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ABSTRACT 

The following is.a summary of work carried out at the Fusion 

Engineering Design Center at.Oak Ridge in the area of equilibrium field 

(EF) coil design for the International Tokamak Reactor (INTOR). 

Methods are presented for reducing ampere-turn requirements in the EF 

coil system. It is shown that coil currents in an EF coil system 

external to the toroidal field coils can be substantially reduced by 

relaxing the triangularity of a D-shaped plasma. Further reductions 

are realized through a hybrid EF coil system using both internal and 

external coils. Equilibrium field coils for a poloidally asymmetric, 

single-null INTOR configuration are presented. It is shown that the 

shape of field lines in the plasma scrapeoff region and divertor 

channel improves as triangularity is reduced, but it doe$ so at the 

possible expense of achievable stable beta values. 

v 
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1. INTRODUCTION 

The equilibriwn . field (EF) coil system in a tokamak device 

provides the necessary vertical field to position the plasma and to 

maintain magnetohydrodynamic (MHD) equilibriwn. An important 

requirement of the International Tokamak Reactor (INTOR) EF coil system 

is to shape the plasma cross section such that a poloidal separatrix is 

established and its position maintained relative to a divertor channel. 

It has been shown1- 3 that EF coils external to the toroidal field coils 

may be. found which restrict the wov~1uent of the null point to le~s t.l:la11 

10 cm as beta increases from e = o.5% (i.e., prior to heating) to 

e > 5.0% (burn). Major engineering problems, however, could be 

associated with such coil systems. It is well known that ampere-turn 

requirements increase rapidly as coils are moved further from the 

plasma. Making these coils superconducting would significantly reduce 

power requirements, but the size and cost of the poloidal field system 

may be prohibitive. Further problems caused by large coil currents are 

the effects of changing poloidal fields at the toroidal field (TF) 

coils and the large out-of-plane forces on the TF coils created by 

poloidal fields interacting with the TF coil currents. 

The INTOR design under consideration at the Fusion Engineering 

Design Center (FEDC) in Oak Ridge is a configuration showing vertical 

aoymmetry. The pl~Rma cross section is asymmetric to be consistent 

with the option of a single-null ·. poloidal divertor. For effective 

utilization of available space, the midplane of the plasma is above the 

horizontal centerline of the tokamak, and EF coils are shown in 

locations that are asymmetric with respect to the plasma. 
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These characteristics have brought about the need for a numerical 

computation of vertically asymmetric MHD equilibria that includes an 

accurate estimate of the necessary EF _coil currents. -The methods used 

at the FEDC to study the equilibrium field requirements of double- and 

single-null divertors·are described briefly in Sect. 2. 

In Sect. 3 we apply these methods in the study of a symmetrical, 

double-null poloidal field configuration. We address the possibility 

of reducing ampere-turns in an INTOR d·evice by relaxing the plasma 

shaping parameters and introducing some internal coils. The advantages 

of a hybrid EF coil system and the option of steady-state external 

coils are discussed. 

We consider the magnetics of an asymmetric INTOR configuration in 

Sect. 4 •. We present a set of exterior EF coil locations and currents 

for a· plasma of moderate triangularity ( 6 = O. 3) that fix the position 

of a single,;,..null point as beta is increased. These coils are 

positioned to be consistent with the TF coil of a typical design 

configuration. 

A potential problem associated with single-null systems is the 

shape o.f field lin·es' in the scrapeoff region of D-shaped plasmas. The 

direction of field lines on the small major radius side may leave 

inadequate space for a divertor channel. Furthermore, the proximity of 

the null · point opposite the divertor (above the midplane in current 

designs)° may cause the region to be disconnected. The situation is 

shown to improve (Sect. 4) if· the triangularity is reduced to about 

c = Q.1, and the implications of this on MHD stability (ballooning 

modes) are discussed. 

• 
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2. METHODS 

To obtain estimates of ·the EF coil current requirements of an 

INTOR design configuration, we solve numerically the equation for MHD 

equilibrium in a tokamak geometry: 

(1) 

where the poloidnl flux functi0~ '¥ ~(plasma) +If (external) satisfies 

'f(plasma) (rb,zb) = 1 ( c( ")J [ ,IU(. ) ]d· d n rb ' Zb; r' Z t r' T r' Z r Z (2) 

for (rb,zb) on the boundary of a rectangular region n. Here, G is a 

Green's function giving'¥ at a point (rb,zb) on the boundary created by 

a unit current density at (r,z) inn. To properly shape the plasma 

cross s.ection, we determine the coil currents cj (for a set of given 

coil locations) such that the external field satisfies 

qr(external)(r,z;c) (3) 

for (r,z) on a prescribed (possibly asymmetric) contour r intersecting 

the plasma midplane at a point (rL,o). 

