

Received by CSTI
MAR 21 1991

NUREG/CR-5667
EGG-2634

INEL Personal Computer Version of MACCS 1.5

Prepared by
K. R. Jones, C. A. Dobbe, D. L. Knudson

**Idaho National Engineering Laboratory
EG&G Idaho, Inc.**

**DO NOT MICROFILM
COVER**

Prepared for
U.S. Nuclear Regulatory Commission

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555
2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Information Resources Management, Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability, or responsibility to any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

DO NOT REPRODUCE
COVER

INEL Personal Computer

Version of MACCS 1.5

Manuscript Completed: December 1990
Date Published: March 1991

Prepared by
K. R. Jones, C. A. Dobbe, D. L. Knudson

Idaho National Engineering Laboratory
Managed by the U.S. Department of Energy

EG&G Idaho, Inc.
Idaho Falls, ID 83415

Prepared for
Division of Systems Research
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555
NRC FIN A6896
Under DOE Contract No. DE-AC07-76ID01570

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

pe-

ABSTRACT

The MELCOR Accident Consequence Code System, Version 1.5, (MACCS 1.5) calculates potential consequences resulting from atmospheric releases of radioactive materials. Sandia National Laboratories developed the code for the U.S. Nuclear Regulatory Commission on a VAX/VMS mini-computer. This report documents the Idaho National Engineering Laboratory conversion of MACCS 1.5 for compilation and execution on an 80386-based IBM or IBM-compatible personal computer (PC). The resulting PC version of the code is available through the National Energy Software Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439.

FIN No. A6896—Quality Assurance (QA) and Verification
of the MACCS Code, Version 1.5.

CONTENTS

ABSTRACT	iii
EXECUTIVE SUMMARY	1
1. INTRODUCTION	3
2. CODING MODIFICATIONS AND QUALITY ASSURANCE	4
3. CODE TRANSMITTAL CONTENT	5
4. SYSTEM REQUIREMENTS AND CODE EXECUTION	6
4.1 Hardware	6
4.2 Software	6
4.3 Execution	6
5. REFERENCES	9
APPENDIX A – CODING MODIFICATIONS	A-1

FIGURES

1. An example of the JCL developed for the INEL PC version of MACCS 1.5	7
---	---

TABLES

1. A comparison of MACCS 1.5 processing times for several machines	8
--	---

INEL PERSONAL COMPUTER VERSION OF MACCS 1.5

EXECUTIVE SUMMARY

The MELCOR Accident Consequence Code System, Version 1.5, (MACCS 1.5) calculates potential health and economic consequences resulting from atmospheric releases of radioactive materials. The code is a single FORTRAN-77 program with three basic modules—ATMOS, EARLY, and CHRONC. Sandia National Laboratories (SNL) developed the code for the U.S. Nuclear Regulatory Commission on a VAX/VMS mini-computer.

This report documents the Idaho National Engineering Laboratory (INEL) conversion of MACCS 1.5 for compilation and execution on an 80386-based IBM or IBM-compatible personal computer (PC). The coding modifications primarily consist of changes in system-dependent subroutine calls and the addition of a file handling processor. No modifications were made to the consequence calculation portions of MACCS 1.5.

A line-by-line check of all coding modifications was performed to ensure that the modifications were correct and to ensure that the modifications would not affect consequence calculations. In addition, a MACCS 1.5 sample problem was run using the INEL PC version of the code. The results were then compared to results generated by SNL using the VAX/VMS version. INEL PC version results were found to be identical to SNL VAX/VMS version results after accounting for round-off and truncation.

The PC version of the code is available through the National Energy Software Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439. This document contains a description of code transmittal content and instructions for loading and executing the INEL PC version of MACCS 1.5.

1. INTRODUCTION

The MELCOR Accident Consequence Code System, Version 1.5, (MACCS 1.5)¹ calculates potential health and economic consequences resulting from atmospheric releases of radioactive materials. The code consists of a single FORTRAN-77 program with three basic modules—ATMOS, EARLY, and CHRONC. Sandia National Laboratories (SNL) developed the code for the U.S. Nuclear Regulatory Commission (NRC) on a VAX/VMS mini-computer. This report documents Idaho National Engineering Laboratory (INEL) modifications required to compile and execute MACCS 1.5 on

an 80386-based IBM or IBM-compatible personal computer (PC).

Coding modifications required to create the INEL PC version of MACCS 1.5 are outlined in Section 2. A complete discussion of the associated quality assurance program is also included. The resulting PC version of the code is available through the National Energy Software Center. Section 3 contains a description of the pertinent code transmittal content. PC system requirements and instructions for code execution are outlined in Section 4. References are provided in Section 5.

2. CODING MODIFICATIONS AND QUALITY ASSURANCE

All coding modifications required to create the INEL PC version of MACCS 1.5 (for the hardware and software configuration described in Section 4) are listed in Appendix A. The modifications primarily consist of changes in system-dependent subroutine calls and the addition of a file handling processor.

No modifications were made to the consequence calculation portions of MACCS 1.5. Therefore, calculational results of the code are not affected by the modifications. Two methods were used to ensure that consequence calculation portions of the code were not altered. First, a line-by-line check of the modifications was made to verify that all modifications were correctly coded. Second, sample problem results were generated with the INEL PC version and compared to results distributed with the SNL VAX/VMS version of MACCS 1.5.

Sample Problem A, as described in the MACCS 1.5 documentation (Reference 1), was used to perform the results comparison. All input files required to run the sample problem with the

INEL PC version, the INEL PC version output file, and the sample problem output file generated on the SNL VAX/VMS mini-computer are provided in the PC code transmittal package. The code transmittal package also includes a listing of all differences that were determined by a line-by-line comparison of the two output files. (See Section 3, Code Transmittal Content.)

Only insignificant differences were identified through the line-by-line comparison of the output files. Those differences were caused by variations in round-off and truncation. In other words, the output file comparison verified that coding modifications did not corrupt calculational results.

Because the coding modifications were based on PC system dependencies and did not impact calculational results, the INEL PC and SNL VAX/VMS versions of MACCS 1.5 are identical for all practical purposes. On that basis, the quality assurance and verification of the SNL VAX/VMS version of MACCS 1.5² is also applicable to the INEL PC version.

3. CODE TRANSMITTAL CONTENT

The INEL PC version of MACCS 1.5 is available through the National Energy Software Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439. The

transmittal is provided on three 3-1/2-in., high density diskettes. Code transmittal content is described below.

Diskette	File Name	File Description
1	READ.ME	An ASCII text file containing a description of code transmittal content, system requirements, and execution instructions.
1	INSTALL.BAT	A DOS batch file which will automatically load all transmitted files. An interactive option to execute Sample Problem A is provided.
1	MACCS.EXE	MACCS 1.5 as compiled for direct execution on an 80386-based IBM or IBM-compatible PC. This executable file was compiled with Version 3.01 of the Lahey F77L-EM/32 FORTRAN-77 compiler. As a result, it can be used without access to the A. I. Architects OS/386 DOS extender. Compiler options used are listed in Appendix A.
2	MACCS.FOR	FORTRAN-77 source code for the INEL PC version of MACCS 1.5.
3	SAMPLE.BAT	DOS batch file for optional execution of Sample Problem A.
3	SAMPLE.RUN	JCL/ATMOS input file for Sample Problem A.
3	IN2A10	EARLY input file for Sample Problem A.
3	IN3A10	CHRONC input file for Sample Problem A.
3	METSUR	Meteorological data file for Sample Problem A.
3	SURSI10	Site data file for Sample Problem A.
3	DOSDAT8	Dose conversion data file for MACCS 1.5.
3	LISTA11.OUT	SNL VAX/VMS Sample Problem A output file.
3	LISTAPC.OUT	INEL PC version Sample Problem A output file.
3	DIFF.OUT	Differences between SNL and INEL output files.

