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Abstract

This paper presents a combined analytical and
experimental method for establishing a set of
equations to evaluate the equivalent forces acting
on a structure. The method requires that a finite
element model of the structure be established. It
further requires that the acceleration responses
to the external fotrces be measured at a number of
points on the structure. The equivalent forces
established in the analysis are a representation
of the actual forces. The equivalent forces
concentrate the effects of the external forces at
the degrees of freedom where the acceleration
responses are measured.

Introduction

In the analysis of structural response it is
essential that the forces applied to the structure
be known well in order to insure accurate results.
For this reason, direct measurements are made to
determine the forces applied to structures,
whenever possible, and studies that wuse
fundamental principles of mechanics to determine
the theoretical forces applied to structures are
used when direct measurements cannot be made. A
better alternative to the latter approach, when
direct force measurements cannot be made, is to
use measurements of structural response to infer
the external forces applied to a structure.
Several studies have taken this approach.

* This investigation was supported by the
Department of Energy under contract number DE-
- AC04-706-DP00789.
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Some examples of the traditional approach to
the identification of forces applied to structures
are those presented in References 1 and 2. The
approach described in those papers establishes the
frequency response functions between external
forces applied at specific points on a structure
and the responses excited at specific internal

points. Then the system is subjected to field
environments, and the structural responses are
measured. The internal measurements are

multiplied times the inverse of the frequency
response functions to estimate the applied forces.
While this approach can yield accurate results
under certain circumstances, it is inherently ill-
conditioned. It cannot be very accurate at
frequencies where substantial response is not
excited by the external forces. Further, if
external forces act at locations other than where
the frequency response functions are measured, the
responses due to these forces create errors in the
force estimation.

Another approach that has shown great promise
in the identification of external forces applied
to a structure is the "sum of weighted
accelerations" method summarized in References 3
and 4. This technique makes use of the fact. that
internal forces in a structure that is free in
space completely cancel one another when the

structure is excited by external forces. The
measured accelerations in such a system can be
used to establish the external force. A

description of the technique using the finite
element method in Reference 5 shows that this
result is to be expected, and it can be shown that
the technique can be also explained in terms of
the orthogonality of modes in a linear structure.
Though the technique appears quite robust, a
limitation is that it only provides the resultant
force acting on a system (and the resultant
moment, according to Reference 4). That is, the
spatial distribution of the external forces is not

established. A substantial advantage of the
method is that it can be applied using only
experimental data.

A technique is proposed in this paper to
establish a set of equivalent external forces
acting on a structure at a collection of points
where response accelerations are measured. The
technique is a combined experimental and
analytical method, requiring that a finite element
model be established for the structure with
degrees of freedom at the points where the
response accelerations are measured. The finite
element model must be used to compute as many
modal frequencies and mode shapes of the system as

there are measurement points. In addition, as
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many modal frequencies, modal damping factors and
mode shapes as there are measurement points must
be estimated experimentally.

Development of Fundamental Equations

The objective of the development in this
section is to establish a set of equations to
approximately characterize the forces that act on
a linear structure. The development uses several
assumptions, and these are summarized first.

In practical situations, the forces acting on
any structure are spatially distributed. When the
forces acting on a structure are distributed over
limited areas they are sometimes approximated as
point loads, for the purposes of analysis. When
the forces on a structure are broadly distributed,
then simplifying assumptions regarding the spatial
distribution of the loads are often made for use
in analysis. The reason for the simplifying
assumptions in both these cases is that it is
impossible to exactly define the true distribution
of loads on a structure using a finite collection
of transducers. Further, it is usually felt by
structural analysts that the load approximations
used in a structural analysis can lead to reliable
results when applied with care. The force
identification technique developed in this paper
leads to a characterization of the dynamic forces
applied to a structure that is consistent with the
approximations used in current practice.

