DoeMe 012 - -yous
Em Y‘e@v“{)

Integrated Computer-Enhanced
Remote Viewing System

Quarterly Report Number 5
for
October - December 1993

Contract No.:DE-AC21-92M(C29113

Mechanical Technology Incorporated

968 Albany-Shaker Road
Latham, New York 12110
Tel No. (518) 785 - 2800

Morgantown Energy Technology Center
By:

3610 Collins Ferry Road
Morgantown, West Virginia 26507

Work Performed under
U.S. Department of Energy

February 22, 1994
For:

*Jod151j) £ousSe Aue I0 JUIWIUISA0D) SIS PAtuN

Y} JO 9503} 109[JI 10 9jEls A[LIBSSI0SU JOU Op Uy pessardxe siopne jo suoiuido pue
SMaIA oYL *Joolayy Kousde AuE IO JUSWUIAACH SAEIS PaNU[] Y1 Aq Sunoas) Jo ‘uonEpuIwl
w0001 “UoWIasIOpUs S} AWl J0 2IMIISUCO AJIESSIOBU JOU. S0P SIS0 JO ‘IaINjoEjnuBl
“JIBWIopEN} ‘SWBL opel} AQ 901AIaS Jo ‘ssacoxd ‘onpoid [eporewuied dlroads Aue 0} Ul21aY 30U
-19j5y ‘SWSH poumo K[ejealsd 93uLIjUL 10U PINOM SN S} ey} SIUasaldol JO ‘paso[asip ssoooxd
10 “yonpoxd ‘snyesedde ‘voneunojul AU Jo SSou[njasn 10 ‘ssousajdios ‘AoBINsoE Y3 10§ Aupq
-1suodsa1 10 Kypiqey] [eSe] Aue sswmsse Jo ‘poydwit 10 ssa1dxd ‘Ajueliem Kue soyew ‘ssokojdws
1ia1y Jo Aue Jou ‘Jossay) Aouafe AuB JOU JUIUINIOACH SABIS PANUM) SY3 ISION JUIWUIIA0DH
SRS palLf) o3 jo KouoFe uw £q porosuods HI0M JO JUROIOE UB SB poredaid sem nodor syl

ATV IOSIA

A}

ane

~

BIHLSIA - . .

Fdoan

AL
Loz

N v
BT ~
PRI

o0

a
ALUNINN g ININNO0G sy 40 NOIng

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

1. Introduction

The Interactive, Computer-Enhanced, Remote Viewing System (ICERVS) is
a system designed to provide a reliable geometric description of a robotic task
space in a fashion that enables robotic remediation to be carried out more
efficiently and economically that with present systems. The key elements are
a faithful way to store empirical data and a friendly user interface that
provides an operator with timely access to all that is known about a scene.

ICERVS will help an operator to analyze a scene and generate additional
geometric data for automating significant portions of the remediation
activity. Features that enable this include the following:

e Storage and display of empirical sensor data,

e Ability to update segments of the geometric description of the task
space,

e Side-by-side comparisons of a live TV scene and a computer
generated view of the same scene,

e Ability to create and display computer models of perceived objects
in the task space, together with textual comments, and

e Easy export of data to robotic world models for robot guidance.
The development of ICERVS is to occur in three phases.

e Phase 1 will focus on the development of the Data Library, which
contains the geometric data about the task space and the objects in
it, and the Toolkit, which includes the mechanisms for
manipulating and displaying both empirical and model data.

e Phase 2 will concentrate on integrating these subsystems with a
sensor subsystem into one working system. Some additional
functionality will be incorporated in the Data Library and Toolkit
subsystems.

e Phase 3 will expand the configuration to meet the needs of a full
scale demonstration of the interactive mapping of some waste site
to be identified.

The Phase 1 activities ended in June and the Phase 2 contract modification
was authorized on September 24, 1993. Work on Phase 2 was unofficially -
begun in August, when the intent to proceed to Phase 2 was clear. This was

done in order to meet the schedule of the Buried Waste Integrated
Demonstration to be carried out at the Idaho National Engineering
Laboratory (INEL) in the fourth quarter of FY94.

This report covers the technical effort carried out during the quarter
consisting of October, November and December 1993.

2. Summary of Progress to Date

The second Phase of the ICERVS project consists of nine tasks which are
described in Attachment A. This listing includes the eight tasks originally
proposed together with an additional task to supply a working copy of
ICERVS to INEL for use with the Buried Waste Integrated Demonstration
BWID).

Significant efforts were devoted to Task 2 and the detailed design of the
Common Interface for Sensors. This effort is running in parallel with an
internal effort to complete a CRADA development of the structured light
sensor system which will be included in the Phase 2 demonstration of
ICERVS.

Significant efforts were devoted to the completion of Task 4: Analysis
Software Design. The Phase 2 software architecture from Task 1
(Intermediate System Design) has been expanded and detailed for the
Analysis Software. Software classes have been defined and detailed for the
Demonstration Application CSCI and the Volumetric Data Subsystem CSCIL.
A draft of the Subsystem Design Report has been prepared and included with
- this report as Attachment B.

Some initial efforts were directed at starting the Analysis Software
implementation. Several utility routines from Phase I were upgraded to
reflect changes in the Rogue Wave C++ libraries. The main window and
main menu codes for the Demonstration Application CSCI and Volumetric
Data Subsystem have been implemented and integrated to produce a
preliminary test platform for the development of the user interface software
components.

3. Progress Report

8.1 Task 2 — Sensor Subsystem

The sensor subsystem is the major addition to the scope of the Phase 1
system. The sensor subsystem represents the source of all input data and,
for Phase 2, contains a structured light mapping sensor, a laser range finder
mapping sensor, and a collection of sensors that measure physical properties

of the material (e.g., temperature, conductivity, radiation level) whose data
will be provided to ICERVS through the Minilab subsystem being developed
by Sandia National Laboratory (SNL). Architectural data about a plant or
factory will also enter ICERVS through the software mechanism associated
with the sensor subsystem.

The structured light sensor system is currently under development by MTI as
part of a CRADA with both SNL and Oak Ridge National Laboratory
(ORNL). A demonstration version of the sensor will be demonstrated in mid-
February 1994. This system will be demonstrated operating in a stand-alone
mode, but will be capable of remote operation as an ICERVS subsystem. MTI
will make this sensor system available to the project to carry out the Phase 2
development.

During the current quarter details for the Common Interface For Sensors
have been generated. The command set for the Structured Light Sensor
Server has been identified and forwarded to ORNL. Interface requirements
between ICERVS and the CRADA sensor have been identified and
incorporated into the design of the sensor software. Data output formats of

the ORNL user interface code are being reviewed as a first step toward
defining the input formats for ICERVS.

8.2 Task 4 — Analysis Software Design. :
The analysis software design effort began with the System Design Report
produced in Task 1 and proceeded add to additional detail. The design effort
was divided into several sections: Client-Server Communications Design,
Demonstration Application CSCI Design, and Volumetric Data CSCI Design.
Each of these design efforts is described in later paragraphs.

The effort on Task 4 concluded with the preparation of the sections 1.0
through 7.0 of the Subsystem Design Report which documents the Analysis
Software Design. A draft release of that report is included with this
document as Attachment B.

Due the large volume of design information needed to describe the
Demonstration Application and Volumetric Data CSCls, it was decided to
provide sections 8.0 through 11.0 (the Sensor Interface and Sensor CSCIs) in
a separate report which is expected to be included in the next Technical
Quarterly.

3.2.1 Client-Server Communications Design

The general design of ICERVS is that of one or more client processes
(Demonstration Application, Volumetric Data Subsystem User Interface, etc.)
that require connection to one or more server processes (VDS, sensors, etc.).
The clients may reside on the same computer system as the servers or

different systems. UNIX sockets using Internet Protocol (IP) will be used for
communications. In addition, in order to attain GISC compatibility, the
Sandia developed GENISAS and ISOE software are being evaluated to sexve
as the underlying communications protocol.

The design effort began with the definition of command message and
communications message protocols. A general implementation approach was
developed which calls for initially using the CRADA developed
communications software and gradually migrating to the ISOE and
GENISAS packages by the end of Phase 3. Details of the design of the client-
server communications are contained in section 5.0 of the ICERVS Phase 2
Subsystem Design Report.

3.2.2 Demonstration Application CSCI Design

The ICERVS Phase 2 Demonstration CSCI is the topmost application process
and contains the high-level operator interface to demonstrate the functions
and features of the ICERVS Phase II system. This CSCI is representative of
a user application and may be used as a template for creating user
applications. This CSCI is composed of a single Computer Software
Component (CSC);

An object-oriented design methodology was used to design this CSCI. After
defining the problem domain, the key problem domain component (PDC)
classes were identified, including waste site, sensor, camera, dataset,
property type, and view. The relationships, interactions, and associations
among these classes were examined and an OOA diagram developed for the
CSCI. Software classes corresponding to the PDC classes were then defined,
~ OOD diagrams were developed, and finally, the major CSCI functions were
described. A similar process was conducted to design the user interface
elements of this CSCI.

The details of the design of the Demonstration Application CSCI are
contained in section 6.0 of the ICERVS Phase 2 Subsystem Design Report.

3.2.3 Volumetric Data CSCI

The Volumetric Data CSCI encapsulates the storage, retrieval, manipulation,
and visualization of spatial, property and geometric object data. Itis
composed of seven Computer Software Components (CSC).

An object-oriented design methodology was used to design this CSCI. After
defining the problem domain, the key problem domain component (PDC)
classes were identified, including waste site, property type, dataset, view,
cutplane, geometric object, dimensional data, property data, and sensor data.
The relationships, interactions, and associations among these classes were
examined and an OOA diagram developed for the CSCI. Each CSC was then

addressed separately. An OOA diagram, software classes, OOD diagrams,
and major function descriptions were developed for each CSC.

The design of the Volumetric Data CSCI is detailed in section 7.0 of the
ICERVS Phase 2 Subsystem Design Report.

3.3 Task 5 — Analysis Software Code / Test.

Implementation of the analysis software has begun. The utility software
classes from Phase I have been updated to reflect changes in the Rogue Wave
libraries. An interface between the UIMX generated code and the ICERVS
C++ code has be implemented. Software classes for the Demonstration
Application CSCI and Volumetric Data CSCI top level window and menu
systems have been implemented. Several utility software classes (browsers,
editors, selection lists, etc.) have been implemented, interfaced to their low-
level UIMX codes and integrated with the top level menu software.

Two executable programs has been implemented to serve as test platforms
for the remaining software implementation. Program ICERVS2 implements
the Demonstration Application CSCI top level window and menu. Many of
the SYSTEM and SITE menu functions have been implemented, but the
remaining menu functions perform no action at this time. Program
VDSMAINU implements the Volumetric Data CSCI top level window and
menu. None of the menu functions perform any actions at this time.

4. Plans for Future Activity
The work on Task 2: Sensor Subsystem is continuing and is being

coordinated with the efforts to complete the CRADA mapping system for its
demonstration scheduled for February 15,1994. The sensor system interface
design will be completed in January and integration of the CRADA sensor
with the ICERVS software will begin after the February demonstration.

Analysis Software Code / Test (Task 5) will continue throughout the next
quarter. By the end of the quarter, most of the user interface should be
operational, the client-server communications interface will be implemented,
and the integration of TrueSolid will have begun.

5. Assessment of Prospects -

The results after the second quarter of activity continue to be quite
encouraging. Discussions with end users at various remediation sites reveal
ongoing and increasing interest in ICERVS. This Phase will address the
needs of the Buried Waste Integrated Demonstration (BWID), while a joint
effort with another PRDA project in robotics will begin to explore the utility
of ICERVS in the D&D application.

6. Appendices
A. Task Descriptions

B. Draft of Subsystem Design Report

Attachment A. ICERVS Task Description

ATTACHMENT A
ICERYS Task Description

The nine tasks in Phase II are described below.

Task 1: Intermediate System Design

Based on the results from Phase I, MTI will review and update the requirements for the
ICERVS, including an evaluation of the "TrueSolid" software and alternative data formats to
IGES. The result will be a modified set of requirements for integrating the various subsystems.
MTI will complete and initial draft of the ICERVS generic sensor interface. MTI will also
establish user focus groups in the DOE end-user community.

Task 2: Sensor Subsystem

MTI will make available a sensor subsystem developed under a CRADA with two national
laboratories. This sensor subsystem has two instrument stations. Each station consists of a
solid-state camera and a laser projector. Fach station will also include the appropriate
suspension and positioning hardware for investigating a simulated single shell tank and will
provide for yaw and pitch motions.

MTI will upgrade the software in the structured light sensor to operate as an ICERVS sensor
subsystem. This will involve defining a remote interface (in accordance with the ICERVS
generic sensor interface) and developing the necessary hardware and software for integration
with the analysis subsystem. MTI will also define appropriate interfaces for a laser range finder
and Minilab. In the absence of empirical sensor data from such sensors, MTI will create simple
simulators to test these interfaces.

Taék 3: Computer Upgrade

MTI will upgrade the computing platform to enhance the functionality of the overall system.
MTTI will include, at least: a color TV video monitor, an upgraded central processing unit, and
if necessary, additional internal memory. The Octree Corporation’s "TrueSolid" software
module (or equivalent) to facilitate the Octree engine shall also be included.

Task 4: Analysis Software Design

MTI will review and modify the analysis software requirements as identified in Task 1, Phase
II. MTI will design software modules which implementa generic sensor interface, integrate the
"TrueSolid” package, and which enhance the capabilities to include, but not be limited to: the
ability to accept and store real empirical data (to encompass material properties); the ability to
store and merge object models alongside the data they represent; the ability to convert data into
a suitable format, such as IGES or STEP, to facilitate interaction with robotic controls. MTI
will also design two sets of graphics tools. The first shall enhance the system’s display
capabilities, and the second shall improve the system’s ability to build three-dimensional
geometric models.

Task 5: Analysis Software Code and Unit Test

MTI will code, test, and integrate the new analysis software and test it in a stand-alone mode
to verify functionality. The new analysis software will incorporate data library functions,
interface to "TrueSolid", generic sensor interface, and data output in IGES or an alternative
format.

Task 6: System Integration

MTI will integrate, install, and operate data library and toolkit analysis software in an interactive
mode to ensure compatibility and interoperability.

MTI will design the software elements needed to ensure effective communication between the
sensor subsystems and computing platform. MTI will write, test, and integrate the necessary
computer codes required for data acquisition and interactive viewing.

MTI will design an operator interface which provides effective control of the structured light
sensor subsystem (i.e. cameras, lights, and positioning systems). MTI will prepare a computer
code which allows the operator to control the video camera view selection and simultaneously
display a matching computer image.

MTI will interconnect all system components and verify their joint functionality. A simulated,
single-shell tank shall also be prepared for demonstrating the subscale ICERVS.

Task 7: Demonstration

MTI will demonstrate and verify, at least, the following components: a sensor subsystem which
automatically and interactively maps the surface and walls of a simulated single-shell tank; a
sensor interface to a laser range finder; a sensor interface to a minilab subsystem; library
analysis software which properly creates and manipulates an equivalent world model in a form
compatible with the needs of a robotic controller; analysis software which also demonstrates
enhanced viewing and model-building tools; and an ICERVS which demonstrates the ability to
match scenes from live TV and the world model as the operator pans the camera.

Task 8: Buried Waste Application

Subtask 8.1: System Design Modifications

MTI will finalize the features and performance needed for the buried waste
application through discussions with INEL personnel. MTI will perform design
modifications of the ICERVS architecture and algorithms as needed.

Subtask 8.2: Detailed Design

MTI will design the analysis software elements to support the buried waste
application, including: enhanced user interface, means for storage and display of

multiple material properties, updating of data from excavation activities, tools for
registering data from different sensors, interpolation of material properties for
analysis and display, and combination of multiple property data via boolean
operations.

Subtask 8.3: Code and Unit Test

MTTI will generate the necessary software to implement the features to support the
buried waste application. Each element of code shall be unit tested and then
tested again at the various levels of integration.

Subtask 8.4: Demonstration, Installation, and Training

MTI will incorporate the buried waste features as part of the ICERVS Phase I
demonstration. MTI will install a copy of the ICERVS executable software on
an INEL-supplied workstation, provide a user’s guide, and supply a one-week
level of effort for informal training at INEL.

Task O: Topical Report and Decision Point

MTT will submit a topical report within sixty (60) days prior to completion of Phase II detailing
the work completed to date and including the results of the Task 8 Buried Waste Application.
Within thirty (30) days after submittal, the COR shall accept the draft topical report or
recommend changes.

Within (3) days after submittal of the topical report, the contracting officer shall decide whether
to proceed to the next phase. If the contracting officer decides NOT to continue to the next
phase, MTI will submit a camera-ready final copy of the topical report within two weeks of this
notification from the contracting officer. This report shall be used in lieu of a final report.

ToE Mg |12 - - Hous
| Tt report

ICERVS

Phase II Subsystem
Design Report

February 4, 1993

Prepared by:

David A. Smith , Date

Approved by:

John Wagner Date

ICERVS Phase II Subsystem Design Report ii

REVISION HISTORY

Revision Date
A February 4, 1993 Original Version

ICERVS Phase II Subsystem Design Report v

Table Of Contents

Description Page
Cover Page........... i
Title Page.......c..... ii
Revision History iii
Table Of Contents vii
List Of Figures xi
List Of Tables xiii
Glossary xiv
1.0 INTRODUCTION 1-1
1.1. Scope 1-1
1.2. Document Overview 1-1
2. RELATED DOCUMENTS 2-1
" 3. BACKGROUND 3-1
3.1. ICERVS Implementation Phases 3-1
3.2. Mission Profiles 3-1
3.3. System Requirements 3-3
3.4. Phase II Success Criteria 3-3
4. PHASE II ARCHITECTURE 4-1
4.1. System Architecture 4-1
4.1.1. Computing Platform 4-1
4.1.2. Sensor Subsystems 4-1
4.2, Analysis Software Architecture 44
4.2.1. ICERVS Phase H Demonstration CSCI 4-5
4.22. Volumetric Data CSCI 4-9
4.2.3. Sensor Interface Subsystem CSCI 4-9
4.2.4 Sensor Subsystem CSCIs 4-9
4.24.1. Structured Light Sensor CSCI 4-13
4.24.2. Laser Range Finder CSCIL 4-13
42.43. Sensor MinilLab CSCI 4-13
4.3. Allocation of System Requirements 4-13

ICERVS Phase II Subsystem Design Report vii

Table Of Contents (continued)

Description
5. CLIENT-SERVER COMMUNICATIONS DESIGN

5.1. General Design
52 Command Message Protocol

5.3. Communications Protocol

5.4. Implementation Approach

5.5. Class Descriptions

5.6. Major Function Descriptions

6. ICERVS PHASE I DEMONSTRATION CSCI DESIGN.

6-1

6.1. General Design Approach

6-1

6.2. Requirements Allocation

6-3

6.3. Operator Interface Description

6-3

6.3.1 Menu Function Descriptions

6-3

6.3.2. UIMX Interface Details

6-8

6.3.2.1. Create and PopUp Functions

6-8

6.3.2.2. Callback Functions

6-10

6.3.2.3. Menu Button Disabling/Enabling

6-11

6-11

6.3.2.4. AnInterface Example

6-12

6.3.2.5. Higher Level Callbacks
6.4. Application Data Structure Details reverneen

6-13

6.4.1. Definition Of Files

6-13

6.5. Toplevel User Interface CSC Detailed Design

6-17

6.5.1. Class Descriptions

6-17

6.5.1.1. Problem Domain Classes

6-18

6.5.1.2. Human Interface Classes

6-23

6.5.2. Globally Available Data

6-30

6-30

6.5.3. Major Function Descriptions

7. VOLUMETRIC DATA SUBSYSTEM CSCI DESIGN.

7.1. General Design Approach

7.2. Requirements Allocation

7.3. Volumetric Data Client Interface CSC Detailed Design

7.3.1. VDS Server Commands

7.3.2 VDS Server Identifiers

7.3.3. Class Descriptions

7.3.3.1. PDC Classes

7.3.3.2. HIC Classes.

7.3.3.3. Globally Available Data
7.3.4. Major Function Descriptions

ICERVS Phase II Subsystem Design Report viii

Table Of Contents (continued)

Description Page
7.4. Spatial Data Engine CSC Detailed Design 7-27
7.4.1. Dataset Interface 7-27

7.4.2. TrueSolid Interface 7-27

7.4.3. Class Descriptions 7-29

7.4.4. Major Function Descriptions 7-33

7.4.4.1 Material Property Function Descriptions 7-33

7.4.4.2 Cutplane Function Descriptions. 7-33

7.4.4.3 View Function Descriptions 7-34

7.4.4.4 Dataset Function Descriptions 7-34

7.4.4.5 Tree Interface Function Descriptions 7-35

7.5. Geometric Object CSC Detailed Design 7-37
7.5.1. Geometric Object Representation 7-37

7.5.2. Object Display and Editing Interfaces ; 7-38

7.5.3. Class Descriptions 7-38

7.5.4. Major Function Descriptions 745

7.5.4.1. Read Geometric Objects List/Template Files 7-45

7.54.2. Write Geometric Objects List/Library Files 745

7.5.4.3. Add New 3D Object To List or Library. 7-45

7.5.4.4. Delete 3D Object From List or Library 7-46

7.54.5. Modify 3D Object In List or Library 7-46

7.54.6. Associate (add or modify) Text With Geometric Object.............. 7-46

7.5.4.7. Output Text Report Of Geometric Objects 7-46

7.6 Spatial Data/Object Interaction CSC Detailed Design 7-46
7.6.1 Dataset Interface . 7-46

7.6.2 Class Descriptions 7-47

7.6.3 Major Function Descriptions 747

7.7. World Model Data Interface CSC Detailed Design 7-48
7.7.1. Geometric Object Database 7-48

7.7.2. Class Descriptions 7-49

7.7.3. Major Function Descriptions 7-49

7.8. Property Database CSC Detailed Design 7-49
7.8.1. Property Database Structure 7-50

7.8.2. Class Descriptions 7-50

7.8.3. Major Function Descriptions 7-50

ICERVS Phase II Subsystem Design Report ix

Table Of Contents (continued)

Description

7.9 Visualization And Interaction CSC Detailed Design
7.9.1 Operator Interface Description

79.1.1
7.9.1.2
7.9.1.3
79.14
7.9.1.5
7.9.1.6
7.9.1.7
7.9.1.8
7.9.2.

7.9.3. Class Descriptions

7.9.3.1
7.9.3.2

7.9.4. Major-Function Descriptions

Page

7-52

7-52

Volumetric Data Window. cene1=52

View Windows 7-52

View Defaults Dialogs. 7-55

View WindowTransform Dialog. 7-55
Geometric Object Dialogs 7-55

Data Input Dialogs 7-63

Analyze Dialogs 7-63

Cutplane Dialogs 7-63

Interface To VDS Server 7-72

' 772

Problem Domain Classes 772

Human Interface Classes 7-72

7.9.3.2.1 VDS Main Window Classes 7-72
7.9.3.2.2 VDS View Window Classes 7-81
7-94

7.9.4.1 VDS Main Window Meriu Functions 7-94
7.9.4.2 VDS View Window Menu Functions 7-98

ICERVS Phase II Subsystem Design Report X

Figure Description

4-1
42
4-3
4-4
4-5
4-6
47
4-8

6-1
6-2a
6-2b
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13

7-1
72
73
74
7-5
76
7-7
7-8
7-9

List Of Figures

Page
ICERVS General System Architecture 4-2
ICERVS Phase II System Architecture 4-3
ICERVS Phase IT OOA Model 4-6
ICERVS Analysis Software Architecture 4-7
ICERVS Phase II Top Level Screen and Menu 4-8
Volumetric Data CSCI Block Diagram 4-10
Sensor Interface CSCI Block Diagram 4-11
Generalized Sensor Subsystem CSCI Block Diagram 4-12
Object Oriented Analysis For ICERVS Phase I Demonstration CSCI 6-2
ICERVS Phase I Main Window Screen 6-4
Volumetric Data Window 6-4
Sensor Connection Control Panel 6-6
Camera Connection Control Panel " 6-6
ICERVS Phase I Application CSCI User Interface Components 6-9
Flow Of Events During A Callback 6-14
ICERVS Phase II Application CSCI'OOD Diagram #1 6-19
ICERVS Phase II Application CSCI OOD Diagram #2 6-20
ICERVS Phase I Application CSCI OOD Diagram #3 6-21
ICERYVS Phase II Application CSCI OOD Diagram #4 6-24
ICERVS Phase I Application CSCI OOD Diagram #5 6-25
ICERVS Phase II Application CSCI OOD Diagram #6 6-26
ICERVS Phase I Application CSCI OOD Diagram #7 6-27
Volumetric Data CSCI Block Diagram 7-2
OOA Diagram For Volumetric Data CSCI Diagram 73
Volumetric Data Subsystem Class Interactions 7-4
VDS Client Interface CSC OOA Diagram 7-22
VDS Client Interface CSC OOD Diagram #1 7-23
VDS Client Interface CSC OOD Diagram #2 7-24
VDS Spatial Data Engine CSC OOA Djagram 7-28
VDS Spatial Data OOD Diagram #1 7-30
VDS Spatial Data OOD Diagram #2 7-31

ICERVS Phase IT Subsystem Design Report xi

Figure Description
Visualization and Interaction CSC OOA Diagram

7-15
7-16
7-17
7-18
7-19
7-20a
7-20b
721
722
7-23
7-24
7-25
7-26
727
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
7-40
741
7-42
7-43
7-44
7-45

List Of Figures (continued)

Volumetric Data Window Screen

View Window Default Options Dialog

View Window Default Colors Dialog,
View Window Transform Dialog

Geometric Object Functions Dialog

Geometric Object Editing Dialog

Geometric Object Edit Sub-Window

Geometric Object Reshape Sub-Window
Input Region Change Dialog

Input Point Add Dialog
Input Point Erase Dialog

Input File Add Dialog
Analyze Volumetric Difference Dialog

Analyze 2,5D Surface Map Dialog

Cutplane Definition Dialog.

Cutplane Positioning Control Window.

VDS Main Window Classes

VDS View Window Classes,

Cutplane Edit Dialog
New Dataset Definition Dialog

Open Dataset Dialog
Cutplane Cube Dialog

Cutplane Profile Dialog

Cutplane Slice Dialog

Display Colors Dialog

Display Options Dialog

Geometric Object Consistency Check Results Dialog
Geometric Object Volumetric Difference Dialog

Rotate Rectangle Dialog

View Options Dialog
View Select IDs Dialog.

