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0.  SUMMARY 

Let X l , X 2 , . . . , X N  be N nongegative i . i . d .  random variables. Let 

Y1 = X, with probabili ty X a / ( X 1  + . . . + X N )  , a = 1,2.. . N .  This i s  referred 

t o  as the f i  r s t  real ization when sampl ing w i t h  probabi 1 i ty proportional . -. 

to s ize .  Next Y1 i s  deleted from X l , X 2 ,  ... , X N  and another observation Y e  

i s  made similarly.  I t  i s  of in t e re s t  to  find the distributional properties 

of the sequence Y1 , Y Z . .  . , Y n  ( n  G N ) .  These properties are used by 

E .  Barouch and G.  M. Kaufman in order to  estimate recoverable o i l  resources. 

Here we present the dis t r ibut ional  properties of (Y1 , Y 2 , . .  . Y n )  , when X, 

has a general d is t r ibut ion ,  and specialize when Xa has a gamma distribution. 

We-also obtain the dis t r ibut ional  properties of Y n  given the immediate 

past yn-l ;  these resu l t s  supplement the distributional properties of Y n  

given yl ,y2,. . . Y Y ~ - ~ .  



1. INTRODUCTION 

1 .1 Prel imi nari es 

A probabi l is t ic  model to  determine the s izes  of o i l  (or  gas) pools 

ye t  t o  be discovered within a geologic zone was studied by Barouch and 

Kaufman in a ser ies  of papers [I ,2,3]. The order of discovery plays an 

important role in t h i s  model. Such models could be used to  predict  the 

decline in the expected s i ze  of discovery as  the resource base i s  depleted. 

The basic assumption in t h i s  p robab i l i s t i c  model i s  t ha t  the pool 

s izes  in the resource base are.nonnegative, independent and ident ical ly  

dis t r ibuted random variables denoted by X I ,  X 2 ,  ..., X N .  Barouch and 

Kaufman [I , 2 ]  mainly studied the model when the dis t r ibut ion of X i s  
C1 

lognormal. Since mathematically closed forms are  not easi ly  obtainable 

in t h i s  case, they used approximations an.d sjmu.lations. In t h i s  paper 

we derive the mathematical resu l t s  in closed form, by d i r ec t  methods, 

when the dis t r ibut ion of Xa i s  given by a gamma dis tr ibut ion.  We then 

present the general r e su l t s  when the dis t r ibut ion of Xu i s  a rb i t ra ry ;  

these agree with some of the general resu l t s  obtained by d i f fe rent  

approaches by Barouch and Kaufman in an unpublished paper [3]. Similar 

r e su l t s  when the resources Xa have an exponential dis t r ibut ion were obtained 

by Uppuluri and Pat i l  [4].. 

1 .2 Sampl i n g  Proportional to  Random Size 

The process of sampling proportional t o  random s i z e  involves two 

stages of randomness. The f i n i t e  population of pool s izes  i s  i t s e l f  a 

random sample X I ,  X2, .:., X N  from a superpopulation. From t h i s  f i n i t e  

s e t ,  we sample without replacement and refer  to  .the observed seq?lence 



{Yl ,  Y p ,  . . . , Y 1 as  the  f i r s t  di scovery Y the  second discovery Y n 2 

. and so on. Clearly,  the  f i r s t  discovery Y1 w i l l  equal one of the  values 

X o f  (;tie f i n - i  t e  s e t .  In sampling proportional t o  random s i z e ,  i t  i s  
U 

assumed tha t  the  probabi l i ty  with which Y1 takes the  value Xa i s  equal 

t o  Xa/ ( X I  + . . . + X N )  . Since we a r e  sampling without replacement, Y 2  i s  

not equal t o  Y 1 ,  and we assume t h a t  the  probabi l i ty  w i t h  which Y 2  takes 

a  val ue X i s  equal t o  X B /  ( X I  + . . . + X N  - Y1 ) This procedure of sampl ing 
B 

with the  associa ted probabi l i t i e s  expressed a s  r a t i o s  of random variables 

i s  referred t o  a s  sampling proportional t o  random s i ze .  In the  next 

sec t ion ,  we derive the  d i s t r ibu t iona l  proper t ies  of the f i r s t  n discoveries 

i n  this scheme. 

2. GAMMA DISTRIBUTED RESOURCES 

2.1 . Expected ~ a l  ue of the  < f i r s t  . ~ i  scovery Y 

Let X I ,  X 2 ,  ... XN be N independent, iden t ica l ly  d i s t r ibu ted  gamma 

var ia tes  each w i  t h  probabi 1  i ty  densi ty  function equal t o ,  

These correspond t o  t he  f i n i t e  s e t  of N random pools obtained from a  gamma 

population. In the  case of sampling without replacement proportional t o  random 

s i ze s  (from this population of N u n i t s ) ,  l e t  Y j  denote the  s i z e  of the jth- 

discovery, f o r  j = 1 ,  2, . . .,n. More e x p l i c i t l y ,  t he  random variable Y i s  
1  

given by 



1 
w i t h  probabi  1  i t y  XI+. . .+'rd 

Y, = { x2  w i t h  p robab i l ' i  t y  x ~ + .  2  . . +xN 

N XN w i t h  p r o b a b i l i t y  XI+. . .+XN 

We s h a l l  now o b t a i n  t h e  expected value of Y and then develop general methods 
1  

t o  o b t a i n  the  moments and t h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  o f  t h e  n t h  d iscovery 