Since determining the currents cj in Eq. (3) is, in general, an 

ill-posed problem, in practice we solve ·the associated approximation 

problem 
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where the smoothing parameter a is the weight given to re.ducing 

ampere-turns. We try to choose a as large as possible but such that 

" . 
the shape of the resulting equilibrium remains acceptable. 

The toroidal current density is related to the plasma pressure 

P('i') and the toroidal magnetic flux F('i') = rBt by 

Pressure profiles are of the form 

a (e-a - 1) 

'i' - 'i' i ax s 

'¥axis 

- e -ax 

(5) 

(6) 

and F2 (x) is repr~sented by a cubic spline function such that q('¥) can 

be prescribed4 and Jt will go continuously to zero at the plasma edge. 

.-, 
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3.. EQUILIBRI~ FIELD COIL CONCEPTS 

J.l COIL LOCATIONS FOR A SYMMETRIC CONFIGURATION 

The EF coils provide the vertical field necessary for plasma 

equilibrium and serve to shape the plasma cross section to the extent 

that is required for MHD stability. Equilibrium field coils for 

D-shaped plasmas generally fall into distinct groups depending on their 

position and the direction of current relative to the plasma current. 

Equilibrium f i~ld coils external to the TF ~oils would be desirable 

from a maintenance standpoint, but other engineering considerations may 

require some internal coils. 

A set of typical EF coil locations, listed in Table 1, have been 

specified so that they are compatible with a symmetric 10-TF coil 

design configuration with major radius RP = 5.42 m and minor radius 

a= 1.3 m. Coils I 2 and Ez are shaping coils and carry current in the 

same direction as the plasma current. 
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Table 1. · Equilibritnn field coil locations 

R (m) z (m) 

I1 3.20 0.75 

I2 4.55 3.30 inte·rnal coils 

13 s.20 1.90 

El 1.45 1. 16 
( .. 

Ez 4.40 6.30 external coils 

E3 10.52 4.57 
'. 
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In computing equilibria, the coil locations used are symmetric 

about the midplane. The prescribed contour of constant poloidal flux, 

r, is chosen to be somewhat inside the plasma boundary in order to 

create a double-null plasma cross section. 

3.2 EFFECT OF TRIANGUL.ARITY 

It has been seen2 - 3 that large shaping currents are needed to 

produce a low beta and highly D-shaped plasma using external EF coils. 

The International Tokamak Reactor requires that a separatrix be 

established prior to heating, resulting in the need for low beta 

shaping. 

By varying the position of· Ei within the constraints of the 

present design configuration (see Fig. 1), the effect of reduced 

triangularity 6 in a low beta (8 = 0.5%, Ip = 4.9 MA, Bt = 5.5 T) 

plasma is seen in the external coil currents (see Table 2). The 

triangularity parameter is defined as 6 = c/a, where c is the radial 

shift of the tip of the D and a is the minor radius. Reductions in 

excess of 50% in ampere-turns are possible by relaxing this parameter 

from o ) 0.5 to 6 • 0.36. 

Another advantage of lower 6 is the availability of more space on 

the inboard side of the torus for a divertor channel. The disadvantage 

is in theoretically lower stable beta values; the implications of this 

with respecc to a curt~nt design will be addressed in Sect. 4.4. 
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Table 2; The effect of relaxing the t'riangularity is 
.. seeµ in greatly reduced external EF currents 

Ei (MA) 

0.55 -10.2 34.0 -4.6 97.6 

0.43 -7.3 -4.7 59.4 

0.36 -6.5 -5.1 42.6 

,. 
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3.3 HYBRID EF COIL SYSTEM 

In this ~ection we consider the possibility of further reductions 

in ampere-turns by introducing some internal EF coils. In such a 

hybrid system, 5 by using both external superconducting and internal 

copper coils, the relative magnitude of the equilibrium field supplied 

by each coil set would be variable and depend on engineering 

considerations. As an example of such a system, we make two 

assumptions: ( 1) external currents at low beta are set to 

approximately half their high beta value in order to extend their 

current rise time, and (2) internal currents are limited to about 

1.6 MA to restrict their size. The resulting current requirements are 

shown in Table 3 for a low beta plasma and in Table 4 for the high beta 

case. 