Figures for 8.0 thru 11.0 yet to come

ICERVS Phase I Subsystem Design Report

List Of Tables

Table Description Page
3-1 Phased Implementation Of ICERVS Features 32
3-2 Summary Of ICERVS Requirements w.3°5
3-3 Allocation Of System Requirements To Phase I Success Criteria 3-8
4-1 Allocation Of System Requirements To ICERVS Phase IT CSCIs 4-14
6-1 Requirements For Toplevel User Interface CSC 6-3
6-2 ICERVS Application Data Structure 6-16
7-1 Requirements For Spatial Data Engine CSC 7-5
72 Requirements For Geometric Object CSC 7-5
7-3 Requirements For Spatial Data / Object Interaction CSC 7-6
74 Requirements For World Model Data Interface CSC 7-6
7-5 Requirements For Property Database CSC 7-6
7-6 Requirements For Visualization / Interaction CSC 77
7-7 VDS General Commands . .79
.78 VDS Site Commands 7-11
7-9a VDS Spatial Data Commands For Datasets 7-13
7-9b VDS Spatial Data Commands For Cutplanes 7-16
7-9c VDS Spatial Data Commands For Views 7-17
7-10 VDS Property Data Commands 7-19
7-11 VDS Geometric Object Commands 720

Tables for 8.0 thru 11.0 yet to come

ICERVS Phase II Subsystem Design Report xiii

GLOSSARY

2D _

Geometric Object: a geometric object that occupies conceptual space of dimensionality 2. Examples of 2D
geometric objects include circles, rectangles, and polygons. A 2D geometric object lies in a plane,
occupies surface area, but does not occupy volume.

Polygon: a geometric object characterized by a sequence of connected vertices lying in a plane. The
straight line connections between adjacent vertices are called edges. A 2D polygon is convex if a line
segment joining any two interior points is completely contained within the polygon.

2.5 D Surface Map: projection of a 3D space onto a user specified plane (generally the viewing plane)
and is typically represented by a two-dimensional data array, where the two array indices are used to
represent two of the dimensional coordinates and the data values are used to represent the third
coordinate. The map has a user sclectable, uniformly spaced grid.

3D_
Geometric Object: a geometric object that occupies conceptual space of dimensionality 3. Examples of 3D
geometric objects include spheres, rectangular parallelepipeds, and prisms. A 3D geometric object has the
property of volume.

Polyhedral Object: a 3D geometric object bounded by plane faces which are polygons.

Swept Volume: the process of creating a 3D geometric object by projecting a 2D geometric object through
a path (normal to 2D object) in 3D space.

Category: for a geometric object, the identifier that describes the general type or class for a geometric
object, such as, wall door, barrel, etc.

CCV: closed circuit video. Used to remotely view a location.

Clasg, C++_

Base Class: a class which is included in another class(es). A base class typically provides general-purpose
characteristics that are tailored by the derived class{es).

Class: a C++ data type defined by the programmer, that aggregates programmer-defined data structures
(or member data), member functions, and custom operators.

Derived Class: a class defined such that it includes the member data and member functions from another
class. The derived class is said to inherit the characteristics of the other class.

ICERYVS Phase II Subsystem Design Report XV

GLOSSARY (continued)

Member Data: the variables and data structures defined within a class (including those inherited from
other classes).

Member Function: the member data manipulation functions and other functions for a class (including
those inherited from another class).

Client-Server: a style of computer program implementation whereby one program (the server) is
configured as a provider of a particular set of services and another program (the client) is a user of those

services. The client sends commands to the server which executes the command and returns a result. In a
networked environment, clients and servers may reside on different computer systems.

Common Interface for Sensors: A high-level, standard format for communicating sensor commands,
data, and user interface information between intelligent sensor subsystems and an application program.
The common interface provides a flexible capability for using different sensor configurations in

remediation systems.

CRADA: Cooperative Research And Development Agreement signed to transfer technology from a
national laboratory to a commercial firm..

CSC: Computer Software Component.

CSCI: Computer Software Configuration Item

CSU: Computer Software Unit

Cut Plane: a plane used to segment 3D space into two regions. Typically one or more cut planes are used
to bound a region of interest. A pair of cut planes with a user-setable separation that is used to view slices
of the 3D volume is called a slice cut plane.

Derived Property: a property created by the Boolean combination of two or more other Pproperties,

Dialog Box: an area on the user display for user input/output.

DOE: Department Of Energy

GENISAS: General Interface for Supervisor and Subsystems. A software package, developed by Sandia
National Laboratory, that provides a set of general communications tools. GENISAS implements a client-

server communications model using RPC and UNIX sockets..

GUIL: Graphical User Interface.

ICERVS Phase II Subsystem Design Report xvi

GLOSSARY (continued)
GISC: Generic Intelligent System Control.
ICERVS: Interactive Computer-Enhanced Remote Viewing System
IGES: Initial Graphics Exchange Standard
IGRIP: A set of software tools developed by Deneb Robotics, Incorporated to facilitate the off-line
programming of robotic systems. The tools provide 3D simulation to prototype and visualize robot
actions,
INEL: Idaho National Engineering Laboratory

ISOE: Intelligent System Operating Environment. A software package for UNIX low-level, socket-based
communications developed by Sandia National Laboratories as part of the GENISAS package.

Level: for a node in a tree, the number of antecedent nodes in the direct path from the node to the root
node.

Model _
Geometric Model: a computer representation of a physical object.

World Model: a computer representation, used by robotic systems, of a taskspace and/or workspace.

Motif: An XWindows based computer windowing system from Open Systems Foundation. Motif is a
standard part of most UNIX based workstations.

Node: one data element within an octree data structure
Child Node: a direct descendant of another node.
Leaf Node: a node with no children. Leaf nodes of an octree have empty, full, or unknown states.

Node State: for octrees, a flag used to describe the occupancy of the region of space corresponding to a
node. The four node states are:

Empty none of the region is occupied

Partial some (but not all) of the region is occupied. The occupancy is described in further
detail by children nodes

ICERVS Phase II Subsystem Design Report xvii

GLOSSARY (continued)
Full all of the region is occupied

Unknown the occupancy of the region is not known. Initially, all nodes are set to the
unknown state.

Object_

Category: the identifier that describes the general type or class for a geometric object, such as, wall, door,
barrel, etc.

Geometric Object: a representation of a contiguous region of conceptual space defined in a mathematical
form(s). Geometric objects can be two dimensional (e.g. circle, rectangle, and polygon) or three
dimensional (e.g. sphere, cube, and prism).

Group: an aggregation of two or more contiguous geometric objects that are treated as a single geometric
object.

Octree: an 8-ary tree data structure that represents the spatial occupancy of a 3-dimensional region. The
data structure is produced by the recursive subdivision of a finite cubical universe.

OOA: object oriented analysis.

OOD: object-oriented design.

OOP: object-oriented programming.

OOPL: object-oriented programming language, such as C++ and SmallTalk.

ORNL: Oak Ridge National Laboratory .

Polygon: a geometric object characterized by a sequence of connected vertices lying in a plane. The
straight line connections between adjacent vertices are called edges. A 2D polygon is convex if a line
segment joining any two interior points is completely contained within the polygon.

Polyhedron: a 3D geometric object bounded by plane faces which are polygons

PNL: Pacific Northwest Laboratory

Primitive/Geometric Primitive: a 3D geometric object typically defined by analytic description
(equations). Examples of primitives include spheres, cylinders, and planes (half-spaces).

.

ICERVS Phase II Subsystem Design Report xviii

GLOSSARY (continued)

Prismoid: a polyhedron that has all of its vertices in two parallel planes, and with the same number of
vertices in each plane.

Property Data: for octrees, data used to describe the non-geometric physical characteristics of a region in
space corresponding to one node. Property data is generally a single value (temperature, conductivity,
weight, color, etc.) or a simple array of values (magnitude and phase, speed vector, etc.).

Quadtree: a 4-ary tree data structure that represents the spatial occupancy of a 2-dimensional region.
The data structure is produced by the recursive subdivision of a finite square universe.

Region: part of a 2D or 3D space that is of interest at a particular point in time.

Remediation: the process of environmental restoration of hazzardous sites, such as the waste sites found
on DOE reservations.

Robotic System: A computer-controlled mechanical mechanism. Typically, the computer coordinates
the actions of multiple linked mechanical elements to achieve a programmed path at the working end of
the mechanism.

- Rogue Wave Canvas: a software package that provides drawing management for 2D and 3D geometric
figures on a XWindows screen.

ROI: Region Of Interest.

Rotation: for computer graphic display, an angular movement of the image about one or more coordinate
axes of the computer model of a 3D space.

Scaling: for computer graphic display, a change in the size of the image of a computer-modeled space.
For ICERVS, scale is described as a percentage of full scale (At full scale, the entire computer-modeled
region is made to exactly fit in the display window.)

Sculpting: for octrees, the process of changing node states to empty along a selected path or within a
selected region. Sculpting is typically used to clear regions corresponding to input data provided by line-
of-sight sensors.

Sensor -
Laser Range Finder: A non-contact sensor using laser energy to measure range to objects in a scene,
which may be one to 20 meters from the sensor.

ICERVS Phase IT Subsystem Design Report xix

GLOSSARY (continued)

Minilab: A computer-based system developed by Sandia National Laboratory for modularly configuring,
acquiring data from, and integrating data from a suite of sensors. MiniLab provides a set of common
system interfaces and a flexible user interface.

Structured Light: A non-contact, dimenéional profiling system that use triangulation between a laser
source, projected onto a region of interest, and an imaging detector such as a video camera.

Sensor: a device for measuring some physical quantity, such as temperature, weight, pressure, etc.

Sensor Data: the location, orientation and other attributes of a sensor together with a response set.
Typically, sensor data is stored at the node representing the sensor location. One or more kinds of
property data can generally be derived from this sensor data.

Sensor Subsystem: a subsystem that contains or simulates at least one sensor and outputs sensor data to
another system. A sensor subsystem typically contains a local computer for control and computation. The
software on the sensor computing platform is generally configured as a server. Client applications on
other computing platforms connect to the sensor subsystem software in order to control the sensor and
obtain sensor data.

Site: a particular waste location and its environs. Examples would be an underground storage tank, a
buried pit, a production facility, etc.

Slice Cutplane: a pair of cut planes with a user defined separation used to view slices of the 3D volume.
The pair of cut planes are controlled as a single object.

SNL: Sandia National Laboratory

Spatial Data: a data base containing discrete elements with dimensionality of three (solids). The data
base is used to describe a 3D modeling space.

STEP: Standard for The Exchange of Product model data (ISO 10303). A computer-based method for
specifying and exchanging information in engineering and manufacturing systems. STEP defines product
specifications, such as geometry/shape, material, tolerances, behavior, function, product structure, and
Process sequences.

Taskspace: A 3D region of space that is of interest, typically a portion of a workspace. Taskspace and
workspace are often used interchangebly.

ICERVS Phase II Subsystem Design Report XX

GLOSSARY (continued)

Translation: for computer graphic display, a change in the apparent position of the image of a computer-
modeled space. Translation, when used in conjunction with scaling, provides a means for viewing a
subsection of the world model at a magnified scale. For ICERVS, translation is described as screen-
horizontal and screen-vertical displacements in external units.

Tree: a data structure characterized by a hierarchy of elements or nodes descendant from a single or root
node.

Tree _

Tree Traversal: the process of retrieving each node from a tree in a prescribed order. Typically each node
is retrieved one time. A depth-first tree traversal retrieves the descendants of a node before retrieving the
siblings of a node.

TrueSolid: A software package from Octree Corporation that provides tools for the building, viewing,
modification of volumetric data sets using octrees.

Units _
External Units: the physical dimensional units selected by the ICERVS user for display and data
input/output,

Internal Units: the physical dimensional units used internally by ICERVS. For ICERVS, these units are
SI (dimensions in meters).

Trec Units: the dimensional units used by the octree sofiware to describe octree space. For ICERVS these
dimensions vary between zero and 2,097,152 (221). This also sets the maximum spatial resolution of the
octree,

UNIRAS Toolmaster: a collect of software products that facilitate development of graphics applications.

A 2D and 3D graphics software library (agX) and a GUI builder utility (UDM/X) that facilitates the
definition and implementation of GUI components are included in Toolmaster. '

UNIX: The computer operating system used on most major workstations. UNIX is a multi-user, multi-
tasking computing environment.

Volumetric Data: a data base containing discrete elements with spatial dimensionality of three (solids).
The data base is used to describe a 3D modeling space.

VxWorks: A real-time, multi-tasking operating environment for VME-based computers.

ICERVS Phase II Subsystem Design Report - oxxi

GLOSSARY (continued)

Wire frame: a method for defining or generating a graphic display of a polyhedron as a set of points and
connecting edges.

Workspace: A 3D region of space that is of interest. A workspace is often subdivided into several
taskspaces. In many cases, taskspace and workspace are used interchangebly.

ICERVS Phase II Subsystem Design Report xxii

1.0 __INTRODUCTION

1.1. Scope
This ICERVS Phase II Subsystem Design Report describes the detailed software design of the Phase II
Interactive Computer-Enhanced Remote Viewing System (ICERVS).

ICERVS is a computer-based system that provides data acquisition, data visualization, data analysis, and
model synthesis to support robotic remediation of hazardous environments. Because of the risks
associated with hazardous environments, remediation must be conducted remotely using robotic systems,
which, in turn, must rely on 3D models of their workspace to support both task and path planning with
collision avoidance. Tools such as ICERVS are vital to accomplish remediation tasks in a safe, efficient
manner.

The 3D models used by robotic systems are based on solid modeling methods, in which objects are
represented by enclosing surfaces (polygons, quadric surfaces, patches, eftc.) or collections of primitive
solids (cubes, cylinders, etc.). In general, these 3D models must be created and/or verified by actual
measurements made in the robotics workspace. However, measurement data is empirical in nature, with
typical output being a collection of Xyz triplets that represent sample points on some surface(s) in the
workspace. As such, empirical data cannot be readily analyzed in terms of geométric representations used
in robotic workspace models. The primary objective of ICERVS is to provide a reliable description of a
workspace based on dimensional measurement data and to convert that description into 3D models that
can be used by robotic systems. ICERVS will thus serve as a critical factor to allow robotic remediation
tasks to be performed more effectively (faster, safer) and economically than with present systems.

1.2. Document Overview
Section 1.0 provides an introduction to this document including a definition of scope and an overview of
the contents of the document.

Section 2.0 provides a list of related documents that provide ancillary information that may be useful in
understanding this document.

Section 3.0 provides a brief background of the ICERVS system including summaries of the
implementation phases, mission profiles, system requirements, and the success criteria for Phase II.

Section 4.0 summarizes the Phase II architecture as defined of the ICERVS Phase II System Design
Report (October 31, 1993). :

Section 5.0 details the client-server communications design. Command and message protocols are
defined; message formats are detailed; software classes are identified; and major function descriptions are
given.

ICERVS Phase II Subsystem Design Report 1-1

THIS PAGE INTENTIONALLY LEFT BLANK

ICERVS Phase II Subsystem Design Report 12

2. RELATED DOCUMENTS

Phase I MTI technical proposal Q2-030, “Interactive Computer Enhanced Remofe Viewing System",
December 13, 1991,

Phase II MTI technical proposal Q3-419, "Interactive Computer Enhanced Remote Viewing System", May
14, 1993.

MTI ICERVS "Software Development Plan", December 23, 1992.

MTI "ICERVS Phase I System Design Report", December 21, 1992.

MTI "ICERVS Phase I Subsystem Design Report - Phase 1", April 27, 1993
MTI 98TR25 "ICERVS Phase 1 Topical Report", April 27, 1993

MTI "ICERVS Phase II System Design Report", November 15, 1993.

ICERVS Phase II Subsystem Design Report 2-1

N

THIS PAGE INTENTIONALLY LEFT BLANK

P AW At

o w wdite
J

ICERVS Phase II Subsystem Design Report 2-2

3. BACKGROUND

This section provides background information on ICERVS. An overview of the ICERVS system is
provided including a discussion of the implementation phases and a review of the mission profiles and
system requirements. The final subsection defines the success criteria for Phase II, which provide a
framework for the Phase II design and implementation efforts.

3.1. ICERYVS Implementation Phases

The development of ICERVS has been structured into three phases based upon the maturity level of its
constituent technologies. The features to be developed in each phase are listed in Table 3-1. Each of the
ICERVS phases is briefly described below:

The Phase I objective is to achieve Maturity Level III, Subscale Major Subsystems, for those
portions of ICERVS that had been demonstrated at the research Iaboratory scale. The majority of
the work in this phase involves the development of the basic analysis software capabilities for
octree data storage, sensor data visualization, and geometric object creation and manipulation.

The Phase II objective is to achieve Maturity Level IV, Subscale Integrated System, in which
ICERVS will be demonstrated at a limited size to enable successful implementation of a full-scale
system in Phase III. The result of this work will be an integrated system that provides a subscale
structured light system; an upgraded computing platform and enhanced analysis software to
include data analysis and visualization tools; enhanced facilities for creating geometric objects;
and an integrated user interface.

The Phase 1IT objective is to achieve Maturity Level V, Full-Scale Demonstration, in which
ICERVS will be demonstrated in the intended application. The result of this work will be a full-
scale, integrated system for use in the remediation of underground storage tanks. This system
will include a full-scale structured light sensor subsystem; an interface to a robot controller; a
facility for accepting geometric models derived from architectural data; and enhanced data
analysis and visualization tools.

3.2. Mission Profiles

As part of the ICERVS preliminary design, mission profiles were described for three remediation tasks.
The original profiles are documented in the ICERVS Phase I System Design Report Section 3. During the
initial stages of the Phase II design effort, it became apparent that some minor revisions in the mission
profiles were necessary in order to clarify points or to reflect the greater insight into the needs of the DOE
community. The details of the revisions to the mission profiles can be found in Appendix A of the
ICERVS Phase II System Design Report. Appendix B of that document contains an updated copy of the
Mission Profiles, including the revisions.

ICERVS Phase II Subsystem Design Report 3-1

Table 3-1 Phased Implementation Of ICERVS Features

Analysis Software Computing Platform Sensor Subsystems

Phase I Features -

® Volumetric Data ® Silicon Graphic workstation ® Simulated data
- Tree construction and manipulation (Indigo)
- Tree structure display °
- Tree storage display
- Tree utility programs

® Geometric object data
- Object definition
- Associated text

Color monitor

GL graphics library

Display

- Orthogonal projection

- Translation

- Scaling

- Cut planes along major axes
- Multiple windows

- Pseudo-color display

® Model Building

- Polygon generator .
- Region of interest

ets
2
e //;‘i#
i
.

0%

Additional Phase ITI Features
® Geometric object data ® Link to robotic controller ® Three full-scale instrument stations
- Storage of architectural plans (such as COPILOT) ° . .
- Input with IGES Color camera and grid projector
- Ability to edit IGRIP models ® Automatic positioning in azimuth
® Display with perspective view ® Absolute tank coordinate frame
® Model Building established by surveying tools :
- Automatic modeling of simple surfaces ® Improvement suggested by Phase I
- Surface connectivity tool ° . .
- Surface model templates Design of hardened station

ICERYVS Phase II Subsystem Design Report 32

3.3. System Requirements

From the mission profiles, a list of ICERVS primary requirements were developed. These requirements
are documented in the ICERVS Phase I System Design Report, Section 3. In the course of detailing the
Phase I subsystem design, it became apparent that some minor revisions in the requirements were
necessary in order to clarify points or to reflect the greater insight into the roles of the various subsystem
elements. The details of the Phase I revisions to the requirements can be found in Appendix A of the
ICERVS Phase I Subsystem Design Report.

During the Phase II design, revisions were made once again to the requirements to reflect the additional
insights gained from the Phase I experience. In addition, the modification of the Mission Profiles
(paragraph 3.2) and the inclusion of the buried waste task in Phase II has necessitated the addition of
several new system requirements. (Table 3-1 was also modified to reflect the changes in the system
requirements.) The details of these revisions to the requirements can be found in Appendix C of the
ICERVS Phase II System Design Report. Appendix D of that document contains an updated copy of the
ICERVS System Requirements, including all revisions. The ICERVS system requirements are
summarized in Table 3-2 below. Annotations are included with the table to indicate the applicable phase
for each requirement.

3.4. Phase II Success Criteria

This program aspires to make ICERVS the de facto standard for volumetric data storage, manipulation
and presentation in environmental restoration systems. Toward that goal, the ICERVS Phase II system
will be successful if:)

1 The sensor subsystem automatically and/or interactively maps the surface and walls of the
simulated single-shell tank.

2 The ICERVS properly creates a volumetric data base for the simulated single-shell tank and
maintains an equivalent world model in a form compatible with the needs of robotic controllers.

3 The ICERVS demonstrates enhanced viewing and model-building tools.

4 The ICERVS displays corresponding (matching) scenes from live CCV and the computer’s world
model as the operator pans the camera.

The specific success criteria for the buried waste material properties task with INEL are:

5 Accept, align, store, and display material property data from two or more sensors that have
scanned a selected segment of the workspace.

6 Fill in missing material data points through interpolation.

ICERVS Phase II Subsystem Design Report 33

7 Combine two sets of property data by Boolean means to form a third (derived) property, store,
and display it in an appropriate manner.

8 Update the volumetric and geometric object data, as needed, in response to i:artial excavation.

Table 3-3 relates the success criteria and the system requireinents. In some cases, a single requirement
may be supportive of several success criteria, in which case the requirement will be listed multiple times.

ICERVS Phase II Subsystem Design Report 34

~

Table 3-2 Summary Of ICERVS Requirements

NO SYSTEM REQUIREMENT PHASE | NOTES
R1.01 Octree: spatial data 1
R1.02 Octree: property data 3 partial for phase 2
R1.03 QOctree: spatial interpolation 2
R1.04 QOctree; linear resolution 1:512, expandable 1
R1.05 Geom: polyhedral objects 1
R1.06 Geom: geometric primitives 2
R1.07 Geom: associated text each object 1
R1.08 Geom: 100 objects, expandable 1
R1.09 Geom: enter architectural and robot plans 3 design influence
R1.10 Octree: sensor data 3 partial for phase 2
R1.11 Octree: property data interpolation 2
3 {OBIECTMODELING
R2.01 Library of primitives / templates 2
R2.02 Standard templates 2
R2.03 User-defined templates 3 partial for phase 2
R2.04 Automatic waste surface modeling 3 design influence
R2.05 Synthesize 2D polygons 1
R2.06 Synthesize 3D polyhedra 2
R2.07 Dimensioning tools 2
Attach text to geometnc objects 1

R3.01 Translation and scaling 1

R3.02 | Display coordinate axes 2

R3.03 Parallel cut planes 2

R3.04 | Display geometric object text data 1

R3.05 Shaded or wire frame geometric object display 2

R3.06 Update display as points received 1

R3.07 Pseudo-color octree data 2

R3.08 Color geometric objects by mtégory 2

R3.09 Text display view parameters 2

R3.10 Save / Recall view parameter set 2

R3.11 Multiple windows displaying same data 1

R3.12 View tracks sensor station attitude 2

R3.13 Display 2.5D surface map 2 completed in phase 1
R3.14 Display views of spatial and property data 3 phase 1,2: orthographic

phase 2: orthogonal & arbitrary

ICERVS Phase II Subsystem Design Report

Table 3-2 Summary Of ICERVS Requirements (cont.)

NO SYSTEM REQUIREMENT PHASE { NOTES

R4.01 Monitor for each camera plus one for processing

partial for Phase 2
design influence
phase 2: camera on sensor

R4.02 Display wire frame geometric objects over video
R4.03 Real-time CCV
Flexible color TV camera

Wlwiw iw

R5.01 Copy octree

2
R5.02 Set region within octree to selected state 2
R5.03 Operator delete geometric objects 2
R5.04 Scan object for consistency with octree 2
R5.05 Compare octree and object data 2
R5.06 Compare two octrees, compute difference 2
R5.07 Compute 2.5D surface map from octree 2
R5.08 Compute difference 2.5D surface maps 2
R5.09 Surface connectivity 3 design influence
R5.10 Tools for registering data from different sensors 3 partial for phase 2
i 2

Combine property data via Boolean

R6.01 Edit system parameters
R6.02 Save / Retrieve waste site data sets to/from disk
R6.03 Build octree from backup raw data

R6.04 Maintain operator log

R6.05 Multiple system of units

R6.06 Define disassembly data

R6.07 Establish Application Data Structure

Support multiple active datasets per waste site
Support multiple active waste sites

design influence

NN IR W I NI = N

R7.01 Input: xy,z position
R7.02 Input: optional resolution

R7.03 Input: optional property value

R7.04 Input: optional sensor location

R7.05 Input: station angles during visual inspection
R7.06 Qutput: geometric model data

R7.07 Cutput: 2.5D surface map data

R7.08 Input: sensor data

W N [N[N

phase 2: simulate laser range
finder and MiniLab

ICERVS Phase II Subsystem Design Report 3-6

Table 3-2 Summary Of ICERVS Requirements (cont.)

NO SYSTEM REQUIREN[ENT PHASE | NOTES

R8.01 Graphlc tools

R8.02 | Provide operator help function 3 design influence
R8.03 Provxde hard copy output 3 design influence
R9.01 Tele-operate position and rate commands 2

R9.02 Tele-operation display line of sight 3 partial for phase 2
R9.03 Tele-operation text display station angles 3 partial for phase 2
R9.04 Automatically map surfaces 2

R9.05 Operator parameters 2

R9.06 Draw / display scan paths 2

R9.07 Continual backup of raw data 2

R9.08 not used

R9.09 Operate sensor remotely from computing platform 2

R9.10 Surface mapping sensor 3 partial for phase 2

R9 11 Sensor performance
TTE ENVIRONMENT
R10.01 | Surface characteristics

Et_t_xg_l’ for phase 2

3 design influence
R10.02 | Illumination and visibility 3 design influence
R10.03 | Environmental considerations 3 design influence
R10.04 | Design constraints 3 design influence

ICERVS Phase II Subsystem Design Report 3-7

Table 3-3 Allocation Of System Requirements To Phase II Success Criteria

No. Success Criteria Full Implementation | Partial Implementation
1 | Automatically or interactively R9.01, R9.04, R9.05, R9.02, R9.03, R9.10,
maps surface and walls of R9.06, R9.07, R9.09 R9.11
simulated tank
2 | Properly creates volumetric data R1.01, R1.03, R1.04,
base and maintains equivalent R1.05, R1.06, R1.07,
world model. R1.08,R5.01, R5.03,
R5.04, R5.05, R5.06,
R5.07, R5.08, R6.01,
R6.02, R6.03, R6.04,
R6.05, R6.07, R6.08,
R6.09, R7.01, R7.02,
R7.06, R7.07
3 Demonstrates enhanced
1. model building tools and R2.01, R2.02, R2.05, R2.03
R2.06, R2.07, R2.08,
R3.04, R3.05, R3.08
2 viewing tools R3.01, R3.02, R3.03, R3.14
R3.06, R3.07, R3.09,
R3.10,R3.11, R3.12,
R3.13, R8.01
4 | Displays corresponding scenes R3.12, R7.04, R7.05, R4.01, R4.03, R9.02,
from live CCV and world model. | R9.01, R9.09 R9.03
5 Accept, align, store, and display R7.03, R9.09 R1.02, R1.10, R3.14,
sensor property data R5.10, R7.08
6 | Interpolate sparse material R1.11
property data
7 | Combine two sets of property data | R5.11 R3.14
by Boolean means. :
8 | Update the geometric data in R5.01, R5.02, R5.04,
response to partial excavation, R5.06
ICERVS Phase II Subsystem Design Report 3-8

4. PHASE I ARCHITECTURE

This section summarizes the ICERVS Phase II architecture in preparation for the presentation of the
detailed design information in subsequent sections of this document. For a more complete description of
the ICERVS architecture, refer to the ICERVS Phase II System Design Report.