4. SYSTEM REQUIREMENTS AND CODE EXECUTION

4.1 Hardware

The minimum hardware configuration necessary to execute the INEL PC version of MACCS 1.5 includes:

- An Intel 80386-based IBM or IBM-compatible PC,
- An Intel 80387 math co-processor,
- A minimum of 3.3 megabytes of extended memory, and
- A minimum of 10 megabytes of free space on the hard disk.

4.2 Software

As discussed in Section 3, the code transmittal package includes a compiled executable file (MACCS.EXE) for the direct use of MACCS 1.5 on a PC. Assuming that the compiler options (listed in Appendix A) are acceptable, the minimum software necessary to execute the INEL PC version of MACCS 1.5 includes:

- MS-DOS or PC-DOS, Version 3.0 or higher.

If re-compiling is deemed necessary (i.e., compiler options for MACCS.EXE are unacceptable), the minimum software requirements must expand to include:

- The Lahey F77L-EM/32 FORTRAN-77 compiler, Version 1.01 or higher, and
- The A. I. Architects OS/386 DOS extender.

It should be noted that the Lahey F77L-EM/32 compiler is only required for compiling MACCS 1.5. For compiler versions below 3.01, access to A. I. Architects OS/386 DOS extender is required

during execution. However, for compiler versions 3.01 (and above) as used in developing the INEL PC version of MACCS 1.5, execution access is unnecessary since the DOS extender is automatically bound to the executable file.

4.3 Execution

Before executing the INEL PC version of MACCS 1.5, the program must be loaded onto a PC with the required hardware and software configuration. The code transmittal package includes a file (INSTALL.BAT) to automate the loading process (see Section 3). To load all transmitted files, simply insert Diskette 1 into disk drive 'a'. From disk drive 'c', type 'a:\install' and follow the instructions on the screen. After all files have been loaded, the option to execute Sample Problem A will be offered.

To execute any other problem of interest, the user must develop appropriate input files according to the MACCS User's Guide (Reference 1). A job control language (JCL) structure is then used to provide the file handling required during execution of MACCS 1.5 on a PC. An example of the JCL developed for the INEL PC version of MACCS 1.5 is shown in Figure 1. Note that the ATMOS input file simply follows the JCL as indicated. The listed JCL can be duplicated or the JCL can be stripped from the beginning of the file 'SAMPLE.RUN'.

JCL comment lines (like most comment lines in MACCS 1.5 input files) are preceded by an asterisk. The JCL is separated from the ATMOS input data by the line starting with a '/'. JCL file specifications should not exceed 72 characters in length. If necessary, JCL file specifications may be continued onto the next line through the use of a comma as shown in the figure.

File specifications are designed to allow flexibility in code input/output. The user should be careful to provide the appropriate path names to the files necessary for the MACCS 1.5 problem of interest. Unnecessary file specification(s) must

```
*****
* MELCOR ACCIDENT CONSEQUENCE CODE SYSTEM (MACCS)          VER 1.5 *
*-----*
*
* CASE DESCRIPTION: SAMPLE PROBLEM A FROM SNL, SURRY MODEL *
*
* UNIT  FILE DESCRIPTION *
* ----- *
*   -- Input:
*   25   EARLY User Input File
*   26   CHRONC User Input File
*   27   DOSE Factors Input Data File
*   28   Meteorological Input Data File
*   29   Site Input Data File
*   -- Output:
*   6    STANDARD PRINTER OUTPUT
*
* INPUT: ATMOS User Input File (UNIT 24)
*
*****
* GOESINS:
FILE25='C:\MACCS\SAMPLE\in2a10',  STATUS='OLD',  ACTION='READ'
FILE26='C:\MACCS\SAMPLE\in3a10',  STATUS='OLD',  ACTION='READ'
FILE27='C:\MACCS\SAMPLE\dosdat8', STATUS='OLD',  ACTION='READ'
FILE28='C:\MACCS\SAMPLE\metsur',  STATUS='OLD',  ACTION='READ'
FILE29='C:\MACCS\SAMPLE\sursi10', STATUS='OLD',  ACTION='READ'
* GOESOUTS:
FILE06='C:\MACCS\SAMPLE\sample_a.out', STATUS='UNKNOWN',
                                CARRIAGE CONTROL='FORTRAN'
/*
*
( append ATMOS input file here )

```

Figure 1. An example of the JCL developed for the INEL PC version of MACCS 1.5.

be deleted or 'commented out'. Complete discussions of the file specification options can be found in the Lahey F77L-EM/32 compiler documentation and in Appendix A.

At the DOS prompt, execution of the problem of interest is accomplished by typing

'c:\maccs\maccs *atmos.inp*' where '*atmos.inp*' is the name (or path name) of the file containing the JCL and appended ATMOS input data. A comparison of MACCS 1.5 processing times (in central processing unit seconds) for several machines is given in Table 1.

Table 1. A comparison of MACCS 1.5 processing times for several machines

Computer	CPU Time (s)
INEL Cray X-MP/24	286.1
SNL VAX/VMS	1392.3
IBM PS/2 Model 70 E61	10719.8
Apollo 3500	18197.0

5. REFERENCES

1. D. I. Chanin et al., *MELCOR Accident Consequence Code System (MACCS)*, NUREG/CR-4691, SAND86-1562, Volumes 1-3, February 1990.
2. C. A. Dobbe et al., *Quality Assurance and Verification of the MACCS Code, Version 1.5*, NUREG/CR-5376, EGG-2566, February 1990.

APPENDIX A
CODING MODIFICATIONS

APPENDIX A

CODING MODIFICATIONS

This appendix contains a list of the differences between the original SNL MACCS 1.5 code and the INEL PC version of the code. This appendix also contains a list of recommended compiler options.

A.1 DIFFERENCES

The key below is an explanation of the types of changes that were made to the original code (MACCS11.ORG) to obtain the new code (MACCS11.FOR).

- "<" in column 1 indicates that the line was removed from MACCS11.ORG.
- ">" in column 1 indicates that the line was added to MACCS11.ORG.

TO TRANSFORM maccs11.org INTO maccs11.for ...

*** CHANGE 618 IN maccs11.org TO [618,619] IN maccs11.for ***
< DATA REVNAM //TEST VERSION 1.5.11, 10/17/89, D. CHANIN'/'

>CKRJ DATA REVNAM //TEST VERSION 1.5.11, 10/17/89, D. CHANIN'/'
> DATA REVNAM //INEL PC VERSION 1.5.11, 10/26/89, K. JONES'/' *KRJ

*** CHANGE 737 IN maccs11.org TO [738,740] IN maccs11.for ***
< MACHIN = 'VAX/VMS'

>CKRJ MACHIN = 'VAX/VMS'
> MACHIN = 'IBM-PC/LAHEY'
> CALL IOFILES(24,6) *KRJ *KRJ

*** CHANGE 742 IN maccs11.org TO 745 IN maccs11.for ***
< OPEN (6, STATUS = 'UNKNOWN')

>CKRJ OPEN (6, STATUS = 'UNKNOWN')