Another consideration in determining the final contributions of 

external and internal coils to the leq.uired · equilibrium field is 

divertor design and the shape of the poloidal field in the region of 

the diver tor channel. The low beta free-boundary equilibrium 

calculation using hyhrin F.F coils is showp in Fig. 2, whereas Figs. 3, 

4, and 5 exhibit the high beta equilibria using internal, external, and 

hybrid coil sets, respectively. These show roughly the range of flux 

patterns that can be produced in the divertor region with the hybrid EF 

coil system. Finally, the approximate current waveforms are presented 

in Fig. 6. Note that the use of hybrid coils reduces the size of the 

external shaping coil E2 by 50% and will significantly reduce its 

required power by extending the current rise time. 
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Table 3. Coil currents (MA) for a low beta (8 = 0.5%, 
I = 4.9 MA, Bt = 5.5 T, o = 0.36) equilibrium using 

· tCe coil locations of Table 1 

Internal External Hybrid 

I1 -0.93 o.oo -0.70 

I2 1.2 8 o.oo 0.96 

I3 -1.83 o.oo -1.37 

El o.oo -6. 52 -1.63 

Ez o.oo 9. 72 2.43 

E3 o.oo -5.09 -1.2 7 

Total ampere-turns 

8.1 42. 7 16.7 

Table 4. Coil currents (MA) for a high beta 
(8 = 5.2%, Ip= 6.1 MA, Bt = 5.5 T) 
equilibrium using the coil locations of 
Table 1 

Internal External Tiybrid 

I1 -0.49 o.oo -0.25 

I2 ' 1. 58 o.oo 0.79 

I3 -3.28 o.oo -1.64 

El o.oo "."'4• 17 -2.09 

Ei o.oo 12.18 . 6.09 

E3 o.oo -8.2 9 -4.15 

.Total ampere-turns 

10.7 49.3 30.0 
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Estimates based on .~his system show that maximum out-of-plane 

forces on the TF coils at high beta are reduced from 59 MN/m (external 

system) to 15 MN/m using the hybrid coils, with a 30% reduction in the 

average moment about the major axis of the tokamak (~260 MN-m with the 

hybrid system). The average dB (ext) /dt at the TF coils (in T/s), which 

is important" for cryostability, is approximately 

•(ext) 
Bu 0.12 with an all-external system and 

• (ext) 
Bi 0.18, 

•(ext) 
B1 0.03, 

•(ext) 
Bu 0.02 with the hybrid system, showing a significant reduction. 

The advantage of this hybrid system over an all-internal EF coil system 

is in the smaller size of internal coils and a reduction in power 

losses from about 111 MW to 56 MW. 

3.4 STEADY-STATE EXTERNAL COILS 

An alternative hybrid scenario is one in which the external coil 

currents ar.e steady state. Such a system would minimize pulsed 

poloidal fields at the TF coils created by the EF coils. The internal 

coil currents in this case are found 

(ext) 
problem [Eq. (4)) with '¥ 

required equilibrium field and 

(ext) 
= 'i'R 
(ext) 

'i'E is 

external coils. Note that at time t = 0, 

by solving the 

(ext) 
- 'i'E , where 

minimization 

(ext) 
'i'R is the 

the field created by the 

(ext) 
'i'R = 0, and the internal 

coils would carry nonzero currents in order to cancel the flux of the 

steady-state coils. 

An example of this hybrid system is presented in Table 5 where we 

assume that the high beta EF currents are equivalent to those of the 

hybrid system in Table 4. The first column (S = 0.0%) gives the coil 

currents necessary for a field that ia null prior to otartup. Note 

that this concept requires a polarity change in the internal coils. 
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The equilibrium flux surfaces. at low beta using this system are shown 

in Fig. 7, and approximate current waveform8 are given in ~ig. 8. 