4.1. System Architecture

In general, an ICERVS will consist of a computing platform, one or more sensor subsystems for data
acquisition, one or more CCV subsystems, an interface to a robotic controller/simulator, and analysis
software for data processing. The system outputs include world model information, CAD models, 2.5D
maps, and data for archiving. Figure 4-1 summarizes the ICERVS system and illustrates its functional
model. Figure 4-2 shows the ICERVS architecture that will be demonstrated as part of Phase II. The
following paragraphs discuss the Phase II architecture.

4.1.1. Computing Platform

The hardware kernel of ICERVS is a Silicon Graphics (SGI) Indigo workstation. The Phase I Indigo
configuration included a RISC 3000 CPU, 16 Mbyte memory, 400 Mbyte hard disk, 19" color monitor,
and trackball. For Phase II, the Indigo is being upgraded to incorporate a RISC 4000 CPU, an additional
16 Mbyte memory (32 Mbyte total), and an additional 540 Mbyte hard disk (940 Mbyte total). SGI system
software upgrades include UNIRAS ToolMaster, Rogue Wave C++ library updates, SNL ISOE (Intelligent
System Operating Environment), Octree Corporation's TrueSolid software, and several software
development tools (debuggers, editors, etc.).

A Sun SPARC Classic workstation has been added to augment the ICERVS SGI computing platform.
The Sun workstation is configured with a SPARC CPU, 16 Mbyte memory, 424 Mbyte hard disk, and a
15" color monitor. Major system software components include UNIX, Open Windows and Motif window
managers, SNL ISOE, and the ORNL structured light standalone control code. The main functions of the
Sun for the ICERVS Phase II effort are (1) to provide additional software development resources to
facilitate the implementation of Phase II; (2) to provide a networked environment to test ICERVS; and (3)
support the ICERVS interface with the structured light sensor subsystem, the laser range finder simulator,
and the MiniLab simulator. .

4.1.2, Sensor Subsystems

The data acquisition part of ICERVS Phase II is configurable in order to meet the needs of the specific
application. Each sensor subsystem will typically include a local computer for control and computation.
As such, each sensor subsystem can be operated as a stand-alone system if desired. However, key to each
sensor subsystem is the capability of operating remotely from an integrated user interface resident on the
ICERVS computing platform. To support different sensor configurations, the ICERVS system design
includes a Common Interface For Sensors for communications between the computing platform and the
sensor subsystems. This Common Interface For Sensors will establish a high-level, standard format for
communicating sensor commands, sensor data, and screen display information. Each sensor subsystem
will define and implement their individual commands, data, and screen displays to be consistent with the
standard.

ICERVS Phase II Subsystem Design Report 4-1

. 2IMIINYIAY URISAS E..w:oU SAYADI = I-p 2andig

+ I°POIN

jeuoljoungd SAH3OI

sue|d [einoayyoIY
/sBumesg gy :N Josueg

qe iUl v Josues

Jopul4 obuey Jese :g JoSusg
Wb painonng :g sosusg
AL WN21D paso|D i Josueg

s109{q0 eseqejeq N Josuag

oujewoey | | opewnjop .

. +|_ A | Buisseoold .
SOAIYOIY _ eleqg <¢—1 slosueg Alllw_m.
- o OW.NDNH.NQ 8lem}josg —P Josuesg 10} ¥ JOsueg
sishjeuy 80BJIeIU| A‘ﬁu
< 008 uowwosn ¢ JGSURS
depy as-¢ -18lu] Tlﬁ
< indino soe}I0U| g I6SUoS
18PON GVO s f—— _m%_“__M% €™ Allﬁ
<&21198U00_onogoy oydesn) | J0SUBS

O} |[9POIN PUOM
A 4 Y

-

ebew| pejessusy Jeindwon

)

ebew| AL AN

4-2

ICERVS Phase II Subsystem Design Report

2IN3093TYOIY Wa3sA8 II ©svyd SAYIOI 2-¥ oanbrd

OSNON

pavoqiey

Z03 TUOK
010D
u6T

; pPFTOganay,
SOTIRIQTIT ++O0 oaeM enboy
JOJSRHTOOL PuUuR XHIN SRITUll
J08I

FTIOR

XINO

Aiowel quze ‘ndd 000y OSIV
obypur sotydead UODTTITS

suejysisqng Josuosg

WIOJIN'Id ONIINIWOO

ID8D 9oRIIOJUI JI0SUSSG
JOSD wvied JOTIJSUMTOA

I080 UOTIRIFSUCWSA

JUUMNIIOS SISATUNY

oIvM3JO8 TNYO

F0SI

JT30H pue yoo1 usdo
XINO

KIowon i ST
ﬂOM&dumSHOB OFE8RID ung

9sNON

pavoqiox

WIOJILVId ONIINJHOO YOSNAS

T03TUOK
070D
usST

RENRMZRE

IOSD qRITUTH JIOosSUeg -
1080 Ispuld obuvy IoSRT -

I0S0 YbTT poanjoniys -

JIosuog
ubt1
paan3onias

TYNUMLIOS

43

ICERVS Phase II Subsystem Design Report

For ICERVS Phase I, the three sensor subsystems (Structured Light Semsor, Laser Range Finder
Simulator, and MiniLab Simulator) will all be implemented on the Sun Classic platform. The software
for each sensor subsystem will act as a server and will interface to the SGI-based computing platform
analysis software package.

4.2. Analysis Software Architecture

The ICERVS analysis software runs on the computing platform, interfaces with one or more sensor
subsystems, converts sensor data into a common data structure, and stores such data from multiple sensor
subsystems. The data from the sensors can be stored together with spatial information to generate a
volumetric description of the workspace. The analysis software can provide a visual display of the
volumetric and property data for a workspace from arbitrary viewpoints, with numerous tools for
modifying, selecting, or highlighting the data according to it characteristics and/or regions of interest.
These capabilities allow an operator to easily analyze data to obtain maximum insight prior to and during
robotic operations. ‘

Also included in the ICERVS analysis software is a geometric modeling capability that enables the
operator to interactively define, manipulate, and output geometric objects that represent features of interest
in the workspace. By defining models for these features and passing them to the robotic system, the
remediation tasks can be more readily accomplished with an accurate 3D description of the "as-is"
condition of the workspace.

The design and implementation of ICERVS software employs an object-oriented approach, which has
three distinct parts: object-oriented analysis (OOA), object-oriented design (OOD), and object-oriented
progmmming (OOP).

OOA is concerned with capturing the knowledge about the Problem Domain Component
(PDC). For the ICERVS system, the problem domain can be summarized by the
following definition:

ICERVS is a computer-based system that provides remote viewing, data
acquisition, stored data visualization, data analysis, and model synthesis to
support robotic remediation of hazardous environments.

OQOD adds detail to the OOA model by including additional classes for the Human
Interface Component (HIC), Data Base Component (DBC), and Task Management
Component (TMC).

OOQP implements software for each class defined in OOA and OOD. An important
consideration is that frequent tangible results should be demonstrated every few weeks.

ICERYVS Phase II Subsystem Design Report 4-4

Figure 4-3 presents the OOA model for the ICERVS Phase II system. It identifies the major system level
classes. The diagram follows the Coad-Yourdon method, but uses slightly different symbology. Simple
rectangles represent classes (attributes and behaviors are ignored). Various types of lines are used to
capture the relationships between classes. A legend is provided on the diagram.

The analysis software architecture for Phase I was fairly simple; it consisted of a single CSCI (IcerMain)
which contained three CSCs (Octree Engine, Object Modeling, User Interface). “Initially, Phase I was to
follow the same architecture. However, it became apparent throughout Phase I and particularly at the
Phase I demonstration that ICERVS had a broader application than originally envisioned. It was also
apparent that there were several views of what ICERVS could be in addition to its role as input to robotic
controllers. Some viewed ICERVS as a database; others saw it as a high level interface to sensors; while
others focused on the integration of the database with the sensors. Almost everyone saw ICERVS as part
of a solution and one element of an overall remediation system. Therefore, the ICERVS Phase II
architecture was refined according to five guiding principles:

Consider the needs of both end users and system integrators of remediation systems
Develop ICERVS to be consistent with DOE architecture for remediation systems
Develop ICERVS to provide complete and general-purpose capabilities

Develop ICERVS as a set of independent system components

Implement ICERVS components as UNIX client-server programs

LAl o L o

The software architecture for ICERVS Phiase II is shown in Figure 4-4. The Phase II software will be
composed of three primary Computer Software Configuration Items (ICERVS Phase II Demonstration
CSCI, Volumetric Data CSCI, and Sensor Interface CSCI) and three sensor subsystem CSCIs (Structured
Light Sensor CSCI, Laser Range Finder CSCI, and MiniLab CSCI). The Volumetric Data CSCI and the
three sensor subsystem CSClIs act as servers. The ICERVS Phase II Demonstration CSCI acts as a client.
The Sensor Interface CSCI acts as both a server and a client. Each CSCI is composed of one or more
Computer Software Components (CSCs).

4.2.1. ICERVS Phase II Demonstration CSCI

The ICERVS Phase IT Demonstration CSCI is the topmost application level process and contains a high-
level operator interface to demonstrate the functions and features of the ICERVS Phase II system. This
CSCI is representative of a user application and may be used as a template for creating a user application.
A user application will generally be composed of a top level user interface and other software logic that
implements the user's particular application. Figure 4-5 shows the ICERVS Phase II top level screen and
menu,

Each application must also have an associated Application Data Structure organized and formatted in
accordance with ICERVS requirements. The general organization for the Application Data Structure is
shown in the following table:

ICERVS Phase II Subsystem Design Report 4-5

uexberq VOO T2A97 we3skg SANHOI

e~y oanbra

SAYIOI
3O 3xed SI = Y3ITM DPOIRTOOSSY SI ——
309{qo vyed
sozITRIORdg ... UOT3oouU0) obessol <—— DTI35WO3H TeuUOTSUSWTQ
| ‘ T T
rIOWRD Josusg qQRITUTH Joputd ybTT
ADD IoY3o Josueg obuvy Josv] paanjonias -21-14 vyeq
T T I T Josuog K3xedoag
Lovunnn, . .m. Foeenn cesene . . T 1
. w’o w‘o wu’o w’o
]]] L] |
we3sksqng IosuU9g jeseyved
L ——— _ o=
T
suetd A37TTo®d
TRIN}O03TYDIY/AYD
L3110 Juel ebevaojs 3td w’o w’o T
uot3onpoxdg punoxbaspun paTang ~ —
|
_ u o318 w/o TOPOR PTJIOM
Loo..ee B R oo, o35eM YITM «—
wo3skg uorjeTpoway

4-6

ICERVS Phase II Subsystem Design Report

2IN3093 TYOIY 9IeM31Jos STSATeuy SAUIOI S¥-¥

oanb1a

080 IojWINWYS -
1080 qRTTUTH

080 IojRINUTS -
I080 Jopurd obuvy Jose]

280 BORIIGIUI OJRMPIRH JOSUDE =
080 Teuwd TOIUOD -
080 Hurouenbag feuorzeIado -
080 ©ovJIOUI JUBTTO -

1080 Iosusg YOI peanionris

JAAYIS

uIANES

YIAYES

_

STOPON PTIOM

sdey as° 2

OSD UOT3ORIBIUI/UOTIRZTTENSTA
080 eseqeyed Xjxedoxd

080 ©0RIISIUI TOPOH PTIOM
080 309fqo/w3ea Terzeds

080 eutbumg wieqg Tereds

INFAITO

INIITO INIITO

080 309{q0 OoTI3OWOSD

080 8dRJIOJUI JUOTTO
108D ®jed OTIFEUNTOA

080 uwoT3sInbov wjed oany
080 ©0vIIOjUI JIOAISE JIOSUSg

080 3IPITOOL Iosuog

I 1 1%

080 esrqeivg JO05USg8 e
080 BdRJIOJUI BvIvQ JIO0BULZ vivq
D80 8dvFIOjqUI JUOTID - OTIIoWO3D

IDSD ©ovIIOJUI JIOSUSS

JIAYES

TIANES

INIITO

INIITO

axnjonIys wieq uorjeoriddy -
080 ©dorvJaojur Iosn Teaerdor -
IOS8D uorjeIjsuocwed I oseyd SAUIODI

4-7

ICERVS Phase II Subsystem Design Report

Yot
R A
]

2
e o p s O

SR

)
R

"

2t
RS

AR

5. oA s
ey, z S S I
R B o O L B

Figure 4-5 -- ICERVS Phase II Top Level Screen and Menu

fust/SOMEWHERE|... An arbitrary point in users disk hierarchy

/ICERVS Root of ICERVS Data Structure
Contains template files and default files
lete Contains general control files
{SITE1 Contains parameters files for first site, raw data

files, and volumetric/geometric data files

Contains parameters files for second site, raw
ISITE2 data files, and volumetric/geometric data files

4.2.2. Volumetric Data CSCI

The Volumetric Data CSCI encapsulates the storage, retrieval, manipulation, and visualization of
spatial, property, and geometric object data.. It is implemented as a UNIX server. Six of its CSCs
(excepting the Visualization/Interaction CSC) form the core of the ICERVS Volumetric Data Server.
The Visualization/Interaction CSC will act as client of the ICERVS Volumetric Data Server. Figure
4-6 illustrates the Volumetric Data CSCI and its CSCs. The double-line connections represent the

. path followed by commands to the server. The single-line connections represent inter-CSC function

calls within the CSCIL

4.2.3. Sensor Interface Subsystem CSCI

The Sensor Interface Subsystem CSCI manages the interface to the ICERVS sensor subsystems and
provides functions common to all sensor subsystems, such as Add Sensor, Delete Sensor, Connect
Sensor, Disconnect Sensor, etc. In the future, this CSCI will provide an automated data acquisition '
capability and tools for converting the sensor data into a form compatible with the volumetric
database. (The Phase II system will implement these capabilities in the Structured Light Sensor CSCI
and will require the Laser Range Finder and MiniLab Simulators CSCIs to provide spatial data.).
The Sensor Interface CSCI is implemented as a UNIX server. In addition, it is a client of each
attached sensor subsystem server. Figure 4-7 illustrates the Sensor Interface CSCI and its CSCs. The
double-line connections represent the path followed by commands to the server. The single-line
connections represent inter-module function calls within the CSCI

4.2.4 Sensor Subsystem CSCIs

A Sensor Subsystem CSCI manages a sensor subsystem and interfaces to the ICERVS in accordance with
the Common Interface for Sensors specification. Each sensor subsystem CSCI is implemented as a UNIX
server. Figure 4-8 illustrates a Generalized Sensor Subsystem CSCI and its CSCs. The double-line
connections represent the path followed by commands to the server. The single-line connections represent
inter-module function calls within the CSCI. The Generalized Sensor Subsystem CSCI is conceptual and

ICERVS Phase II Subsystem Design Report 4-9

wexbetd JooTd IOSD vied OTIFSUNTOA :9-F @anbia

—l.ooooooo.oooooooo.o.oooooo.oooo-coooo-

J9AIO8 W3R OTIJOUMTOA

© © 9 0 5 5 2 0 0 0 5 00 S S G0 0L E IO L S0 SL B L O e NS

080 309lqo
DT X3OWOID

080 eseqeied
K3aadoxg

080 eutbud
v3eq TerjRds

08D ®dRvjIL9jUI
TOPOH PTIOM

080 suotpjoRIOIUY
300fqo oTI30WO9D
/ eyeq TeraRds

080 ®dejyasjul
JUSTTO ®3ed OTIISUMTOA

= ® ® o o s o o o o o ¢ & 9+ 9 ¢ e * o o 2 o o o o

JUOTTO TRuUIoIXI nuuﬁ 080 uoT3oRISIUL

Lee o o o o ¢ o o o o o @ o o o o o o o o o o o o=

/ uwoTjezITensTA

IOSO WING OIWITWATOA

4-10

ICERVS Phase II Subsystem Design Report

ueaberd Jo0oTd IOSO @ovjaajul

Josusg L-¥ oanbTd

BIOAIOE TRUIIIXA uﬂ

080 ©oRIIOJUI

JoAX0g wojsisqng Josusg

§D80 eamang ..

—loooo . . . -.l- _l-.oaullo.o-o.ol—
« D80 uol3ysynboy . + 080 3ITATOOL |—
. vIRd pojvuony h . v3lRg IOSUGS R

080 ©@dvzIOqUI
wjRdq IOSUSY

080 esequieq
B8I0SUSS

Rt T

08D @deyIsjul
JUITTIO JIOSUSS

JUOTTO TRUISIXT g

JOSD FOVIYAINI YOSNIS

4-11

ICERVS Phase II Subsystem Design Report

-y o

ueaberq }ooTd IOSD Wo3sAsqng Josusg pPazZITRISUSD

—loco-o

. DIGMPICH -

—loo

« JOSUDg -

:g~-y oanbra

080 uorjRI}sThou
©IRq

08D ©dvjasjul
MH IoSuag vaeq

080 buyssesoxd

080 1Taued
ToI3uUod

080 butrousnbsg
Teuot3zexedo

080 Jojerinuisg
wo3sksqng Iosueg

JUOTTO wo3sdsqng Josuog

D80 edeyIsjul

JUSTTO TeWIsyxy L_

JIOBD WHLSASHNS YOSNAS ¥

4-12

ICERVS Phase II Subsystem Design Report

is not a required architecture for a sensor subsystem. The number of CSCs implemented and their
functionality will vary for each sensor subsystem. The only requirement imposed by ICERVS is that the
interface to the sensor subsystem comply with the Common Interface for Sensors specification.

4.2.4.1. Structured Light Sensor CSCI

As part of CRADAs with Sandia and Oak Ridge, MTI is developing a 4" diameter, single station version
of a structured light sensor, including the controller-for the sensor. This CSCI integrates the controller,
the controller software and the ORNL developed mapping sensor control softiware. This CSCI will reside
on the Sun Classic and will have been developed under the CRADA I effort.

4.2.4.2. Laser Range Finder CSCI

Only the Sensor Subsystem Simulator CSC will be implemented for this CSCL. The CSCI will simulate
the PNL developed laser range finder sensor on the Sun Classic. MTI will design a remotely interfaced
CSCI in accordance with the ICERVS Common Interface For Sensors standard. If availabfe, actual
measurement data from PNL will be incorporated into the simulation; otherwise, a mathematical model
will be used to generate appropriate data. If actual measurement data are used, this CSCI will implement
the necessary data transformation and registration algorithms to make the data compatible with the
volumetric database. At a future point, these algorithms will be considered for incorporation into the
Sensor Data Toolkit CSC of the Sensor Interface CSCL

4.2.4.3. Sensor MiniLab CSCI

Only the Sensor Subsystem Simulator CSC will be implemented for this CSCI. The CSCI will simulate
MiniLab on the Sun Classic. MTI will design a remotely interfaced CSCI in accordance with the
ICERVS Common Interface For Sensors standard. It is expected that test data from INEL will be
available in November 1993, and will be incorporated into the simulation; otherwise, a mathematical
model will be used to generate material property data, such as temperature or electrical conductivity. If
actual measurement data are used, this CSCI will implement the necessary data transformation and
registration algorithms to make the data compatible with the volumetric database. At a future point, these
algorithms will be considered for incorporation into the Sensor Data Toolkit CSC of the Sensor Interface
CSCL

4.3. Allocation of System Requirements
Table 4-1 assigns the system requirements to the various CSCIs and the structured light HWCI.

ICERVS Phase II Subsystem Design Report 4-13

Table 4-1 Allocation Of System Requirements To ICERVS Phase II CSCIs

CSCI Full Partial Phase IT Design
Implementation Implementation Influence
Phase IT Demonstration CSCI | R3.12, R6.01, R6.04, R8.02, R8.03
R6.05, R6.07, R6.08,
R6.09, R8.01
Volumetric Data CSCI R1.01,R1.03,R1.04, | R1.02, R2.03,R1.10, } R1.09, R2.04, R5.09,
R1.05,R1.06, R1.07, | R3.14 R6.06
R1.08,R1.11,R2.01,
R2.02, R2.05, R2.06,
R2.07, R2.08, R3.01,
R3.02, R3.03, R3.04,
R3.05, R3.06, R3.07,
R3.08, R3.09, R3.10,
R3.11, R3.13,R5.01,
R5.02, R5.03, R5.04,
R5.05, R5.06, R5.07,
R5.08, R5.11, R6.02,
R6.03, R7.06 R7.07
Sensor Interface CSCI R7.01,R7.02,R7.03, | RS5.10
R7.04, R7.05,R9.07
Structured Light R9.01, R9.04, R9.05, | R9.02, R9.03, R5.10, | R4.02
Sensor CSCI R9.06 R7.08
Laser Range Finder Simulator R5.10, R7.08
CSCI
MiniLab Simulator CSCI R5.10, R7.08
Structured Light R4.01, R9.10,R9.11 | R4.03, R4.04, R10.01,
Sensor HWCI R10.02, R10.03,
R10.04
ICERVS Phase II Subsystem Design Report 4-14

S. CLIENT-SERVER COMMUNICATIONS DESIGN

The ICERVS Phase II system embraces a client-server architecture. Processes (UNIX executable
programs) called servers provide a particular service (set of functions) to other processes called clients that
use that service. Client and server processes need not execute on the same computer platform. This
section describes the design of the client-server communications interface that ICERVS will use.

5.1. General Design)

The general design of ICERVS is that of one or more client processes (Demonstration Application, VDS
User Interface, etc.) that require connection to one or more server processes (VDS, Sensors, etc.). The
clients may reside on the same system as the server or different systems. (For Phase IL, the clients and the
VDS Server will reside on the SGI, while the sensor subsystems will reside on the SUN.) UNIX sockets,
using Internet Protocol (IP), and Sun RPC will be used for communications. In addition, in order to attain
GISC compatibility, the Sandia developed GENISAS and ISOE software will be incorporated into
ICERVS.

While the Phase II implementation of the client-server interface will allow only a single client for each
server, the client-server interface design will allow several future expansions, including:

1. Multiclient servers
2. A process can act as both a server and a client

5.2. Command Message Protocol

The command message protocol is concerned with the transmission and receipt of complete command
messages. A command message contains three parts (fields): command name, number of arguments,
and a list of arguments, as follows:

<cmdName> <narg> <argl> <arg2> <arg3>, for example:
ConnectToServer 2 MyName My Data Path

All command fields are ASCII text strings to promote transparency between computer platforms.
Note that the command protocol does not impose any restrictions on the argument values; single word
and/or multi-word arguments are permitted. Command messages are best viewed as a data structure,
such as:
struct COMMAND { STRING commandName;
STRING numberOfArguments,
STRING argumentListiMAX ARGUMENTS]

o

ICERVS Phase II Subsystem Design Report 5-1

Every command message generates a reply. Reply messages are formatted exactly like command
messages. The first argument is always a-status word that indicates the success/failure of the command.
For ICERVS the replyName field is always the keyword "REPLY".

<replyName> <narg> status <arg2> <arg3>, for example:

REPLY 2 0 TUSERID#1

5.3. Communications Protocol

An underlying communications protocol is used to send / receive command messages. The command
message protocol will encode/decode commands to/from a command packet (e.g., the structure
above). The message protocol is only responsible for the actual transmission / receipt of messages.
The command message protocol expects the communications protocol to reliably exchange command
messages between the client and the server.

The communications protocol is concerned only with the exchange of messages. No attention is paid to
the contents of messages. The only requirement is that all message elements be ASCII strings. For
ICERVS, a UNIX socket-based approach is used. Sockets are straight forward to use and supported on all
UNIX systems. '

5.4. Implementation Approach

The initial implementation of the communications protocol will use software developed for the structured
light mapping sensor CRADA. This software only need the encoding/decoding to be fully compliant with
ICERVS requirements.

Later stages of software implementation will substitute the ISOE software at the communications protocol
level. This change should be completely transparent to the command message protocol. In addition, the
expanded capabilities of ISOE will allow ICERVS to add event, alarm, and data transfer protocols (needed
by sensors) to the client server interface. ’

Finally, in the later stages of Phase II or in Phase HI, the GENISAS package will be integrated into the
client-server communications. This step will give ICERVS compatibility with DOE's GISC architecture.

5.5. Class Descriptions
CServerCommand: This class encapsulates the command data structure described in paragraph

5.2. It hides the details of argument buffer allocation / deallocation and provides the necessary
class methods for assigning and retrieving command argument values.

ICERVS Phase II Subsystem Design Report 52

CServer: This class represents a base class for defining server classes. It contains a command
table (CServerCommand objects and function pointers) and is responsible for implementing the
server side of the command message and communications protocols. Class methods for starting
the server process, accepting clients, receiving command messages, dispatching commands for
exccution, and transmitting reply messages are included. Derived classes define the command
table and provide the execution functions for each command. It is expected that ICERVS servers
will derive from CServer.

CClient: This class represents a base class for defining client classes. It is responsible for
implementing the client side of the command message and communications protocols. Class
methods for starting the initializing the client, connecting to the server, transmitting commands,
and receiving reply messages are included. Derived classes add a set of methods that provide
access to the server's command set. It is expected that ICERVS clients will derive from CServer.

CUser: Future requirements envision servers with multiple simultaneous clients. To
manage a set of clients and client context must be maintained. The CUser class represents a base
class for that context. It contains all the client specific data and actually implements most server
commands on behalf of its associated client. A new CUser object is created by the CServer object
whenever a new client connects to the server.

5.6. Major Function Descriptions

Connect A Client: Connection of a client involves two parts: 1) making a socket connection
2) creating a new CUser object. The first step is handled by the standard UNIX sockets library
functions (listen() and accept()). The second step requires the receipt of a ConnectToServer
command. The CServer object receives the command (in CServer::DispatchCommands(
method), creates a new CUser object, and passes the command to the CUser object for execution.
The CUser object initializes its data tables for the new client and issues a reply message.

Disconnect A Client: This function is executed upon receipt of a DisconnectFromServer
command. The CServer object deletes the appropriate CUser object, sends a reply message, and
closes the client's socket. The CUser class destructor should perform all required shutdown /
cleanup operations.