It is assumed that the structure under
consideration is linear and can be described by
the governing differential equation

[m){Z) + [c](Z) + [k](z) ~ (q) (1)

where [m], f{¢], and [k] are nXn matrices
representing mass, damping and stiffness,
respectively. {q} is the nx1 vector of forces
applied to the structure. ({z} is the nxl vector
of absolute structural displacements (and
rotations), and dots refer to differentiation with
respect to time. With this description,
structural motion is assessed at a collection of
node points, and forces on the structure are
applied at these points.

Because the structure is linear, it possesses
classical modes, and its modal frequencies can be

denoted w;, j=1,...,n. The mode shapes associated
with the individual modes are contained in the nxn
modal matrix [u]). Each column in [u] represents

an individual mode shape. It is assumed here that
the modes are orthonormal with respect to [m],
therefore, the modal matrix, [u], diagonalizes the
mass and stiffness in the following way.

T
ful” [m} [u] = [1] (2a)
2
(w1’ [ (u) = (&7 (2b)
where [I] is the nxn identity matrix, and [?] is
the nxn diagonal matrix of the squares of the

modal frequencies of the structure. It is further
assumed in this analysis that the damping matrix
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of the structure is diagonalized by the modal
matrix. Therefore, we write

(w¥ (el (u] = (250) (2¢)

where (2¢w] is the nxn diagonal matrix whose
elements, 2¢;w;, j=1,...,N, involve the modal
damping factors.

Transformations that reduce the number of
degrees of freedom in the present problem are
possible, and an example of such a transformation
is a modal transformation based on the modal
information described in the above paragraph.
Another transformation that permits us to consider
the present problem at a subset of node points
(or, in the present case, at a number of points

where measurements will be made in thé_field) is
the transformation

[T](Zp) = {z} (3

where (z,) consists of a portion of the elements
in (z}). It is the Nx1 vector (where N<n) that
contains a collection of elements that is a subset
of the elements in (z). {T] is an Nxn
transformation matrix. The first element in (z;)
equals the element indexed j, in (z). The second
element in {z,} equals the element indexed j, in
{z}), etc. And finally, the Nth element in (zP)
equals the element indexed jy in (z}.

To establish a method for uniquely defining .
the transformation [T], we use the following
procedure. Let {u,] be a partial modal matrix
with dimension NxN. The first element in each
column of {u,] is the j;th element in the
corresponding column of [u]. The second element
in each column of [u;] is the j,th element in the
corresponding column of [u], etc. Finally, the
Nth element in each column of {u,] is the jyth
element in the corresponding column of [u]. We
multiply the transformation matrix [T] times the
partial modal matrix [u,], then equate the result
to the first N columns of the modal matrix [u].
That 1is,

(T] ()] = (uy) )

where the subscript N in [uy] has been included to
denote the fact that this matrix contains only the
first N columns from {u]. Based on this, [T] can
be defined as

-1
(T] = [uy] [u)] (5

where it is assumed that {u,] possesses an
inverse. (The degrees of freedom where the
elements of (zp) are chosen must guarantee that
[up) can be inverted.) Based on the definition of
[u] in terms of [u], it is guaranteed that the
first column element in row j, of [T] equals ome,
and all the other elements in that row are zero.
The second column element in row j, of [T] equals
one, and all the other elements equal zero, etc.
Finally, the Nth column element in row jy of (T]



equals one, and all the other elements in the row
equal =zero. This guarantees the accuracy of
Equation 3 at the N selected degrees of freedom,
and establishes(gn approximation that interpolates
deformations at the other degrees of freedom using
the N mode shape functions.

The next step is to use the transformation
defined in Equation 3 in Equation 1. Premultiply

all terms in the resulting equation by the
transpose of [T]. This yields

. . k -
[mp](ZP) + [cp](ZP) + [ p](ZP) (qp) (6)

where the following notation has been used.

(m) = (11" (=] (1) (6a)
[e,) = (117 (el (1] (65)
(k) = (117 [ (1) (6c)
(a,) = M7’ (q (6d)

In these expressions [m,}, [¢,] and [k;] might be
called partial mass, partial damping .and partial
stiffness matrices, respectively. {qp} might be
called the partial force, and it is this vector
function that we will identify.