*** CHANGE 750 IN maccs11.org TO 753 IN maccs11.for ***
< SUBROUTINE MXXCPU (CPUTIM)

>CKRJ SUBROUTINE MXXCPU (CPUTIM)

```

*** CHANGE [754,757] IN maccs11.org TO [757,760] IN maccs11.for ***
<     CHARACTER *80    MACHIN
<     COMMON /MACHIN/ MACHIN
<
<     DATA ICPUTC / 2 /

-----
>CKRJ  CHARACTER *80    MACHIN
>CKRJ  COMMON /MACHIN/ MACHIN
>CKRJ
>CKRJ  DATA ICPUTC / 2 /

*** CHANGE 761 IN maccs11.org TO 764 IN maccs11.for ***
<     DATA FIRST / 0.0 /

-----
>CKRJ  DATA FIRST / 0.0 /

*** CHANGE [765,770] IN maccs11.org TO [768,773] IN maccs11.for ***
<     IF (MACHIN .NE. 'VAX/VMS') CALL ABORT ('MXXCPU')
<
<     IF (FIRST .EQ. 0.) THEN
<         FIRST = 1.
<         CALL LIB$INIT_TIMER
<     ENDIF

-----
>CKRJ  IF (MACHIN .NE. 'VAX/VMS') CALL ABORT ('MXXCPU')
>CKRJ
>CKRJ  IF (FIRST .EQ. 0.) THEN
>CKRJ      FIRST = 1.
>CKRJ      CALL LIB$INIT_TIMER
>CKRJ  ENDIF

*** CHANGE [774,779] IN maccs11.org TO [777,782] IN maccs11.for ***
<     CALL LIB$STAT_TIMER (ICPUTC,IECPUI)
<
<     CPUTIM = 0.01 * FLOAT (IECPUI)
<
<     RETURN
<     END

-----
>CKRJ  CALL LIB$STAT_TIMER (ICPUTC,IECPUI)
>CKRJ
>CKRJ  CPUTIM = 0.01 * FLOAT (IECPUI)
>CKRJ
>CKRJ  RETURN
>CKRJ  END

*** CHANGE 790 IN maccs11.org TO [793,794] IN maccs11.for ***
<     IF (MACHIN .EQ. 'VAX/VMS' ) THEN

```

```

-----  

>CKRJ  IF (MACHIN .EQ. 'VAX/VMS' ) THEN *KRJ  

>      IF (MACHIN .EQ. 'IBM-PC/LAHEY' ) THEN  

  

*** CHANGE 810 IN maccs11.org TO [814,818] IN maccs11.for ***  

<      IF ( MACHIN .EQ. 'VAX/VMS' ) THEN  

  

-----  

>      CHARACTER*3 MONTH(12) *KRJ  

>      DATA MONTH //'JAN','FEB','MAR','APR','MAY','JUN', *KRJ  

>      $                 'JUL','AUG','SEP','OCT','NOV','DEC'/*KRJ  

>  

>CKRJ  IF ( MACHIN .EQ. 'VAX/VMS' ) THEN *KRJ  

  

*** CHANGE [814,815] IN maccs11.org TO [822,833] IN maccs11.for ***  

<      CALL DATE (CHAR9)  

<      ENDIF  

  

-----  

>CKRJ  CALL DATE (CHAR9) *KRJ  

>CKRJ  ENDIF  

> *KRJ  

>      IF ( MACHIN .EQ. 'IBM-PC/LAHEY' ) THEN *KRJ  

>C  

>C  FORM OF THE TEXT STRING RETURNED IN TODAY IS '11-01-88' *KRJ  

>C  FORM OF THE TEXT STRING RETURNED IN CHAR9 IS '11-JAN-88' *KRJ  

>C  

>      CALL DATE (TODAY) *KRJ  

>      READ(TODAY,'(I2)') IMONTH *KRJ  

>      CHAR9 = TODAY(4:5) // '-' // MONTH(IMONTH) // '-' // TODAY(7:8) *KRJ  

>      ENDIF *KRJ  

  

*** CHANGE 895 IN maccs11.org TO 913 IN maccs11.for ***  

<      OPEN (24, STATUS='UNKNOWN')  

  

-----  

>CKRJ  OPEN (24, STATUS='UNKNOWN')  

  

*** CHANGE 983 IN maccs11.org TO 1001 IN maccs11.for ***  

<      OPEN (25, STATUS='UNKNOWN')  

  

-----  

>CKRJ  OPEN (25, STATUS='UNKNOWN')  

  

*** CHANGE 1046 IN maccs11.org TO 1064 IN maccs11.for ***  

<      OPEN (26, STATUS='UNKNOWN')  

  

-----  

>CKRJ  OPEN (26, STATUS='UNKNOWN')  

  

*** APPEND AFTER 1124 IN maccs11.org ***  

>CKRJ If the ATMOS file is being read, move the file pointer to after *KRJ  

>CKRJ the JCL information. *KRJ  

>      IF(IUNIT.EQ.24) THEN *KRJ  

> 97      READ(IUNIT,I001) CARD(1) *KRJ

```

```

>           IF(CARD(1)(1:2).NE.'/*') GOTO 97          *KRJ
>           CARD(1) = ','                         *KRJ
>       ENDIF                                     *KRJ

*** APPEND AFTER 1164 IN maccs11.org ***
>CKRJ If the ATMOS file is being read, move the file pointer to after      *KRJ
>CKRJ the JCL information.                                                 *KRJ
>           IF(IUNIT.EQ.24) THEN                                         *KRJ
> 99           READ(IUNIT,1001) CARD(1)                                *KRJ
>           IF(CARD(1)(1:2).NE.'/*') GOTO 99                           *KRJ
>           CARD(1) = ','                         *KRJ
>       ENDIF                                     *KRJ

*** CHANGE 4822 IN maccs11.org TO 4854 IN maccs11.for ***
<           OPEN (28, STATUS='UNKNOWN')

-----
>CKRJ           OPEN (28, STATUS='UNKNOWN')

*** CHANGE 6270 IN maccs11.org TO 6302 IN maccs11.for ***
<           OPEN (27, STATUS='UNKNOWN')

-----
>CKRJ           OPEN (27, STATUS='UNKNOWN')

*** CHANGE 6281 IN maccs11.org TO 6313 IN maccs11.for ***
<           OPEN (29, STATUS='UNKNOWN')

-----
>CKRJ           OPEN (29, STATUS='UNKNOWN')

```

In addition to the changes listed above, subroutines IOFILES and MXXCPU, function JULDAY, and block data routine ONE were added to the program source code. The subroutine IOFILES was linked to MACCS 1.5.11 through a call from subroutine MXXECT to establish file handles based on user input from JCL type statements placed before the input file. This allows the user to specify file names (including the DOS path), file status, file access, file form, and carriage control file attributes for each FORTRAN unit. This subroutine also prints a banner page and file handling summary on the output, which contains the date and start time to uniquely identify the run. A "/*" card terminates the file specification list, and program input may follow. The subroutine requires two arguments that correspond to the primary input and output FORTRAN unit numbers for the program. The input file name containing the file specifications is read from the command line. The format for specification of file handles is as follows:

```
*****
* Comments can be entered by placing a '*' in column 1 and will be      *
* echoed to the output file.                                              *
*                                                                       *
* An example file specification format is shown below. Only the UNIT      *
* number and file name are required input. Columns 73 to 80 are          *
* reserved for comments, a line ending in a comma is continued on          *
* the following line.                                                       *
*****
* FILEnn='D:\path\filename', STATUS='status', ACCESS='access',           *
* FORM='form', CARRIAGE CONTROL='carriage'                                *
*/* end of JCL card
```

ATMOS Module input is as follows:

nn is the FORTRAN Unit number to be opened. Must be preceded by "FILE" in columns 1 to 4. Possible range of values is 01 to 99.

