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High fluence neutron data on advanced titanium-modified alloys are only
now becoming available from more recently instituted (1975—#8) systematic
alloy development programs. Experiments on helium effects in these alloys
are currently in progress., Studies thus far indicate that helium enhanced
void swelling and grain boundary embrittlement potentially impose the most
severe temperature and lifetime limits for fusion first walls. However,
resistance to both swelling and embrittlement can be improved by controlled
production of fine, stable dispersions of helium bubbles attached to MC
precipitate particles in the matrix and grain boundaries of ghe aﬁvanced
titanium-modified zlloys., Fine, stable bubble microstructures also cause
dilution of radiation-induced solute segregation (RIS); RIS plays a major
role in the phenomenon of void swelling and possibly affects embrittlement
and/or corrosion under irradiation as well. Iower fluence data from the
High Flux Isotope Reactor (HFIR) and the 0ak Ridge Research Reactor (ORR)
suggest that helium does not degrade the pro;erties of fatigue and creep
under irradiation, but further study is required. An additional challenge
is to impart similar radiation resistance characteristics to new alloys

being developed for lower induced radiocactivity; these are alloys in which

manganese replaces nickel while the concentrations of molybdenum, copper,

and nitrogen are severely restricted. mm
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1.0 INTRODUCTION

Because we have been studying radiation damage: to austenitic stainless
steels for over twenty years, one may feel that enough has been learned in
order to optimize and use thesé alloys, and that further study is fruitless.
However, a historical perspective indicates that the first ten or more
years of study (1965-1975) were spent discovering the basic effects of fast
neutron irradiation, which are so familiar to us today. For example,
radiation-enhanced thermal precipitation,1 radiation-induced void and bubble
for:mation,z—L+ radiation-induced creep,5 radiation—-induced precipitation,6’7
and radiation-induced solute segretation8 were all discovered or first
studied in austenitic stainless steels. Furthermore, systematic alloy
development programs in the United States did not begin for fast breeder
reactor (FBR) materials until 1974, and for magnetic‘fusion reactor (MFR)
materials until 1977. Selections of compositions f;r the FBR D9 ‘type alloys
and MFR prime candidate alloy (PCA) were not made until 1977-78. Therefore,
high fluence FBR data on the D9 type alloys are only currently becoming
available, Thus, despite a fairly long, general study of the effects of
irradiation on austenitic alloys, we have only recently been characterizing
and understanding irradiation resistance in these advanced titanium-modified
alloys, particularly for MFR conditions. Furthermore, because interest in
void swelling has dominated the irradiation effects efforts, there has been
far less study of degradation of other materials properties under irra-
diation at conditions relevant to fusion.

With this bacﬁground, the purpose of this paper is to address important
questions concerning how to effect further alloy development of austenitic

stainless steels for swelling resistance, and to what extent we can or must



influence the behavior of other properties under irradiation, such as

(a) strength/embrittlement, (b) fatigue/irradiation creep, (c¢) corrosion
(under irradiation), and (d) radiation—induced activation. To summarize our
current understanding, helium has been found to have major effects on
swelling and embrittlement, but several metallurgical avenues are available
for significant improvement reslative to type 316 stainless steel. Studies
on fatigue and irradiation creep, particularly including hélium effects, are
preliminary but have yet to reveal engineering problems requiring additional
alloy development remedies. The effects of irradiation on corgosion behav-
ior are unknown, but higher alloy nickel contents make thérmal corrosion in
lithium worse. The newest challenge will be preserving the irradiation
resistance already achieved in the advanced austenitic alloys while making
major compositional changes (replacing nickel with manganese and removing
molybdenum) in order to lower latent radioactivity of the MFR s;ructure

after shutdown. The following sections elaborate and expand upon these

points.