Because the columns in [uy] are orthonormal
with respect to ([m], [c], and [k], and [u,] is
defined as in Equation 4, the columns of [u,] are
orthonormal with respect to [m,], {c,], and [k,].
This means that we can write

T .

fu)? (m) (w] = (L] (7a)

[up]T fe,) [u] = 2w ] (7b)
T 2

)T [k (u) = o] (7¢)

where {I,] is simply the NxN identity matrix,
[wg?] 1is the NxN diagonal matrix whose elements
are the squares of the first N modal frequencies,
and [2¢{w,] is the NxN diagonal matrix whose
elements involve the damping factors of the first
N modes.

Because the orthogonality in Equations 7
exists, it is possible to uncouple the equations
represented by the matrix Equation 6. We define
the modal coordinates (fp(t)) as follows

[upl(fp(c)) - (zp(t)) (8)

Use of Equation 8 in Equation 6 and
premultiplication of the result by (u,J? yields
the set of uncoupled equations

L . 2 T
(fp) + [2§wp](€p) + [wp](fp) - [Up] (qp) (9

Now that the equations have been uncoupled, we
note from Equation 8 that the vector of modal
coordinates can be replaced by the inverse of [ug)
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multipiied times {z,}. We do this in Equation 9
to obtain ot

[up1‘1<¥p> + (260 ] [up1'1(2p> ¥ [w§1 [up]'l(zp)
T
w1 ta) (10)

This equation relates the accelerations,
velocities and displacements at a collection of N
degrees of freedom on a structure, and the mode
shapes of the structure at the corresponding
points, and the first N modal frequencies and
damping factors to forces applied to the structure

at the N degrees of freedom. (We could also
replace [u,]"! on the left side in Equation 10
with [u,]?[m,]. The resulting expression would

yield a clear interpretation of the computations
performed in the "sum of weighted accelerations"®
method of Referecnes 3 and 4.)

It can be shown that if a structure is linear
with known modal frequencies and orthonormal mode
shapes, with a damping matrix that can be
diagonalized and known modal damping factors, and
if the structure has external forces applied only
at the measurement points, then the external
forces are identically characterized by Equations
6 and 10.

If we could establish all the terms on the
left hand side of Equation 10 through experiment
or analysis, or through a combination of the two,
then we could determine the forces applied to a
structure at the degrees of freedom (zp).

Practical Application of the Equations

In fact, it 1is generally only convenient to
measure the absolute accelerations that a
structure executes in response to the application
of external forces. The accelerations can be
integrated to obtain velocities, and then
integrated again to establish displacements, but
these integrations generally yield results with
substantial inaccuracies.

Te- circumvent this problem;--the- following
approach is taken. First, Equation 6 is used in
the identification of forces. The matrices ([m,]},
[cp,] and [k,] are established by inverting
Equations 7a, 7b and 7c. This yields

[m,) = [upl'Ttlpl [up]'l (11a)
-T 1

fe,) = fu) (26 ) (u ] (11b)

[k, - [up]'T[wil tupl'l (11c)

The quantities on the right side in Equation
11 can be established through analysis or a
combination of analysis and experiment. The
latter approach can be implemented in the
following way. (1) Form a finite element model of
the structure. (2) Evaluate its modal frequencies
and mode shapes. (3) Experimentally estimate the
modal frequencies, modal damping factors, and mode
shapes. (4) Adjust the finite element model until



its modal characteristics accurately match the
experimentally obtained modal characteristics.
(5) Orthonormalize the mode shapes using the
finite element model. (6) Evaluate the right hand
sides of Equations 11 using the orthonormal mode
shapes, the experimental modal frequencies, and
the experimental modal damping factors. This
approach is probably better than a purely
analytical approach because it incorporates the
actual behavior of the system, and this may be
especially important in establishing the modal
damping factors.