D:\path\filename is the DOS Drive, Path and Filename. DOS devices CON,LPT1,LPT2,LPT3,PRN,COM1,COM2, or NUL may also be used.

status is the open status of the file. Valid options include: 'NEW', 'OLD', 'UNKNOWN' or 'SCRATCH' corresponding to the FORTRAN-77 standard. The default value is 'UNKNOWN'.

access is the access method for the file. Valid options are 'SEQUENTIAL' and 'DIRECT' corresponding to the FORTRAN-77 standard. The default value is 'SEQUENTIAL'.

form indicates the file format and has two possible options: 'FORMATTED' and 'UNFORMATTED' (corresponding to the FORTRAN-77 standard).

carriage indicates whether the first character from each sequential formatted output record will be used as FORTRAN printer carriage control characters. Possible options are 'FORTRAN' and 'LIST'. The default values are 'LIST' for disk files and 'FORTRAN' for DOS devices.

***** indicates the end of the file processing input. The input file for the ATMOS module (Unit 24) is placed directly after this card.

Other coding added to MACCS 1.5.11 includes a replacement for the system-dependent subroutine, MXXCPU, which returns the current CPU time in seconds and a block data routine to zero out common-block MULREL. The block data routine, ONE, is necessary to prevent accessing uninitialized memory in subroutine PUTSTM during the comparison test, which is used to determine whether the input values represent a change in the source term data. The following is a listing of these additional routines that were appended to the end of file maccs11.for.

```
SUBROUTINE IOFILES(IUNIT,IOUT)
C*****
C IOFILES.FOR: JCL TYPE FILE HANDLE PROCESSOR
C
C VERSION:      2.0 - LAHEY EM32
C
C DEVELOPED BY: K. R. JONES
C
C ARGUMENTS:    IUNIT - STANDARD INPUT UNIT NUMBER (FILENAME OBTAINED
C                  FROM COMMAND LINE OR PROMPT)
C                  IOUT - STANDARD OUTPUT UNIT NUMBER
C
C PROGRAMMING NOTES:
C
C 1. MODIFY DEFAULT FILE NAME, IOFILE, AND FORMAT STATEMENTS 500-503
C    AS REQUIRED TO ADAPT TO THE SPECIFIC PROGRAM.
C 2. IF IUNIT IS ALSO USED FOR PROGRAM INPUT, ENSURE THAT ANY
C    "REWIND(IUNIT)" STATEMENTS ARE REMOVED FROM THE SOURCE TO
C    PREVENT REWINDING INTO THE JCL.
C 3. THIS SOURCE CONTAINS NON-F77 STANDARD SYSTEM AND STRING MANIPULATION
C    CALLS FROM LAHEY FORTRAN.
C 4. COMMENT OUT ACTION SECTION FOR COMPATIBILITY WITH EARLIER LAHEY
C    COMPILERS
C
C NOTES ON JCL STRUCTURE:
C
C Comments can be entered by placing a '*' in column 1 and will be
C echoed to the output file.
C An example file specification format is shown below. Only the UNIT
C number and file name are required input. Columns 73 to 80 are
C reserved for comments, a line ending in a comma is continued on
C the following line.
C
C FILEnn='D:\path\filename', STATUS='status' , ACCESS='access',
C           FORM='form', CARRIAGE CONTROL='carriage', ACTION='action'
C *
C /* end of JCL card
C program input may follow ...
C
```

```

C Where:
C   'nn'  is the FORTRAN Unit number to be opened.
C
C   'D:\path\filename' is the DOS Drive, Path and Filename or a
C       DOS device (CON,LPT1,LPT2,LPT3,PRN,COMn,NUL)
C
C   'status' is the open status of the file.
C
C   'access' is the access method for the file.
C
C   'form' indicates the file format.
C
C   'carriage' indicates whether FORTRAN printer carriage control
C       characters are used.
C
C   'action' specifies the permission level for the file.
C
C*****
C
CHARACTER*72 FILENM,IOFILE,CMDLINE,MESSAG
CHARACTER*80 LINE
CHARACTER*432 L1
CHARACTER*14 STATUS
CHARACTER*14 FORM,ACCESS
CHARACTER*14 CARRIAGE
CHARACTER*8 POSITION
CHARACTER*22 ACTION
CHARACTER*1 QUOTE
CHARACTER*8 TODAY
CHARACTER*11 CTIME
LOGICAL LEXIST
LOGICAL LSCAN
INTEGER UNIT
DATA QUOTE   / 1H' /
IOFILE='MACCS.INP'

C
C OPEN FILE HANDLE FILE USING COMMAND LINE INPUT OR PROMPT
C
CALL GETCL(CMDLINE)
IF(CHARNB(CMDLINE).EQ.' ') THEN
  CMDLINE=IOFILE
ENDIF
20 IOFILE=CHARNB(CMDLINE)
INQUIRE(FILE=IOFILE,EXIST=LEXIST)
IF(.NOT. LEXIST) THEN
  WRITE(*,300) IOFILE
  READ*,CMDLINE
  IF(CHARNB(CMDLINE) .EQ. 'Q' .OR.
*     CHARNB(CMDLINE) .EQ. 'q') GOTO 3
  GOTO 20
ENDIF
OPEN(IUNIT,FILE=IOFILE ,IOSTAT=MSGNO,ERR=40,
*     STATUS='OLD',FORM='FORMATTED')
C

```

```

C GET CURRENT DATE AND TIME
C
C     CALL DATE(TODAY)
C     CALL TIME(CTIME)
C
C READ INPUT LINE
C
C     LSCAN =.TRUE.
1  READ (IUNIT,100,END=2) LINE
C
IF(LSCAN) THEN
    IF(LINE(1:1) .EQ. '*') GOTO 1
    IF(LINE(1:2) .EQ. '/*') GOTO 44
ELSE
    WRITE(IOUT,102) LINE
    IF(LINE(1:1) .EQ. '*') THEN
        GOTO 1
    ENDIF
    IF(LINE(1:2) .EQ. '/*') THEN
        WRITE(IOUT,103)
        GOTO 2
    ENDIF
ENDIF
IF(LINE(1:4) .EQ. 'FILE') THEN
    READ(LINE,'(4X,I2)') UNIT
    IF(UNIT.LT.0 .OR. UNIT.GT.99) GOTO 41
    IF(UNIT.NE.IOUT .AND. LSCAN) THEN
        GOTO 1
    ENDIF
ELSE
    GOTO 1
ENDIF
L1(1:72)=LINE(1:72)
M=73
C -----CHECK FOR CONTINUATIONS-----
5  JLAST=6+INDEX(LINE(7:72),',')
10 J=JLAST+INDEX(LINE(JLAST+1:72),',')
IF(J.GT.JLAST) THEN
    JLAST=J
    GOTO 10
ENDIF
IF(CHARNB(LINE(JLAST+1:72)) .EQ. ' ') THEN
    READ (IUNIT,100,END=2) LINE
    IF(.NOT.LSCAN) WRITE(IOUT,102) LINE
    IF(LINE(1:2) .EQ. '/*') THEN
        WRITE(*,101)
        GOTO 3
    ELSE
        L1(M:M+72)=LINE(1:72)
        M=M+73
    ENDIF
    GOTO 5
ENDIF
C ----- FILE NAME -----