2.0 CAVITY SWELLING

Swelling under fast neutron irradiation, with concurrent helium pro-
duced by transmutations, is caused by formation of either voids (cavities
with bias-driven growth) or bubbles (cavities with helium-driven growth);
below 650°C, voids undergo unstable growth and produce far more swelling at
a given helium level than do stable bubbles. 2?10 yoid swelling develops
slowly with fluence during an initial transient period, during which voids,
RIS, and precipitation compatible with RIS develop c:oncurrently.lo_12 After
the transient, swelling rapidly accelerates into a regime with a rearly

linear rate, often approaching ~1%/dpa {ref. 13), charscterized by void



growth and coalescence. This behavior can be seen for FBR-irradiated CW 316
in Fig. 1. Our theoretical understanding is that voids form from unstable
bubbles which exceed either their critical size or critical gas contents
during the transient r:egime.l"*_16 Therefore, the objective of alloy develop-
ment efforts is to extend the transient regime by delaying void formation.
Cold working (CW) together with adjustments of Ni and Cr and additions of
Ti, Nb, or P’relative to normal type 316 are effective metallurgical avenues
" for extending the transient regime under FBR irradiation. 11217518 Advanced
modified austenitic alloy compositions are being investigated by several
countries for MFR and/or FBR application (Table 1). Figure 1 shows the
approximately fourfold increase in transient period achieved through MC for-
mation together with delayed void and RIS development in CW D9 (similar to
PCA) relative to type 316 in EBR-II.!! an important question for fus*nn is
how increased helium generation affects the void swelling behavior ac mally
observed under FBR irradiation.

In lieu of a high fluence source of fusion neutrons, mixed spectrum
reactor irradiations (like HFIR or ORR) or helium preinjection have been
used to survey the effects of helium relative to a base line of FBR irra-
diation, Two basic and opposite effects of helium have been found.
Increased helium generation (~102 times more in HFIR) has been found to
shorten the transient period of some alloys while lengthening it for
others, ¥ 11519 14 general, increased helium generation always increases
early bubble nucleation compared to the FBR case. However, if nucleation

rates are not increased above a critical threshold so that these bubbles are

not the dominant sinks, the bubbles either coalesce or quickly convert to

voids while RIS and compatible precipitate development are enhanced,l®?11>14s15

thus shortening the transient regime. This effect has been observed in



most SA alloys (including PCA types) and some CW 316s. Conversely, very
high bubble nucleation rates can produce bubble-sink-dominated systems
in which void formation is suppressed, RIS is diluted, and thermal precipi-
tation is enhanced, thus lengthening the transient regime.g—lz’ll“ls This
behavior has been observed primarily in some CW 316s and most CW titanium-—
modified alloys. Because much higher fluence irradiations are required to
test the effects of helium—extended transients in swelling-resistant alloys,
the duration of the stable bubble structures and the degree of extension are
openr questions at this point. Furthermore, will these extensions be mani-
fest at helium generation rates that are somewhat lower in MFRs than found
under HFIR irradiation of these steels? Several factors appear to be
involved in the swelling suppression of the 20 to 25% CW PCA/D9 type alloys
with increased helium, The precipitation of a dispersion of MC also enhances
bubble nucleation per increment of generated helium. The association of
fine MC particles and helium bubbles further hinders bubble coarsening by
coalescence., The resulting high density of bubble/precipitate sinks also
suppresses RIS and thereby enhances MC stability. Currently, these ideas
and mechanisms about helium-extended transients are being tested by unique
experiments in which normal FFTF-irradiated samples are being compared to
sanples of the same steels preirradiated to various degrees of microstruc-
tural evolution in HFIR prior to FFTF irradiation,?9

Several questions still remain that make further alloy development and
experimental investigations desirable: (a) Can swelling transients in a
commercial MFR confidently be extended to and beyond 150 to 200 dpa at 500
to 600°C? (b) Can helium—enhanced void formation at lower temperature

(300-450°C) be suppressed? (c) How does stress influence helium effects?



and (d) Can swelling resistance be achieved in SA material (easier to weld)?
Regarding the first question (a), small melts of PCA further modified with
varying combinations of Ti, V, Nb, P, B, and C (intended to further stabi-
lize the MC phase and to minimize undesirable phases) are currently being
irradiated in various experiments.zo’21 Recent work on P-modified steels
demonstrated efficient helium trapping alorng lath-shaped phosphide par-
ticles;18 combined MC/phosphide precipitation way prove particularly effec-
tive. Regarding question (b), Fig. 2 illustrates the relative shifts in
peak void swelling temperatures for various steels irradiated in HFIR; the
behavior is not completely understood, but may involve differences in loop
formation and radiation-induced precipitation.10 Swelling is unlikely to be
a problem below 300°C, A legitimate goal of alloy development may be to
simply ensure that the swelling peak remains above 550 to 600°C, where
embrittlement and corrosion (in lithium) also limit first wall lifetimes.