Receive and Execute A Command: Once a client has been accepted (socket library functions
listen() and accept()), the CServer object issues socket library calls (recv()) to await receipt of a
socket message. The message is parsed into a set of strings and a CServerCommand object is
created. The client's identity is determined and the CServerCommand object is passed to the
CUser object for that client (ExecuteServerCommand() method). The CUser method formats a
reply message and returns to the CServer::DispatchCommands() method. The CServer object
transmits the reply message to the client. The CServer object then issues another call to await the
next message.

ICERVS Phase IT Subsystem Design Report 5-3

THIS PAGE INTENTIONALLY LEFT BLANK

ICERVS Phase II Subsystem Design Report 54

6. ICERVS PHASE II DEMONSTRATION CSCI DESIGN

The ICERVS Phase II Demonstration CSCI is the topmost application level process and contains a high-
level operator interface to demonstrate the functions and features of the ICERVS Phase II system.. This
CSClI is representative of a user application and may be used as a template for creating a user application.
The CSCI is composed of one CSC (Toplevel User Interface CSC) and the Application Data Structure.
This section details the design of the software for this CSCIL.

6.1. General Design Approach

The general design of this CSCI is that of a client application that requires connection with one or more
UNIX-based server processes. The servers may reside on the same system as the client application or
different systems. (During Phase 11, clients and servers will execute on the same computer system). The
connection and communications must be as universal and transparent as is possible. UNIX sockets, using
Internet Protocol (IP), and Sun RPC have been chosen. In addition, the Sandia Intelligent System
Operating Environment (ISOE), which is based on sockets, will be used to provide the low-level client-
server support. Section 5.0 of this document details the client-server communications design and the
classes defined in that section will be used to facilitate the implementation of the main program for this
CSCIL.

The largest volume of code for this CSCI will be for the windows, menus, buttons, and other GUI
elements of the Toplevel User Interface CSC. However, the Uniras UIMX GUI builder tool will do most
of the work and actually gencrate most of the code; which is good, since this CSC and its constituent
Human Interface Component (HIC) classes tend to be rather volatile. Most of these HIC classes will
interact directly with the Motif window system and possess callback methods to support the GUL. The
menu and button callback routines for the HIC classes are fairly simple and are usually implemented by
making a few functions calls to one or more of the Problem Domain Component (PDC) classes.

The analysis and design of this CSCI (as well as for all the other CSCIs) begins with the identification of
the major Problem Domain Component (PDC) classes. An analysis of the requirements for this CSCI
readily leads to the identification of the following major PDC objects (ie. software classes). The
relationships among these classes are illustrated in the OOA diagram of Figure 6-1.

Waste Site Sensor Sensor/Dataset Connection
Waste Site Log Camera Camera/View Connection
Dataset View
Property Type

As can be seen from the OOA diagram, the Demonstration CSCI is primarily concerned with Waste Sites
and their associated Log, Datasets, and Sensors. A Dataset is associated with Sensors and Views. A
Camera is a specialization of a Sensor. Sensors are associated with a Material Property Type. A View is
associated with a Camera. A Sensor can send data to its associated Dataset. A Camera can send its
position and orientation to a View so that the View can synchronize its display with the Camera.

ICERVS Phase II Subsystem Design Report 6-1

wexberd Yoo IDSO uoTjeIjsuowsdq -- I-9 9Inbig

JO 3aed ST =

Y3ITM pojeroossy s —— __

6-2

s9zZTTeToadg uoTjodUUOD dbessol ———
UOT3o9UU0D
rIWMRD
MOTA
W s] o]
T T
T T
T wo
RIDWRD [=———> MITA
)
. T
+ | wot3zodUUOD
. J08U98
. josejeq
. W e aace
- T T
N 4 T |w
L T wo
ad&y T borg
KXjxodoxg , IOsSUdg ————>| JoselRd 893T8 93SeM
T
T T T
w/o w’o T
a t Lo

93TS 935eM

ICERVS Phase II Subsystem Design Report

6.2. Requirements Allocation

The requirements for each of the CSCs are summarized in Table 6-1. (Since only one CSC exists, all
requirements are assigned to it.) For a more detailed description of each requirement, refer to Appendix
D of the ICERVS Phase II System Design Report. - Requirements that apply (full or partial
implementation) to ICERVS Phase II, including those from Phase I, are in bold type. Other requirements
that are not part of Phase II but strongly influence the software design are italicized.

Table 6-1 Requirements For Toplevel User Interface CSC

Requirement

Number Description

R3.12 Set view parameters to track sensor station viewpoint

R6.01 Operator edit system parameters

R6.04 Maintain operator log and operator note book for observations or other notes
R6.05 Support multiple systems of units

R6.07 Establish system data structure

R6.08 Support multiple world models / data sets per waste site

R6.09 Support multiple waste sites per system

R8.01 Graphic tools: spaceball and/or mouse, pull down menus, dialog boxes
R8.02 Provide operator help facility

R8.03 Provide hard copy output

6.3. Operator Interface Description

The ICERVS Phase II operator interface begins with the main window. The ICERVS main window is the
top level window and remains on the screen until the program is exited. All other windows created will
be displayed on top of this window. The Phase II system functions are implemented via pull-down menus
from the main window. Figure 6-2a illustrates the main window and its menu functions.

6.3.1 Menu Function Descriptions
Each menu and its menu functions are described briefly below:

SYSTEM MENU

Login (Togin as ICERVS operator): Displays an input dialog that prompts for operator name
and password. Upon validation of the operator name and password, makes that person the
current ICERVS operator.

About: (Display ABOUT ICERVS information). Displays an ABOUT message for the ICERVS
system in a window.

Quit (Fxit ICERVS system): Closes all window, releases all resources and exits the ICERVS
Phase II Demonstration CSCIL.

ICERVS Phase II Subsystem Design Report 6-3

b
> o5

|

R

5%

SRR

R

0%

el

i

et

i

R

Figure 6-2b Volumetric Data Window

ICERVS Phase II Subsystem Design Report 6-4

SITE MENU
Select (Select a current site): Allows operator to select an existing site to become the default
current site. Many of the menu functions on the Main Menu require specification of a site.
If a current site is defined, these functions do not request a user specified site.

Add (Create a new site): Creates a new site directory with default files,

Delete (Delete an existing site): Removes an existing site directory and its files.

Append Log (Add a new entry to site log file): Displays a blank edit window in which the
operator may enter any information desired. The information is then formatted into a log

entry and appended to the site log file.

Print Log (Print the site log file): Allows viewing and printing of the a site log file.

Edit Parameters (Edit the site parameters file): Allows modification of a site parameters file via
a scrollable, multi-line edit window.

Print Parameters (Print the site parameters file): Allows viewing and printing of the a site
parameters file.

VOLUMETRIC DATA MENU
Open (Open Volumetric Data Window): Establishes a client-server link with the ICERVS
Volumetric Data Server. If opened in interactive mode (the only mode supported for Phase
II), the server creates a Volumetric Data Window on the client's display (the SGI). Once a
data set has been selected, various viewing, input, analysis, and cut plane functions can be
performed on the data set. Figure 6-2b illustrates the Volumetric Data Window.

CONNECTIONS MENU
Connect Sensor (Commect a_sensor fo a dataset): Displays a control panel that allows
connecting an active sensor to a selected volumetric dataset for a particular site. Once
connected, data can be transferred from the sensor to the data. Figure 6-3 illustrates the
sensor connection control panel.

Connect Camera (Connect a camera to a view of dataset): Displays a control panel that allows

connecting an active camera to a selected view of a volumetric dataset for a particular site.
Once connected, the view can be commanded to track with the scene from the camera.
Figure 64 illustrates the camera connection control panel.

ICERYVS Phase II Subsystem Design Report 6-5

s
L
S

2%
77
2

B

B3

VN

et i Vieve 12
reo2 trer View #3:

Figure 6-4 Camera Connection Panel

ICERVS Phase II Subsystem Design Report 69~

Disconnect (Disconnects a sensor or camera from a_dataset): Breaks a previously defined

connection between a sensor/dataset or camera/view.

Information (Display connection information): Displays a window that shows information
about the currently defined connections. The data may be optionally printed.

SENSOR MENU

Open (Open a sensor for data acguisition): Establishes a client-server link with the ICERVS
Sensor Interface Server and the server for a selected sensor for a particular site. The sensor
is declared active. If opened in interactive mode (the only mode supported for Phase II), the
sensor server will open a control panel window on the client's display (the SGI). The sensor
may then be configured and manipulated via its control panel. A sensor control panel may
be closed without deactivating its associated sensor. Control panels for multiple sensors may
be open on the client screen at the same time.

Close_(Close currently open sensor). Dissolves the client-server link with the selected sensor.
The sensor control panel will be closed and the sensor will become inactive. Any data link
connections must be dissolved first.

Add (4dd a new sensor to a site): Allows the operator to add a new sensorto a selected site. An
editor window is automatically brought up to allowing modification of the site-specific
sensor parameters file.

Delete (Delete sensor from a site). Allows the operator to delete a sensor from a selected site.

Edit (Edit site ific_sensor eters file): Allows modification of a site specific sensor
parameters file via a scrollable, multi-line edit window.

Print (Print site specific sensor parameters file): Allows printing of the a site specific sensor
parameters file.

Status (Display information_about sensors). Displays a window that shows information about
the currently defined sensors for a site. The data may be optionally printed.

HELP MENU
Index: (Display HELP index): Displays an index of HELP information in a selection dialog
window. When the operator selects the desired HELP index item, all information about that
item will be displayed in a scrollable window. This function is not implemented in Phase II.

ICERVS Phase II Subsystem Design Report 6-7

Extended: (Display extended HELP for the system): This function displays a scrollable multi-
line window containing system wide HELP information. This fanction is not implemented
in Phase II,

6.3.2. UIMX Interface Details

The Uniras GUI builder utility (UIM/X) will be used to design and layout the various user interface
screens. This utility allows interactive creation, deletion, modification, placement, and movement of the
various X widgets that comprise a particular user interface screen. When the layout stage is completed,
UIMX can generate the C-language source code for the interface screen. UIMX can generate code using
Uniras library calls or Xt calls (actually Motif, Xtoolkit and Xlib calls). For ICERVS Phase II, all user
interface screen source code will be generated for Xt in order to promote portability among UNIX systems.
The ICERVS Application CSCI user interface consists of the components illustrated in Figure 6-5. Some
of the components are general purpose (SelectionBox, MessageBox, Browser, Editor, RequestBox, and
FileListBox) and others are specific to this CSCI (CameraConnectionPanel. SensorConnectionPanel,
CameraViewSnapPanel). The HelpPanel will be only partially implemented in Phase II.

Since UDMX generates C code and ICERVS uses C** code, encapsulating C** classes will be required in
order to isolate the UIMX code. This encapsulation process is fairly straight forward. However, there are
a few areas that merit special consideration. The following paragraphs discuss these areas.

6.3.2.1. Create and PopUp Functions
UIMX supports two types of public interfaces for the code that it generates:

Create Interface: The generated UIMX code only creates the user interface screen and all of its
components, The user interface screen is not managed nor displayed. It is the callers
responsibility to manage and display the user interface screen. Since UIMX returns a pointer to
the topmost Widget in the user interface screen, the caller may make additional Xm, Xt, or Xlib
calls to customize the screen. The caller can use the UIMX UxPopuplnterface utility function to
display the screen.

Popup Interface: The generated UIMX code creates the user interface screen and all of its
components, The UIMX code then internally invokes UxPopuplnterface to display the user
interface screen. The caller has no opportunity to customize the screen.

The ICERVS Phase II software will utilize the Create Interface.

Furthermore, ICERVS requires that each create interface accept two arguments: parent and object. An
example of a create interface function is: - create_SomeUserScreen(Widget parent, void* object).
The UIMX code will optionally use the parent argument, but will retain copies of both arguments in its
context structure for the user screen. The object argument points to the instance of the C** class that
encapsulates the UIMX code and will be used during event callbacks.

ICERVS Phase II Subsystem Design Report 6-8

sjusuodo) SoeIISIUI I9SM

I080 uoTjeIjsuowsd II 95eyd SAWADI :§-9 aambrd
dTIH: dTIH: d'TTH:
INIYd= gso gso aso
d80TO0— duN = LOINN! LOINN
MOPUTM 9SMOIF— m»mw.HH_ mumﬂqu mum.qu_
38TT XOpuI= S9XO0g3Xo 59XO0gIXD S9X0g3Xo
wxod drsH uxolg deug wIoured WIOJ UOTIOdUUOD IOSUIS WwIoJ UOTIOUUOD eISUWRD

ﬁ oooooo o o0 0 0 o7 [“o o 0o o

TToUs boreta

119Us boreTd

[T ¢ 0060000 00 00 00 00

TT94s boreTd

* o 00 ¢ o "o 0 00 00 00 ¢ 0 00 000

e o8 0 00

TT8Us borerqa

¢ o

T
SOXOgIXO]

d'13H
4O,
P (dTHH:
§35T THO
A

wro3 3sonboey

wrog 38T OTTd

TToUs boreTq

T1oys boretd

v s 0

dTIH:
dTaH: mqmmH_ LIN dTIH=
BHDm ameH_ TIONW LIXT=
dAY = .._..ZHNEJ p.{ J0=5
wIog I03Tpa uIod JI9smoxd xogobesson XoguUoT3oe1es

TT9U8 botreTrd

[e 0 000 00 00000 * o

TToUYs botreTra

[0 0 ¢ 0 060 09 00 00 0 07

TT9Us Horera

voay burmeaq =
nusy M_u_

MOPUTM UT®EH

<IT9Ys ou>

—l oooooooooooooo

| 4

« (9zrTeTyTurddYlx Aq pajesaad) .
, TT3US uorjesTTddy .
]

6-9

ICERVS Phase II Subsystem Design Report

6.3.2.2. Callback Functions

The ICERVS user interface, like all GUI interfaces, is event driven. That means that all processing is the
result of some action (button click, mouse movement, keyboard entry, etc.) by the user. The association
between the user's action and the application software is implemented with callbacks. Each action for
each object in the user interface has an associated body of software logic (a callback function) that the
windowing system (X-Windows) activates in response to a user action. These callbacks are received by
the UIMX generated code and usually need to be relayed to the C** application code.

However, C-language functions (the UIMX code) cannot directly invoke C class methods (the ICERVS
application code). The key to solving this problem lies in the encapsulating C** class.

1. The encapsulating class will pass its pointer (the this pointer) to UIMX via the create
interface function.

2. The encapsulating class will contain one or more Ccallable, global helper functions that can
be invoked by UIMX.

3. The UIMX code will pass the object pointer to the helper function during an event callback.

Since most of the screens in the ICERVS user interface use one or more of a small set of buttons, a
standard set of helper functions has been defined:

extern void CB_ApplyCallbackHelper(void* object);

extern void CB_CancelCallbackHelper(void* object);

extern void CB_ExitCallbackHelper(void* object);

extern void CB_HelpCallbackHelper(void* object);

extern void CB_OkCallbackHelper(void* object);

extern void CB_PrintCallbackHelper(void* object);

extern void CB_QuitCallbackHelper(void* object);

extern void CB_SaveCallbackHelper(void* object);

extern void CB_GenericCallbackHelper(void* object, int action);

User interface screens that contain menus or return values require a specialized caliback helper interface.
extern void CB_MainWindowCallbackHelper(void* object, char* callbackName);
extern void CB_SelectionCallbackHelper(void* object, char* selectedText);
extern void CB_RequestDialogCallbackHelper(void* object, char** userInputs);

Complex user interface screens (CameraConnectionPanel, SensorConnectionPanel) will require additional
specialized callback helper routines.

ICERVS Phase II Subsystem Design Report 6-10

6.3.2.3. Menu Button Disabling/Enabling
Screens with menus will need a mechanism for enabling and disabling menu buttons. When a menu
function is selected, its menu button must be disabled until the bperaﬁon is completed. Other menu
buttons on the same pop down menu should remain enabled. (In some cases, other menu buttons may be
disabled.) The following protocol will be implemented for ICERVS to address this issue:

1. The UIMX menu button cailback routine will disable the menu button every time the callback is
invoked. Consequently, when the C* class method is invoked, the menu button will have already

been disabled.

2. The UIMX code will include an externally callable function for enabling and disabling the menu
buttons. This function will have a similar name to the UDMIX create function.

3. An encapsulating C** class method will call the menu button function whenever necessary to enable
or disable a menu button, '

6.3.2.4. An Interface Example
As an example to illustrate the concepts and protocols defined above, consider the C** interface to a
screen that has a menu and an OK button.

Create Interface:

UIMX Callback:

UIMX Callback:

Menu Button Function:

create_SomeScreen(Widget parent, void* objectPointer)
{UIMX generated code
return(theWidget)}

UIMX_CallbackFunctionForOkButton(Widget, ClientData, CallbackData)
{UIMX entry code to set context

CB_OkCalibackHelper(objectPointer);

UIMX exit code }

UIMX_MenuButtonCallbackFunction(Widget, ClientData, CallbackData)
{UIMX entry code to set context

XtSetSensitiveMenuButtonWidget , False);
CB_MainWindowCallbackHelper(objectPointer, "Menu Button #1");

UIMX exit code}

menubutton_SomeScreen(Widget screen, char* buttonName, boolean state)

{UIMX type logic to get context for Widget screen

if (stremp(buttonName, "Menu Button #2")
XtSetSensitive(MenuButton2 Widget , state);

else if (stremp(buttonName, "ANOTHER BUTTON")
XtSetSensitive(OtherButtonWidget, state);

UIMX type logic to restore previous context}

ICERYVS Phase II Subsystem Design Report 6-11

6.3.2.5. Higher Level Callbacks

Paragraph 6.3.2.2 described the callback interface between the UIMX C-language code and the ICERVS
C** code of the encapsulating class, That interface was based upon the existence of C-callable, global
helper functions in the encapsulating C** class. A helper function's main purpose is to provide a bridge to
the appropriate encapsulating class method to handle the callback. An example implementation of a
callback helper function for a class called ABC might look like the following:

CB_PrintCallbackHelper(void *object)

{ :
ABC* abc = (ABC *) object; //Cast to a pointer to an object of class ABC
abc->StdPrintCallback(); /MNow call the real handler method

})

In order to facilitate the callback interface, three classes have been defined:

CStandardCallbackFacility: A class that encapsulates the standard callback interface with
the UIMX code. This class implements the standard callback helper functions identified in
paragraph 6.3.2.2. This class also provides default implementations (as virtual methods) for the
class methods that correspond with each helper function. These class methods are:

StdApplyCallback StdHelpCallback StdQuitCallback
StdCancelCallback StdOkCallback StdSaveCallback
StdExitCallback StdPrintCallback StdGenericCallback

Since the standard callback methods are implemented as virtual methods, a derived class simply
implements an overriding method in order to capture the callback for itself. Not all of the
standard callback methods need to be overridden; those not overridden will be handled by the
CStandardCallbackFacility base class.

All classes that wish to interface with the UIMX code via the standard callbacks must derive
from the CStandardCallbackFacility class.

CCallbackBase: A base class for all classes wishing to request user callbacks from a
CUserCallbackFacility class.

CUserCallbackFacility: A class that encapsulates a callback interface between the
CStandardardCallbackFacility class and higher level user classes that are derived from
CCallbackBase. This class allows the higher level class to define user level callback functions
that can be invoked from the CStandardCallbackFacility standard callback methods. It is
completely at the discretion of the CStandardCallbackFacility derived class as to whether it
wishes to support user level callbacks.

ICERYVS Phase II Subsystem Design Report 6-12

Figure 6-6 illustrates the propagation of a PRINT button press event through the various layers of
software. The action begins within the X-Windows system when the PRINT button press is detected. A
callback is made to the UIMX callback function (PrintButtonCallback) for the button. The UIMX
function calls a global helper function (CB_PrintCallbackHelper) of class ABC, which is derived from
class CUserCallbackFacility. The helper function relays the callback to the ABC::StdPrintCaliback
method. ABC::StdPrintCallback performs whatever actions are appropriate and invokes a previously
defined user level callback made by an instance of class USER, which is derived from CCallbackBase.

6.4. Application Data Structure Details

The data manipulated by the ICERVS Volumetric Data Server and ICERVS Sensor Interface Server
belong to the end user and are stored in some user data storage area. When an end user activates the
ICERVS package, the location of the user’s data must be specified. Furthermore, in order for the ICERVS
servers to access and manipulate the data, the organization and contents of the Application Data Structure
must be standardized. The general organization and contents for the Application Data Structure is shown
in Table 6-2:

6.4.1. Definition Of Files
The files stored in the Application Data Structure are described below. Appendix 77 contains examples of
the contents of each file.

System Level Files:

Help Text File (help.txt): This is an ASCII file containing the ICERVS system HELP file. Its
maintained external to the ICERVS by any general purpose text editor. There is only one help
file per ICERVS system,

Master Dataset List File Template (dsetdir.def): A version of A Dataset List File that contains
no dataset entries. It is used to initially create the a Dataset List File for a new site.

Master Object Templates File (object. mlb): This file contains the standard set of ICERVS
geometric object templates. A copy of this file is placed in each new site directory and this copy
may be altered as required.

Master Property List File (property.lst): This file contains a list of all known material property
types. The file contains generic information (such as type, description, units label, etc.) that
ICERVS uses to manage properties. The file is initially created by the ICERVS system manager
and is maintained external to the ICERVS system with any general purpose text editor.

ICERVS Phase II Subsystem Design Report 6-13

JoeqrTed ¥ HutIng sjusAd JO MOTd :9-9 aanbrg

oeqiTed JO Yjed ——
5SRO PIATISA ...

poy3eu JOorqITROIUTIIOEN

g0 x9s(]

yIsSn sseio Jo poyzew ¥

JoeqITeED

»

dqISn sse1d

ssedioeqriedd

J98(] {UTIe(d

poyjsw YoeqiTedutrIdpis J_

ﬁ IodToHORATTROIUTIA €D | <=

uotr3young
AOoRQITRD |—=

OHY SSeTD

XRIN

K3TiToRa ORI TRDI9SND

K3TrToRdioeqiTROPIRPURSD

HoRQTTRO
SMOPUTH-X

uo33ng
JuTad

6-14

ICERVS Phase II Subsystem Design Report

Table 6-2 ICERVS Application Data Structure

/USR/'SOMEWHERE,... An arbitrary point in users disk hierarchy
/ICERVS Root of ICERVS Data Structure
letc Contains templates and general files
dsetdir.def Master Datset LIst File Template
help.txt Help Text File
object.mlb Master Object Templates File
property.lst Master Material Property List File
sensor.Ist Master Sensor List File
sensor.def Master Sensor List File Template
sitedir.Ist Master Site List File
sitélst.def Master Site List File Template
siteprm.def Master Site Parameters File Template
view.def Default View Parameters (system-wide)
/SITEL Contains files for first site
datset.Ist Datset List File
object.lib Object Templates File
site.prm Site Parameter File
sensor.Ist Sensor Parameter File
site.log Site Log File
view.prm Default View Parameters (site specific)
/DATASET1 Contains volumetric/geometric data files
xxxxx.tre Volumetric Data Files
Yyy.prp Property Data Files
277727.1aW Raw Data Files
object.dic Geometric Object File
view.prm Default View Parameters (dataset specific)
aaaaaa.vew Saved Viewset File
/DATASET2 Contains another set of data files
/SITE2 Contains files for second site

ICERVS Phase IT Subsystem Design Report

6-15

Master Sensor List File (sensor.Ist): This file contains a list of all defined sensors types in the
ICERVS system. The file contains generic information (such as type, host machine, service
name, etc.) that ICERVS uses to manage sensors. The file is initially created by the ICERVS
system manager and is maintained external to the ICERVS system with any general purpose text
editor.

Magter Sensor List File Template (sensor.def): A version of the Master Sensor List File that
contains no sensor entries. It is used to initially create the Master Sensor List File. A copy of
this file is placed in each new site directory and this copy may be altered as required.

Master Site List File (sitedir.lst): This file contains a list of all defined sites in the ICERVS
system and identifies the last selected site. The file is initially created by the ICERVS system
manager. The file is automatically updated whenever sites are created or deleted.

Master Site List File Template (sitelst.def); A version of the Master Site List File that contains
no site entries. It is used to initially create the Master Site List File.

Master Site Parameter File Template (siteprm.def): A default version of a site parameter file.
This file is copied to the directory for a newly created site. The file is initially created by the

ICERVS system manager and is maintained external to the ICERVS system with any general
purpose text editor.

Default View Parameters File (view.def): This file contains a system-wide set of default
parameters for view windows. A copy of this file is placed in each new site directory and this
copy may be altered as required.

Site Specific Files

Dataset List File (dataset.Ist): This file contains a list of all defined datsets for the site. The file
is initially copied from the Master Dataset List File Template (dsetdir.def) and is subsequently
maintained by the ICERVS system as datasets are added and deleted.

Default View Parameters File (view.prm): This file contains default values for view
parameters. A copy of this file is placed in each new dataset subdirectory and that copy may be
altered as required. ICERVS supports an editor that allows the file contents to modified as
required.

Object Templates File (object.lib): Initially, this file is a copy of the Master Object Templates
File (object.mlb). The file may then be tailored by adding, deleting, or modifying the objects
contained within,

ICERVS Phase II Subsystem Design Report 6-16

Sensor Parameter File (sensor.lst): This file contains all the site specific sensor parameters. It
is initially created by copying the Sensor Parameter File Template. ICERVS Phase II supports an

editor that allows the contents of the file to be updated.

Site Log File (site.log): This file is an ASCII text file that contains operator log entries for the
particular site. No restrictions are placed on the content nor the format of entries. The ICERVS
system will attach a date/time stamp and operator identification to each log file entry.

Site Parameter File (site.prm): This file contains all the site specific parameters. It is initially
created when ICERVS creates a new site. ICERVS Phase II supports an editor that allows the

contents of the file to be modified.

Geometric Objects File (object.dic): This file contains the user defined 3D geometric objects for
a specific dataset for a specific site. ICERVS reads the file, displays the geometric objects, and
permits creating, deletion, editing, and printing of objects.

Volumetric Data Files (xooocoex.tre): This file(s) contains the volumetric data in octree form.
Property Data Files (yyyvvy.prp): This file contains the property data associated with an octree.

Raw Data Files (zzzzzz.raw): This file (or files) contain the raw data received from a sensor. It
is stored in a sensor specific format and can used to recreate the volumetric dataset.

Saved Viewset File (aaaaaa vew): This file contains the parameters that define a set of views
including window location, view type, translation, scaling, rotation, colors, etc.

6.5. Toplevel User Interface CSC Detailed Design

The Top level User Interface CSC provides the user with access to the ICERVS Phase II main level
functions. It incorporates some evolutionary upgrades (such as menu revisions) to the existing Phase I top
Ievel graphical user interface. It adds a new capability for generating and managing sensor windows and
connections between sensors/cameras and datasets/views.

6.5.1. Class Descriptions

The Toplevel User Interface CSC software is objected oriented, implemented in C** and consists of
approximately 50 classes. This section identifies the CSC classes and discusses their general
characteristics (attributes, behavior and relationships). Section 6.5.2 will discuss the major functions
assigned to the CSC and describe how the software classes implement the functions.

