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Abstract

This paper presents a combined analytical and 
experimental method for establishing a set of 
equations to evaluate the equivalent forces acting 
on a structure. The method requires that a finite 
element model of the structure be established. It 
further requires that the acceleration responses 
to the external forces be measured at a number of 
points on the structure. The equivalent forces 
established in the analysis are a representation 
of the actual forces. The equivalent forces 
concentrate the effects of the external forces at 
the degrees of freedom where the acceleration 
responses are measured.

Introduction

In the analysis of structural response it is 
essential that the forces applied to the structure 
be known well in order to insure accurate results. 
For this reason, direct measurements are made to 
determine the forces applied to structures, 
whenever possible, and studies that use 
fundamental principles of mechanics to determine 
the theoretical forces applied to structures are 
used when direct measurements cannot be made. A 
better alternative to the latter approach, when 
direct force measurements cannot be made, is to 
use measurements of structural response to infer 
the external forces applied to a structure. 
Several studies have taken this approach.

This investigation was supported by the 
Department of Energy under contract number DE- 
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Some examples of the traditional approach to 
the identification of forces applied to structures 
are those presented in References 1 and 2. The 
approach described in those papers establishes the 
frequency response functions between external 
forces applied at specific points on a structure 
and the responses excited at specific internal 
points. Then the system is subjected to field 
environments, and the structural responses are 
measured. The internal measurements are 
multiplied times the inverse of the frequency 
response functions to estimate the applied forces. 
While this approach can yield accurate results 
under certain circumstances, it is inherently ill- 
conditioned. It cannot be very accurate at 
frequencies where substantial response is not 
excited by the external forces. Further, if 
external forces act at locations other than where 
the frequency response functions are measured, the 
responses due to these forces create errors in the 
force estimation.

Another approach that has shown great promise 
in the identification of external forces applied 
to a structure is the "sum of weighted 
accelerations" method summarized in References 3 
and 4. This technique makes use of the fact that 
internal forces in a structure that is free in 
space completely cancel one another when the 
structure is excited by external forces. The 
measured accelerations in such a system can be 
used to establish the external force. A 
description of the technique using the finite 
element method in Reference 5 shows that this 
result is to be expected, and it can be shown that 
the technique can be also explained in terms of 
the orthogonality of modes in a linear structure. 
Though the technique appears quite robust, a 
limitation is that it only provides the resultant 
force acting on a system (and the resultant 
moment, according to Reference 4). That is, the 
spatial distribution of the external forces is not 
established. A substantial advantage of the 
method is that it can be applied using only 
experimental data.

A technique is proposed in this paper to 
establish a set of equivalent external forces 
acting on a structure at a collection of points 
where response accelerations are measured. The 
technique is a combined experimental and 
analytical method, requiring that a finite element 
model be established for the structure with 
degrees of freedom at the points where the 
response accelerations are measured. The finite 
element model must be used to compute as many 
modal frequencies and mode shapes of the system as 
there are measurement points. In addition, as
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many modal frequencies, modal damping factors and 
mode shapes as there are measurement points must 
be estimated experimentally.

f 9

Development of Fundamental Equations

The objective of the development in this 
section is to establish a set of equations to 
approximately characterize the forces that act on 
a linear structure. The development uses several 
assumptions, and these are summarized first.

In practical situations, the forces acting on 
any structure are spatially distributed. When the 
forces acting on a structure are distributed over 
limited areas they are sometimes approximated as 
point loads, for the purposes of analysis. When 
the forces on a structure are broadly distributed, 
then simplifying assumptions regarding the spatial 
distribution of the loads are often made for use 
in analysis. The reason for the simplifying 
assumptions in both these cases is that it is 
impossible to exactly define the true distribution 
of loads on a structure using a finite collection 
of transducers. Further, it is usually felt by 
structural analysts that the load approximations 
used in a structural analysis can lead to reliable 
results when applied with care. The force 
identification technique developed in this paper 
leads to a characterization of the dynamic forces 
applied to a structure that is consistent with the 
approximations used in current practice.