The last questions [(c) and (d)] demand more experimental work.

3.0 STRENGTH AND EMBRITTLEMENT

Generally, stress—free fast neutron irradiation reduces ductility rela-
tive to unirradiated material through irradiation. hardening at lower tem—
peratures, and through grain boundary embrittlement (induced by segregation,
precipitation, or helium) at higher temperatures. Severe embrittlement
causes grain boundary separation with little or no plastic flow and con-
current loss of strength, For fusion, ductility must be sufficient to pre-
vent fracture of the first wall, which would cause a breach of vacuum
intggrity and a loss of coolant into the plasma chamber. However, strength
must also be adequate to prevent plastic deformation, particularly as

swelling gradients (due to temperature dependence) build up stress gradienta



with time.2?3 Helium embrittlement is a major concern for fusion at the
higher gas generation rates relative to FBR behavior; helium embrittlement
primarily imposes an upper temperature limit, but can also limit lifetimes
when materials are swelling resistant at 500 to 600°C.

Most austenitic stainless steels become quite strong, but show no evi-
dence of helium embrittlement (i.e., ductile, transgranular failure) at tem—
peratures of 400°C and below,zz’zl*—28 even after the accumulation of ~3000
to 4000 at. ppm He. Figure 3 shows tensile yield and total elongation trend
curves as functions of irradiation temperature for a variety of austenitic
stainless steels after HFIR irradiation to 10 to 22 dpa and 1400 to 1750 at.
ppm He;22,24~28 EBR-II data for CW 316 irradiated to ~20 dpa and 5 to
15 at. ppm He are also included to gage the effects of helium.2° Above 400°c,
SA materials harden progressively less with increasing irradiation tem—
perature, but CW materials recover and soften. 1In general,-streﬁgth and
ductility changes saturate with fluence at temperatures below 500 to 550°C.
Above 550°C, however, the loss of both ductility and strength combined with
grain boundary bubble coarsening and the onset of intergranular failure all
suggest helium embrittlement in HFIR. The embrittlement becomes worse with
fluence in many heats. Disk bend data are also consistent with these
trends, but reveal severe embrittlement at 500 to 600°C for some
alloys.zs’an Above ~650°C, ductility and strength rapidly fall during HFIR
irradiation.3! Helium has little effect on strength at 600°C and below,
whereas in HFIR, helium enhances embrittlement above 550°C relative to EBR-II
irradiation. However, below ~650°C, heat~to—-heat and/or pretreatment
variations have larger effects on strength and ductility than does helium
(strong materials, like PCA, have less ductility). Furthermore, these

property changes correlate reasonably with microstructural changes,28’32’33



to reveal underlying mechanisms and alloy development avenues for improve-
ment, Therefore, several goals for embrittlement resistance for fusion
are: (a) to reproducibly achieve the properties of the better heats of
steel, (b) to increase the embrittlement cutoff to ~600°C or above, and
(c) to extend the duration of resistance at 500 to 600°C.

Fundamental studies of helium embrittlement reveal that helium
enmbrittlement is primarily caused by grain boundary bubbles-exceeding their
critical radii (either by applied stress or by coalescence or growth).aq—as
Titanium-modified austenitic stainless steels exhibit better embrittlement
resistance than unmodified steels due to the direct benefifs of bubble
refinement by MC-helium tr:appirxg.27’28’30’37-1+0 The ductility maxima at 500
to 550°C for HFIR~irradiated type 316s and 316 + Ti correlate with formation
and stability of Mp3Cg/MgC at the grain boundaries; at higher fluences the
carbides dissolve, and at higher temperatures they do not form og are
replaced with intermetallics (Laves and o phases).az’“’“1 Figure 4 shows
the particular embrittlement resistance imparted to the strong CW PCA by
bubble refinement induced by stable MC particles formed at the grain boun-
daries via thermal treatment prior to HFIR irradiation.?? The current
United States strategy for improved embrittlement resistance involves com-
positional variations of the PCA to further promote consistent and
controllable MC formation at the grain boundaries and to increase its
stability under irradiation, possibly in conjunction with M;3Cg/MgC as well.
However, questions still remain about welding such pretreated alloys and

about the effects of stress and creep deformation on microstructural stabil-

ity under irradiation.