In keeping with good object-oriented analysis practices, the classes are grouped by the categories Problem
Domain Component (PDC) and Human Interface Component (HIC).

ICERVS Phase II Subsystem Design Report 6-17

6.5.1.1. Problem Domain Classes

The OOA diagram of Figure 6-1 has been expanded to produce the OOD diagrams in Figures 6-7, 6-8,
and 6-9. Figure 6-7 has added two new classes (CNamedItem and CConnectableltem) to serve as
generalizations of the OOA model basic PDC classes. (The RWCollectable class is from the Rogue Wave

Toolst*

library.) Figure 6-8 introduces a set of classes that form collections of the basic PDC classes.

(The RWOrdered class is from the Rogue Wave Tools** library.) Figure 6-9 combines all the PDC
classes and illustrates the Is A Part Of relationships among objects of the various classes.

The PDC classes for the Toplevel User Interface are identified and briefly described below.

CConnectableCamera: A class that represents a camera. The class is derived from
CConnectableSensor.

CConnectableDataset: A class that represents a dataset that can be associated with a sensor.
The class is derived from CConnectableltem.

CConnectableItem: An abstract base class that provides all the common characteristics and
behavior for connectable items. This class is derived from the class CNamedltem. Since
CNamedltem is derived from RWCaollectable, all CConnectableltem derived classes are also
collectable and may use the RWCollection classes.

CConnectableSensor: A class that represents a sensor. The class is derived from
CConnectableltem.

CConnectableView: A class that represents a view that can be slaved to a camera. The class is
derived from CConnectableItem.

CDataLinkConnection: A class that describes the connections among a set of
CConnectableltem objects. In Phase II, instances of objects of this class are used to manage the
connections between sensors/databases and cameras/views.

CGlobalPrgblemDomainComponentData: A class that holds all necessary application
dependent global PDC data parameters. All data members of this class are static.

CNamedItem: A base class for things that have names and descriptions. This class also
includes an identification number for its item. CNamedItem is derived from RWCollectable.

CMaterialProperty: A class that represents a material property. The class is derived from
CNamedltem.

ICERYVS Phase II Subsystem Design Report 6-18

T# uweabera oo
I08D uoTjeIjsuowsq II oseyd

SAYADI :L-9 9aInbIJI

RVIOWRDOTqRIOBUUOCDD
1
1
93TS935CMD 395v3 I TqRIODUUODD MOTASTQRIODUUODD JOSUSFSITARIOBDUUODD
i ! 1 u
I Loveas. e lo.., TR]
©3T80 ”
— L]
) _
SI1030WRIVIOFTSOIEVMD KaaedoadreraezeHo UOTIOUUODNUTIRIRAD Wo3IOTARIOVUUODD
1 | | H
. . Lt e,]
_l ooooooooooooooooooooooooo lr oooooooooooo l.—l ¢ @ 8 8. 0.0 0 0 00 0 0 0 Fo *® 5 0 0 0 0 0 00 20000 e e . .
1
WS 3IPSWeND
i
1
OTqeloaTToOMY

6-19

ICERVS Phase II Subsystem Design Report

Z# uexberd doo
I0SD uoTjeijsuowsad II @5eUd SAYIOI :8-9 2InbBTJ

SMITASTqRIOIUUOCDI0ISSO SIOSU9gaITRIO3aUUCDI0FS8SO £395L3e(aTqe3os3uuod3yolesd
T T T
—I ® & 5 0 00 0 6 00 0 P * 0 l_l. » o s & 0 0 . L N) ¢ 6 & 0 0 6 0 0 0 8P 0 s 0o +
§93Tg9315MI0398D .
— .
I _
soT310doId TeTIOICHIOIOSD SYuTTelediolasd 593TSJ0398D SUR3IISTqe]}osUU0DF0I9SO

T T T T
L ettreeenonossnocsonnnses N Tecrereones P 4

1

SU™JIPoWENI0398D
T
1
POISPIOMI

6-20

ICERVS Phase II Subsystem Design Report

€# weaberd doo

I08D uoTjexjsuows II 9seUYd SAUYIODI :6-9 onﬁmﬁ.m
K3aadoag Kxqugabog
TRTISIIEHD 9318935%MD
T T
1 | |
Josuag sJojoureIed bo1
9TqelooUU0Dd 9318935MD 93 T89358MD
jege3ed MITA vIDWRD
9T qe3o8suuodd 8Tqe303UuuUodd 9Tqe309uuodd
.
£398L31RIoTRIOBUUOD SMBTARTARIOBUU0D SI0SUageTqRIOIUUO0D
' F0398D 303880 303980 93180
| | _ J
Jesejeq MOTA
9TqRIo/UUODD STqR3OUU0DD Kjaxedoag
_ [TeTIOIRHD
. .
JOsUesg vIOWRD Josueg
9 TqRIO/UUODD oTqRIooUUODD 93 T8935eMD |Tqe3oauuodd
o . i
uotT3osuUoDNUTIRIRA rIWRD
KyxsdoagrerIazeid ITqRIO/UUCDD
. . - . .
SUOT3OUUODJUTTIRIRA s9T3x0doIdTRTIOIEN 593 TS935eM SI0SUISITqRIOUUOD
JO3980 FOJOsD 303980 303980

©3eqOaAdTRqoTdD

6-21

ICERVS Phase II Subsystem Design Report

CSetOfConnectableDatasets: A class that implements a collection of CConnectableDataset
objects. ’

CSetOfConnectableltems: A class that implements a collection of CConnectableltem objects.

This class is only used as a base class for specializing (derived) classes.

CSetOfConnectableSensors: A class that implements a collection of CConnectableSensor and
CConnectableCamera objects. Three instances of this class are generally in use: a set of all
sensors known to the ICERVS system, a set of defined sensors for a particular site, and a set of
active sensors for a particular site..

CSetOfConnectableViews: A class that implements a collection of CConnectableView objects.

CSetOfDataLinkConnections; A class that implements a collection of CDataLinkConnection
objects.

CSetOfNamedItems: A class that implements a collection of CNamedItem objects. This class
is only used as a base class for specializing (derived) classes.

CSetOfMaterialProperties: A class that implements a collection of CMaterialProperty objects.
CSetOfSites: A class that implements a collection of CSite objects.

CSetOfWasteSites: A class that implements a collection of CWasteSite objects.

CSite: A class that encapsulates all the waste site (workspace or taskspace) specific data and-
control parameters. One instance of this class exists for each waste site known to the ICERVS

system. The CSite class is derived from CSiteParameters class.

CWasteSite: A class derived from CSite that includes a set of sensors, a set of datasets, and a sct
of views that are associated with the site.

CWasteSiteLog: A class that encapsulates all aspects of the site log file.

CWagteSiteParameters: A class that encapsulates all aspects of the site parameter file and the
data items contained in the file. Read and write capabilities are provided. This class is derived
from the class CNamedltem. . Since CNamedltem is derived from RWCollectable, all
CWasteSiteParameters derived classes are also collectable and may use the RWCollection classes.

ICERVS Phase II Subsystem Design Report 6-22

6.5.1.2, Human Interface Classes

Once the PDC OOA and OOD processes had matured, OOA and OOD were applied to the Demonstration
CSCI user interface. Figures 6-10 and 6-11 identify the major HIC classes and their inheritance
hierarchy. Finally, Figures 6-12 and 6-13 combine the key aspects of the PDC and HIC classes and
illustrate some of the associations between PDC and HIC objects.

The HIC classes for the Toplevel User Interface are identified and briefly described below. Much of the
layout and code for these classes will be generated by the Uniras UIMX tool.

CAboutDialog: A specialized dialog box that displays descriptive text about ICERVS.

CBrowseWindow: A general purpose read only window class for viewing and/or printing an
ASCII text file. This class will encapsulate the UIMX browse dialog form.

CCameraConnectionControlPanel: A specialized window for specifying connections between
cameras and volumetric dataset views.. This class will encapsulate the UDMX camera connection
dialog form.

CCameraSelectionListBox: A specialized selection list box that queries its
CSetOfConnectableSensors object, generates a list of camera names, invokes a general selection
list box, and returns the selected camera name.

CConnectionSelectionListBox: = A specialized selection list box that queries its
CSetOfDataLinkConnections object, generates a list of data link names, invokes a general
selection list box, and returns the selected data link name.

CConnectionDeleteVerifyDialog: A class that displays a confirmation message to confirm the
deletion of a connection from the system.

CConnectionSetStatusBrowser: A class that displays the set of connections and status
information about each connection.

CDatasetSelectionListBox: A specialized selection list box that queries its
CSetOfConnectableDatasets object, generates a list of data link names, invokes a general
selection list box, and returns the selected dataset name,

CEditorWindow: A general purpose read/write window class for viewing and editing an ASCII
text file. No attempt is made to assess the validity or correctness of the edited information. This
class will encapsulate the UIMX editor dialog form.

ICERVS Phase II Subsystem Design Report 6-23

v# wexberd doo

IO8O uorjeIijsuowsq II OseUd SAVHOI

0T-9

aanbta

XOHISTTUOTIOTOFUOTIOBUUODD

XOgISTTUOTI00TO539503eAD

XOg3STTUOTIOITIS93TIOISLMD

XOg3STIUOTIOITOSD

J9EM0IFITJoWRIRIIOSUDTD

JA9SAOIHIDJOURIRISFTIOIEBMD

J98M0IFGENIVIFUOTIOBUUODD

JIOBM0IgSNIR]SIBFIOSUDTD

. Jasmnoagbo 193 T8935EMD

MOPUTMIOIEMOITD

J03TPAIS}OWRIRIIOSUDSD

103 TPIIDOWRIRIOITIOFISCMOD

J03TPIAIquabHOoTE TSIIERMD

MOPUTMIO}TDID

Jo3Tpaboro3Tso3sEMND

6-24

ICERVS Phase II Subsystem Design Report

S# wexberd doo

uotjerjsuowad II @seyd SAYHOI :IT-9 9Inbrd

boTeTappYUoTIOoaUUODD

borerappYIOsuegd boTeTapPVe3 18935RMD MopUTMUTHE0TI90ID

L

L

00000000

!
mopurmysenbayd

boretaiyTIoA930TOQUOTIOBUUODD

botretrakyTassejeteqrosusgd

o-.oooo.coonl—laOtonoooooﬁol—laooo.o.ooooooooooooooool_

boTeTaL3TI0A930TOA93 TESIISEMD

i
—l.'0...00...'0.....0..0.....0.00..+0........0.0‘0..0'.......0..0....0'—
1
0bRSSOHIOIITSNOTIVSD 9bessaUOTIRULITIUODD
1 1
obesseIOIIATRIRID | « | ebessaIOITID . abessobuTUTEMD obessauUoOTIEWIOIUTD
{ ¢ T * I I
r....OCOOOIOFOQOOOOQOIOFOQOOOOOOOO0+....OOQQOOOI-IOOOOOOQQCOOOQQ.OCQOOOOOQL
MoputMabessapd

6-25

ICERVS Phase II Subsystem Design Report

CSetof

ConnectableSensors
]
|
{ i
CConnectable CSensorSelection
S8ensor ListBox
| | |
CS8ensor CS8ensor CSensorsSet
AddDialog ParameterBrowser 8tatusBrowser
| |
CSensor CSensor
DeleteVerifyDialog ParameterEditor
CSetoOfDatalLink
Connections
=
]
I |
CDhatalink " CConnection
Connection SelectionlistBox
I | l
CConnection CSensor CConnectionSet
addbpialog ConnectionPanel statusBrowser
[Bl
CConnection CCamera
DeleteVerifyDialog ConnectionPanel

Figqure 6-12:

|

ICERVS Phase IXI Demonstration CSCI
OOD Diagram #6

ICERVS Phase II Subsystem Design Report

6-16

CSetoOf

WasteSites
a
I |
| |
CWasteSite CsiteSelection
ListBox
I |
CWasteSite CWasteSite CWasteSite
LogBrowser ParameterBrowser Addpialog
|] I
CWasteSite CWasteSite CWasteSite
LogEditor ParameterEditor DeleteVerifyDialog
CWasteSite
LogEntryEditor

Figure 6-13: ICERVS Phase II Demonstration CSCI

00D Diagram #7

ICERVS Phase II Subsystem Design Report

6-27

CFileSelectionListBox: A. specialized selection list class that presents a list of filenames in a
window and allows the operator to sclect one or more entries. This class will encapsulate the
UIMX file selection dialog.

CGlobalHumanInterfaceComponentData: A class that holds all necessary application
dependent global HIC data parameters. All data members of this class are static.

ClcerHelpManager: The class that implements the ICERVS help system. This class is not
implemented in Phase II. This class will encapsulate the UIMX help dialog form.

CIcerLoginWindow: A class that encapsulates all aspects of logging into the ICERVS system.
An instance of this class is automatically created, used and destroyed during the start-up of the
ICERVS software subsystem. Login may also be performed from the main window SYSTEM
menu.)

CIcerMainWindow: A class that implements the ICERVS main window and its menus.
Exactly one instance of ClcerMainWindow exists while the ICERVS software subsystem is
active. This class will encapsulate the UIMX main window.

CMessageWindow: A general purpose class for displaying a message in a window. One or
more buttons may appear on the window depending upon the specific purpose of the message
window. Classes CInformationMessage, CConfirmationMessage, CWarningMessage,
CErrorMessage, and CFatalErrorMessage are derived from CMessageWindow. This class
will encapsulate the UIMX message dialog.

CRequestWindow: A general purpose class for displaying one or more prompts and inputting
the operator’s response. This class will encapsulate the UIMX request dialog form.

CSelectionListBox: A general purpose selection list class that presents a list of ASCII text
strings in a window and allows the operator to select one or more entries. This class will
encapsulate the UIMX selection dialog.

CSensorAddDialog: A class that displays an input request dialog box to request a name and
description for the newly created sensor.

CSensorConnectionControlPanel: A specialized window for specifying connections between
sensors and volumetric databases. This class will encapsulate the UIMX sensor connect dialog
form.

CSensorDeleteVerifyDialog: A class that display a verify dialog box to confirm the deletion of
a sensor from a waste site.

ICERVS Phase II Subsystem Design Report 6-28

CSensorParameterBrowser: A specialization of CBrowseWindow used to view/print the
parameters for a sensor.

CSensorParameterEditor: A specialization of CBrowseWindow used to modify the parameters
for a sensor.

CSensorSelectionListBox: A specialized selection list box that queries its
SetOfConnectableSensors object, generates a list of sensor names, invokes a general selection list
box, returns the selected sensor name.

CViewSelectionListBox: A specialized selection list box that queries its
SetOfConnectableViews object, generates a list of data link names, invokes a general selection
list box, and returns the selected view name.

CSensorSetStatusBrowser: A class that displays the set of sensors for a site and status
information about the sensors.

CWasteSiteAddDialog: A class that displays an input request dialog box to request a name and
description for the newly created waste site.

CWasteSiteDeleteVerifyDialog: A class that display a verify dialog box to confirm the deletion
of a waste site.

CWasteSiteLogBrowser: A specialization of CBrowseWindow used to view/print a waste site
log file.

CWasteSiteLogEditor: A specialization of CEditorWindow used to edit the site log file.

CWasteSiteLogEntryEditor: A specialization of CEditorWindow used to create or edit an
single entry from the site log file.

CWasteSiteParametersBrowser: A specialization of CBrowseWindow used to view/print the
parameters that define a waste site.

CWasteSiteParametersEditor: A specialization of CEditorWindow used to edit the parameters
that define a waste site.

CWasteSiteSelectionListBox: A specialized selection list box that queries its CSetOf WasteSites
object, generates a list of sites names, invokes a general selection list box, returns the selected site
name.

ICERVS Phase II Subsystem Design Report 6-29

6.5.2. Globally Available Data

Figure 6-9 introduced a PDC "super” class (CGlobalPDC) that contained the sets of waste sites, sensors,
material properties, and connections. This class was invented to be a convenient repository of the above
data (and other data such as operator name, system data path, etc.) which will be needed by many other -
PDC and HIC classes. Rather than make each of the data items global, it was decided to encapsulate the
concept of global data into a single class and object. This class contains only static data members and
static access functions for the data. Since the data members are static, all instances of the class share the
same data members. This means that an object wishing to access the application global data need only
instantiate a local object of the CGlobalPDC class. When completed, the local object is deleted. Thus,
access to application global data is simple and requires minimat interaction.

6.5.3. Major Function Descriptions

SYSTEM MENU:

Login (Togin as ICERVS operator): Uses ClcerLoginWindow object to prompt for operator
name via a CRequestWindow object and verify that the specified name is for a valid ICERVS
operator. An instance of CGlobalPDC is created to store the operator name in the
application global data store. The callback function is CIcerMainWindow::SystemLogin().

About: (Display ABOUT ICERVS information): Displays an ABOUT message for the ICERVS
system by creating a CAboutDialog object. The callback function is
ClIcerMainWindow::SystemAboutIcervs().

Quit (Fxit ICERVS system): Closes all window, releases all resources and exits the ICERVS
Phase II Demonstration CSCI. The callback function is CIcetMainWindow::SystemQuit().

SITE MENU
Select (Select a current site): Uses a CWasteSiteSelectionListBox object to display a list of
system waste site names and to allow the operator to select a site name. The name of the
current site is saved in the global CSetOfWastes object contained in the CGlobalPDC object.
The ICERVS main window is updated to reflect new current site and all connected servers
are notified of the mnew current site. The callback function is
ClcerMainWindow::SiteSelect().

Add (Create a new site): Uses a CWasteSiteAddDialog object to prompt for a site name and
description. Invokes CSetOfWasteSites::CreateNewWasteSite method to create a new site
directory with default files, add an entry to the site log file and add the new site to the global
CSetOfWasteSites object. A CWasteSiteParameterEditor is instantiated for the new site to
all editing of the site parameters. All connected servers are notified of the new site. The
callback function is ClcerMainWindow::SiteAdd().

ICERVS Phase II Subsystem Design Report 6-30

Delete (Delete an existing site): Uses a CWasteSiteSelectionListBox object to display a list of
system waste site names and to allow the operator to select a site name. Queries all
connected sensors to ensure that the selected site is not active. Removes the existing site
directory and its files after operator verification via a CWasteSiteDeleteVerifyDialog object.
All connected servers are notified of the deletion of the site. The callback function is
ClcerMainWindow::SiteDelete().

Append Yog (4dd a new entry to site log file): Uses a CWasteSiteSelectionListBox object to
display a list of system waste site names and to allow the operator to select a site name,
Creates a new CWasteLogEntry object and uses a CWasteSiteLogEntryEditor to allow the
operator may enter any information desired. The information is then formatted into a log
file entry and appended to the site log file by using the CWasteSite::AppendToLog method.
The callback function is CIcerMainWindow::SiteAppendLog().

Edit Log (Edit the site log file): Uses a CWasteSiteSelectionListBox object to display a list of
system waste site names and to allow the operator to select a site name. Uses a
CWasteSiteLogEditor to allow editing of a site log file via a scrollable, multi-line edit
window. The callback function is CIcerMainWindow::SiteEditLog(). This function is not
implemented in Phase IL.

Print Log (Print the site log file): Uses a CWasteSiteSelectionListBox object to display a list of
system waste site names and to allow the operator to select a site name. Uses a
CWasteSiteLogBrowser object to allows viewing and/or printing of the site log file. The
callback function is CIcerMainWindow::SitePrintLog().

Edit Parameters (Fdit the site parameters file): Uses a CWasteSiteSelectionListBox object to
display a list of system waste site names and to allow the operator to select a site name. Uses

a CWasteSiteParameterEditor to allow editing of a site parameters file via a scrollable,
multi-line edit window. After editing is complete, the modified site file is read to verify its
parameters. All connected servers are notified of that parameters may have changed for the
selected site. The callback function is ClcerMainWindow::SiteEditParameters().

Print Parameters (Print the site parameters file). Uses a CWasteSiteSelectionListBox object to
display a list of system waste site names and to allow the operator to select a site name. Uses
a CWasteSiteParameterBrowser to allow viewing and/or printing of the a site parameters
file. The callback function is CIcerMainWindow::SitePrintParameters().

VOLUMETRIC DATA MENU
Open_(Open Volumetric Data Window): Establishes a client-server link with the ICERVS
Volumetric Data Server. If opened in interactive mode (the only mode supported for Phase
ID), the server creates a Volumetric Data Window on the client's display (the SGI) and allows

ICERYVS Phase II Subsystem Design Report 6-31

the operator to select an existing data set or create a new data set. Once a data set has been
selected, various functions can be performed on the current data set. Figure 6-3 illustrates
the Volumetric Data Window. Refer to paragraph 7.10 for details concerning the
Volumetric Data Window. The callback function is
ClcerMainWindow::VolumetricDataOpen().

CONNECTIONS MENU

Connect Sensor (Connect a sensor to a data set): Queries all connected servers to generate a list
of active site names and to construct a temporary CSetOfWasteSites object. Queries the
appropriate server for each active site to determine the names of all active datasets for the
site. Instantiates a CSensorConnectionControlPanel for the set of active sites. The operator
is allowed to select the waste site, dataset, sensor, and material property data type. A
CDataLinkConnection object is created and added to the global CSetOfDataLinkConnections
object. Appropriate commands are issued to the sensor server and the volumetric data server
to connect the sensor and the dataset. Once connected, data will flow from the sensor to the
data set without any operator intervention. Figure 6-4 illustrates the sensor connection
control panel. The callback function is ClcerMainWindow::ConnectionsConnectSensor().

Connect Camera (Connect a camera to a data set): Queries all connected servers to generate a
list of active site names and to construct a temporary CSetOfWasteSites object. Queries the

appropriate server for each active site to determine the names of all active views for the site.
Instantiates a CCameraConnectionControlPanel for the set of active sites. The operator is
allowed to select the waste site, view, and camera. A CDataLinkConnection object is created
and added to the global CSetOfDataLinkConnections object. Appropriate commands are
issued to the camera server and the volumetric data server to connect the camera and the
view. Once connected, the views on the data set can be commanded to track with the scene
from the camera. Figure 6-5 illustrates the camera connection control panel. The callback
function is ClcerMainWindow::ConnectionsConnectCamera().

Disconnect (Disconnects a ‘sensor _or _camera__from _a__data__set): Uses a
CConnectionSelectionListBox to display a list of all current CDataLinkConnection names
and to allow the operator to sclected a connection name. Breaks the selected connection
between a sensor/dataset or camera/view. Removes the CDataLinkConnection object from
the global CSetOfDataLinkConnections object. The callback function is
ClcerMainWindow::ConnectionDisconnect().

Information (Display connection information): Uses a CConnectionSetStatusBrowser to display
a window that shows information about the currently defined connections. The data may be
optionally printed. The caliback function is ClcerMainWindow::ConnectionInformation().

ICERVS Phase II Subsystem Design Report 6-32

SENSOR MENU

Open (Open a sensor for data acquisition): Uses a CWasteSiteSelectionListBox object to display
a list of system waste site names and to allow the operator to select a site name. Uses a
CSensorSelectionListBox to display a list of inactive sensors for the selected site and to allow
the operator to select a sensor name to open. Locates the CConnectableSensor object in the
CsetOfConnectableSensors for the site. Establishes a client-server link with the ICERVS
Sensor Interface Server and the server for a selected sensor for a particular site. The sensor
is declared active. If opened in interactive mode (the only mode supported for Phase II), the
sensor server will open a control panel window on the client's display (the SGI). The sensor
may then be configured and manipulated via its control panel. A sensor control panel may
be closed without deactivating its associated sensor. Control panels for multiple sensors may
be open on the client screen at the same time. Once the client-server link has been
established, the client application may receive sensor data. The callback function is
ClcerMainWindow::SensorOpen().

Close (Close currently open sensor): Uses a CWasteSiteSelectionListBox object to display a list
of system waste site names and to allow the operator to select a site name. Uses a
CSensorSelectionListBox to display a list of active sensors for the selected site and to allow
the operator to select a sensor name to close. Locates the CConnectableSensor object in the
CsetOfConnectableSensors for the site. Dissolves the client-server link with the selected
sensor. The sensor control panel will be closed and the sensor will become inactive. Any
data Jink connects must be dissolved first. The caliback function is
ClcerMainWindow::SensorClose().

Add (4dd a new sensor o a site): Uses a CWasteSiteSelectionListBox object to display a list of
system waste site names and to allow the operator to select a site name. Uses a
CSensorSelectionListBox to display a list of system-wide sensor types and to allow the
operator to select a sensor type to add to the selected site. Uses a CSensorAddDialog to
prompt the operator for a name and description for the new sensor. Adds the new
CConnectableSensor object to the CSetOfConnectableSensors for the site. Creates a
CSensorParameterEditor to allow tailoring of the sensor parameters. Notifies all connected
servers that a new sensor has been added to the site. The callback function is
ClcerMainWindow::SensorAdd().

Delete (Delete sensor from a site): Uses a CWasteSiteSelectionListBox object to display a list of
system waste site names and to allow the operator to select a site name. Uses a
CSensorSelectionListBox to display a list of all sensors for the selected site and to allow the
operator to select a sensor name to delete. Locates the CConnectableSensor object in the
CsetOfConnectableSensors for the site. Verifies that the sensor is not connected to a dataset.
Uses a CSensorDeleteVerifyDialog to confirm deletion of the sensor. Automatically closes
the sensor if it is active and then deletes the CConnectableSensor object from the

ICERVS Phase II Subsystem Design Report 6-33

CSetOfConnectableSensors for the site. Notifies all connected servers that the sensor has
been deleted from the site. The callback function is CIcerMainWindow::SensorDelete().

Edit (Edit site specific sensor parameters file): Uses a CWasteSiteSelectionListBox object to
display a list of system waste site names and to allow the operator to select a site name. Uses
a CSensorSelectionListBox to display a list of active sensors for the selected site and to allow
the operator to select a sensor name to close. Locates the CConnectableSensor object in the
CSetOfConnectableSensors for the site. Creates a CSensorParameterEditor to allow editing
of the sensor parameter values. Upon completion of the editor, reads the sensor parameter
file to verify the parameters. Notifies all connected servers that the parameters for the sensor
may have changed. The callback function is ClcerMainWindow::SensorEditParameters().

Print (Print site ific sensor eters file): Uses a CWasteSiteSelectionListBox object to
display a list of system waste site names and to allow the operator to select a site name. Uses
a CSensorSelectionListBox to display a list of active sensors for the selected site and to allow
the operator to select a sensor name to close. Locates the CConnectableSensor object in the
CsetOfConnectableSensors for the site. Creates a CSensorParameterBrowser to allow
viewing and/or printing of the sensor parameter file. The callback function is
ClcerMainWindow::SensorPrintParameters().