It is assumed that the structure under 
consideration is linear and can be described by 
the governing differential equation

[m]{z} + [c]{z) + [k](z} - {q} (1)

where [m], [c], and [k] are nxn matrices 
representing mass, damping and stiffness, 
respectively. {q) is the nxl vector of forces 
applied to the structure. {z) is the nxl vector 
of absolute structural displacements (and 
rotations), and dots refer to differentiation with 
respect to time. With this description, 
structural motion is assessed at a collection of 
node points, and forces on the structure are 
applied at these points.

Because the structure is linear, it possesses 
classical modes, and its modal frequencies can be 
denoted aij, j-l,...,n. The mode shapes associated 
with the individual modes are contained in the nxn 
modal matrix [u] . Each column in [u] represents 
an individual mode shape. It is assumed here that 
the modes are orthonormal with respect to [m] , 
therefore, the modal matrix, [u], diagonalizes the 
mass and stiffness in the following way.

T
[u]1 [m] [u] - [I] (2a)

T
[u]1 [k] [u] - [w2] (2b)

where [I] is the nxn identity matrix, and [w2] is 
the nxn diagonal matrix of the squares of the 
modal frequencies of the structure. It is further 
assumed in this analysis that the damping matrix

of the structure is diagonalized by the modal 
matrix. Therefore, we write

[u]T [C] [u] - [2fw] (2c)

where [2fu>] is the nxn diagonal matrix whose
elements, 2fjWj, j-1.......... N, involve the modal
damping factors.

Transformations that reduce the number of 
degrees of freedom in the present problem are 
possible, and an example of such a transformation 
is a modal transformation based on the modal 
information described in the above paragraph. 
Another transformation that permits us to consider 
the present problem at a subset of node points 
(or, in the present case, at a number of points

where measurements will be made in the field) is 
the transformation

[T]{zp) - (z) (3)

where (zp) consists of a portion of the elements 
in (z). It is the Nxl vector (where N<n) that 
contains a collection of elements that is a subset 
of the elements in (z). [T] is an Nxn
transformation matrix. The first element in (zp) 
equals the element indexed jx in (z). The second 
element in {zp) equals the element indexed j2 in 
(z), etc. And finally, the Nth element in (zp) 
equals the element indexed Jh in (z).

To establish a method for uniquely defining 
the transformation [T] , we use the following 
procedure. Let [Up] be a partial modal matrix 
with dimension NxN. The first element in each 
column of {up] is the jjth element in the 
corresponding column of [u] . The second element 
in each column of [Up] is the j2th element in the 
corresponding column of [u], etc. Finally, the 
Nth element in each column of [Up] is the jiith 
element in the corresponding column of [u]. We 
multiply the transformation matrix [T] times the 
partial modal matrix [Up] , then equate the result 
to the first N columns of the modal matrix [u]. 
That is,

[T] [up] - [xy (4)

where the subscript N in [uN] has been included to 
denote the fact that this matrix contains only the 
first N columns from [u]. Based on this, [T] can 
be defined as

[T] - [uN] [Up]'1 (5)

where it is assumed that [up] possesses an 
inverse. (The degrees of freedom where the 
elements of (zp) are chosen must guarantee that 
[Up] can be inverted.) Based on the definition of 
[Up] in terms of [uN] , it is guaranteed that the 
first column element in row jj of [T] equals one, 
and all the other elements in that row are zero. 
The second column element in row j2 of [T] equals 
one, and all the other elements equal zero, etc. 
Finally, the Nth column element in row jN of [T]
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equals one, and all the other elements in the row 
equal zero. This guarantees the accuracy of 
Equation 3 at the N selected degrees of freedom, 
and establishes!4n approximation that interpolates 
deformations at the other degrees of freedom using 
the N mode shape functions.

The next step is to use the transformation 
defined in Equation 3 in Equation 1. Premultiply 
all terms in the resulting equation by the
transpose of [T]. This yields

[mp](Zp) + [cp]{zp) + [kp)Up} - (qp) (6)

where the following notation has been used.