This concept could be used to eliminate the problems of large 

power requirements and pulsed fields in an external system by setting 

the steady~state coil currents equal to their high beta external. values 

in Table 4. Here, the internal co~l currents would serve to shieid the 
(ext) 

plasma.from part of ~E at low beta and go to zero at high beta. 
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Table 5. Coil currents (MA) for equilibria using the 
hybrid coils of Table 1 with steady-state external 
coils 

a = 0.0% a = o.5% a = 5.2 % 

Il 0.22 -o. 72 -0.25 

I2 -0.75 o. 52 0.19 

I3 1.60 -0.22 -1.64 

El -2 .09 -2 .09 -2 .09 

Ez 6.09 6.09 6.09 

E1 -4.15 -4.15 -4.15 

Total ampere-turns 

2 9. 8 2 7. 6 30.0 
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4. POLOIDAL MAGNETICS OF AN ASYMMETRIC CONFIGURATION 

4.1 EXTERNAL EF COILS FOR A SINGLE-NULL PLASMA 

In this section we consider a set of EF coils located external to 

the TF coils of an INTOR configuration creating a mildly D-shaped 

(o = 0.3) equilibrium with major radius RP = 5.2 and minor radius 

a = 1.3. The plasma is vertically asymmetric, as is the case with a 

single-nu! 1 poloidal divertor. Such external coil locations would .be 

constrained somewhat by device design and maintenance considerations. 

The coil locations are presented in Table 6, together with the 

required ampere-turns for low beta and high beta equilibria. The coil 

locations shown here are feasible with respect to the space constraints 

of a current design configuration but require further optimization. 

The equilibria are shown in Figs. 9 and 10. In these calculations we 

have elongated the plasma below the midplane until a natural separatrix 

defines the plasma boundary. Note that if coil currents are 

individually controlled, as in Table 6, then the position of the null 

point is maintained to within 10 cm through a large increase in plasma 

pressure. 

4.2 THE PLASMA SCRAPEOFF REGION 

Of particular interest in INTOR poloidal divertor design is the 

shape of field lines in the plasma scrapeoff region immediately outside 

the flux surface of the null point. The INTOR design assumes a 5-cm 

scrapeoff width along the midplane on the large major radius side of 

the plasma, based partially on Poloidal Divertor Experiment (PDX) 

results. 6 Divertor design studieJ show that it is desirable to have a 
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narrow inner divertor throat (~30 cm) with sufficient length for 

pumping and shielding requirements. The flux surfaces of high beta 

equilibria are considerably expanded on the inboard side of the torus, 

as exhibited in Fig. 10. If we assume this e~ansion to be about a 

factor of 3 for INTOR, resulting in a 15-cm scrapeoff width on the 

inside of the plasma at the mid~lane, then the width at the divertor 

channel is somewhat greater, and the direction of the diverted field 

lines in Fig. 10 is such that there is about 2 m in length available 

for a divertor channel design within the TF coils. 

Figure 10 demonstrates .another difficulty with D-shaped 

single-null systems using external EF coils. Note that the null point 

above the midplane (z > 0) is within the scrapeoff, causing part of the 

region to be disconnected. The dependence of this property on 

triangularity is shown in Fig. 11. Here, we have fixed the elongation 

and triangularity in a high beta INTOR plasma to a 1.85 and o = 0.2 

below the midplane and the elongation for z ) 0 to a = 1.4. The 

triangularity above the midplane is varied from o = O.O to o = 0.3 in a 

sequence of equilibria. It is seen that for about·o > 0.1, the upper 

null point is sufficiently close to the flux surf ace of the lower null 

point that a partial disconnection of the scrapeoff region would 

result. The extent of this problem depends greatly on the actual width 

of the scrapeoff, which is still uncertain. 6 
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Table 6. Coil locations and currents (MA) for low beta 
equilibrium (B = 0.3%, BP= 0.2, Bt = 5.5 T, 
I~ = 5.6 MA) and high beta equilibrium 
(~ = 5.0%, BP= 2.6, Bt = 5.5 T, Ip= 6.5 MA) 

R (m) Z (m) Low beta High beta 

1.35 o.5o -9.jB -2 .99 

1.35 5.30 3.33 3.94 

3.00 6.20 5.19 5.32 

4.70 6.60 2.57 2.35 

6.50 6.50 -0.14 2.36 

o.Jo S.90 -0.:L y 4.98 

10.15 4.90 -4.08 -10-98 

1.35 -0.50 -17.55 -8.2 6 

6.50 -7.50 6.66 7.75 

7.80 -7.20 6. 52 14.57 

10.50 -5.30 -12 .2 7 -19.53 

Total ampere-turns 

68.0 83.0 



20 

4.3 DIVERTOR MAGNETICS OF AN ELLIPTICAL PLASMA 

One possible solution to the divertor magnetics problem is 

presented in Fig. 12. The inner divertor leg of this elliptical (i.e., 

o = 0.1) plasma is at such an angle that a channel design seems more 

feasible, and the scrapeoff region remains connected above the 

midplane. The wldth of the inner divertor channel. is about 2 5% smaller 

than that of the D-shaped plasma in Fig. 10. 