Status, (Display_information about sensors): Uses a CWasteSiteSelectionListBox object to
display a list of system waste site names and to allow the operator to select a site name. Uses
a CSensorSetStatusBrowser to display a window that shows information about the currently
defined sensors for the site. The data may be optionally printed. The callback function is
ClcerMainWindow::SensorStatusQ).

HELP MENU
Index: (Display HELP index). This function displays an index of HELP information in a list
selection dialog window. When the operator selects the desired HELP index item, all
information about that item will be displayed in a scrollable multi-line browse dialog
window. The callback function is ClcerMainWindow::HelpIndex(). This function is not
implemented in Phase II. ’

Extended: (Display extended HELP Jor the system): This function displays a scrollable multi-
line browse dialog window containing system wide HELP information. The callback
function is CIcerMainWindow::HelpExtended(). Minimal help information is available for
Phase II.

ICERVS Phase II Subsystem Design Report 6-34

7. VOLUMETRIC DATA SUBSYSTEM CSCI DESIGN

The Volumetric Data CSCI encapsulates the storage, retrieval, manipulation, and visualization of
spatial, property, and geometric object data.. Six of the seven CSCs (excepting the Visualization and
Interaction CSC) form the core of the ICERVS Volumetric Data Subsystem Server (VDS Server).
The Visualization and Interaction CSC acts as a client of the ICERVS Volumetric Data Server.
Figure 7-1 (duplicate of Figure 4-6) illustrates the CSCs for this CSCI. The sections that follow detail
the design of the software for this CSCI.

7.1. General Design Approach

The general design of this CSCI is that of a server process that requires connection with one or more (one
for Phase II) UNIX-based client application processes. These clients may reside on the same system as the
scrver or different systems. (For Phase II, the clients and servers will reside on the same system.) UNIX
sockets, using Internet Protocol (IP), and Sun RPC will be used for communications. In addition, the
Sandia developed GENISAS and ISOE software, which is based on sockets, will be used to provide the
low-level client-server support. Section 5.0 of this document details the client-server communications

-design and the classes defined in that section will be used to facilitate the implementation of the CSCI

main program and the Volumetric Client Data Interface CSC.

The analysis and design of this CSCI (as well as for all the other CSCIs) begins with the identification of
the major Problem Domain Component (PDC) classes. An analysis of the requirements for this CSCI
readily leads to the identification of the following major PDC objects (i.e. software classes).

Site Geometric Object
Dataset Property Data
View Dimensional Data
Cutplanc SensorData

The relationships among these classes is illustrated in the OOA diagram of Figure 7-2. The Volumetric
Data Subsystem is concerned primarily with Dataset objects. A dataset is associated with a site
(underground storage tank, buried waste pit, etc.). One or more View objects may be defined to visualize
the dataset. The dataset itself contains several types of data objects: Geometric Object, Dimensional
Data, Property Data and Sensor Data. One or more Cutplane objects may be defined on the dataset to
slice or bound the information presented by the view object. Figure 7-3 provides another view of the class
interactions for the Volumetric Data CSCI.

7.2. Requirements Allocation

Allocation of the ICERVS system requirements to this CSCI was given in Table 4-1. This section will
refine that allocation to the CSC level. The Volumetric Data Client Interface CSC does not derive from
any specific ICERVS system requirement(s). Its inclusion in the Volumetric Data CSCI was a design
choice that followed from the architectural decision to embrace a client-server architecture. The
requirements for the remaining Volumetric Data Subsystem CSCs are summarized in Tables 7-1 through
7-6.

ICERVS Phase II Subsystem Design Report 7-1

uexberd }00TE IDSD vjRd OTISUNTOA :T~L oxnbid

JOATO8 wiRd OTIJOWNTOA

080 esequied
Kyxoedoag
_
080 30efqo 080 sutbumy
oTI30W00D wyeq Terjeds

_ [

080 BUOTj3oRIOGIUI

08D @dwvjaejul 308[qo oTI30WO8H
TOPOK PTIOM / ®ea terjeds

080 OdRJIOJUL
JUITTO ®3Rd OTIFJOUMTOA

™® ©® e o o & & ¢ o o ¢ 0 & ¢ ¢ o o s o s & o & o

.
©

JUOTTO TRUIDIXRH 080 WOT3IORILIUIL

/ UOT3IRZTTVNSTA

ID8O ViINQ DIWIIRATOA

wexbeiq VYOO waysisqng wied OFIJOUNTOA

JO jaRd BI =

Y3ITH PO3RTOOSSY SI

Z-L sanbtd

gozTTRIoeds ... UOT3o0uuU0) 0bHvESseH <+—=
wRa vyRa vyRg 300{qo
JosUSg Xyxodoxg TeuoTsSUBWTQ DTIJOWOSD
T T T T
w’o wo T w’o _
] | n l.
jeswieq
L] n
9 w’o m w’o T
T T T w‘o
Kyxedoxg
sueTdind |« MOTA TRTISIRH o318

wexberq yoo1d we3sAs eqeq ofxjeuniop T oanbrj

l |
. &xeaqyi,
mes.HB.
(oS,
TOPOWPTIOMD eseqejeqilredoxdd
) B38(
qQr1 mey
_ Fo_
| soBIIOUT 1
Tepow3oefqoo| |30efqoesedreriedsd momﬁmpﬁoﬁ,s
o1d
BMODUTM X8U30 fao ! oTTd
e81],
euBTd3nN0d _ _ MOTAD
| |
SMOPUTM I9U30 MODUTMMOTAD ri—1-1-1—1
T M3TA KyxedoxdTeTIa3BHd .pmmﬂmomuL
i poAss _
o174
B8J030WBIBIMSTAD _ KyzedoagdreTIa3Bpd doag
ik | I—I—
i 1 3oq _ 98010 | 93TSD
— MOPUTMUTENSTAD _ _
‘ . ﬁ
8I930UBI8d93 SO BTTd
9178
NOAdTeqOTOSAA (| wexboxd JUOTIOO |« >| IsaxegD
ure
In SOA
wexboxg
OAdTeqoToSPA uten
JIOATOSSPA

OIH we3sAS Bjeq OTIISUWNTOA

0dd we3sAS ®jeQq OTAISUNTOA

P
i
t

-~

Table 7-1 Reéquirements For Spatial Data Ex@‘ie CSC

Requirement
Number Description
R1.01 Octree: spatial data
R1.02 Octree: property data
R1.03 Octree: spatial interpolation
R1.04 Octree: linear resolution 1:512, expandable
R1.10 Octree: sensor data
R5.01 Copy octree
RS.02 Set region within tree to selected state
R5.06 Compare two octrees, compute difference
R5.07 Compute 2.5D surface map from octree
R5.08 Compute difference 2.5D surface map
R5.09 Surface connectivity
R6.02 Save / Retrieve waste site datasets to/from disk
R6.03 Build octree from backup raw data
R6.05 Maultiple system of units
Table 7-2 Requirements For Geometric Object CSC
Requirement
Number Description
R1.05 Geom: polyhedral ebjects
R1.06 Geom: geometric primitives
R1.07 Geom: associated text each object
R1.08 Geom: 100 objects, expandable
R2.01 Library of primitives / templates
R2.02 Standard templates
R2.03 User-defined templates
R2.05 Synthesize 2D polygons
R2.06 Synthesize 3D polyhedra
R2.08 Attach text to objects
RS.03 Operator delete objects
R6.02 Save / Retrieve waste site datasets to/from disk
R6.05 Multiple system of units
R6.06 Define Disassembly data

ICERVS Phase II Subsystem Design Report 7-5

Table 7-3 Requirements For Spatial Data / Object Interactions CSC

Requirement

Number Description

R2.04 Automatic waste surface modeling

R5.04 Scan object for consistency with octree

R5.05 Compare octree and object data

Table 74 Requirements For World Model Data Interface CSC

Requirement T
Number Description

R1.09 Geom: enter architectural and robot plans

R7.06 Output: geometric model data

R7.07 Output: 2/5D surface map data

Table 7-5 Requirements For Property Database CSC

Requirement

Number Description

R1.02 Octree: property data

R1.11 Octree: property data interpolation
RS.11 Combine multiple property data
R6.02 Save / Retrieve waste site datasets to/from disk

ICERVS Phase II Subsystem Design Report

76

Table 7-6 Requirements For Visualization/Interaction CSC

Requirement

Number Description

R2.07 Dimensioning tools

R3.01 Translation and scaling

R3.02 Display coordinate axes

R3.03 Parallel cut planes

R3.04 Display object text data

R3.05 Shaded or wire frame object display
R3.06 Update octree display as points received
R3.07 Pseudo-color octree data

R3.08 Pseudo-color geometric objects

R3.09 Text display view parameters

R3.10 Save / Recall view parameter set

R3.11 Multiple windows displaying same data
R3.13 Display 2.5D surface map

R3.14 Display views of spatial and property data
R6.05 Multiple system of units

ICERVS Phase II Subsystem Design Report 77

For a more detailed description of each requirement, refer to Appendix D of the JCERVS Phase II System
Design Report. In the tables, requirements that apply (full or partial implementation) to ICERVS Phase
11, including those from Phase I, are in bold type. Other requirements that are not part of Phase II but
strongly influence the software design are italicized. In some cases requirements span more than one
CSC and will appear in more than one table.

7.3. Volumetric Data Client Interface CSC Detailed Design

This CSC is responsible for accepting commands from client applications, parsing the command
messages, validating the command, and dispatching the command to the command execution functions.
These execution functions will typically call upon routines in the other CSCs that comprise the
Volumetric Data CSCIL. The software contained in this CSC follows the general approach described in
section 5.0 for client-server implementations. Three specialized software classes are used:
CVolumetricDataClient, CVolumetricDataServer, and CVolumetricDataUser.

The CVolumetricDataClient class provides the client process (Demonstration Application CSC
or VDS Visualization and Interaction CS_C) with a standard interface to the Volumetric Data
Server. This class provides methods (functions) that parallel the command functions of the
VdsServer. The details of the client side of the client-server interface are completely
encapsulated in the CVolumetricDataClient class.

The CVolumetricDataServer class provides the server process (VdsServer) with a standard
communications interface with the client application and implements several commands related
to managing the client interface (connect, disconnect, list of"users, etc.). Most command
functions are passed on to the CVolumetricDataUser class for execution.

Objects of the CVelumetricDataUser class represent the client in the server process.
Commands are received from the CVolumetricDataServer object and executed by one of the
CVolumetricDataUser methods. Each command execution function formats a reply message and
returns that reply to the CVolumetricDataServer for transmission to the client. At present, one
CVolumetricDataUser object will exist, but in the future, it is envisioned that the VdsServer will
become multi-cliented.

7.3.1. VDS Server Commands
The VDS Server supports a number of command functions which are organized as followings:

1. General Commands 4. Property Commands

2. Site Commands 5. Geometric Object Commands
3. Spatial Data Commands

Tables 7-7 through 7-11 identify the commands in each category and provide a bricef description of cach of
the commands. The general command/reply syntax is also given.

ICERVS Phase II Subsystem Design Report 7-8

Table 7-7 VDS General Commands

ConncctToServer: Identifies a new VDS user. If accepted, the user is added to the user
list. Returns a userld for the new VDS user.

Command: ConnectToServer userName dataPath
Reply: ConnectToServer status userld

DisconnectFromServer: Closes VDS connection to the user and removes the user from the
user list, All user datasets will be closed, but not saved.

Command: DisconnectFromServer userld
Reply: DisconnectFromServer status .

EnablcUscrInterface: Displays standard VDS operator interface on specified display screen

Command: EnableUserInterface userld displayName
Reply: EnableUserInterface status

GetListOfUsers: Returns a list of VDS user ids and names.

Command: GetListOfUsers
Reply: GetListOfUsers _status numUsers <id name description>

GetServerCommandList; Returns a list of server command names, number of
arguments and argument names for each command.

Command: GetServerCommandList
Reply: GetServerCommandList status numCmd <name numArg argl ..> ...
GetUserld: Returns user id associated with the given user name. If multiple occurrences

of the same name exist, the id associated with the first occurrence is returned.

Command: GetUserld userName
Reply: GetUserld status userld

GetUserName: Returns the user name for the given user id.

Command: GetUserName userld
Reply: GetUserName status userName

SctDataPath: Defines the datapath associated with the given user id.

Command: SetDataPath userld dataPath
Reply: SetDataPath status

ICERVS Phase II Subsystem Design Report 79

Table 7-7 VDS General Commands (continued)

SetOperatorName: Defines the ICERVS operator name associated with the given user id.
Command: SetOperatorName userld operatorName
Reply: SetOperatorName status

SetUserName: Defines the name associated with a given user id.

Command: SetUserName userld userName

Reply: SetUserName status

ShutdownServer: Causes VDS server process to perform an orderly shutdown.
Command: ShutdownServer

Reply: ShutdownServer status

ICERVS Phase II Subsystem Design Report 7-10

Table 7-8 VDS Site Commands

CreateNewSite: Creates a new site directory and site files. Adds site to site list. Returns a site
id. The siteld may be previously obtained from the RequestSiteld command. If blank, a new id
will be assigned. Use the SetSiteParameter command to tailor the site parameters.

Command:; CreateNewSite userld siteName siteDescription siteld

Reply: CreateNewSite status siteld

DeleteSite: Deletes a site from list of sites, deletes all site files, and removes the site
directory.

Command: DeleteSite userld siteld

Reply: DeleteSite status

GetCurrentSite: Returns users current default site.

Command: GetCurrentSite userld
Reply: GetCurrentSite status siteld

GetListOfSites: Returns a list of site names for the user

Command: GetListOfSites userld

Reply: GetListOfSites status numSites <siteld siteName description>
GetSiteDataPath: Returns the datapath associated with the given site id.

Command: GetSiteDataPath userld siteld

Reply: GetSiteDataPath status dataPath’

GetSiteld: Returns site id associated with the given site name. If multiple occurrences of

the same name exist, the id associated with the first occurrence is returned.

Command: GetSiteld userld siteName
Reply: GetSiteld status siteld

GetSiteName: Returns the site name for the given site id.

Command: GetSiteName userld siteld

Reply: GetSiteName status siteName

GetSiteParameter: Returns value for specified site parameter

Command: GetSiteParameter userld siteld prmiId

Reply: GetSiteParameter status prmValue

RequestSiteld: Allocates and returns a new site id that can be used in a CreateNew Site
command.

Command: RequestSiteld userld

Reply: RequestSiteld status siteld

ICERVS Phase II Subsystem Design Report 7-11

Table 7-8 VDS Site Commands (continued)

SetCurrentSite: Identifies the specified site as the users current default site.

Command: SetCurrentSite userld siteld

Reply: SetCurrentSite status

SetSiteParameter: Defines value for specified site parameter.
Command: SetSiteParameter userld siteld prmld prmValue
Reply: SetSiteParameter status

SiteAdded: Notifies VDS that a new site has been added to ICERVS system.

Command: SiteAdded userld siteld
Reply: SiteAdded status

SiteDeleted: Notifies VDS that a site has been deleted from ICERVS system.

Command: SiteDeleted userld siteld

Reply: SiteDeleted status

SiteParametersChanged: Notifies VDS that the parameters for the specified site may
have been changed.

Command: SiteParametersChanged userld siteld

Reply: SiteParametersChanged status

ICERVS Phase II Subsystem Design Report 7-12

Table 7-9a VDS Spatial Data Commands For Datasets

AddArrayOfPoints: Adds an array of points to dataset.

Command: AddArrayOfPoints userld datasetld numPoints dataPointl dataPoint2 ...
Reply: AddArrayOfPoints status

AddFile: Adds a file of points to the dataset.

Command: AddFile userld datasetld fileName

Reply: AddFile status

AddPaint: Adds a single point to dataset.

Command: AddPoint userld datasetld dataPoint

Reply: AddPoint status

CloscAllDatasets: Closes all datasets and deletes all data from memory. Does not save
dataset contents prior to closing. If siteld is given as <ALL>, all datasets for all sites will be
closed.

Command: CloseAllDatasets userld siteld

Reply: CloseAllDatasets status]

CloscDataset: Closes the specified dataset and deletes all data from memory. Does not save
dataset prior to closing.

Command: CloseDataset userld datasetld

Reply: CloseDataset status

DcletcDataset: Deletes the specified dataset and all data files associated with the dataset. The
dataset must be open. All views on the dataset will be closed prior to deleting the dataset.

Command: DeleteDataset userld datasetld
Reply: DeleteDataset status

ErascPoint: Erases a point from dataset.

Command: ErasePoint userld datasetld dataPoint
Reply: ErasePoint status

GetCurrentDataset; Returns the current dataset.

Command: GetCurrentDataset userld
Reply: GetCurrentDataset status datasetld

ICERVS Phase II Subsystem Design Report 7-13

Table 7-9a VDS Spatial Data Commands For Datasets (continued)

GetDatasetld: Returns dataset id for named dataset. If multiple occurrences of the same
name exist, the id associated with the first occurrence is returned.

Command: GetDatasetld userld datasetName

Reply: GetDatasetld status datasetld

GetDatasetName: Returns dataset name for specified dataset.
Command: GetDatasetName userld datasetld

Reply: GetDatasetName status datasetName

GetDatasetParameter: Returns value for a dataset parameter.

Command: GetDatasetParameter userld datasetld prmld

Reply: GetDatasetParameter status prmValue
GetDatasetPath: Returns the data path for the specified dataset.
Command: GetDatasetPath userld datasetld

Reply: GetDatasetPath status dataPath

GetListOfAllDatasets: Returns a list of all dataset names for the specified user and/or site. If
siteld = <ALL>, all datasets across all sites are returned. Otherwise, only the datasets for the

specified site are returned.
Command: GetListOfAllDatasets userld siteld
Reply: GetListOfAllDatasets status numDatasets <id name description>

GetListOfOpenDatasets: Returns a list of open dataset names for the specified user.

Command: GetListOfOpenDatasets userld
Reply: GetListOfOpenDatasets status numDatasets <id name description>

NewDataset: Creates a new dataset for the given site. Creates all necessary data files.
Returns a dataset id. The datasetld may be previously obtained from the RequestDatasetld
command. Ifblank, a new id will be assigned.

Command: NewDataset userld siteld datasetName description datasetld
Reply: NewDataset status datasetid

OpenDataset: Opens an existing dataset for the given site. Does not read data into memory.
Returns a dataset id. The datasetld may be previously obtained from the RequestDatasetld
command. Ifblank, a new id will be assigned.

Command: OpenDataset userld siteld datasetName datasetld
Reply: OpenDataset status datasetld

ICERYVS Phase II Subsystem Design Report 7-14

Table 7-9a VDS Spatial Data Commands For Datasets (continued)

DatasctVolumetricDifference: Computes volumetric difference between two datascls.
WHAT IS THE OUTPUT?

Command: DatasetVolumetricDifference userld datasetld]l datasetid2 277777
Reply: DatasetVolumetricDifference status 77?7?

DatasctSurfaceMap: Computes surface map for one or two datasets. WHAT IS THE
OUTPUT?

Command: DatasetSurfaceMap userld datasetldl datasetld2 ?7777?
Reply: DatasetSurfaceMap status 77777

ReadDataSet: Reads data from disk for specified dataset.

Command: ReadDataSet userld datasetld

Reply: ReadDataSet status
RequestDatasetid: Allocates and returns a new dataset id that can be used in a

NewDataset or Open Dataset command.

Command: RequestDatasetld userld siteld
Reply: RequestDatasetld status datasetld

SaveAsDataset: Creates a new dataset and saves all data associated with the specified dataset
in the new dataset. Returns a dataset id for the new dataset.

Command: SaveAsDataset userld datasetld newSiteld newDatasetName
Reply: SaveAsDataset status newDatasetld

SaveDataset: Saves all data associated with the specified dataset.

Command: SaveDataset userld datasetld
Reply: SaveDataset status

SctCurrentDataset; Declares specified dataset to be the current dataset.

Command: SetCurrentDataset userld datasetld
Reply: SetCurrentDataset status

SctDatasetParameter: Defines a dataset parameter value.

Command: SetDatasctParameter userld datasetld prmld prmValue
Reply: SetDatasetParameter status

SetRegion: Set all nodes of region to specified node type.

Command: SetRegion userld datasetld <<other parameters>>
Reply: SetRegion status

WriteDataset: Write data to disk for specified dataset.

Command: WriteDataset userld datasetld
Reply: WriteDataset status

ICERVS Phase IT Subsystem Design Report 7-15

Table 7-9b VDS Spatial Data Commands For Cutplanes

DeleteCutplane: Deletes a cutplane and removes it from the list of cutplanes for the
associated dataset. Not Implemented.

Command: DeleteCutplane userld cutplaneld
Reply: DeleteCutplane status

GetCutplaneld: Returns id for specified cutplane name. If multiple occurrences of the same
name exist, the id associated with the first occurrence is returned.

Command: GetCutplaneld userld datasetld cutplaneName
Reply: GetCutplaneld status cutplaneld

GetCutplaneName: Returns name for specified cutplane.

Command: GetCutplaneName userld . cutplaneld
Reply: GetCutplaneName status cutplaneName

GetCutplaneParameter: Returns a cutplane parameter value.

Command: GetCutplaneParameter userld cutplaneld prmId

Reply: GetCutplaneParameter status prmValue

GetListOfCutplanes: Returns a list of cutplane ids, names, and descriptions for the
specified dataset.

Command: GetListOfCutplanes userld datasetld

Reply: GetListOfCutplanes status numPlanes <id name description>....

NewCutplane: Creates a new cutplane and adds to set of cutplanes. Returns a cutplane id.
The cutplaneld may be previously obtained from the RequestCutplaneld command. If blank, a
new id will be assigned Not implemented.

Command: NewCutplane userld datasetld cutplaneName description cutplaneld
Reply: NewCutplane status cutplaneld

RequestCutplanetld: Allocates and returns a new cutplane id that can be used in a
NewCutplane command.. Not implemented.

Command: RequestCutplaneld userld siteld
Reply: RequestCutplaneld status datasetld

SetCutplaneParameter: Defines a cutplane parameter value.

Command: SetCutplancParameter userld cutplaneld prmlId prmValue
Reply: SetCutplaneParameter status

ICERVS Phase II Subsystem Design Report 7-16

Table 7-9¢ VDS Spatial Data Commands For Views

CloseAllViews: Closes all views for the specified dataset. If datasetld is given as <ALL>, all
views for all datasets currently open by the specified user will be closed.

Command: CloseAllViews userld datasetld

Reply: CloseAllViews status

CloseView: Closes the specified view of a dataset. The view will be deleted from the view
list.

Command: CloseView userld viewld

Reply: CloseView status

GetDefaultViewPrmFilename: Returns name of Default View Parameters File for the
specified dataset.

Command: GetDefaultViewPrmFilename userld datasetld

Reply: GetDefaultViewPrmFilename status fileName

GetListOfViews: Returns a list of view ids and names for the specified dataset If

dataset = <ALL>, returns list of all views across all datasets for specified user.

Command: GetListOfViews userld datasetld
Reply: GetListOfViews status numViews <viewld viewName description>

GetViewDisplayData:Returns a set of data to display for the specified view.

Command: GetViewDisplayData userld viewld 77777
Reply: GetViewDisplayData status 7??7?

GetViewld: Returns id for specified view name. If multiple occurrences of the same name
exist, the id associated with the first occurrence is returned.

Command: GetViewld userld datasetId viewName
Reply: GetViewld status viewld

GetViewName: Returns view name for specified view id.

Command: GetViewName userld viewld
Reply: GetViewName status viewName

GetViewParameter: Returns value for specified view parameter.

Command: GetViewParameter userld viewld prmld
Reply: GetViewParameter status prmValue

ICERVS Phase II Subsystem Design Report 7-17

Table 7-9¢ VDS Spatial Data Commands For Views (continued)

OpenView: Creates a new view for the specified dataset and adds to view list. Returns a
new view id. The viewld may be previously obtained from the RequestViewld command. If
blank, a new id will be assigned.

Command: OpenView userld datasetld viewName description viewld
Reply: OpenView status viewld

RequestViewld: Allocates and returns a new view id that can be used in an OpenView
command..

Command: RequestViewId userld datasetld

Reply: RequestViewld status viewld

SetViewParameter: Defines value for specified view parameter.
Command: SetViewParameter userld viewld prmld prmValue
Reply: SetViewParameter status

ICERVS Phase II Subsystem Design Report 7-18

Table 7-10 VDS Property Data Commands

AddPropertyName: Adds new property name to the dataset. Returns property id. The
propertyld may be previously obtained from the RequestPropertyld command. Ifblank, a new id
will be assigned.

Command: AddPropertyName userld datasetld propType propName description propld
Reply: AddPropertyName status propertyld

DeletcProperty: Deletes property name from dataset.

Command: DeleteProperty userld propertyld
Reply: DeleteProperty status

GetListOfProperties: Returns a list of known property names for the specified dataset.

Command: GetListOfProperties userld datasetld

Reply: GetListOfProperties status numProp <id type name description>....
GetListOfPropertyTypes: Returns a list of known property types for the requesting
client.

Command: GetListOfPropertyTypes userld
Reply: GelListOfPropertyTypes status numProp <id type description>....

GetPropertyld: Returns property id for specified property name. If multiple occurrences of the
same name exist, the id associated with the first occurrence is returned.

Command: GetPropertyld userld datasetld propertyName
Reply: GetPropertyld status propertyld

GetPropertyName: Returns property name for specified property id.

Command: GetPropertyName userld propertyld
Reply: GetPropertyName status propertyName

GetPropertyParameter: Returns value for specified property parameter.

Command: GetPropertyParameter userld propertyld prmld
Reply: GetPropertyParameter status prmValue

RequestPropertyld: Allocates and returns a new property id that can be used in an
AddPropertyName command.

Command: RequestPropertyld userld datasetld
Reply: RequestPropertyld status propertyld

SetPropertyParameter: Defines value for specified property parameter.

Command: SetPropertyParameter userld propertyld prmld prmValue
Reply: SetPropertyParameter status

ICERVS Phase II Subsystem Design Report 7-19

Table 7-11 VDS Geometric Object Commands

CreateObject: Creates a new object and adds it to the dataset object list. Returns object id.
The objectld may be previously obtained from the RequestObjectld command. If blank, a new
id will be assigned. Object parameters must be defined with SetObjectParameter command.

Command: CreateObject userld datasetld objectType objectName description objectid
Reply: CreateObject status objectId

DeleteObject: Deletes specified object from object list.

Command: DeleteObject userld objectld

Reply: DeleteObject status
GetListOfObjects: Returns list of object ids, names, types and categories for specified

object list. If datasetld = <ALL>, returns all objects across all datasets for the specified user.

Command: GetListOfObjects userld datasetld
Reply: GetListOfObjects status numObj <id name type description> ...

GetObjectld: Returns object id -for specified object name. If multiple occurrences of the
same name exist, the id associated with the first occurrence is returned.

Command: GetObjectld userld datasetld objectName

Reply: GetObjectld status objectld
GetObjectName: Returns object data for specified object.