[mp] - [T]T [m] [T] (6a)

[cp] - [T]T [c] [T] (6b)

[kp] - [T]T [k] [T] (6c)

(qp) - [T]T (q) (6d)

In these expressions [nip] , [cp] and [kp] might be 
called partial mass, partial damping and partial 
stiffness matrices, respectively. (qp) might be 
called the partial force, and it is this vector 
function that we will identify.

Because the columns in [uN] are orthonormal 
with respect to [m], [c] , and [k] , and [Up] is
defined as in Equation 4, the columns of [Up] are 
orthonormal with respect to [nip] , [cp] , and [kp] . 
This means that we can write

T
(UJ [ml Kl - [i l (7a)

p P p p

[vT 'V
[Up] - [2$>p] (7b)

[VT tkp]
[Up] - [Wp] (7c)

where [Ip] is simply the NxN identity matrix, 
[wp2] is the NxN diagonal matrix whose elements 
are the squares of the first N modal frequencies, 
and [2fWp] is the NxN diagonal matrix whose 
elements involve the damping factors of the first 
N modes.

Because the orthogonality in Equations 7 
exists, it is possible to uncouple the equations 
represented by the matrix Equation 6. We define 
the modal coordinates (£p(t)} as follows

[up]Kp(t)) - {8 (t)) (8)

Use of Equation 8 in Equation 6 and 
premultiplication of the result by [Up]1 yields 
the set of uncoupled equations

V + I2fwp]{V + - tvT<v (9)

Now that the equations have been uncoupled, we 
note from Equation 8 that the vector of modal 
coordinates can be replaced by the inverse of [Up]

multiplied times (zp) . We do this in Equation 9 
to obtain ‘ >

[UpfVzp) + [2fwp] [Upf1^) + [J] [Upl^lZp)

- [u ]T(q ) (10)
P P

This equation relates the accelerations, 
velocities and displacements at a collection of N 
degrees of freedom on a structure, and the mode 
shapes of the structure at the corresponding 
points, and the first N modal frequencies and 
damping factors to forces applied to the structure 
at the N degrees of freedom. (We could also 
replace [Up]"1 on the left side in Equation 10 
with [Up]T[mp]. The resulting expression would 
yield a clear interpretation of the computations 
performed in the "sura of weighted accelerations" 
method of Referecnes 3 and 4.)

It can be shown that if a structure is linear 
with known modal frequencies and orthonormal mode 
shapes, with a damping matrix that can be 
diagonalized and known modal damping factors, and 
if the structure has external forces applied only 
at the measurement points, then the external 
forces are identically characterized by Equations 
6 and 10.

If we could establish all the terms on the 
left hand side of Equation 10 through experiment 
or analysis, or through a combination of the two, 
then we could determine the forces applied to a 
structure at the degrees of freedom {zp).

Practical Application of the Equations

In fact, it is generally only convenient to 
measure the absolute accelerations that a 
structure executes in response to the application 
of external forces. The accelerations can be 
integrated to obtain velocities, and then 
integrated again to establish displacements, but 
these integrations generally yield results with 
substantial inaccuracies.

To circumvent this problem^- the- following 
approach is taken. First, Equation 6 is used in 
the identification of forces. The matrices [nip], 
[cp] and [kp] are established by inverting 
Equations 7a, 7b and 7c. This yields

i“p] - (V'T[Ip] 'V'1 (Ua)

[C ] - [up] T[2fwp] [Up]'1 (lib)

[kp] - [up]'T[^] [Up]'1 (11c)

The quantities on the right side in Equation 
11 can be established through analysis or a 
combination of analysis and experiment. The 
latter approach can be implemented in the 
following way. (1) Form a finite element model of 
the structure. (2) Evaluate its modal frequencies 
and mode shapes. (3) Experimentally estimate the 
modal frequencies, modal damping factors, and mode 
shapes. (4) Adjust the finite element model until

PROCEEDINGS — Institute of Environmental Sciences



ics modal characteristics accurately match the 
experimentally obtained modal characteristics. 
(5) Orthonormalize the mode shapes using the 
finite element model. (6) Evaluate the right hand 
sides of Equations 11 using the orthonormal mode 
shapes, the experimental modal frequencies, and 
the experimental modal damping factors. This 
approach is probably better than a purely 
analytical approach because it incorporates the 
actual behavior of the system, and this may be 
especially important in establishing the modal 
damping factors.