. yn 

We see t h a t  t h e  expected value o f  Y, i s  g iven by 



Interchanging the order of in tegrat ion and integrat ing out x2, ... xN we get  

2.2.  Laplace Transform and p . d .  f .  of the  F i r s t  Discovery Y 1  

The Laplace-transform of Y 1  i s  given by 

Fror~ 0, (t)'? !:re can e a s i l y  obtein the  niomcnts of Y -  for  ins tance 
1  : 

and 



Inver t ing t h e  Laplace-transform of Y we can obtain the  probabil i t i  densi ty  1 ' 

function (pdf)  of Y ,  t o  be 

which can a l so  be wri t ten  a s  

H ~ - '  ( u )  du 

a  a-1 -Ay 
where f (y )  = % and 

In t h i s  nota t ion,  $ ( t )  can a l s o  be wr i t t en  a s  

OD fW - (u+t )y l  
$I, ( t )  = N I ktN-' ( u )  d u  dyl 

0 



? , 3 . :  J o i n t  Laplace Transform and p d f  o f  t h e  F i r s t  
n Discove r i es  Y1, YE, . . . Y 

n 

U s i n g  the s t a t i s t i c a l  independence and t he  e q u i d i s t r i  b u t i o n  o f  t h e  

f i n i t e  s e t  o f  N resource  v a r i a b l e s ,  we f i n d  t h e  Laplace Transform o f  

. n. 
Ipn(tl, tZY . . . tn) = E[ exp ( -  L ta Y, ) ]  

a= 1  

where H(u) i s  t h e  Laplace Transform o f  t h e  p d f  f ( x ) .  

By i n v e r t i n g  t h e  above Laplace t rans fo rm,  we o b t a i n  t h e  j o i n t  p d f  of 



From these general formulas we special ize to  the gamma dis tr ibuted case and 

obtai n 

and the Laplace transform i n  t h i s  special case i s  given by 

. . 2.4. Marginal Laplace Transform and pdf of the n t h  
Discovery Y n 

From the jo in t  Laplace transform of the f i r s t  n discoveries, we can 

obtain the Laplace transform On(tn)  of the marginal dis t r ibut ion of the 

n t h  - discovery Y,, by taking t = t2 = . . . tn-, = 0. Me consider the special 1 

case when X has a gamma dis tr ibut ion.  
a .. 



. . 
M d k i i ~ g  tlir clianges o f  var iab les, ,  vl = U, , ,v2 =' u1 - u2,. . . , 'n - U, + u2+, ... +un, 

and  co t ing  t he  o rde r  9 < v, v2 G ... v n , we havc 

where 

Therefore,  
I- -,n-1 

where 



The property,  @,(0) = 1 ,  follows from the  'de f in i t ion  of the  beta in tegral ;  

and 1 - H ( v )  has the proper t ies  of a curnulati ve d i s t r i bu t i on  function.  

Using the  inversion formula, we can now obtain the  p r o b a b i l i t y  density 

function of the  n t h  - discovery a s  

N- n - - " y f (y)  I- [ l - ~ ( v ) : ~ - '  H . ( v )  e-lVdv 
(N-n) ! (n-1) ! 0 

where 

This r e s u l t  wri t ten  i n  the  general form (2.4.5) and i t s  associated Laplace 

transform wri t ten  i n  the  general form (2.4.3),  can a l so  be deduced from 

the  general formulae (2.3.2),  (2.- 3.1 ) respect ively ,  given i n  Section 

2.5. Conditional Laplace Transform and the  Conditional 
Moments of the  n t h  Discovery Yn, given Y, , -~  

From the j o i n t  p.d.f.  of t he  f i r s t  n d iscover ies ,  given by (2 .3 .2) ,  

one can obtain the j o i n t  pdf of Y and Y n .  Using this and the  n- 1 

pdf of Y n  given by (2.4.5), one can obtain the  conditional proper t ies  

of Yn given Y, - 



In t h i s  sectiori,  we shal l  obtain the  'd i s t r ibu t iona l  proper t ies  of 
t h  the  n t h  - discovery given the immediate pas t ,  namely, the (n-1) discovery. 

The following formula gives the Laplace Transform of Yn g i v e n t h e  (n-1 ) t h  

discovery yn-l : 

03 

where H(v) = I e-" f ( x )  dx. 
0 

From t h i s  the  conditional k t h  moment of Y given yn-l can be obtained as  
(n )  

We now present the  formula corresponding t o  (2.5.2) i n  the  case.  of .gamma 

d i s t r ibu ted  resources. In t h i s  case . ,  



1  f ( x )  = " xa- I  e-hX , and H(v)  = ( ~ / ( h + v ) ) ~  and t h e  c o n d i t i o n a l  

kth moment o f  Yn g iven yn-l i s  g iven by 

3. CONCLUSION 

Barouch and Kaufman [3] ob ta ined t h e  formulae f o r  t he  c o n d i t i o n a l  

expec ta t i on  o f  Y g iven t h e  whole pas t  Y-l, Y- *,.... 
( n  

Yn-l. They used 

these r e s u l t s  when the  d i s t r i b u t i o n  o f  t he  resource v a r i a b l e s  i s  a  l o g -  

normal d i s t r i b u t i o n .  As mentioned e a r l i e r ,  they made some approximat ions 

and used s imu la t ions .  They a l s o  made some t e s t s  t o  see whether t h e  

resource va r iab les  have a  lognormal d i s t r i b u t i o n  o r  a  gamma d i s t r i b u t i o n  

In view o f  t h i s ,  i t  would be i n t e r e s t i n g  t o  use t h e  formulae o f  Sec t i on  

(2.5) and compare w i t h  t h e  work o f  Barouch and Kaufman [I]. Th is  

i s  s t i l l  an open problem. 
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