```

```

IFRST=INDEX(L1(1:432),QUOTE)
ILAST=IFRST+INDEX(L1(IFRST+1:432),QUOTE)
FILENM=L1(IFRST+1:ILAST-1)
IF(CHARNB(FILENM).EQ.'NULLFILE') THEN
    STATUS='SCRATCH'
ENDIF
C ----- FILE STATUS ---
III=INDEX(L1,'STATUS')
IF(III .GT. 0) THEN
    IFRST=III +INDEX(L1(III +1:432),QUOTE)
    ILAST=IFRST+INDEX(L1(IFRST+1:432),QUOTE)
    STATUS=L1(IFRST+1:ILAST-1)
ELSE
    IF(CHARNB(FILENM).EQ.'NULLFILE') THEN
        STATUS='SCRATCH'
    ELSE
        STATUS='UNKNOWN'
    ENDIF
ENDIF
C ----- FILE FORM -----
III=INDEX(L1,'FORM')
IF(III .GT. 0) THEN
    IFRST=III +INDEX(L1(III +1:432),QUOTE)
    ILAST=IFRST+INDEX(L1(IFRST+1:432),QUOTE)
    FORM=L1(IFRST+1:ILAST-1)
ELSE
    FORM='FORMATTED'
ENDIF
C ----- FILE ACCESS ---
III=INDEX(L1,'ACCESS')
IF(III .GT. 0) THEN
    IFRST=III +INDEX(L1(III +1:432),QUOTE)
    ILAST=IFRST+INDEX(L1(IFRST+1:432),QUOTE)
    ACCESS=L1(IFRST+1:ILAST-1)
ELSE
    ACCESS='SEQUENTIAL'
ENDIF
C ----- FILE CARRIAGE---
III=INDEX(L1,'CARRIAGE CONTROL')
IF(III .GT. 0) THEN
    IFRST=III +INDEX(L1(III +1:432),QUOTE)
    ILAST=IFRST+INDEX(L1(IFRST+1:432),QUOTE)
    CARRIAGE=L1(IFRST+1:ILAST-1)
ELSE
    IF((ACCESS.EQ.'SEQUENTIAL').AND.(FORM.EQ.'FORMATTED')) THEN
        CARRIAGE='LIST'
    ELSE
        CARRIAGE='NONE'
    ENDIF
ENDIF
C ----- FILE POSITION---
III=INDEX(L1,'POSITION')
IF(III .GT. 0) THEN
    IFRST=III +INDEX(L1(III +1:432),QUOTE)

```

```

      ILAST=IFRST+INDEX(L1(IFRST+1:432),QUOTE)
      POSITION=L1(IFRST+1:ILAST-1)
    ELSE
      IF(ACCESS.EQ.'SEQUENTIAL') THEN
        POSITION='ASIS'
      ELSE
        POSITION='NONE'
      ENDIF
    ENDIF
  C ----- FILE ACTION -----
  III=INDEX(L1,'ACTION')
  IF(III .GT. 0) THEN
    IFRST=III +INDEX(L1(III +1:432),QUOTE)
    ILAST=IFRST+INDEX(L1(IFRST+1:432),QUOTE)
    ACTION=L1(IFRST+1:ILAST-1)
  ELSE
    IF(ACCESS.EQ.'SEQUENTIAL') THEN
      ACTION='READ/WRITE'
    ELSE
      ACTION='NONE'
    ENDIF
  ENDIF
  C ----- OPEN FILE -----
  IF(LSCAN .OR. (.NOT.LSCAN .AND. IUNIT.NE.IOUT)) THEN
    IF(CHARNB(FILENM) .EQ. 'NULLFILE' .OR.
    *   CHARNB(STATUS) .EQ. 'SCRATCH') THEN
      IF(POSITION.NE.'NONE') THEN
        OPEN(UNIT,STATUS=STATUS,FORM=FORM,ACCESS=ACCESS,
        *   ERR=40, IOSTAT=MSGNO,
        *   POSITION=POSITION,ACTION=ACTION)
      ELSE
        OPEN(UNIT,STATUS=STATUS,FORM=FORM,ACCESS=ACCESS,
        *   ERR=40, IOSTAT=MSGNO,
        *   ACTION=ACTION)
      ENDIF
    ELSE
      IF(CHARNB(CARRIAGE) .NE. 'NONE') THEN
        IF(POSITION.NE.'NONE') THEN
          OPEN(UNIT,FILENM,STATUS=STATUS,FORM=FORM,ACCESS=ACCESS,
          *   CARRIAGE CONTROL=CARRIAGE,ERR=40, IOSTAT=MSGNO,
          *   POSITION=POSITION,ACTION=ACTION)
        ELSE
          OPEN(UNIT,FILENM,STATUS=STATUS,FORM=FORM,ACCESS=ACCESS,
          *   CARRIAGE CONTROL=CARRIAGE,ERR=40, IOSTAT=MSGNO,
          *   ACTION=ACTION)
        ENDIF
      ELSE
        IF(POSITION.NE.'NONE') THEN
          OPEN(UNIT,FILENM,STATUS=STATUS,FORM=FORM,ACCESS=ACCESS,
          *   ERR=40, IOSTAT=MSGNO,
          *   POSITION=POSITION,ACTION=ACTION)
        ELSE
          OPEN(UNIT,FILENM,STATUS=STATUS,FORM=FORM,ACCESS=ACCESS,
          *   ERR=40, IOSTAT=MSGNO,

```

```

*           POSITION=POSITION,ACTION=ACTION)
ENDIF
ENDIF
ENDIF
ENDIF
IF(LSCAN) THEN
  write(iout,501)
  write(iout,502)
  write(iout,503) TODAY,CTIME
  WRITE(*,500) TODAY,CTIME,IUNIT,IOFILE
  WRITE(IOUT,500) TODAY,CTIME,IUNIT,IOFILE
  REWIND(IUNIT)
  LSCAN=.FALSE.
ELSE
  WRITE(*,210)UNIT,FILENM,STATUS,FORM,ACCESS,CARRIAGE
  WRITE(IOUT,210)UNIT,FILENM,STATUS,FORM,ACCESS,CARRIAGE
ENDIF
L1 = ' '
LINE = ' '
GOTO 1
C
40 CONTINUE
CALL IOSTAT MSG(MSGNO,MESSAG)
WRITE(*,200)UNIT,MSGNO,MESSAG,FILENM,STATUS,FORM,ACCESS,CARRIAGE
WRITE(IOUT,200)UNIT,MSGNO,MESSAG,FILENM,STATUS,FORM,ACCESS,
+           CARRIAGE
GOTO 3
41 WRITE(*,201) UNIT
GOTO 3
44 WRITE(*,203) IOUT
  WRITE(*,500) TODAY,CTIME,IUNIT,IOFILE
  REWIND(IUNIT)
  LSCAN=.FALSE.
GOTO 1
C
3 CONTINUE
STOP
2 CONTINUE
100 FORMAT (A80)
101 FORMAT (' EXPECTED CONTINUATION LINE NOT FOUND')
102 FORMAT (' ',A80)
103 FORMAT (' # END OF FILE PROCESSING',/,1H1)
200 FORMAT(/ IOFILES: ERROR ON TRYING TO OPEN UNIT ',I2/
*           12X,'ERROR MESSAGE NUMBER = ',I10,' ***'/
*           2X,A72//'
*           2X,'FILE NAME: ',A60/
*           2X,'STATUS   :',A15,
*           2X,'FORM    :',A15/
*           2X,'ACCESS   :',A15,
*           2X,'CARRIAGE:',A15/)
210 FORMAT(' # FORTRAN UNIT ',I2,' OPENED'
*           '# FILE NAME: ',A60/
*           '# STATUS   :',A15,4X,'FORM    :',A15/
*           '# ACCESS   :',A15,4X,'CARRIAGE:',A15)