The Fourier transform of Equation 6 can be 
taken to obtain

[mp](Zp(f)) + (i2xf)'1[cp](Zp(f))

+ (i2xf)*2[k ](Z (f)} - (Q (f))
P P P

(12)

where {Qp(f)) is the Fourier transform of (qp(t)), 
(Zp(f)) is the Fourier transform of (zp(t)), and 
we have used the facts that the Fourier transform 
of velocity is (iZjrf)'1 times the Fourier 
transform of acceleration, and the Fourier 
transform of displacement is (i2irf)'2 times the 
Fourier transform of acceleration.

It must be recognized that in an actual 
analysis using field measured data, Equation 12 
cannot be evaluated at f-0. This is precisely the 
region where problems occur in the numerical 
integration of measured acceleration data. In 
going to the frequency domain, the problems of 
numerical integration are avoided, but the trade­
off is that the quasi-static elements in the force 
are not evaluated. In a numerical analysis, the 
continuous Fourier/ transforms shown in Equation 12 
are replaced by discrete Fourier transforms (DFT).

Equation 12 provides a formula for the Fourier 
transform of the equivalent force applied to the 
structure at the degrees of freedom where response 
acceleration measurements are made. Once the 
response accelerations are measured, they can be 
Fourier transformed, and the left side of Equation 
12 can be completely evaluated.

The relation between the external forces and 
the structural responses involve modal information 
up to the Nth mode. In view of this, it appears 
that the relation can only be accurate up to the 
frequency range between the Nth and the (N+l)th 
mode. For this reason, the acceleration response 
measurement used on the left side in Equation 12 
should be filtered between the Nth and (N+l)th 
modal frequencies before the equivalent forces are 
computed.

Once it is evaluated, (Qp(f)} can be used in a 
number of ways. First, it can simply be inverse 
Fourier transformed to obtain the vector force 
time history, (qp(t)). Second, when the applied 
force is a stationary random process, the vector 
(Qp(f) ) can be used to estimate the spectral 
density matrix of the applied equivalent forces.

Third, when the applied force is governed by a 
parametric model, then (Qp(f)) or (qp(t)} can be 
used in a least squares or a maximum likelihood 
framework to estimate the parameters of the model.

Example 1

The first example is simply an analytical 
demonstration aimed at showing what equivalent 
forces are estimated for a structure when the 
character of the actual external force is known. 
Consider Equation 6d. If the actual external 
force distribution is known, then it is related to 
the equivalent forces as shown. In actual 
applications (q(t)} will not be known, but it is 
interesting to see how closely (qp(t)) and (q(t)} 
resemble one another in a controlled situation.

Therefore, in this example we consider the 
uniform rod shown in Figure 1, excited by 
distributed loads in the axial direction. The 
loads are described later. The orthonormal mode 
shapes of the system are known, and are given by

uQ(x) - (mL)"1/2, 0<x<L (13a)

Uj (x) - (2/mL)^2 cos(jjrx/L), 0<x<L (13b)

where m is the mass per unit length of the rod, 
and L is the length of the rod. These expressions 
can be used to populate the matrices [uM] and 
[Up] , and once these are known, the transformation 
matrix [T] can be established. This was done 
using 100 rows and 10 columns in the [uN] matrix, 
and 10 rows and 10 columns in the [Up] matrix. 
The discretization of the modal vectors was 
uniform, and the measurement locations were placed 
uniformly along the rod. The constant m was taken 
as 1.0., and the rod length was set at 1.0.