4,0 TFATIGUE/IRRADIATION CREEP

Fatigue faillure and cracking due to thermal stresses are obvious con-
cerns for MFRs with cyclic plasma operation and may still even be a factor,
considering plasma disruptions, in steady-state tokamaks. Data on the
effects of irradiation on fatigue life are primarily on FBR-irradiated types
304 and 316 stainless steel.*Z ** The most relevant nelium =ffects data are
that by Grossbeck and Liu*3*"5 for one heat of CW 316 irradiated in HFIR at
430 and 550°C to ~900 at. ppm He and 15 dpa; fatigue was feduced at 430°c,
possibly due to irradiation hardening, but was unaffected.by irradiation
at 550°C (even for tests at 650°C) relative to unirradiated material. It
should be noted, however, that most HFIR-irradiated steelé are not severely
embrittled after such irradiation (see Fig. 3) and that this particular heat
of type 316 (MFE reference heat X-15893) shows less embrittlement than other
CW 316s (DO~heat, N-lot) at higher fluence,22228 Microstructurally, the CW
316 (X~15893) also has stable grain boundary carhides (MgC/M23Cg) after HFIR
irradiation to ~15 dpa at both temperatures, Similarly, Serpan et al."® see
no embrittlement after helium preinjection (10—100 at. ppm) and actually
observe improved fatigue life in the CW 316 tested at 815°C. Ermi and
Chin"*7 have also conducted low-fluence, in situ fatigue tests for CW 316
in ORR and found no degradation at 460°C. However, the introduction of ten-
sile hold times can reduce the fatigue life of irradiated material.“® Batra
et al."? also note that severe embrittlement appears in helium preinjected
type 316 (800 at. ppm) at 600°C when the fatigue cycle frequency is reduced
from 5 to 0.5 Hz.

Fatigue studies thus far do not indicate first wall temperature or
lifetime limits more severe than those imposed by swelling or normal helium

embrittlement. Therefore, it appears that fatigue does not pose problenms
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requiring new alloy development solutions. More study, however, is needed
for the effects of higher fluence irradiations, particularly with higher
helium contents and possibly lower temperatures, and for the effects of
lower frequencies and/or longer hold times (including possibly in situ
studies). Finally, care must be taken to prevent alloy development efforts
aimed at other properties from impairing fatigue behavior, particularly
since there are virtually no data on titanium-modified steels.

irradiation can enhance thermal creep, or induce creep at lower tem-
peratures and stresses due to the ongoing point defect production, Irra-
diation creep is expected to relieve swelling generated stresses in the MFR
first wall.?3 There is an abundance of irradiation creep data, but most
were generated via FBR irradiations prior to 1977.90*51  There are very
little data for the effects of helium on irradiation creep. Two aspects of
creep under irradiation are important — the actual deformation behavior and
the time to eventual rupture. Under FBR irradiation, creep parallels the
fluence evolution of void swelling, increases linearly with stress, and is
weakly temperature dependent, but increases at lower temperature.51 Irra—
diation, however, can also decrease rupture life and strain, but not as
severely as suggested by early’postirradiation Creep testing.52—5“ However,
in-reactor testing still shows the same intecgranular failure.®? Helium may
alter irradiation creep via its effects on matrix microstructural evolution,>>
and may further reduce rupture life through enhanced grain boundary
embrittlement. Reactor data currently are insufficiert to address the
latter question, but can address the first.

Irradiation creep rates appear to bz lower for CW 316 and CW PCA irra-—

diated in the QORR at 500°C to ~5 dpa relative to CW 316 similarly irradiated
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1
in EBR-II, as shown in Fig. 5 (ref. 44), but no difference is observed

between reactors at 330°C. Helium may reduce irradiation creep via
microstructural refinement.35 Hishinuma et al.57 clearly show that pre-
injected helium (20-60 at. ppm) suppresses both woid swelling and irra-
diation creep for CW 316 irradiated in EBR-II at 525°C to 23 dpa.
Microstructurally, the suppression correlated with a dense population of
fine bubbles rather than coarse voids. Because irradiation:creep depends on
the biased flow of interstitials to dislocations, irradiation creep
suppression is consistent with similar stress—free suppressions of void for-
mation and RIS by bubble sink-dominated structures.® }%2 However, this is
simply a consistent effect of helium on both swelling and creep rather than
a change in their relationship. Irradiation creep may equally well be
enhanced when helium enhances void swelling (and RIS} at lower temperatures,
as shown in Fig. 2.

