divertor throat (~30 cm) with sufficient length for
pumping aﬁd shielding requirements. The flux surfaces of high beta
equilibria are considerably expanded on the inboard side of the torus,
as eghibited in Fig. 10. If we assume this e*pansion to be about a
factor of 3 for INTOR, resulting in a 15-cm scrapeoff width on the
inside of the plasma at the midplane, then the width at the divertor
channel is somewhat greater, and the direction of the diverted field
lines in Fig. 10 is such that there is about 2 m in 1length availablé
for a divertor channel design within the TF coils.

Figure 10 demonstrates ‘anotheg difficulty with D-shaped
single-null systems using external EF coils. Note that the null point
above the midplane (z > 0) is within the scrapéoff, causing part of the
region to be disconnected. The deﬁendence of this property on -
triangularity 1is shown in Fig. 1l1. Here, we have fixed the elongation
and triangularity in a high beta INTOR plasma to ¢ = 1.85 and § = 0.2
below the midplane and the elongation for 2z 2 0 to ¢ = l.4. The
triangularity above the midplane is varied from § = 0.0 to § = 0.3 in a
sequence of equilibriaf It is seeﬁ that for about'§ > 0.1, the upper
null point is sufficiently close to the flux surface of the lower null
point that a partial disconnection of the scrgpeoff region would
result. The extent of this problem depends greatly on the actual width

of the scrapeoff, which is still uncertain.6
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Table 6. Coil locations and currents (MA) for low beta

equilibrium (B = 0.3%, B

B

= 002, Bt

= 5.5 T,

I_ = 5.6 MA) and high beta equilibrium
B - 5.02, 8, =2.6, B, = 5.5 T, I, = 6.5 mA)

R (m) Z (m). . Low beta High beta
1.35 0.50 -9.38 -2.99
1.35 5.30 3.33 3.94
3.00 6.20 5.19 5.32
4.70 6.60 2.57 2.35
6.50 6.50 ~0.14 2.36

8430 5.90 -0.2Y 4.98

10.15 4.90 -4.08 -10.98
1.35 -0.50 ~17.55 -8.26
6.50 . -7.50 6.66 7.75

7.80 -7.20 6.52 14.57

10.50 ~5.30 -12.27 ~19.53

Total ampere-turns

68.0

83.0




20

4.3 DIVERTOR MAGNETICS OF AN-ELLIPfICAL PLASMA

One possible solﬁtign to fhe divertor magnetiés. problem 1is
presented in Fig. 12; The inﬁer divertor leg 6f.this-elliptiéa1 (i.e.,
§ = d.l) plasma is at such an angle th;t a ;hénnel design seems more
feasible, and tﬁe scrapeoff region remains. connected above the
midplane. The width of the inner divertor channel.is about 25% smaller
than that of the D-shaped plasma in'Fig. 10.

There are bogh physics and engineering difficulties associated
with plasmas of low triangularity. 'Elliptical plasmas reqﬁire EF coils
on the outboard side of the torus that are closer to the midplane than
those of a D-shaped cross section; ‘This space is ‘unavailable fbr EF
coils 1in most design configurations. Another potential problem is in
critical beta values‘for MHD stability, which decrease with plasma

triangularity.

4.4 STABILITY CONSIDERATIONS
It has been showng_9 that through optimization of the safety
factor and pressure profiles critical beta wvalues with respect to
ballooning modes (n = ®) can be realized in INTOR plasmas that are
comparable to those of the symmetric case (i.e., B: = 5.5%2) In this
section we find profiles for a D-shaped plasmé with 8: = 5.1% and
examine the effect of decreasing the triangularity.

Figure 13 shows the pressure, toroidal current density, and safety
factor profiles of a moderately asymmetric a;d strongly D;shaped
(6§ = 0.5) INTOR equilibrium (B = 5.1%) that has been determined to be
stable to ballooning modes using the General Atomic BLOON céde.lo For

a toroidal field of 5.5 T, the plasma current was 1increased to
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Ip =. 9.3 MA in.order to reduce thebsafety factor at the plasma surface
to dedge = 2.2. As triangularity 1s reduced, the plasma becomes
unstable to ballooning modes. The increasing region of instability is
shown in Fig. 14.

11 approximate critical beta for these

Through a scaling procedure,
"equilibria may be 'computed.' For § = 0.3 and § = 0.0, the values are
about 8: = 4.5% and B: = 2.7%, respectively. This indicateé that 1if
achievable beta values turn out to be limited by balleoning modes, thgn
a significant reduction may be caused by shaping effects alone in an

LNTUR geometry. It is not clear whether this could be offset through

profile optimization.

4.5 THE DESIGN CONFIGURATION

The INTOR design counfiguration shows a plasma with major radius
Rp = 5.28 m, minof radius a = 1.2 m, and élongation o =1.7. The null
point defining the plasma boundary Iis located at R = 4.76 m,
Z = -2.2 m. Several INTOR groups have successfully computed equilibria
satisfying these par-ameters.lz»'13 In Fig. 15 we present an equilibrium
with B8 = 5.3%, Bp = 2.5, Ip = 6.5 MA, and B, = 5.5 T, approximating
these design requirements. The null point of this equilibrium is
located at R = 4.69 m, Z = -2.27 m, about 55 cm higher than that of the
equilibrium shown in Fig. 10. The EF coil position and currents, given
in Table 7, indicate that this elevation of the null point requires a
407% increase in ampere-turns, using EF coils that are external to thg
INTOR TF coils. The coil locations are shown relative to the plasma

cross section in Fig. 16. Coil sizes are based on an assumed current

density of 1500 A/cnt .