Command: GetObjectName userld objectld
Reply: GetObjectName status objectName

GetObjectParameter: Returns specified parameter for specified object.

Command: GetObjectParameter userld objectld prmld
Reply: GetObjectParameter userld prmValue

ObjectVolumetricDifference: ~ Performs volumetric difference between object and octree
data contained within the object. WHAT IS THE OUTPUT?

Command: ObjectVolumetricDifference userld datasetld objectld
Reply: ObjectVolumetricDifference status ?777?

ObjectConsistencyCheck: Performs object consistency check to confirm that every
object contains some volumetric material. All list of inconsistent objects is returned.

Command: ObjectConsistencyCheck userld datasetld objectld
Reply: ObjectConsistencyCheck status numObjects <objectld> ...

RequestObjectId: Allocates and returns a new object id that can be used in a
CreateObject command.

Command: RequestObjectld userld datasetld
Reply: RequestObjectld status objectld

SctObjectParameter: Defines specified parameter for the object in object list.

Command: SetObjectParameter userld objectld prmld prmValue
Reply: SetObjectParameter status

ICERVS Phase II Subsystem Design Report 7-20

7.3.2 VDS Server Identifiers

As can be seen from the VDS Server command descriptions, several of the commands return identifiers
that are required as arguments to many of the other commands. These identifiers are assigned by the VDS
Server to uniquely identify dynamically created PDC objects (users, datasets, views, properties, etc.) that
the VDS Server maintains on behalf of the client. The identifiers will be implemented as ASCII strings to
promote transparency across interconnected UNIX systems. Client applications should NOT depend upon
any specific implementation of identifiers. Each identifier should be viewed as unique and unrelated to
any other identifier.

7.3.3. Class Descriptions

The Volumetric Data Client Interface CSC software is object oriented, implemented in C* and consists of
10 classes. This section identifies the CSC classes and discusses their general characteristics (attributes,
behavior and relationships). Section 7.3.4 will discuss the major functions assigned to the CSC and
describe how the sofiware classes implement the functions.

In keeping with good object-oriented analysis practices, the classes are grouped by:the categories Problem
Domain Component (PDC) and Human Ingerfaee Component (HIC).

7.3.3.1. PDC Classes

The Volumetric Data Subsystem OOA diagrams of Figure 7-2 and 7-3 have been expanded and
specialized to produce the Volumetric Data Client Interface QOD diagrams in Figures 7-4, 7-5, and 7-6.
Figure 7-4 has added three new classes (CVolumetricDataServer, CVolumetricDataClient and
CVolumetricDataUser) to model the client-server interface. In addition, two previously defined classes
(CMaterialProperty and CSite) have also been included in Figure 7-4. Figure 7-5 shows the derivation of
the basic PDC classes and introduces a set of classes that form collections of the basic classes. (The
RWCollectable and RWOrdered classes are from the Rogue Wave Tools™ library.) Figure 7-6 combines
all the PDC classes and illustrates the Is A Part Of relationships among objects of the various classes.

The PDC classes for the Volumetric Data Client Interface are identified and described below.

CVdsDataset: A class that represents the data stored by ICERVS. The class is a part of the Spatial
Data Engine CSC (see section 7.4), but is introduced here to illustrate the connection between the
VDS Client Interface CSC and the Spatial Data Engine CSC.

CMaterialProperty: A class that represents the abstract idea of a material property (i.e., a
temperature in degrees Fahrenheit). It does not include the material property data value (the value of
the temperature). This class was previously defined in section 6.3 and is redefined here for
completeness.

ICERVS Phase II Subsystem Design Report 7-21

weIbeTd YOO O8O 99RIIOJUI JUOTTIO SAA ¥-L 2anbrd

FO 3aIed 8 =

YITM POJIRFOOESY SBI

sozTrRTOo0ds UOTI00UU0D OHRSEOH <—— __

jesvIvdd 93180 KyxedoxgreTIogerd
.n_ . T _.n
u‘o wm‘o w’o
| § {]
J98ARIRIITIFSUMTOAD
T
w’o
l
JUOTTORIRAOTIIOUNTOAD |¢———>| IOATIOSLILIOTIIOUNTOAD

T# weiberd OO D82 92vIILJUI JUOTID SAA S-L 9Inbid

JO8VIRIOTIFOUNTOAD 93180 K3xedoxgreiIeojzeid 208WIRASPAD
T T T T
L iieeeennonncenans L.o..... Teeseensesnans N 4
1
e} IpoureND
T
i
oTquelLadTToONY
8I98QW3vASTIIBUNTOAJOIOSD 8031783703980 807310doXJTRTI8IVHI008D §305v3%0J03980
T T T T
—l ooooooooooooooooooooooooo l~| ooooooooo I—l oooooooooooooo l—l oooooooooooooooooooooooo |_
|
SWo3IPOWeNJ0308D

POISPIOMY

2# weabeId OO D8O ©0RIIVINI JUSTTO SAA 9-L °oanbrd

080 euthuz
vjRq TeT3Rds

93180 398V3RASPAD X3xedoad TwTIOIEHO

|
80T3X0dOXdTRTIOYIVH
F03980

sjeseled

80378303980 $03980

¢ © & o o ¢ o & o o o —
oo o ¢ ¢ ¢ o ¢ o o o o

' IO8MN
V3RIOTIFOUMTOAD

L]
BI9BARIVAOTIJOUNTOA
JOI8ED

JUOTTO < IOAISE
SaA > | BIRIOTIISUNTOAD OAdTeqOTOBPAD

CSetOfVdsDatasets: A class that implements a collection of CVdsDataset objects. The class is a
part of the Spatial Data Engine CSC (see section 7.4), but is introduced here to illustrate the
connection between the VDS Client Interface CSC and the Spatial Data Engine CSC.

CSetOfMaterialProperties: A class that implements a collection of CMaterialProperty objects.
This class was previously defined in section 6.3 and is redefined here for completeness.

CSetOfVolumetricDatallgsers: A class that implements a collection of CVolumetricDataUser
objects.

CSetOfSites: A class that implements a collection of CSite objects. This class was previously
defined in section 6.3 and is redefined here for completeness.

CSite: A class that encapsulates all the waste site (workspace or task space) specific data and control
parameters. One instance of this class exists for each waste site known to the ICERVS system. The
CSite class is derived from CSiteParameters class. This class was previously defined in section 6.3
and is redefined here for completeness.

CVolumetricDataClient: This class encapsulates and hides the implementation details of the VDS
client. This class provides all communications with the VDS server. Methods of this class provide
an application with complete access to the functions supported by the VDS server.

CVolumetricDataServer: This class.encapsulates and hides the implementation details of the VDS
Server. This class provides all communications with the server's clients, receives and dispatches
client commands, and sends server reply messages to the client. The VDS Server contains exactly
one instance of this class.

CVolumetricDataUser: This class encapsulates a user of the VDS Server. It contains the data
objects that are unique to each external VDS client. The CVolumetricDataServer object creates a new
instance of this class for each client that issues a VDS_ConnectToServer command and destroys the
object when the client issues the VDS_DisconnectFromServer command. This class assists the
CVolumetricDataServer object with the execution of client commands.

7.3.3.2. HIC Classes
The Volumetric Data Client Interface CSC contains no HIC classes.

7.3.3.3. Globally Available Data

Figure 7-5 introduced PDC class VdsGlobalPDC that contains pointers to global data objects.. The
VdsGlobalPDC class was invented to be a convenient repository of data which will be needed by many
other PDC and HIC classes in this and other CSCs. Rather than making each of the data items global, it
was decided to encapsulate the concept of global data into a single class and object. This class contains

ICERVS Phase II Subsystem Design Report 7-25

only static data members and static access functions for the data. Since the data members are static, all
instances of the class share the same data members. This means that an object wishing to access the
application global data need only instantiate a local object of the VdsGlobalPDC class. When completed,
the local object is deleted. Thus, access to application global data is simple and requires minimal
interaction.

7.3.4. Major Function Descriptions
The following major functions are performed by the Volumetric Data Client Interface function. Each
of the functions is implemented as a method of the CVolumetricDataServer class or its base classes.

Start_Client Server Interface: This function will be performed in a method of the
CVolumetricDataServer class. All necessary steps are performed to initialize the client-server
communications link. Other initializations steps to prepare the CVolumetricDataServer object
for operation are also performed. Upon completion of this function, the VDS Server is ready to
accept a client.

Terminate Client Server Interface: This function shutdowns the client-server communications
link. Communications connections to all clients will be dissolved.

Get A Client Command: This function will await the receipt of a client command. The
command may come from the client-server communications link or from the VDS Operator
Interface (Visualization and Interaction CSC).

Execute A Client Command: Commands received from the client are passed to this function for
execution. If the command is from the General Command set, the CVolumetricDataServer object
will execute the command. Otherwise, the command is passed to the appropriate
CVolumetricDataUser object for execution. Upon completion of the command, a reply message
is sent to the client.

Connect A New Client: This function processes the VDS_ConnectToServer command. A new
CVolumetricDataUser object is created, initialized, and added to the
CSetOf VolumetricDataUsers object maintained by the CVolumetricDataServer object.

Disconnect A Client: This function processes the VDS_DisconnectFromServer command. The
appropriate CVolumetricDataUser object is located and destroyed. The client's communication
connection is closed.

Activate Operator Interface: This function processes the VDS_EnableOperatorinterface
command. A CVdsMainWindow (see section 7.9) is created, initialized and started. The VDS
Main Window will be displayed on the client's display screen.

ICERVS Phase II Subsystem Design Report 7-26

7.4. Spatial Data Engine CSC Detailed Design

The Spatial Data Engine (formerly Octree Engine) CSC provides the primary means for storing,
retrieving, and manipulating volumetric data. It incorporates a major upgrade in the capabilities for
integrating and analyzing measurement data with the inclusion of Octree Corporation's TrueSolid
software. In addition to providing a controlled interface to the TrueSolid software, this CSC will provide
enhanced features such as general cutplane tools, data sculpting, and spatial comparisons between
measurement data sets. The Spatial Data Engine CSC is also the gateway to the Property Data CSC. The
Spatial Data Engine CSC interfaces to the Volumetric Data Client Interface CSC through the
CVolumetricDataUser class. Figure 7-7 shows the OOA diagram for the Spatial Data Engine CSC.

7.4.1. Dataset Interface

The central component in the Spatial Data Engine CSC is the dataset class (CVdsDataset). This class ties
together all volumetric data functions. There can be multiple dataset objects (one for each site/dataset
combination selected by the operator). The material property class, cutplane class, view class, and tree
interface class arc all instantiated from the CVdsDataset class. The material property class
(CMaterialProperty) provides a list of material properties stored for each dataset object. The cutplane
class (CCutplane) provides a set of six predefined cutplanes for each dataset object. The view class
(CVdsView) describes the views of the dataset that are being rendered in each view window. The tree
interface class (CTreeInterface) provides the interface to the TrueSolid function library.

7.4.2. TrueSolid Interface

The interface to TrueSolid is done via the CTreelnterface class. This class provides the only interface
between the Spatial Data Engine CSC and the TrueSolid library. All of TrueSolid's features described
below are obtained through this interface class.

TrueSolid provides tools necessary for the building, viewing, and modification of 3D volumetric
information. 3D data is supplied in one of four ways: a volume array file; a set of 2D slices which are
stacked together to build a volume; a set of 3D points used to build a volume a voxel at a time; or as a
CSG description of a solid. ICERVS Phase II will be using the third method (a set of 3D points). After
3D data has been input using one of these four methods, stored octrees can be build or modified a voxel at
a time, where the 3D coordinate and the level (the size of the voxel) are given along with a property.
These stored octrees can be written on disk for rapid retrieval.

TrueSolid also builds objects using a Constructive Solid Geometry (CSG) approach. These objects are a
tree structure of the union, intersection, or subtraction of other CSG objects. At the lowest level of the
CSG tree are the primitives, which are currently spheres, cones, cylinders, toroids, planar half-spaces and
stored octrees. TrueSolid is used to display the object from any point of view and scaling. Geometric
objects will be displayed using CSG objects.

TrueSolid also provides for various classification operations which can be performed on stored octrees.
Such operations include: thresholding, connectivity, isodensity surface, gradient computation, etc. The
VDS and geometric object analysis functions will use these operations.

ICERVS Phase II Subsystem Design Report 7-27

[~® ©® o o oo

uexbetrd voo sutbum wyeq Teraeds sdA L-L oImbid

JO 3aeq SI =
gozyreyoedg

Y3ITM DPIIRTOOSSY ST
UoT3oouu0) obessol <«

Josnejrq
DTAJSUNTOAD

—l ooooo ® 0 6 8 ¢ 400 s 00 * e 0 l— —lo 6 0 5 06 ¢ 5 00 00 8 00 o ooooooo ® 9 0 @ ¢ 6 9 00 00 0P 0 e 00 l-
. TOPORPTIOMD . + | uorjorvaejuIjoelqovieareriedsd .
. 080 TOPOKH - . 08D SUOTJIDRIDIUY -
. PTIOM - . 300{qo / e3yeq terjedg .
—lo * 00 LN] - * 0 0 0 0 0 ol— —I oooooo T 0 0 0 00 0 0 0 5""0 00 % 008 00058 09000 *® 4 90 0 0 0 0 I_
l. L] . . ® 00 00 0 0 e .l
® 9 0 6 00 06 ¢ 00 000" 00000t e Ve ol— . L]
. . asegeyeq .
8309 (qOPEDTIFOWOODF0308D | - . X3xedoadad .
. . . Kxeaqrn
T 080 30efqo - . 080 . prIOSONIy

OTI38W08D ; mamund»un Kaxedoxg m

nlollo ® & 6 ¢ 6 5 0 B O SO OGO e SO OO LA A A A A N e I R R A A N NN NN NN R E R EEE T l_

) n .

. MOTASPAD * 90ORIIIJUTOOILD .

. .H T .

. a_ w’o T .

. _ll.l..l | .

. surTdanod n b .

. T 9 .

. - 3OSRIVASPAD .

. Kyaxedoxgreraejerd " .

o T wo .

] T 080 sutbum evieq Terywdg ;

u’o

7.4.3. Class Descriptions

The Spatial Data Engine CSC has only Problem Domain Classes. The Human Interface Classes are
contained in the Visualization And Interaction CSC. The Spatial Data Engine CSC OOA diagram of
Figure 7-7 has been expanded and specialized to produce the OOD diagrams in Figures 7-8 and 7-9.
Figure 7-8 shows the derivation of the basic PDC classes and introduces a set of classes that form
collections of the basic classes. (The RWCollectable and RWOrdered classes are from the Rogue Wave
Tools** library.) Figure 7-9 combines all the PDC classes and illustrates the Is A Part Of relationships
among objects of the various classes. The following describes the Spatial Data Engine CSC classes:

CCutplane: This class encapsulates the concept of a cutting plane which is used to slice
the data volume and facilitate the exploration of internal features of that data volume. There are
6 predefined cutplanes which get their default values from the site parameter file. Information
describing the position and orientation of the cutplane is stored in this class. The values may be
changed by the cutplane editor from the VDS main window Cufplane-Edit menu item, and/or by
the cutplane selection dialog from the VDS view window Cufplane menu item.

CMaterialProperty: This class encapsulates the abstract idea of a material property
(i.c. a temperature in degrees Fahrenheit). It does not include material property data value (i.e.
the value of the temperature). This class was previously defined in section 6.3 and is redefined
here for completeness. There is a material property data file for each property in the set. Each
property file is named: "<property name>.prp". The prp files are used to build the initial
CSetOfMaterialProperties object for each dataset. In the VDS Server, material properties are
associated with a dataset.

CSetOfCutplanes: This class implements a collection of CCutplane objects.
CSetOfMaterialProperties: This class implements a collection of CMaterialProperty objects.

Instantiated from the CVdsDataset class, it is used to store the set of material properties that exist
for a given dataset. New entries are made whenever a new material type is added to the dataset.

CSetOfVdsDatasets: This class implements a collection of CVdsDataset objects. It will be
instantiated from a CVolumetricDataUser object and is used to manage the datasets belonging to
that user.

CSetOfVdsViews: This class implements a collection of CVdsView objects. It keeps a list of
all view windows which are currently open for each dataset. This list of views is needed by the
main application when setting up a camera/view connection for snapping a view to the camera
angle,

ICERVS Phase II Subsystem Design Report 7-29

T# weaberd o0 080 sutbum wiaeq Terzvdg 8- oanbid

aueTdanoo MBTASPAD Kyxedoxgretaagzeid 398RIRASPAD
1 I | 1
—l * 6 0 3 0 00 0 0 0 LI- * e 0 0 00 00]—I ooooooooo l—l oooooooooooooo LN} I—
1
W3 IPOURND
1
L
oTqRIOTTOOMY
|
souwv1dIndjo3e8d SMOTASPAJ0395D 59T310doXdTRTIOIVHIOIOED | | S3OSVIVAFOIO8D
|] 1 i
mlc ooooooooooooooo] -.INI oooooo oool—l ooooo Q-uauoouclml-aoooo oooooooooooooooooo lm
I
SWO}IPOWRNI0I08D

!
poIepIOMY

Z# wexberd oo 080 sutbumz wieqg Teilwds 6-L eambId

NSTASPAD

SMOTASPAJOIBED

suetdandd KyzedoagreTIslzeid
|]
seurTdlnd303e8d 507310d0IdTRTISIRHIOFOED
I n } |
90RIISJUIOOILD ﬂ. 305RIRASPAD
]
§195v3IRISPAJOIO8D
_loo.oounoco.ooo ooooooo I-

m Jd9SARIVIITIFISUNTOAD m

CTreelnterface;

This class encapsulates the interface to the TrueSolid library. All octree
functions are methods of this class. Below are the major methods in the CTreeInterface class:

SetTreeSize Sets size of tree in data units:

SetAddTreeLevel Sets the resolution of the tree (level 1-10)
ConnectView Connects a view window to an octree
DisconnectView Disconnects a view window from a tree

DisplayView Displays a tree in a view window

NewTree . Creates a new tree (one with no points in it)

TreeStat Shows the statistics of the tree

ReadTree Reads an octree from disk into memory

SaveTree Saves an octree in memory to disk

TreeToPostscript Stores to a postscript file

TreeToASCII Saves each voxel of an octree in memory to an ASCII file
AddTreePoint Adds an X,Y,Z level,node type to an octree in memory
EraseTreePoint Deletes an XY, Z,level from an octree in memory
AddList Adds a file of points to an octree in memory
AddAndSculptTreePoint sculpts and adds a set of points to an octree
AddAndSculptList Sculpts/adds a file of XYZ, level, node type to an octree
SetTreeRegionNodeType Sets a region in the octree to a given node type
TreeUnion Unions 2 trees to produce a third temporary tree
Treelntersect Intersects 2 trees to produce a third temporary tree
TreeSubtract Subtracts 2 trees to produce a third temporary tree
TreeTransform Translate, rotate, or scale 3 tree to produce a new tree
TurnOnTreeObjects Turns on all geometric objects stored as CSGs in tree
TurnOffTreeObjects Turns off all geometric objects stored as CSGs in tree
TreeObjectVolumetricDiff * Performs difference between an object and a tree
TreeObjectConsistencyCheck Performs consistency check between object and tree

CVdsView: This class encapsulates the information for a specific view of a dataset. Information
describing the position and orientation of the view with the data volume is stored within this
class. Each CVdsView is associated with a CVdsViewWindow object that displays the dataset,

CVdsDataset: This class encapsulates the concept of a volumetric dataset. A dataset is
the main concept in the VDS, It can be thought of as "containing a collection of data that
characterizes a waste site at a particular point in time". Within a dataset, the data can be
grouped even further by using the notion of data IDs. An ID can be used to separate the dataset
into any group so that it can be displayed later with any ID(s) turned on or off in the dataset.
This might be used to differentiate between different dig sites or different points in time. The ID
is input at the time when data is being entered into a dataset. The material property class,
cutplane class, view class, and tree interface class are all instantiated from a CVdsDataset object.

ICERVS Phase II Subsystem Design Report 7-32

7.4.4. Major Function Descriptions

The Spatial Data Engine CSC major functions can be broken into 5 groups: Material Property functions,
Cutplane functions, View functions, Dataset functions, and Tree Interface functions. Each group of
functions is detailed below.

7.4.4.1 Material Property Function Descriptions

Add Material Property: " Adds a new material property to a specified dataset. A material
property data file (name.prp) is created to hold the data for the property. A new
CMaterialProperty object is instantiated and added to the CSetOfMaterialProperties object for the
dataset.

Dclete Material Property: Deletes a material property from a specified dataset. All
associated material property data files (.prp) are deleted. The CMaterialProperty object is
removed from the CSetOiMaterialProperties object.

Get List of Material Properties for a Dataset: This function is called to obtain a list
of material properties for a specific dataset. A call is made to the CSetOfMaterialProperties
object to get the list of properties for a given dataset,

Get List Of Material Property Types: This function is called to obtain a list of
material property types. The Master Material Properties File is scanned by the
CVolumetricDataUser object to generate the list.

Modify Material Property Parameter: Allows for the redefinition of material property
parameters such as name, units, conversion factor, etc. A call is made through the CVdsDataset
object to a CMaterialProperty object to set the value of one of its parameters.

7.4.4.2 Cutplane Function Descriptions

GetListOfCutplanes: This function is called to obtain a list of cutplanes for a specific
dataset. A call is made through the CVdsDataset object to the CSetOfCutplanes object to get the
list of cutplanes for a given dataset.

Modify Cutplane Parameter: Allows for the redefinition of cutplane parameters such
as name, type, location, orientation, and etc. A call is made through the CVdsDataset object to a
CCutplane object to update one of its parameters with a new value.

ICERVS Phase II Subsystem Design Report 7-33

7.4.4.3 View Function Descriptions

Close View: This function is used to close a view of a dataset. A call is made through the
CVdsDataset object to the CSetOfVdsViews object to delete the specified CVdsView object.

Get List of Views: This function is used to obtain the list of views for a specific dataset. A
call is made through the CVdsDataset object to the CSetOfVdsViews object to get the view list
for a specified dataset.

Get View Display Data: This function is used to obtain the data to display in the associated
CVdsViewWindow. A call is made through the CVdsDataset object to the CTreeInterface object
to scan the volumetric/property data files and to return the displayable data for the specified
CVdsView.

Modify View Parameter: This function allows the redefinition of view parameters such as
name, description, transformation factors, etc. A call is made through the CVdsDataset object to
a CVdsView object to set the value of one of its parameters.

Open View: This function is initiated to create a new view on a dataset. A call is made through
the CVdsDataset object to the CSetOfVdsViews object to add a new CVdsView object for a
specific dataset. Default parameters for the view are read from disk.

7.4.4.4 Dataset Function Descriptions - -- - - -

Add Data Points To Dataset: This function is used to add data to a dataset. Single points, lists
of points, or external files of data points may be added to a dataset. A call is made through the
CVdsDataset object to the CTreelnterface object to perform the actual addition of data to the
appropriate octree(s) associated with the dataset.

Close A Dataset: This function is used to close a dataset and remove it from the list of open
datasets. The Save A Dataset function should be used, if necessary, prior to closing the dataset.
All CVdsView object, if any, for the dataset will be closed and then deleted. The CVdsDataset
object is removed from the CSetOfVdsDatsets and deleted..

Define a New Dataset: This function is used to create a new dataset for a site. A new
dataset object (CVdsDataset) is instantiated which sets up a dataset directory and all of the
necessary files. The CVdsDataset object is added to the CSetOfVdsDatasets.

Delete A Dataset: This function is used to delete open dataset. The data is deleted by
removing the dataset directory and all of its files. The corresponding CVdsDataset object is
deleted from the CSetOfVdsDatasets object.

ICERVS Phase II Subsystem Design Report 7-34

Get List Of Datasets: This function is used to obtain the list of datasets for a site. A call
is made through the CVolumetricDataUser object to the CSetOfVdsDatasets object to get the list
of datasets.

Modify Dataset Parameter: This function allows the redefinition of dataset parameters such as
name, description, etc. A call is made to a CVdsDataset object to set the value of one of its

parameters.

Open An Existing Dataset: This function is used to open and read a dataset into memory. A
new dataset object (CVdsDataset) is instantiated which reads in the associated data files. The
CVdsDataset object is added to the CSetOfVdsDatasets.

Save A Dataset: This function is used to write the data associated with a dataset to the disk
for permanent storage. The data is saved by calling the CTreelInterface method SaveTree.

7.4.4.5 Tree Interface Function Descriptions
Initialize Octree: This function is used to initialize a new tree in memory.

Write Octree Data To Disk File: This function is used to write an octree from memory to
a disk file. A call is made to CTreeInterface::SaveTree to transfer the data from the tree
structure in memory to the disk file. The octree data is written to disk in binary format
matching the internal format of TrueSolid. In addition, any property data that has changed will
also be written to disk in a file named with the property type as its filename (i.e.
Temperature.prp).

Read Octree Data From Disk File: - This function is used to read an octree from disk into
memory. A call is made to CTreeInterface::ReadTree to transfer the data from disk to the tree
structure in memory. The appropriate type of property will be read along with the dimensional
data,

Add Single Point To Octree: This function is used to add a single point to an octree. The point
includes x, y, z, tree level, node type, and property value. A call to CTrecInterface:: AddPoint
is made to insert the new point into the tree, The data for the point must be in ICERVS internal
units,

Erase Single Point From Octree: This function is used to erase a single point from an
octree. The point to be erased is defined as x, y, z and tree level. A call to
CTreclnterface::ErasePoint is made to delete the point from the tree. The data for the point
must be in ICERVS internal units,

ICERVS Phase II Subsystem Design Report 7-35

Add List of Points To Octree: This function is used to add a list of points to an octree.
This list is actaully a set of single points which will be added with theCTreeInterface:: AddPoint
method. A call to CTreelnterface::AddList is made to handle the reading of the list and the
insertion of the list of points into the tree. The data for the points must be in ICERVS internal
units.

Add With Sculpting Single Point To Octree: This function is similar to the Add function. A
call to CTreeInterface:: AddAndSculptPoint is made to insert the new point into the tree. When
added, all points above the new point will be cleared. This function is used specifically when
adding points from sensor data. As surface points are added, it is assumed that the space
between the sensor and the surface is empty. Therefore, the state of nodes in the octree which
represent that space are automatically set to empty as the new data points are added to the tree.
The data for the point must be in ICERVS internal units.

Add With Sculpting List Of Points To Qctree:This function is similar to the AddList function.
A call to CTreeInterface:: AddAndSculptList is made to insert a file of points into the tree. Note
that the data contained in the file must be in ICERVS internal units, The Add With Sculpting
Single Point function will be used to add the points one at a time. When added, all points above
the new point will be cleared.

Set RegionNodeType: This function is used to set a region of points in the octree to a
given node type (i.e. empty, partial, full). A call to CTreelnterface::SetRegionNodeType is
made to change the node type for the specified regionin the tree.