There are both physics and engineering difficulties associated 

with plasmas of low triangularity. Elliptical plasmas require EF coils 

on the outboard side of the torus that are closer to the midplane than 

those of a D-shaped cross section. This space is unavailable for EF 

coils in most design configurations. Another potential problem is in 

critical beta values for MHD stability, which decrease with plasma 

tri.aogularity. 

4.4 STABILITY CONSIDERATIONS 

It has been shown8- 9 that through optimization of the safety 

factor and pressure profiles critical beta values with respect to 

ballooning modes (n = 00
) can be realized in INTOR plasmas that are 

comparable to those of the symmetric case (i.e., B~ = 5.5%). In this 

section we find profiles for 
00 

a D-shaped plasma with Sc S.1% and 

examine the effect of decreasing the triangularity. 

Figure 13 shows the pressure, toroidal current density, and safety 

" 
factor profiles of a moderately asymmetric and strongly D-shaped 

(o = O.S) INTOR equilibrium (8 = S.1%) that has been determined to be 

stable to ballooning modes using the General Atomic BLOON code. 1° For 

a toroidal field of S.S T, the plasma current was increased to 
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Ip =. 9.3 MA in order to reduce the safety factor at the plasma surface 

to qedge = 2 .2. As triangularity is reduced, the plasma becomes 

unstable to ballooning modes. The increasing region of instability is 

shown in Fig. 14. 

Through a scaling procedure, 11 approximate critical beta for these 

equilibria may be ·computed. For o = O.J and o = O.O, the values are 

co co 
about ac = 4.5% and ac = 2.7%, respectively. This indicates that if 

achievable beta values turn out to be limited by ballooning modes, then 

a significant reduction may be caused by shaping effects alone in an 

lNTUK geometry. It is not clear whether this could be offset through 

profile optimization. 

4.5 THE DESIGN CONFIGURATION 

The INTOR design configuration shows a plasma with 

RP = 5.28 m, minor radius a = 1.2 m, and elongation a 

point defining the plasma boundary is located at 

major radius 

1. 7. The null 

R = 4. 76 m, 

Z = -2.2 m. Several INTOR groups have successfully computed equilibria 

satisfying these parameters. 12 - 13 In Fig. 15 we present an equilibrium 

with S = 5.3%, Sp= 2.5, Ip = 6.5 MA, and Bt = 5.5 T, approximating 

these design require~ents. The null point of this equilibrium is 

located at R = 4.69 m, Z = -2.27 m, about 55 cm higher than that of the 

equilibrium shown in Fig. 10. The EF coil position and currents, given 

in Table 7, indicate that this elevation of the null point requires a 

40% increase in ampere-turns, using EF coils that are external to the 

INTOR TF coils. The coil .locations are shown relative to the plasma 

cross section in Fig. 16. Coil sizes are based on an assumed current 

density of 1500 A/cnf. 
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Table 7. Equilibrium field coil locations and currents for a 
high beta equilibrium approximating the requirements of the 
design configuration 

R (m) · Z (m) Current (MA) 

2.30 6.50 5.78 

3.80 6.50 10. 75 

5.30 6.50 8.35 

7.80 6.50 -9.38 

10.20 4.90 -2 .20 

1.30 -0.30 -4.14 

2.80 -7.50 14.70 

4.30 -7.50 2 3. 36 

5.80 -7.50 14.06 

8.30 -7· 50 -13.16 

10. 50 -5.30 -11. 88 

Total ampere-turns 

117. 8 
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5. CONCLUSIONS 

The EF coil concept has a direct impact on the structure, 

maintenance, and overall cost of the INTOR design and the poloidal 

divertor configuration. Ampere-turns in an all-external EF coil system 

can be reduced by 50% if the required triangularity of the plasma is 

lowered from o ~ 0.5 to about o = 0.36. If the triangularity is 

lowered to near zero, then outer coils located near the midplane are 

required, and these· locations may not be feasible. Therefore, for a 

design configuration with all-external coils, a p],.asma of mnciP.rRtf' 

triangularity is desirable. 