A sequence of load distributions is considered 
in this example. The first load is constant, as a 
function of x. The other loads, five in number, 
vary sinusoidally, as a function of x. That is

q^(x) - 1, 0<x<L (14a)

q (x) - sin(s>rx/L), 0<x<L (14b)
r r-2,3,4,5,6

m-1.0

Figure 1. Uniform rod used in Example 1.
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As noted above, the length is 1.0, and in the five 
examples where the load varies, the constant s is 
chosen as 1, 2, 5, 10, and 15.

The results are shown in Figures 2a through 
2f. Both the actual load and the identified load 
are shown in each plot. Because the identified 
equivalent loads at 10 points represent the actual 
loading at 100 discrete points (that is, each 
modal vector is generated using 100 points), the 
identified loads are 10 times as great as the 
idealized loads. To compare the loads, the 
identified loads were divided by 10, and straight 
lines were drawn between the load values in each 
set.

It is clear that when the actual load is 
smooth and has little variation, then the 
identified load approximates it very well. 
However, as the actual load varies more rapidly, 
the identified load yields a poorer approximation. 
This seems to be a sort of spatial Nyquist 
sampling effect.

B
1

X

X

Figure 2c. Actual and estimated force 
distributions on uniform rod of Example 1.

X

Figure 2d. Actual and estimated force 
distributions on uniform rod of Example 1.

Figure 2a. Actual and estimated force 
distributions on uniform rod of Example 1.

X

Figure 2e. Actual and estimated force 
distributions on uniform rod of Example 1.

Figure 2b. Actual and estimated force 
distributions on uniform rod of Example 1.
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X

Figure 2f. Actual and estimated force 
distributions on uniform rod of Example 1.

Example 2

Table 1. Modal frequencies and modal damping 
factors for example two.

Mode Modal Modal
Number Frequency Damping

(rad/sec) Factor

10 0 
2 0 0
3 510 0.05

The results are shown in Figures 4a and 4b. 
The measured excitation forces and response 
accelerations were filtered at 940 rad/sec (150 
Hz). The plots compare the estimated excitation 
forces to the measured excitation forces. 
Reasonable agreement between the estimated and 
measured excitation forces appears to exist. 
Differences in the measured and estimated forces 
arise from measurement noise, system nonlinearity, 
and the differences between the model and the 
actual system modal frequencies, modal damping 
factors, and mode shapes.

The second example is a combined analytical 
and experimental example. In this example, the 
lucite beam shown schematically in Figure 3 was 
suspended on elastic tubing and excited at the two 
locations shown in the figure. The excitations 
were band limited white noise force random 
processes. The acceleration responses were 
measured at the three locations shown In the 
figure. The measured acceleration responses were 
used with the method developed in this paper to 
estimate the applied excitation forces.

To obtain the input force estimates, the modal 
damping factors, modal frequencies, and 
orthonormal mode shapes were required. The first 
was obtained from excitation and response spectral 
densities estimated using test data. The second 
and third were obtained using analytical forms 
from Reference 6. (These are not precisely 
correct for the experimental system, but were used 
as approximations.) The analytical mode shapes 
are given by

E-720,000 psi 
/j-1.096e-4 lb-sec2/in* 
WIDTH-1.875 in ELASTIC

TUBE
SUPPORTS

ACCELEROMETERS \

/ \ \
pa________R_______ w

(-*-7.1" -H—7.1"-j^
\ \

•16"--------------------------16" v

\ )
FORCES

Figure 3. Schematic diagram of the lucite beam 
used in the experimental Example 2.

Ul(x) - (mL)'1/2 , 0<x<L (15a)

u2(x) - (12/mL3) 1/2 (x-L/2), OtfijcsL (15b)

Uj(x) - (mL)'1/2 (cos(0jX) - sin(/9jX)),

0<x<L (15c)

j-3.4,...

where ^ - u^m/(El), j-1,2,3,... (15d)

The modal frequencies and modal damping factors 
are listed in the following table.

TIME SEC

Figure 4a. Actual and estimated forces at the 
center of the beam in Example 2.
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