```

```

201 FORMAT(// IOFILES: ERROR ON TRYING TO OPEN UNIT NUMBER: ',I10)
202 FORMAT(// IOFILES: ERROR TRYING TO INTERPRET FILE HANDLES')
203 FORMAT(// IOFILES: OUTPUT FILE UNIT:',I2,' SPECIFICATION NOT FOUND
  *'/' STD OUTPUT WILL BE ROUTED TO CONSOLE')
300 FORMAT(// THE INPUT FILE COULD NOT BE LOCATED.,
  *   // FILE:',A72
  *   // REENTER FILE SPECIFICATION OR "Q" TO QUIT.
  *   // >')
500 FORMAT('1MELCOR ACCIDENT CONSEQUENCE CODE SYSTEM (MACCS) ',
  +      'VERSION 1.5.11',
  +      // CURRENT DATE: ',A8,' TIME: ',A11,
  +      // UNIT: ',I3,' INPUT FILE: ',A30,/)
501 FORMAT(///,
  +20X,'MM      MM      AAAA      CCCCCCCCCC  CCCCCCCCCC  SSSSSSSSS'/
  +20X,'MMM      MMM      AAAAAA      CCCCCCCCCC  CCCCCCCCCC  SSSSSSSSS'/
  +20X,'MMMM      MMMM      AA      AA      CC      CC      SS      '/
  +20X,'MM  MMMM  MM  AA  AA  CC  CC  SS  '/
  +20X,'MM  MM  MM  AAAAAAAA  CC  CC  SSSSSSSSS'/
  +20X,'MM  MM  MM  AAAAAAAA  CC  CC  SSSSSSSSS'/
  +20X,'MM  MM  AA  AA  CC  CC  SS'/
  +20X,'MM  MM  AA  AA  CC  CC  SS'/
  +20X,'MM  MM  AA  AA  CCCCCCCCCC  CCCCCCCCCC  SSSSSSSSS'/
  +20X,'MM  MM  AA  AA  CCCCCCCCCC  CCCCCCCCCC  SSSSSSSSS ')
502 FORMAT(//,
  +20X,'          PPPPPPPP  CCCCCCCCCC          //'
  +20X,'          PPPPPPPP  CCCCCCCCCC          //'
  +20X,'          PP  PP  CC          //'
  +20X,'          PP  PP  CC          //'
  +20X,'  \\\\\\\\\\\\\\\\\  PPPPPPPP  CC  //'
  +20X,'  ///////////////  PPPPPPPP  CC  //'
  +20X,'          PP  CC          //'
  +20X,'          PP  CC          //'
  +20X,'          PP  CCCCCCCCCC          //'
  +20X,'          PP  CCCCCCCCCC          //'
  +20X,//,
  +20X,'          ')'
503 FORMAT(///,
  +15X,'VV      VV  EEEEEEEEEE  RRRRRRRRRR      11      ',,
  +'555555555555'/
  +15X,'VV      VV  EEEEEEEEEE  RRRRRRRRRR      111      ',,
  +'555555555555'/
  +15X,'VV      VV  EE      RR  RR      1111      ',,
  +'55      '/
  +15X,'VV      VV  EE      RR  RR      11      ',,
  +'55      '/
  +15X,'VV      VV  EEEEEEEEEE  RRRRRRRRRR  \\\  11      ',,
  +'555555555555'/
  +15X,'VV      VV  EEEEEEEEEE  RRRRRRRRRR  \\\  11      ',,
  +'555555555555'/
  +15X,'VV      VV  EE      RR  RR      11      ',,
  +'  55'/
  +15X,'VV      VV  EE      RR  RR      11      ',,
  +'  55'/
  +15X,'VVVV  EEEEEEEEEE  RR  RR      1111111111  00      ',,

```

```

+'555555555555'/
+15X,' VV      EEEEEEEEEE  RR      RR      1111111111  00  ',/
+'555555555555'/
+15X,/,/
+15X,/
+15X,/
+////32X,'RUN ON: ',A8,' TIME: ',A11)
600 FORMAT(// ENTER FILE NAME OR "Q" TO QUIT.,
*          '/ >)
      RETURN
      END

      SUBROUTINE MXXCPU(SECONDS)
      SAVE
      CHARACTER*8  STARTDAY,TODAY
      DATA IFIRST /0/
      IF(IFIRST.EQ.0) THEN
          CALL TIMER(I100STRT)
          CALL DATE(STARTDAY)
          READ(STARTDAY,'(I2,1X,I2,1X,I2)') IM, ID, IY
          IY = IY + 1900
          JULSTART = JULDAY(IM, ID, IY)
          IFIRST = 1
          SECONDS = 0.0
      ELSE
          CALL TIMER(I100NOW)
          CALL DATE(TODAY)
          READ(TODAY,'(I2,1X,I2,1X,I2)') IM, ID, IY
          IY = IY + 1900
          JULNOW = JULDAY(IM, ID, IY)
          IFIRST = 1
          SECONDS = FLOAT(JULNOW-JULSTART)*86400.
+          + FLOAT(I100NOW-I100STRT)/100.
      ENDIF
      RETURN
      END

      FUNCTION JULDAY(MM, ID, IYYY)
      PARAMETER (IGREG=15+31*(10+12*1582))
      IF (IYYY.EQ.0) PAUSE 'There is no Year Zero.'
      IF (IYYY.LT.0) IYYY=IYYY+1
      IF (MM.GT.2) THEN
          JY=IYYY
          JM=MM+1
      ELSE
          JY=IYYY-1
          JM=MM+13
      ENDIF
      JULDAY=INT(365.25*JY)+INT(30.6001*JM)+ID+1720995
      IF (ID+31*(MM+12*IYYY).GE.IGREG) THEN
          JA=INT(0.01*JY)
          JULDAY=JULDAY+2-JA+INT(0.25*JA)
      ENDIF
      RETURN
      END

```

```
BLOCK DATA ONE
COMMON /MULREL/ PLHEAT(4), PLHITE(4), PLUDUR(4),
$                  PDELAY(4), REFTIM(4), RELINV(150,4), PSDIST(10,10)

DIMENSION A0(720)

EQUIVALENCE (A0,PLHEAT)

DATA A0/720*0./

END
```

A.2 COMPILER OPTIONS

The program was compiled using Version 3.01 of the Lahey F77L-EM/32 FORTRAN-77 compiler with the options shown below.