If engineering considerations such as out-of-pl~ne forces on the 

TF coils indicate the need for further reductions, a hybrid concept 

including both internal and external coils can reduce ampere-turns by 

another 40%. A variation of the hybrid system in which external coils 

are steady state would eliminate the problem of large pulsed fields at 

the TF coils caused by external coil currents. Internal coils greatly 

increase maintenance problems, but the possible benefits warrant 

furthP.r i.nve.stigation. 

An asymmetric D-shaped plasma with a boundary defined by a single 

poloidal separatrix can be established and maintained through an 

increase in beta using external EF coils. Magnetics considerations, 

however, indicate that there are potential problems with the scrapeoff 

and divertor regions of such plasmas. Reducing the plasma 

triangularity to near zero is therefore desirable for poloidal divertor 

design but may have a negative impact on achievable stable beta values. 

Here again, a moderate triangularity (o ~ 0.3) is probably a reasonable 
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compromise. It appears that greater than 100 megampere~tµrns are 

required to produce a plasma shape and null point location that is 

consistent with_the requirements of the design c?nfiguration ,using EF 

coils external to the TF coils. 
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FIGURE CAPTIONS 

Fig. 1. The position of the external shaping coil Ez is 
varied under the constraints of the design configuration to study 
the effect of changing triangularity, o = c/a, on external EF coil 
currents. 

Fig. 2. Low beta (S 
the hybrid EF coil set. 

0.5%) equilibrium flux surfaces using 

Fig. 3. High beta (S = 5.2%) equilibrium flux surfaces using 
only the internal coil set. 

Fig. 4. High beta (8 = 5.2%) equilibrium flux surfaces using 
only the external coil $et. 

Fig. 5. High beta (S 
the hybrid EF coil set. 

5.2%) equilibrium flux surfaces using 

Fig. 6. Reference time. behavior of internal (Ii), external 
(Ei), and hybrid (dashed) currents in MA. 

Fig. 7. Low beta (S = 0.5%) equilibrium flux surfaces using 
the hybrid EF coil set with steady-state external coils. 

Fig. 8. Reference time behavior of internal coil currents 
(MA) when external coils carry the steady-state 
currents: El = -2. 09 MA, Ez = 6. 09 MA, E3 = '-4.15 MA. 

Fig. 9. D-shaped INTOR equilibrium with triangularity 
5. 6 MA. The o = 0.3, B = 0.3%, Sp = 0.2, Bt = 5.5 T, and IP 

location of the null point is R = 4.74 m, Z = -2.89 m. 

Fig. 10. D-shaped INTOR equilibrium with triangularity 
o = 0.3, S = 5.0%, Sp= 2.6, Bt = 5.5 T, and I = 6.5 MA. The 
location of. tht! null point is R = 4. 76 m, Z = -2. 8~ m. 

Fig. 11. In asymmetric D-shaped equilibria, the upper null 
point is very close to the flux surf ace of the lower null point. 
Depending on the width of the scrapeoff, this may lead to 
disconnection of the tegion. Here, the plasma shape below the 
midplane is fixed and the triangularity above the midplane is 
(a) 0 = o.o, (b) 0 = 0.1, (c) 0 = 0.2' and (d) 0 = 0.3. 
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Fig. 12. INTOR equilibrium with triangularity o = O.l and 
parameters 8 = 4.9%, 8 = 2.5, Bt = 5.5 T, and I = 6.5 MA. 
Elliptical plasmas have Hesirable properties for poloida~ divertor 
design. 

·Fig. 13. {a) Plasma pressure, toroidal current density (Jt), 
and (b) safety factor profiles for INTOR equilibrium with 
triangularity o = 0.5 and 8 = 5.1%, ~P = 1.3, Bt = 5.5 T, 
Ip= 9.3 MA, qedge = 2.2 that is MHD stable with respect to 
ballooning modes. 

Fig. 14. Increasing region of instability 
ballooning modes as plasma triangularity is 
(a) o = 0.5 to (b) o = 0.3, and to (c) o = o.o. 

with respect to 
changed from 

Fig. 15. High beta (8 = 5.3%, Ip = 6.5 MA, Bt = 5.5 T) 
equilibrium with a shape and separatrix position (R = 4.69 m, 
Z = -2.27 m) approximating that of the INTOR design configuration. 

Fig. 16. Equilibrium field coil locations shown relative to 
the plasma cross section. The coil sizes are based on an assumed 
current density of 1500 A/cm2 • 
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