The Fourier transform of Equation 6 can be
taken to obtain

: -1
[mp](Zp(f)) + (i2xf) [cp](Zp(f))

-2
£)) - £
+ (12xf) [kp](Zp( )} (Qp( )}
(12)

where (Qp(f)) is the Fourier transform of (qp(t)),
{Z,(f)} is the Fourier transform of ({(z,(t)}, and
we have used the facts that the Fourier transform
of velocity is (i2xf)-! times the Fourier
transform of acceleration, and the Fourier
transform of displacement is (i2xf)"2 times the
Fourier transform of acceleration.

It must be recognized that in an actual
analysis using field measured data, Equation 12
cannot be evaluated at f=0. This is precisely the
region where problems occur in the numerical
integration of measured acceleration data. In
going to the frequency domain, the problems of
numerical integration are avoided, but the trade-
off is that the quasi-static elements in the force
are not evaluated.. In a numerical analysis, the
continuous Fourier/transforms shown in Equation 12
are replaced by discrete Fourier transforms (DFT).

Equation 12 provides a formula for the Fourier
transform of the equivalent force applied to the
structure at the degrees of freedom where response
acceleration measurements are made. Once the
response accelerations are measured, they can be
Fourier transformed, and the left side of Equation
12 can be completely evaluated.

The relation between the external forces and
the structural responses involve modal information
up to the Nth mode. 1In view of this, it appears
that the relation can only be accurate up to the
frequency range between the Nth and the (N+1l)th
mode. For this reason, the acceleration response
measurement used on the left side in Equation 12
should be filtered between the Nth and (N+l)th
modal frequencies before the equivalent forces are
computed.

Once it is evaluated, (Qp(f)) can be used in a
number of ways. First, it can simply be inverse
Fourier transformed to obtain the wvector force
time history, (qut)). Second, when the applied
force is a stationary random process, the vector
{Qp(f)} can be used to estimate the spectral
density matrix of the applied equivalent forces.
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parametric model, then {Qy(f)} or (qp(t)) can be
used in a least squares or a maximum likelihood
framework to estimate the parameters of the model.

Example 1

The first example is simply an analytical
demonstration aimed at showing what equivalent
forces are estimated for a structure when the
character of the actual external force is known.
Consider Equation 6d. If the actual external
force distribution is known, then it is related to
the equivalent forces as shown. In actual
applications {q(t))} will not be known, but it is
interesting to see how closely ({qy(t)} and {q(t))
resemble one another in a controlled situation.

Therefore, in this example we consider the
uniform rod shown in Figure 1, excited by
distributed loads in the axial direction. The
loads are described later. The orthonormal mode
shapes of the system are known, and are given by

ug(x) = (mL)'l/z, Os<x<L (13a)
1/2 .
uj(x) - (2/mL) cos(jax/L), O=<x<L (13b)

where m is the mass per unit length of the rod,
and L is the length of the rod. These expressions
can be used to populate the matrices [uy] and
(u], and once these are known, the transformation
matrix [T] can be established. This was done
using 100 rows and 10 columns in the [uy] matrix,
and 10 rows and 10 columns in the {u,] matrix.
The discretization of the modal vectors was
uniform, and the measurement locations were placed
uniformly along the rod. The constant m was taken
as 1.0, and the rod length was set at 1.0.

A sequence of load distributions is considered
in this example. The first load is constant, as a
function of x. The other loads, five in number,
vary sinusoidally, as a function of x. That is

a, (%) -1, Osx<sL (14a)

q_(x) = sin(snx/L), O<x<L (14b)
r r=2,3,4,5,6

10 :

m=1.0

Figure 1. Uniform rod used in Example 1.



As noted above, the length is 1.0, and in the five
examples where the load varies, the constant s is
chosen as 1, 2, 5, 10, and 15.

The results are shown in Figures 2a through
2f. Both the actual load and the identified load
are shown in each plot. Because the identified
equivalent loads at 10 points represent the actual
loading at 100 discrete points (that is, each
modal vector is generated using 100 points), the
identified loads are 10 times as great as the
idealized loads. To compare the loads, the
identified loads were divided by 10, and straight
lines were drawn between the load values in each
set.