More data on the effects of helium on irradiation creep are needed,
both at lower temperatures and at higher fluences; creep embrittlement may
be more severe than tensile embrittlement, further reducing the maximum
first wall temperature. Another question is the relationship between
swelling and creep when swelling is due to bubbles driven by helium rather
than bias-driven voids. Irradiation creep, however, does not currently
impose new problems requiring alloy development solutions, although it
appears to benefit from alloy development efforts already directed toward

swelling and embrittlement resistance.

5.0 CORROSION UNDER IRRADIATION
Corrosion by the coolant thins the first wall and can aggravate mechan-—

ical failure. Corrosion is a property that limits the maximum first wall



12

temperature at the coolant interface. It is also a property that is
generally not the focus of alloy development to the same degree as swelling
and embrittlement resistance. One reason may be that coolants change with
MFR design (and particular corrosion problems differ with each coolnnt),
unlike the fusion neutron damage spectrum which remains the same, For
example, the problem facing stainless steel in water at 200 to 350°C is
stress corrosion cracking, exacerbated generally by the formation of
chromium-rich carbides at grain boundaries in heat-affected zones of welds.
But this problem may be alleviated by the same alloy development efforts
whicn seek to encourage MC rather than M33Cg at the grain boundaries for
heliun embrittlement resistance. However, the problem becomes quite dif-
ferent for a stainless steel first wall and a liquid lithium coolant.

In lithium, thermal corrosion increases with increasing nickel content
of the alloy, with type 316 corroding less than PCA type al‘loys,'58 as shown
in Fig. 6(a). The initially rapid corrosion rate is reduced by the for-
mation of a nickel-depleted ferrite layer, as seen in Fig. 6(b), which then
corrodes more slowly than the original austenite. By itself, this behavior
would suggest selection of lower nickel austenitics, whereas alloys like the
PCA have higher alloy nickel contents tc improve resistances tu swelling and
excessive intermetallic phase (lLaves, o) formation. However, corrosion
behavior under irradiation may be different if RIS causes alloy modification
of the surface at rates more rapid than the corrosion kinetics. Among its
varioug effects, RIS causes the nickel content at surfaces and grain
boundaries to be considerably enriched. Rapid nickel transport to the sur-
face could frustrate formation of the ferrite layer, or worse, cause a higher
local nickel content to enhance corrosion. The effects of RIS on the sur-

face (depth of composition gradients and rate of development) are not well
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known for the metal-liquid metal interfaces of reactor-irradiated samples.
Use of the advanced PCA/D9 type alloys, already designed for swelling
resistance, may eliminate some uncertainty because a key to helium-
suppression of voild swelling in them involves helium bubble dilution of
RIS.!! When RIS is suppressed, normal thermal diffusion appears enhanced,10
which may at least then lead to the more predictable thermal behavior
observed in Fig. 6, and possibly provide another reasbn for employing the
advanced irradiation-resistant austenitic stainless steels.

Experiments on the effects of irradiation on corrosion may be of
interest; they would, however, be necessary to prove a problem exists
before any additional alloy development effort would be required. Adding
inhibitors, like aluminum, to the lithium may also help reduce corrosion.?>?

However, corrosivu i lithium offers a reason for not seeking swelling

resistance by dramatically increasing the alloy nickel content.’

6.0 REDUCED ACTIVATION AUSTENITICS

This new area of alloy design is a response to the need to reduce the
ind&ced radioactive decay of first wall and blanket components, so that
after service they can be burled as Class C waste,®0281  For austenitic
stainless steels, the compositional guidelines are still evolving, but do
entall replacing nickel completely with manganese, eliminating niobium,
and severely restricting Mo, Cu, and N. Some commercial manganese-
stabilized steels do exist, like the AISI 200-series austenitic stainless
steels, but they are not generally used at elevated temperature and do not
fit compositionally into the low activation guidelines. The challenge,

therefore, is to develop a new class of Fe-Mn-Cr steels while maintaining
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the radiation resistance already achieved in the advanced modified Fe-Ni-Cr
austenitic stainless steels.