<u>Option</u>	<u>Description</u>
/n0	- Standard FORTRAN-77 IMPLICIT
/n7	- Optimize inter-statement
/nB	- No Bounds checking
/nC	- Ignore nonstandard usage
/nD	- DIRECT files with headers
/nH	- No Hardcopy source listing
/nI	- No Interface checking
/nK	- Generate 80x87 code
/ L	- Line-number traceback table
/ P	- Protect constant arguments
/nQ	- No Quirky situations
/ R	- Remember local variables
/ S	- Create filename.SLD for SOLD
/nT	- INTEGER*4, LOGICAL*4 default
/ W	- Display Warning messages
/nX	- No Xref listing
/nZ1	- Better SOLD debugging

DISTRIBUTION

U.S. NUCLEAR REGULATORY COMMISSION (39)

WILLIAM BECKNER, NRR/PRAB, MS 10A2	BILL MORRIS, RES/DRA, MS NL-007
FRANK CONGEL, NRR/DREP, MS 10E4	JOSEPH MURPHY, RES/DSR, MS NL-007
DONALD COOL, RES/RPHEB, MS NLS-139	ROBERT PALLA, NRR/PRAB, MS 10A2
LEMOINE CUNNINGHAM, NRR/PRAB, MS 11D23	HAROLD PETERSON, RES/RPHEB, MS NLS-139
MARK CUNNINGHAM, RES/DSR/PRAB, MS NLS-372	EDWARD PODOLAK, NRR/PEPB, MS 10D4
A. BERT DAVIS, REGION III	JOHN RIDGELY, RES/SAIB, MS NLS-324
STEWART EBNETER, REGION II	DENWOOD ROSS, AEOD, MS 3701
JAMES GLYNN, RES/PRAB, MS NLS-372	ZOLTAN ROSZTOCZY, AEOD, MS 3701
MICHAEL JAMGOCHIAN, RES/SAIB, MS NLS-324	WILLIAM RUSSELL, REGION I
JAMES JOHNSON, RES/PRAB, MS NLS-372	CHRIS RYDER, RES/PRAB, MS NLS-372
THOMAS KING, RES/DSIR, MS NLS-360	BRIAN SHERON, RES/DSR, MS NL-007
ROBERT KORNASIEWICZ, RES/WMB, MS NLS-260	FRANK SKOPEC, NRR/PRPB, MS 11D23
LES LANCASTER, RES/PRAB, MS NLS-372	LEONARD SOFFER, RES/SAIB, MS NLS-324
JOE LEVINE, NRR/PRPB, MS 11D23	THEMIS SPEIS, RES, MS NL-007
TIM MARGULIES, RES/WMB, MS NLS-260	MAT TAYLOR, NRC/EDO, MS 17G21
JOHN MARTIN, REGION V	ASHOK THADANI, NRR/DST, MS 8E2
ROBERT MARTIN, REGION IV	HAROLD VANDERMOLEN, RES/PRAB, MS NLS-372
TOM MCKENNA, AEOD/IRB, MS 3206	CHARLES WILLIS, NRR/DREP, MS 10E4
WARREN MINNERS, RES/DSIR, MS NL-007	SHLOMO YANIV, RES/RPHEB, MS NLS-139
JOCELYN MITCHELL, RES/SAIB, MS NLS-324	

DO NOT MICROFILM
THIS PAGE

U.S. ENVIRONMENTAL PROTECTION AGENCY (2)
OFFICE OF RADIATION PROGRAMS
Attn: JOE LOGSDON
ALLEN RICHARDSON
WASHINGTON, DC 20460

BRUCE BURNETT, CDRH (HFZ-60)
U.S. DEPT. OF HEALTH & HUMAN SERVICES
FOOD AND DRUG ADMINISTRATION
5600 FISHERS LANE
ROCKVILLE, MD 20857

SARBES ACHARYA, MS NS-20
U.S. DEPARTMENT OF ENERGY
19901 GERMANTOWN ROAD
GERMANTOWN, MD 20585

U.S. DEPARTMENT OF ENERGY (2)
Attn: ED BRANAGAN, MS EH352
KEN MURPHY, MS EH351
WASHINGTON, DC 20545

ROBERT OSTMEYER
ROCKY FLATS AREA OFFICE
U.S. DEPARTMENT OF ENERGY
P.O. BOX 928
GOLDEN, CO 80402

DAVID BLACK
AMERICAN ELECTRIC POWER
1 RIVERSIDE PLAZA
COLUMBUS, OH 43215

NATIONAL ENERGY SOFTWARE CENTER (20)
ARGONNE NATIONAL LABORATORY
Attn: LARRY EYBERGER
9700 SOUTH CASS AVENUE
ARGONNE, IL 60439

ARGONNE NATIONAL LABORATORY (3)
Attn: S. Y. CHEN
KOU-JOHN HONG
BRAD MICKLICH
9700 SOUTH CASS AVENUE
ARGONNE, IL 60439

JON HELTON
MATHEMATICS DEPARTMENT
ARIZONA STATE UNIVERSITY
TEMPE, AZ 85287

WILLIAM HOPKINS
BECHTEL POWER CORPORATION
15740 SHADY GROVE ROAD
GAIITHERSBURG, MD 20877

BROOKHAVEN NATIONAL LABORATORY (2)
Attn: CARRIE GRIMSHAW
ARTHUR TINGLE
BUILDING 130
UPTON, NY 11973

ROBERT GOBEL
CLARK UNIVERSITY
950 MAIN STREET
WORCESTER, MA 01610

DUNCAN BREWER
DUKE POWER CO.
422 SOUTH CHURCH STREET
CHARLOTTE, NC 28242

JIM MAYBERRY
EBASCO SERVICES
160 CHUBB AVENUE
LYNDHURST, NJ 07071

EG&G IDAHO, INC. (5)
Attn: R. J. DALLMAN, MS 2508
C. A. DOBBE, MS 2508
K. R. JONES, MS 2508
D. L. KNUDSON, MS 2508
R. E. LYON, MS 3523
P.O. BOX 1625
IDAHO FALLS, ID 83415