22

Table 7. Equilibrium field coil locations and currents for a
high beta equilibrium approximating the requirements of the
design configuration .

R (m) - z (m) Current (MA)
2.30° 6.50 5.78
3.80 6.50 10.75
5.30 6.50 8.35
7.80 " 6.50 -9.38
10.20 4.90 -2.20
1.30 -0.30 —4.14
2.80 -7.50 14.70°
4.30 -7.50 23.36
5.80 -7.50 - 14.06
8.30 =750 -13.16
10.50 -5.30 -11.88

Total ampere-turns

117.8
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5. CONCLUSIONS

The EF coil conpept has a direct impact on the structure,
maintenance, and overall cost of the INTOR design and the poloidal
divertor configuration. Ampere-turns in an all-external EF coil system
can be reduced by 50% if the required triangularity of tﬁe plasma is
lowered from 6 > 0.5 to about & = 0.36. If the triangularity is
lowered to near zero, then outer colls located near the midplane are
requireq, and these- locations may not be feasible. Therefore, for a
design configuration with all-external coils, a plasma of maderate
triangularity is desirable.

If engineering considerations such as out-of-plane forces on the
TF coils indicate the need for further reductions, a hybrid concept
including both internal and external coils can reduce ampere-turns by
another 40%. A variation of the hybrid system in which external coils
are steady state would eliminate the problem of large pulsed fields at
the TF coils caused by external coill currents. Internal coils greatly
increase maintenance problems, but the possible benefits warrant
further investigation.

.'An asymmetric D-shaped plasma with a boundary defined by a single
poloidal separatrix can be established and maintained through an
increase in beta using external EF coils. '~ Magnetics considérations,
however? indicate that there are potential problems with the scrapeoff
and divertér regions of such plasmas. Reducing the plasma
triangularity to near zero 1s therefore desirable for poloidal divertor
design but may have a negative impact on achievable stable beta values.

Here again, a moderate triangularity (8 ~ 0.3) 1is probably a reasonable
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compromise. It appears that greater than 100 megampere-turns are
required to produce a plasma shape and null point location that is

consistent with the requirements of the design cpnfiguratién .using EF

coils external to the TF coils.
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FIGURE CAPTIONS

Fig. 1. The position of the external shaping coil E, 1is
varied under the constraints of the design configuration to study
the effect of changing triangularity, § = c/a, on external EF coil
currents.

Fig. 2. Low beta (B = 0.5%) equilibrium flux surfaces using
the hybrid EF coil set. .

Fig. 3. High beta (B = 5.2%) equilibrium flux surfaces using
only the internal coil set. : '

Fig. 4. High beta (B = 5.27%) equilibrium flux surfaces using
only the external coil set.

Fig. 5. High beta (B8 = 5.2%) equilibrium flux surfaces using
the hybrid EF coil set. C

Fig. 6. Reference time behavior of internal (Ii)’ external
(E;), and hybrid (dashed) currents in MA.
i

Fig. 7. Low beta (B = 0.5%) equilibrium flux surfaces using
the hybrid EF coil set with steady-state external coils.

Fig. 8. Reference time behavior of internal coil currents
(MA) when external coils carry the steady-state
currents: E; = -2.,09 MA, E = 6.09 MA, Eq = =4.15 MA.

Fig. 9. D-shaped INTOR equilibrium with triangularity
6 = 003, B = 0037@, B = 002, Bt = 5.5 T, and I = 506 MA. The
location of the null point is R = 4.74 m, Z = -2,89 m.

Fig. 10. D-shaped INTOR equilibrium with triangularity
6 = 0-3, B = 500%, B = 206, Bt = 505 T, and I = 605 MA. ’I‘he
location of the null point is R = 4.76 m, Z = -2.8% n.

Fig. 11. In asymmetric D-shaped equilibria, the upper null
point is very close to the flux surface of the 1lower null point.
Depending on the width of the scrapeoff, this may lead to
disconnection of the region. Here, the plasma shape below the
midplane is fixed and the triangularity above the midplane 1is
(a) 6§ = 0.0, (b) 6§ = 0.1, (¢) 6 = 0.2, and (d) 6 = 0.3.



Fig. 12.
parameters B = 4.9%,
Elliptical plasmas have
design. :

"Fig. 13. (a) Plasma
and (b) safety factor
triangularity & = 0.5
I. = 9.3 MA, dedge = 2.2
ballooning modes.

Fig. 14. Increasing
ballooning modes as
(a) §

Fig. 15. High
equilibrium with a shape
Z = -2.27 m) approximating

Fig. 16. Equilibrium
the plasma cross section.

INTOR equilibrium with
= 2.5, B,
gesirable properties for poloidag divertor

profiles
and
that

plasma
= 0.5 to (b) § = 0.3, and to (c) §
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triangularity 6 = 0.1 and

= 5.5 T, and I_. = 6.5 MA.

pressure, toroidal current density (Jt),
for INTOR equilibrium with,
5.1%, = 1.3, Bt = 5.5 T,

B =
MHD stagle with Trespect to

is

region of
triangularity
= 0-00

instability with respect to
is changed from

(B = 503%, I = 6.5 MA, Bt = 5.5 T)
and separatrix position (R = 4.69 m,
that of the INTOR design configuration.

field coil locations shown relative to
The coil sizes are based on an assumed

current density of 1500 A/cm™. .
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