There are currently several efforts under way to study or develop Cr-Ma
austenitic steels for fusion. Studies at the Joint Research Cegégr
(JRC)~Ispra are focused on a broad Eharacterization of many properéies for
several commercial steels in the range of 17 to 20 wt Z Mn and 10 to 14% Cr
(ref, 62). They find many properties comparable to equivalent nickel-
stabilized alloys, except for increased strength and work hardening,
deformation-induced martensite and lower thermal conductivity in the
manganese-stabilized alloys., Under electron irradiation they find that
helium enhances woid swelling. Alloy development and studies at the Hanford
Engineering Development Laboratory {(HEDL) center on achieving a low swelling
base composition in the Fe-Mn-Cr system equivalent to the anomalous swelling
resistance demonstrated under FBR irradiation in the INVAR'regibn of the
Fe-Ni-Cr system (7—15 wt % Cr, 3560% Ni) (ref. 63). These studies include
a range of pure Fe-Mn-Cr alloys with 15 to 35% Mn and 0 to 15% Cr and steels
with variouz solute additions in the range of 15 to 30%Z Mn and 2 to 157 Cr;
(refs. 63,64); there is also work on type 216 stainless steel.®> In EBR-II
or FFTF they find swelling behavior sfmilar to that found in nickel-
stabilized austeniéics, but with liztle chromium dependence and less reduc~— -
tion in swelling for increased manganese compared to nickel. Finally,
alloys are being studied and developed at. the Oak Ridge National Laboratory
(ORNL) with the intent to produce a manganese—stabilized equivalent of the
PCA, with a microstructural basis for irradiation resistaqce.61’66’67 These
alloys have 10 to 20 wt % Cr, 15 to 20% Mn, and 0.1 to 0.4%Z C. These studies,

including thermal aging, show manganese to be less than half as effective an
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austenitizing agent as nickel. Precipitate phases are similar to those
found in nickel-stabilized austenitics (M23Cg, 0, Laves), but the manganese-
stabilized steels seem more prone to intermetallic phases than the nickel-
stabilized steels, despite higher carbon conteants.

To summarize, the manganese-stabilized steels are different from the
nickel-stabilized steels, but not so different as to preclude application of
the same general alloy development principles used to bnparf irradiation
resistance to the latter. Work is ongoing, but much more characterizatiop is

necessary before specific alloy development directions become clear,

7.0 SUMMARY AND PERSPECTIVE

Helium—enhanced void swelling and induced embrittlement limit fusion
first wall operating temperatures and lifetimes and are the logical first
priorities for alloy development efforts aimed at improved performance.
Further alloy development for swelling resistance is worthwhile to con-
fidently eliminate helium~enhanced void swelling at lower temperatures and
to prolong the transient regime at higher temperatures. This effect is
amplified by the degree to which helium helps to further p;olong the trar-
sient in CW PCA/D9 type alloys. Swelling resistance also néeds to be
demonstrated during irradiation with applied stresses and would be desirable
in SA materials from the standpoint of welding. Efforts to achiev;.helium
embrittlement resistance are particularly worthwhile in void swelling
resistant alloys, and grain boundary precipitate (MC) tailoring appears to
be the most effective alloy developme;t avenue. The aim should be to
increase the temperature limits as much as possible beyond 550 to 600°C and

to confidently increase the duration of embrittlement resistance at 500 to

600°C, particularly with stress conditicns producing creep or fatigue. The
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effects of welding, however, still need to be studied on preirradiation
microstructures that include cold worked and precipitate structures for
irradiation resistance.

Other properties such as fatigue or creep under irradiation require
further investigation, particularly for the effects of helium. Currently
they do not appear to“pose new problems requiring additional alloy develop-
ment fixes, and indeed appear to benefit from the alloy development measures
already outlined above. Corrosiom concerns include the potential problems
of stress corrosion cracking sengitization in water or RIS-enhanced corro-~
sion in lithium under irradiation, both of which require more experimental
study. But again, these corrosion problems may benefit from alloy develop-
ment solutions already applied toward achieving swelling and helium
embrittlement resistance, .