TERRY FOPPE
ENERGY SYSTEMS GROUP
EG&G ROCKY FLATS, INC.
P.O. BOX 464
GOLDEN, CO 80401

IAN WALL
ELECTRIC POWER RESEARCH INSTITUTE
3412 HILLVIEW AVE.
PALO ALTO, CA 94304

GERALD DAVIDSON
FAUSKE AND ASSOCIATES, INC.
16 W 070 WEST 83RD STREET
BURR RIDGE, IL 60521

JOHN LUKE
FLORIDA POWER & LIGHT
P.O. BOX 14000
JUNO BEACH, FL 33408

CHRISTINE MILLER
F-30
KOSHLAND WAY
SANTA CRUZ, CA 95064

NOT MICROFILM
THIS PAGE

HAROLD CAREWAY, M/C 754
GENERAL ELECTRIC CO.
175 CURTNER AVENUE
SAN JOSE, CA 95129

R. TOSSI
PHYSICAL RESEARCH, INC.
25500 HAWTHORNE BLVD.
TORRANCE, CA 90505

JUDY ROLLSTIN
GRAM, INC.
1709 MOON NE
ALBUQUERQUE, NM 87112

KEITH WOODARD
PICKARD, LOWE AND GARRICK
SUITE 730
1615 M STREET, NW
WASHINGTON, DC 20036

KNOLLS ATOMIC POWER LABORATORY (2)
Attn: KEN MCDONOUGH
DOMINIC SCIAUDONE
BOX 1072
SCHENECTADY, NY 12301

ZEN MENDOZA
SAIC
SUITE C31
5150 EL CAMINO REAL
LOS ALTOS, CA 94022

LAWRENCE LIVERMORE NATIONAL LABORATORY (3)
Attn: MARVIN DICKERSON
GEORGE GREENLY
ROLF LANGE
LIVERMORE, CA 94550

SAIC (2)
Attn: CHRIS AMOS
PAUL MATTINGLY
2109 AIR PARK RD., SE
ALBUQUERQUE, NM 87106

LOS ALAMOS NATIONAL LABORATORY (2)
ANALYSIS AND ASSESSMENT DIVISION
Attn: JANE BOOKER
MARY MEYER
LOS ALAMOS, NM 87545

SAIC (3)
Attn: DAVE ALDRICH
ROGER BLOND
GEOFF KAISER
MAIL STOP 2-5-1
1710 GOODRIDGE DRIVE
MCLEAN, VA 22102

BILL EAKIN
NORTHEAST UTILITIES
BOX 270
HARTFORD, CT 06141

FRED HARPER
DIVISION 6412
SANDIA NATIONAL LABORATORIES
ALBUQUERQUE, NM 87185

RAY NG
NUMARC
SUITE 300
1776 EYE STREET, NW
WASHINGTON, DC 20006

SAVANNAH RIVER LABORATORY (2)
Attn: KEVIN O'KULA
DAVE SHARP
AIKEN, SC 29808

MIKE CHEOK
NUS
910 CLOPPER ROAD
GAIITHERSBURG, MD 20878

JIM MEYER
SUITE 100
SCIENTECH
11821 PARKLAWN DRIVE
ROCKVILLE, MD 20852

OAK RIDGE NATIONAL LABORATORY (2)
Attn: KEITH ECKERMAN
ROBERT ROUSSIN
P.O. BOX 2008
OAK RIDGE, TN 37831

DO NOT MICROFILM
THIS PAGE
SCOTT BIGELOW
S-CUBED
SUITE 300
2501 YEALE SE
ALBUQUERQUE, NM 87106

DENNIS STRENGE, RTO/125
PACIFIC NORTHWEST LABORATORY
P.O. BOX 999
RICHLAND, WA 99352

EDWARD WARMAN
STONE & WEBSTER ENGINEERING CORP.
P.O. BOX 2325
BOSTON, MA 02107

TECHNADYNE ENGINEERING CONSULTANTS (3)
Attn: DAVID CHANIN
BURT NEWMARK
MEL PIEPHO
P.O. BOX 13928
ALBUQUERQUE, NM 87192

KEN KEITH
TENNESSEE VALLEY AUTHORITY
W 10 D 201
400 WEST SUMMIT HILL
KNOXVILLE, TN 37902

F. ERIC HASKIN
DEPT. OF NUCLEAR ENGINEERING
UNIVERSITY OF NEW MEXICO
ALBUQUERQUE, NM 87131

KEN O'BRIEN
UNIVERSITY OF WISCONSIN
153 ENGINEERING RESEARCH BLDG.
MADISON, WI 53706

GRIFF HOLMES
WESTINGHOUSE ELECTRIC CORP.
ENERGY CENTER EAST, BLDG. 371
P.O. BOX 355
PITTSBURGH, PA 15230

FRED MANN, W/A-53
WESTINGHOUSE HANFORD CO.
P.O. BOX 1970
RICHLAND, WA 99352

SHENGDA LEE
YANKEE ATOMIC ELECTRIC COMPANY
580 MAIN STREET
BOSTON, MA 01740

EPHRAIM ASCULAI
DIVISION OF NUCLEAR SAFETY
WAGRAMESTRASSE, 5
P.O. BOX 100
A-1400 WIEN
AUSTRIA

PAUL GOVAERTS
DEPARTEMENT DE LA SURETTE NUCLEAIRE
AVENUE DU ROI 157
B 1060 BRUXELLES
BELGIUM

G. NEALE KELLY
NUCLEAR SAFETY RESEARCH
COMMISSION OF THE EUROPEAN COMMUNITIES
RUE DE LA LOI, 200
B-1049 BRUXELLES
BELGIUM

NADIA SOIDO FALCAO MARTINS
COMISSAO NACIONAL DE ENERGIA NUCLEAR
R GENRAL SEVERIANO 90 S/408-A
RIO DE JANEIRO
BRAZIL

S. DAGGUPATY
ENVIRONMENT CANADA
4905 DUFFERIN STREET
DOWNSVIEW
ONTARIO, M3H 5T4
CANADA

SOREN THYKIER-NIELSEN
RISO NATIONAL LABORATORY
POSTBOX 49
DK-4000 ROSKILDE
DENMARK

STEPHEN BOULT
ELECTROWATT ENGINEERING SERVICES (UK) LTD.
GRANDFORD HOUSE
16 CARFAX, HORSHAM
WEST SUSSEX RH12 1UP
ENGLAND

SEppo VUORI
TECHNICAL RESEARCH CENTRE OF FINLAND (VTT)
NUCLEAR ENGINEERING LABORATORY (YDI)
LONNROTINKATU 37
P.O. BOX 169
SF-00181 HELSINKI 18
FINLAND

DANIEL MANESSE
IPSN
BOITE POSTALE 6
F-92265 FONTENAY-AUX-ROSES CEDEX
FRANCE

JOACHIM EHRHARDT
INSTITUT FUR NEUTRONENPHYSIK UND
REAKTORTECHNIK (INR)
KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH
POSTFACH 3640
D-7500 KARLSRUHE 1
FEDERAL REPUBLIC OF GERMANY

JOHN G. KOLLAS
INSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION
PROTECTION
N.R.C.P.S. "DEMOKRITOS"
P.O. BOX 60228
GR-153 10 AGHIA PARASKEVI
ATTIKI
GREECE

M. K. YEUNG
MECHANICAL ENGINEERING DEPT.
UNIVERSITY OF HONG KONG
POKFULAM
HONG KONG

LENNART DEVELL
STUDSVIK NUCLEAR
STUDSVIK ENERGITEKNIK AB
S-611 82 NYKOPING
SWEDEN

ELI STERN
ISRAEL AEC LICENSING DIV.
P.O. BOX 7061
TEL-AVIV 61070
ISRAEL

HANSPETER ISAAK
ABTEILUNG STRAHLENSCHUTZ
HAUPTABTEILUNG FUR DIE SICHERHEIT
DER KERNANLAGEN (HSK)
CH-5303 WURENLINGEN
SWITZERLAND

ENEA/DISP (2)
Attn: ALFREDO BOTTINO
ALVARO VALERI
VIA VITALIANO BRANCATI, 48
00144 ROMA EUR
ITALY

DER-YU HSIA
ATOMIC ENERGY COUNCIL
67, LANE 144
KEELUNG ROAD, SECTION 4
TAIPEI, TAIWAN 10772

HIDEO MATSUZURU
TOKAI RESEARCH ESTABLISHMENT
TOKAI-MURA
MAKA-GUN
IBARAKI-KEN, 319-11
JAPAN

MARION HILL
NATIONAL RADILOGICAL PROTECTION BOARD
CHILTON
DIDCOT
OXON. OX11 ORQ
UNITED KINGDOM

PAUL KAYSER
DIVISION DE LA RADIOPROTECTION
1, AVENUE DES ARCHIDUCS
L-1135 LUXEMBOURG-BELAIR
LUXEMBOURG

SHANKARAN NAIR
CENTRAL ELECTRICITY GENERATING BOARD
BERKELEY NUCLEAR LABORATORIES
BERKELEY
GLOUCESTERSHIRE GL13 9PB
UNITED KINGDOM

JAN VAN DER STEEN
KEMA LABORATORIES
UTRECHTSEWEG, 310
POSTBUS 9035
NL-6800 ET ARNHEM
NETHERLANDS

WILLIAM NIXON
AEA/SRD
WIGSHAW LANE
CULCHETH
WARRINGTON
CHESHIRE WA3 4NE
UNITED KINGDOM

ULF TVETEN, HEAD
ENVIRONMENTAL PHYSICS SECTION
INSTITUTT FOR ENERGITEKNIKK
POSTBOKS 40
N-2007 KJELLER
NORWAY

LEONEL CANELAS
NEW UNIVERSITY OF LISBON
QUINTA DE TORRE
2825 MONTE DA CAPARICA
PORTUGAL

DO NOT MICROFILM
THIS PAGE

D. EUGENIO GIL LOPEZ
CONSEJO DE SEGURIDAD NUCLEAR
CALLE JUSTO DORADO, 11
E-28040 MADRID
SPAIN