It is clear that when the actual load is
smooth and has little variation, then the
identified load approximates it very well.
However, as the actual load varies more rapidly,
the identified load yields a poorer approximation.
This seems to be a sort of spatial Nyquist
sampling effect.
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Figure 2a. Actual and estimated force
distributions on uniform rod of Example 1.
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Figure 2b. Actual and estimated force

distributions on uniform rod of Example 1.
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Figure 2c. Actual and estimated force
distributions on uniform rod of Example 1.
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Figure 2d. Actual and estimated force
distributions on uniform rod of Example 1.
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Figure 2e. Actual and estimated force

distributions on uniform rod of Example 1.
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Figure 2f. Actual and estimated force
distributions on uniform rod of Example 1.

Example 2

The second example is a combined analytical
and experimental example. In this example, the
lucite beam shown schematically in Figure 3 was
suspended on elastic tubing and excited at the two

locations shown in the figure. The excitations
were band limited white noise force random
processes. The acceleration responses were

measured at the three locations shown in the
figure. The measured acceleration responses were
used with the method developed in this paper to
estimate the applied excitation forces.

To obtain the input force estimates, the modal
damping factors, modal frequencies, and
orthonormal mode shapes were required. The first
was obtained from excitation and response spectral
densities estimated using test data. The second
and third were obtained using analytical forms
from Reference 6. (These are not precisely
correct for the experimental system, but were used
as approximations.) The analytical mode shapes
are given by ’

u (x) = (mL)'1/2, 0<x<L (15a)

1/2

uz(x) - (12/mL3) (x-L/2), O<x<L (15b)

u G0 - (mL)~1/2 (cos(B,x) - sin(Ax)),

O<x<L (15¢)
j=3.4,...
where 53,‘ - wJ?m/(EI), j=1,2,3,... (154d)

The modal frequencies and modal damping factors
are listed in the following table.
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rable 1. Modal frequencies and modal damping
factors for example two.

Mode Modal Modal

Number Frequency Damping
(rad/sec) Factor

1 0 0

2 0 0

3 510 0.05

The results are shown in Figures 4a and 4b.°
The measured excitation forces and response
accelerations were filtered at 940 rad/sec (150
Hz). The plots compare the estimated excitation
forces to the measured excitation forces.
Reasonable agreement between the estimated and
measured excitation forces appears to exist.
Differences in the measured and estimated forces
arise from measurement noise, system nonlinearity,
and the differences between the model and the
actual system modal frequencies, modal damping
factors, and mode shapes.

E~720,000 psi
p=1.096e-4 1b-sec?/in*
WIDTH=1.875 in ELASTIC
TUBE
. SUPPORTS
-// *,

‘//-\/
ACCELEROMETERS

/N

) & L%

"l‘“7'1"’!‘;‘\7'1"’1\\(‘ |

16" ]

A4

i 1

S R

Figure 3. Schematic diagram of the lucite beam
used in the experimental Example 2.
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Figure 4a. Actual and estimated forces at the

center of the beam in Example 2.
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Figure 4b. Actual and estimated forces at a point
7.1 inches to the right of the center of the beam

in Example 2.

Conclusion

A technique for the estimation of the external
forces applied to a linear structure has been
presented in this paper. The technique requires
the establishment of a finite element model for

the structure under consideration and permits the
use of both analytical and experimental data in
the force estimation.

The results indicate that reasonable estimates
of the applied forces can be established in a
combined analytical and experimantal framework.
Therefore, the technique has the potential for
being useful in the estimation of loads applied to
structures in the field.

The analysis presented in this paper permits
more than the estimation of distributed forces on
a structure. It also permits the interpretation
of the computations done in the sum of weighted
accelerations method for force identification. A
separate paper could be devoted to this subject.
Further, the present technique can be applied in
random vibration force distribution analyses and
parametric force excitation studies. These
subjects are left for later investigations.
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