The newest area of challenge is making major alloy compositional modi-
fications to reduce radioactive decay problems while still preserving the
degree of irradiation resistance already achieved in current PCA/D9 type
steels. There appears to be enough general metallurgical similarity between
the manganese~ and nickel-stabilized steels to make these efforts worth
pursuing.

The worth of alloy development efforts for austenitic stainless steels
can also be affected by choices and tradeoffs that must be made by fusion
reactor system design studies or by competitlon with other alloy classes,
regardless of the improvements that the austenites demonstrate under irra-
diation. However, this author believes that it is important to continue to
pursue the current strategy of developing multiple alloy classes, coupled
with a broader, holistic view of many properties in each alloy class, to

offer a choice among several good candidate materials for design optimization.
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Fig. 1. Scatter bands of swelling versus fluence for various steels
indicated after EBR~II irradiation. Data references are in ref. 1ll.
Microstructural evolution that correlates with swelling behavior in indi-
cated (RIS - radiation-induced solute segregation, RIP - radiation-induced

precipitation).

Fig. 2. Approximate swelling versus temperature for steels irradiated
in HFIR to illustrate relative heat-to-heat variation of peak swelling.
Fluences are not the same for all steels. PCA and N-lot 316 were irradiated
to ~44 dpa [P. J. Maziasz and D. N. Braski, J. Nucl., Mater. 122&123 (1984)
311-316]; MFE ref. 316 to ~55 dpa (ref. 22), and DO-heat 316 to ~47 to 60 dpa
(ref. 9). CW 316 + Ti was irradiated only to 10 to 17 dpa [P. J. Maziasz
and M, L. Grossbeck, DOE/ER-0045/6 (1981) 28-56], but was extrapolated to
higher fluence.

Fig. 3. Schematic trend curves and scatter bands for (a) tensile yield
stress and (b) total tensile elongation as functions of irradiation tem-
perature for various steels irradiated in HFIR to 10 to 22 dpa and 500 to
1750 at. ppm He, and tested at or near the irradiation temperature (refs.
22, 24—28). A low helium (515 at. ppm) base line of EBR-II irradiated CW
316 is included (ref. 29). All HFIR specimens (except PCA at 300 to 600°C)
were tested at 75 to 100°C below their actual irradiation temperaturas.
However, the properties were little affected by raising the test tewpera-
tures except at ~600°C and above, where ductility was reduced (ref. 22).

Fig. 4. Correlation of (a) total tensile elongation with (b)—(d) dif-
fzrerces in grain boundary microstructure for PCA that had been either solu-
tion annealed (Al), 25%-cold-worked (A3), or aged (8 h at 800°C) and
25%-cold-worked (B3) prior to HFIR irradiation at 300 to 600°C to ~22 dpa and
1750 at. ppm (ref. 27)., Stable grain boundary MC, produced via pretreatments,
improves ductility by refining bubble size (ref. 28). {c) MC precipitate
dark-field of (b). i

Fig. 5. Effective creep strain as a function of effective stress for
pressurized tubes of 25%-cold-worked PCA and 20%-cold-workzd (MFE ref.-heat)
316 irradiated in the ORR to ~5 dpa at 500°C (ref. 44) and of 20%-cold-
worked 316 similarly irradiated in EBR-II (ref. 56).

Fig. 6. (a) A plot of weight loss as a function of exposure time for
various austenitic stainless steels and (b) metallography of the nickel-
depleted ferrite region after 6700 h of PCA-A3 for corrosion testing in
lithium at 600°C (ref. 58). PCA has more nickel than type 316 and corrodes
more readily.



Table 1. Current Advanced Modified Au-stenitic Stainless Steel Candidates
from Several National FBR and/or MFR Programs

COMPQSITION, wt. %

COUNTRY ALLOY Ni C Mo C Si Ti Nh P
USA PCA i6.2 14 23 0.05 04 025 - 0.01
JAPAN JPCA 16 15 25 0.06 0.5 0.25 — 0.025
W.GERMANY DIN14970 15 153 13 0.1 03 03 - -

UK FV 548 115 164 14 0.1 04 - 1.0 0.01

FRANCE 316+ Ti 13 175 24 0.06 08 03 - 0.02
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Goverament, Neither the United States Governraent nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or ass~mes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights, Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise docs not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.