Perform Tree Scan To Print Tree Statistics: This function is used to print the octree
statistics. A call to CTreelnterface::TreeStatistics is made to scan the tree and print the statistics
to an intermediate disk file. Upon return from the print routine, the intermediate file will be
passed to a CBrowseWindow object for viewing.

Perform Tree Scan To Display Tree In View Window: This function is used to display an
octree in a given view window for on of the following reasons:

Translation of any view .

Rescaling of any view

Movement of the cutplanes in any view
Redefinition of view parameters (color, level, etc.)
Addition of new data in any view

I

A call is made to CTreelInterface::DisplayTree to extract view-specific parameters (window size,
translation offsets, scaling factors, display level, cutplane locations, etc.) and pass these
parameters to the associated octree using a variety of CTreeInterface functions. In addition, the
CTreelnterface::DisplayTree routine will pass the view shared parameters (node colors, efc.) to

ICERVS Phase II Subsystem Design Report 7-36

CTreelnterface. Finally, CTreelnterface::DisplayTree is called to generate an Xlib memory
buffer of visible octree points. The view parameters passed by CTreeInterface are used to
determine the visibility of each tree point. The data for a point (coordinates, property, state,
etc.) will be displayed in the operator’s external units.

Perform Tree Analyze Function: This function is used to perform octree analysis
functions. A call is made to one of the following methods: CTreelnterfac::TrecUnion,
CTreelnterface:: Treelntersection, CTrecInterface:: TreeSubtraction to perform a function on two
trees to produce a third temporary tree for the purposes of display.

Perform Tree Transform Function: This function is used to transform an octree by either
scaling, translation, or rotation). A call is made to the method CTreelnterface:: Transform to
perform a transform function on the tree to produce a new tree. for the purposes of display.

Create a Postscript File From Octree: This function is used to generate a postscript
file from an octree being display in a view. A call to the method
CTreelInterface:: TreeToPostscript is made to generate the postscript file.

Create an ASCII File From Octree: This function is used to generate an ASCII file from an
octree being displayed in a view. A call to the method CTreeInterface: :TrecToASCII is made to
generate the ASCII file.

7.5. Geometric Object CSC Detailed Design

The Geometric Object (formerly Object Modeling) CSC provides for the creation, modification, and
storage of geometric objects. It includes upgrades to the tools for creating geometric objects, including
more general prismatic shapes and geometric primitives such as rectangular parallelepipeds, cylinders,
and spheres. Two sets of geometric objects are maintained by the system, including:

1. Master Object Templates File (object.mlb) System-wide default object templates.
2. Geometric Object File (object.dic) Dataset specific set of user defined objects.

Most of the software for this CSC was implemented under Phase I. Most software class names have been
changed to avoid the ambiguity of the term "model object”. The term "geometric object” is now being
used. Additional geometric object types are being added and the 2D geometric classes have been
incorporated into this CSC.

7.5.1. Geometric Object Representation

The storage of a list of vertices for a front and rear face is the approach taken to represent a geometric
object. These faces will subsequently represent the plane in which they lie thus allowing for non-parallel
faces, skewed and/or tapered objects, and many other non-regular shapes not present in Phase I. Once

ICERVS Phase II Subsystem Design Report 7-37

created, the object will utilize geometric transforms to scale, rotate, or translate itself to a desired position
within a coordinate system.

7.5.2. Object Display and Editing Interfaces

After creation, an object will be displayed with the assistance of the TrueSolid package. If the object
option for wireframe is selected, the CSG tree will be built as the union of line segments connecting the
vertices. If a solid object is requested then the CSG tree will be the intersection of the planes of each side
of the prismoid shape including the two faces. TrueSolid supports the construction of solid objects such as
cones, cylinders, and spheres. A wireframe picture of these types of objects will be a prismoid shape with
a predetermined number of vertices per face to simulate a circular object. The approach used will be to
build a CSG tree out of the object's representation, convert the CSG to an image, and then pass it along as
an image to a view window which may be display other the site data. Refer to Figure 7-10 for an
illustration of some objects displayed using TrueSolid.

For editing, the view window will by placed under the control of the RWCanvas package to allow tracking
of individual items. Once in the view window, the objects can be selected and edited. Editing functions
can involve translating and rotating the object, or the reshaping, rotating, or resizing of an object's face.

7.5.3. Class Descriptions

The Geometric Object CSC has only Problem Domain Classes. The Human Interface Classes are
contained in the Visualization And Interaction CSC. The Volumetric Data Subsystem OOA diagrams of
Figures 7-2 and 7-3 have been expanded and specialized to produce the Geometric Object CSC OOD
diagrams in Figures 7-11 through 7-13. Figures 7-11 shows the derivation of the basic 2D and 3D PDC
classes. Figure 7-12 introduces a set of classes that form collections of the basic classes.

The RWCollectable and RWOrdered classes are from the Rogue Wave Tools*™ library. Figure 7-13
combines all the PDC classes and illustrates the Is A Part Of relationships among objects of the various
classes.

CSetOf3DGeometricObjects: A collection class that contains all the 3D geometric objects for a
particular dataset for a particular site. This class encapsulates all accesses to its set of geometric objects.
This class is also used to hold the system-wide Master Object Templates. It is derived from
CSetOfNamedItems, a general purpose collection class designed and used throughout the ICERVS
program,

CGeometricObjectParameters: The abstract base class for all 2D and 3D geometric object classes. This
class provides all the common behavior for geometric objects, including a common type that can be
handled by the collection classes. The class data members include object name, type, notes, creation
date/time, operator identification, object category name, color of the object, etc.. All other geometric
object classes must be derived from CGeometricObjectParameters. This class is itself derived from
CNamedltems.

ICERVS Phase II Subsystem Design Report 7-38

Figure 7-10 Geometric Object Editing and Display

ICERYVS Phase II Subsystem Design Report 7-39

8I930URIRI300 [qOO TIFOWODD

WS IPOWRND

8TqRIOeTTOOMY

T# weabetrd @00 080 308f{q0 oFIjoWOED TT-L 9INbTA
30 3xeg SI = Y3ITH PO3RID0BSY SBI
gozyIeIoads ... UoT3o8uuo) ebessol
JIONIRHPZO
1
L
euTIPZd
1
1
| OUODPED 9TPITOP2D a1bur3o0upP2d
1 |)

" 1 1
93780dwoDpPED PTOWSTIAPED exoydsped IopuUTTAOPED osdTTTAPZD uobA104p2D
] I i 1] 1
L ! L 1 1 !
8390 [qOPEDTIIOWO0DD _uuooﬂnovmo«uuoaoomo

!
—l......Q.QQ..O.‘CO‘..Q.QI-IOOOQ ® 2 & 00 0 00

Z# wexbetd @O0 080 300{q0 OFIJPWOSD 2ZT-L 9INDTI

8309{qOPESTIJOWOSHI0IOED

8300 {qOPZOTIJOWOSDF0FOOSD

L

Qooooo.o.o.oooool—lonoo

d

es 000000000

WO IPOWENJOOWRN JOJO08D

POIOpIOMT

¢4 wexberd OO D80 399fqO OFIeWOSD E€T-L OINBTI

300(qope
O..ﬂ..uu.oﬁomwo
d
s300LqOPE
OTI3OWO8HF0I08D
|
©3780dwoDPED . | saoefao pe aou3zo
T ~ T
1 1
300(qOPESTIFOWOIDD

5300 qOPESTIISWODDFOIOFD

—l oooooooooooo P.o oooooooooooo I._

395R3VGSPAD

: 080 oeurbuzx wieq TerIRds :

Figure 7-14 VDS Geometric Object OOD Diagram #4

ICERVS Phase II Subsystem Design Report 7-43

CGeometric3dObject: The abstract base class for all 3D geometric object classes. This class provides
all the common behavior for 3D geometric objects, including a common type that can be handled by the
3D collection classes, Other 3D geometric object classes specialize this class by providing additional data
to define the specific geometry of the object. This class is derived from CGeometricObjectParameters.
The extra data members of this class include the list of coordinates for the front and rear face vertices.

C3dPrismoeid: A class that implements a type of CGeometric3dObject characterized by two polygonal
faces. There are no extra data members for this class; it is repr&gcnted solely by the list of vertices
inherited from the CGeometric3dObject class.

C3dCylinder: A class that implements a regular 3D geometric cylinder. The extra data members of this
class include the center of the base, the diameter of the base and the height of the cylinder.

C3dCone: A class that implements a regular 3D geometric cone. The extra data members of this class
include the center of the base, the diameter of the base and the height of the cone. It is derived from the
C3dCylinder class and sets all the rear vertices to the center of the face.

C3dSphere: A class that implements a 3D geometric sphere. The extra data members of this class
include the center of the sphere and its diameter.

C3dPlane: A class that implements a planar geometric object. The extra data members of this class
include a point on the plane and the normal vector to the plane.

C3dComposite: A class that implements a composite 3D geometric object that is composed of several
other 3D geometric objects. The extra data members of this class include a list of objects that comprise
the group.

CSetOf2DGeometricObjects: A collection class that contains a number of 2D geometric objects and
encapsulates all accesses to its set of geometric objects. This class is used mainly in support of orthogonal
view by the Visualization And Interaction CSC.

CGeometric2dObject: The abstract base class for all 2D geometric object classes. This class provides
all the common behavior for 2D geometric objects, including a common type that can be handled by the
2D collection classes. Other 2D geometric object classes specialize this class by providing additional data
to define the specific geometry of the object. 2D geometric objects are used internally within the
Visualization And Interaction CSC to support orthogonal view windows. This class is derived from
CGeometricObjectParameters,

C2dPolygon: A class that implements a polygon. It is derived from CGeometric2dObject and the extra
data members of this class include a list of vertices.

ICERYVS Phase II Subsystem Design Report 7-44

C2dRectangle: A class that implements a rectangle. It is derived from C2dPolygon and forces the
number of vertices to four.

C2dLine: A class that implements a line, It is derived from C2dPolygon and forces the number of
vertices to two.

C2dMarker: A class that implements a 2d marker. It is derived from C2dPolygon and forces the
number of vertices to one.

C2dCircle: A class that implements a circle. It is derived from CGeometric2dObject and the extra data
members of this class include a center point and a radius.

C2dEllipse: A class that implements an ellipse. It is derived from CGemometric2dObject and the extra
data members include a center point, two radii, and an elevation angle.

C2dComposite: A class that implements a composite geometric 2D object that is composed of several
other 2D geometric objects. The extra data members of this class include a list of other objects that
comprise the group.

7.5.4. Major Function Descriptions

The functions of the Geometric Object CSC are used internally by the ICERVS software subsystem. No
operator will directly interface with these functions. Instead, the operator will interact with some user
interface and that user interface will interact with the Geometric Object CSC by issuing commands to the
VDS Server. Refer to Table 7-11 for a list of VDS geometric object commands. The Geometric Object
CSC major functions are described below:

7.5.4.1. Read Geometric Objects List/Template Files

This function is internal to the CSetOfGeometric3dObjects class. When an instance of either class is
created, the constructor for the object will read the appropriate disk file and load the geometric object
data.)

7.5.4.2. Write Geometric Objects List/Library Files

This function is internal to the CSetOfGeometric3dObjects class. When an instance of either class is
destroyed, the destructor for the object will write the appropriate disk file and store the set of objects to
disk. If no changes have been made to the object data, the file write process will be bypassed. The
representation of the objects will be written to disk in the same manner as that of the site data where an
instance of the CConfigMgr class will generate an ASCII file containing all the necessary information to
regenerate the objects.

7.5.4.3. Add New 3D Object To List or Library
Addition of new geometric objects to the list or library involves only the creation of a new instance of
CGeometric3dObject (actually one of its derived classes) and the addition of the new instance to the list or

ICERVS Phase II Subsystem Design Report 745

library. This function of performed in response to a VDS_CreateObject command. A geometric object
with default parameter values is created and placed into the appropriate set of objects. The
SetObjectParameter command must be used to define the new object's actual parameter values. An
objectld is returned by this function,

7.5.4.4. Delete 3D Object From List or Library
Deletion of a geometric object from the list or library involves only the removal of the object from the list
or library. This function is performed in response to a VDS_DeleteObject command.

7.5.4.5. Modify 3D Object In List or Library

Modification of a geometric object in the list or library involves the extraction of the objects data,
modification of that data, and re-insertion of the object into the list or library. The
VDS_GetObjectParameter and VDS_SetObjectParameter commands are used to perform this function.

7.5.4.6. Associate (add or modify) Text With Geometric Object

This function allows for the association of text with the 3D geometric objects that currently exist in the
geometric object list. Aside from the object name, description, the creator name, category name, and the
date and time the object was first created, the ICERVS system allows a variable length text block to be
associated with each object. Any information desired may be entered into the text block. The
VDS_SetObjectParameter command is used to defined the text block.

7.5.4.7. Output Text Report Of Geometric Objects

This function allows for the browsing and optional printing of any or all 3D polyhedral objects that
currently exist in the geometric object list/library. The output consists of an object name and description,
the operator name who created the object, the date and time the object was first created, the category of the
object, the color of the object, and a list of vertices that describe the object. The output is formatted and
written to an ASCII disk file.

7.6 Spatial Data/Object Interaction CSC Detailed Design

The Spatial Data/Object Interaction CSC provides a link between the Spatial Data Engine CSC and the
Geometric Object CSC. It incorporates capabilities to enable mathematical operations between octree data
and geometric object data. This CSC will allow an operator to, for example, compute the volume of octree
material located inside a selected geometric object and automatically scan the octree space to identify any
geometric objects that are void (contain no octree material). Refer to the OOA diagram of Figure 7-7 for
an illustration of this CSC and its relationship to the other parts of the Volumetric Data Subsystem.

7.6.1 Dataset Interface

The CVdsDataset class coordinates the link between the Spatial Data Engine CSC and the Geometric
Object CSC. The CVdsDataset object receives the commands from the client/server connection and
instantiates the CSpatialDataObjectInteraction class to perform the function. The
CSpatialDataObjectinteraction object gets all the necessary octree information from the CTreelnterface

ICERVS Phase II Subsystem Design Report 7-46

object in the Spatial Data Engine CSC and all the necessary geometric object information from the
CGeometric3dObject objects in the Geometric Object CSC in order to perform the requested function.

7.6.2 Class Descriptions

There is one class in the Spatial Data/Object Interaction CSC (CSpatialDataObjectInteraction). This class
contains methods to perform all the ICERVS Phase II requirements for the interaction between the
volumetric data and geometric objects.

CSpatialDataObjectInteraction: Encapsulates all Spatial Data/Object Interaction
functions as methods within the class. The following methods are contained in this class:

ComputeObjectVolumetricDifference: Computes the volume of octree material located
inside a specified geometric object. Returns the results of the computation.

PeformObjectConsistencyCheck: Scans the octree space to identify any geometric objects
that are void (contain no octree material). Returns a list of inconsistent objects.

ConvertGeometricObjectForDisplay:. Converts a CGeometric3dObject into a
TrueSolid CSG. Geometric Objects may converted into a wire frame or solid model format.
Refer to paragraph 7.5.2 for additional details relating to the display of geometric objects.

7.6.3 Major Function Descriptions

Compute __ Volumetric _ Difference Between _ Octree _and __ Object: The
ObjectVolumetricDifference command is sent to the VDS Server and passed on to the
CVdsDataset object which instantiates a CSpatialDataObjectInteraction object to execute the
command. The CSpatialDataObjectInteraction object accesses the CVdsDataset's CTreeInterface
and the CSetOfGeometric3dObjects to obtain volumetric and geometric object information

respectively.

The octree is known to Truesolid as a memprim, and the geometric object is known as a CSG.
The volume of both these things can be computed by setting the region of each of them to a
different node type using Truesolid's fs_setregion library function. Then all the nodes with the
specified node types just set can be retrieved using Truesolid's #s_forallnodes library function
with a specified node type. The volume of all the retieved nodes for the tree can be added up and
displayed in a browse window. Similarly, the volume of the geometric object can be obtained and
displayed. Finally, the difference of the two volumes can be computed and displayed.

The output from this function will be displayed in a browse window containing the volumes of
the octree and the objects; and the volumetric difference between the two. In addition, the nodes
contained in both volumes will be colored a different color to show the volumetric difference

ICERVS Phase II Subsystem Design Report 7-47

graphically. When the browse window is exited, the color of the tree and object will return to the
state previous to executing this function.

Perform consistency Check Between Octree and Object: The ObjectConsistencyCheck
command is sent to the VDS Server and passed on to the CVdsDataset object which instantiates a

CSpatialDataObjectInteraction object to execute the command. The
CSpatialDataObjectInteraction object accesses the CVdsDataset's CTreelnterface and the
CSetOfGeometric3dObjects to obtain volumetric and geometric object information respectively.

The octree is known to Truesolid as a memprim, and the geometric object is known as a CSG. A
consistency check of a given object can be computed by setting the region of the CSG object to an
empty node type (type=0) using Truesolid's £s_setregion library function. Then, if no empty
nodes are found in the tree (using Truesolid's £s_forallnodes library function with node type zero
specified), it is assumed that the object is floating in space.

The output from this function will be displayed in a browse window containing the result of the
consistency check bewteen the octree and the specified geometeric object (i.e. floating in space or
not floating in space). .In addition, if the geometric object is found to be floating, it will be
colored in a bright contrasting color to show graphically where the problem object is located.
The operator can opt to permanently make the object this color to be reminded that the object
must eventually be deleted from the system. When the browse window is exited, the color of the
floating object(s) will return to the state previous to executing this function, unless the operator
opted to color them permanently.

Convert Geometric Object For Display: Object rendering is performed by converting the
geometric object information into TrueSolid CSG trees. Both wire frame and solid modeling
formats are provided. Refer to paragraph 7.5.2 for additional details.

7.7. World Model Data Interface CSC Detailed Design

The World Model Data Interface CSC will convert ICERVS geometric modeling objects created by the
Geometric Object CSC into a specified form such as IGES, STEP, or IGRIP in order to provide geometric
world models to robotic controllers. Only one format (IGRIP) will be supported in ICERVS Phase II.
Future capabilities will support input of geometric object information from architectural systems and
possible integration with a robotic controller world model. Refer to the OOA diagram of Figure 7-7 for an
illustration of this CSC and its relationship to the other parts of the Volumetric Data Subsystem.

7.7.1. Geometric Object Database
The World Model Data Interface will be implemented as a single class which contains methods to perform
the conversions. The World Model Data Interface CSC accesses the Geometric Object Database which

.~

ICERVS Phase II Subsystem Design Report 748

stores all the object data and converts the objects to a format compatible with another object storage
system. The Geometric Object Database consists of a geometric object dictionary file (object.dic) and a
geometric object library file (object.lib) for cach dataset. The object dictionary file contains all the
information about the defined objects for a particular dataset. The object library file contains predefined
shapes which can be used for generating objects. Access to the Geometric Object Database is
encapsulated by the CSetOfGeometric3dObjects class, which contains methods to read, write, list, and
view the objects.

7.7.2. Class Descriptions
There is one class in the World Model Data Interface CSC (CWorldModel). This class contains the
methods to perform all the phase II requirements for the world model.

CWorldModel: This class is the main class for the world model CSC. It contains methods
to perform the various conversions. It includes information that is common to all the methods
listed below.

ExportToIGRIP: This export class encapsulates the conversion of geometric objects stored in the
ICERVS geometric object file to a file in the IGRIP file format.

ExportToSTEP: This export class encapsulates the conversion of geometric objects stored in the
ICERVS geometric object file to a file in the STEP file format. This method will not be
implemented in Phase IT; '

ExportTolGES: This export class encapsulates the conversion of geometric objects stored in the
ICERVS geometric object file to a file in the IGES file format. This method will not be
implemented in Phase II.

7.7.3. Major Function Descriptions

Convert Geometric Objects to IGRIP Format: This function converts the geometric

objects to a file in IGRIP format. A command is sent to the VDS Server and passed on to the
CVdsDataset object which instantiates a CWorldModel object. The CWorlModel object
interfaces with the CSetOfGeometric3dObjects object to obtain geometric object information.
The CWorldModel::ExportToIGRIP() method is called to convert the geometric objects into

IGRIP format and to generate an output file. readable by IGRIP.

NEED DETAILS AS TO HOW TO DO THIS. WHAT IS THE FORMAT?

7.8.

Property Database CSC Detailed Design

The Property Database CSC has been separated from the Spatial Data Engine CSC to promote system
flexibility and modularity. During Phase II, it will remain closely coupled to the Spatial Data Engine

ICERVS Phase IT Subsystem Design Report 7-49

CSC. To accommodate the large amounts and multitudinous varieties of property data in an efficient
manner, it is anticipated that a commercial DBMS product will be integrated into the Property Database
CSC in the Phase IIl ICERVS. This CSC and the DBMS will provide for the physical storage/retrieval of
property data, while the Spatial Data Engine will be used to provide the spatial aspects of the property
data. Refer to the OOA diagram of Figure 7-7 for an illustration of this CSC and its relationship to the
other parts of the Volumetric Data Subsystem.

7.8.1. Property Database Structure .

For ICERVS Phase II, the Property Database will consist of a set of property files within a site/dataset
directory. A separate property file exists for each property type contained in the dataset. For example, if
there is property data stored for density and radiation level, then there will be two property files within the
dataset directory in which the spatial data is also stored. The property files are named with a filename
taken from the material property file (the property type) and the file extension of "prp” (i.e. density.prp).

When a CVdsDataset object is created, a CSetOfMaterialProperties object is initialized.- The CVdsDataset
class constructor examines all the files in the dataset directory with. the extension of "prp". A
CMaterialProperty object is created for each property data file found and inserted into the
CSetOfMaterialProperties object. New property types can be added to the dataset during spatial data input
functions. Since TrueSolid can handle only one property file at a time, namely density , the property file
for the selected property type must be renamed to (<filename>.Density) in order to be read into TrueSolid
along with the spatial data,. - -~

The Master Material Property File is in CConfig format with one block for each material property type.
Each block contains the property name (which will be used for the filename of the property file), property
description, unit label, and conversion factors to convert input property values into TrueSolid's internal
format.

7.8.2. Class Descriptions
Only one class exists for this CSC. This class encapsulates all functionality of the property database in the
Property Database CSC. The following describes the main class in the Property Database CSC::

CPropertyDatabase: This class encapsulates all functionality of the property database
in the Property Database CSC. This isolates the property data functions from the rest of the
system so that Phase III can easily incorporate a commercial property database into the system.

7.8.3. Major Function Descriptions -

Read a Property Type: This function is used to read a property from the property database
into memory along with the octree (dimensional) data. The default view display parameter for
property type is used to determine the type of property to be read in with the dimensional data.

ICERVS Phase II Subsystem Design Report 7-50

This default value is usually "Dimensional”, meaning that no property type will be read.
However, this can be overridden by the operator during view creation time. This function is
actually part of the CTreeInterface class (CTreelnterface::ReadTree) which transfers the data
from disk to the tree structure in memory. A command is sent via the client to the server and
passed on to the CVdsDataset class where the function is executed using the CTreeInterface class
in the Spatial Data Engine CSC. The CTrecInterface class calls a method in the
CPropertyDatabase class which is part of the Property Database CSC. The CPropertyDatabasc
class is in charge of renaming the appropriate property file to be compatible with TrueSolid as
follows:

copy radiation.prp <filename>.Densities.
where filename is the name of all octree files within the dataset directory

Only one property can be read in per octree. Once the appropriate property file is renamed, it is
read in along with the octree data using Truesolid's £s_load_octree library function. Then a
threshold is applied to the octree which effectively changes each node's type based on a given
min/max range. This is done using Truesolid's fs_threshold library function. When the
predefined rainbow threshhold file is now applied to the octree, each node will be colored based
on property value,

Write a Property Type: This function is used to write a property from memory to the
property database. This function is actually part of the CTreelnterface class
(CTreelnierface::SaveTree) which transfers the data from the tree structure in memory to disk.
A command is sent via the client to the server and passed on to the CVdsDataset class where the ~
function is executed using the CTrecInterface class in the Spatial Data Engine CSC. The
CTreclnterface class calls a method in the CPropertyDataBase class which is part of the Property
Database CSC. The CPropertyDatabase class is in charge of renaming the appropriate property
file from TrueSolid naming convention to ICERVS property naming convention. to be
compatible with TrueSolid as follows:

copy <filename>.Densities. radiation.prp
where filename is the name of all octree files within the dataset directory

Convert a Property Type: This function is used to convert a property value from & raw
sensor reading to a number in Truesolid internal format. This conversion is done at the point in
time when the property data is being added to the octree. A command is sent via the client to
the server and passed on to the CVdsDataset class where the function is executed using the
CPropertyDatabase class in the Property Database CSC. The following steps must be performed:

® Apply the units conversion stored in the material property file to the raw data

ICERVS Phase II Subsystem Design Report 7-51

® Convert the property value to octree internal format by using the sensor's min/max range and
a property internal range (-32767 to 32767)

7.9 Visualization And Interaction CSC Detailed Design
The Visualization and Interaction CSC implements a standard user interface for the Volumetric Data
CSCI, which supports all the common functions for the CSCI. This CSC will produce one or more Motif

windows on the client application's display screen from which the operator may interact with and = .

manipulate the application's volumetric, property, and geometric object databases. Figure 7-15 contains
an OOA diagram of this CSC.

7.9.1 Operator Interface Description

Almost all of the of code for this CSCI will be for the windows, menus, buttons, and other GUI elements
of the operator interface. The Uniras UIMX GUI builder tool will used to layout the screen and generate
most of the code. The callback functions for-the menu buttons will typically issue one or more VDS
Server commands and display the. command. results in a appropriate GUI window. The following
paragraphs describe the major aspects of the operator interface.

7.9.1.1 Volumetric Data Window

The Volumetric Data Window contains Volumetric Data Subsystem's main menu. This window is
activated in response to the VDS_EnableUserInterface command. The menu and function buttons on this
window 1mplement all the ﬁmcuonahty for mterfacmg to the volumetnc database (v1ewmg the data,

'mputtmg the data, analyzmg the data, cutplamng the data, and r&dmg/wrmng datasets) Most functions

in this window act upon a current dataset. The current dataset is selected from the Volumetric Data
Window's pop-down list of datasets. Figure 7-16a contains an example of the Volumetric Data Window.

7.9.1.2 View Windows

The VDS View Window contains the functionality for viewing data volumetric data and for interacting
with that data. A VDS View Window is activated from the VIEW menu on the Volumetric Data Window.
A view window displays dimensional and/or property data for a selected dataset. Multiple view windows
may be created for a dataset Each view window depicts the data from a different view point (i.c.
orthogonal or arbitrary view). The view window can be manipulated (scaled and translated) with the
sliders located on the two sides and bottom of the view window The data within the view window can be
rotated (arbitrary view only) by clicking on the "R" button on the menubar and bringing up a rotation
rectangle which allows the operator to rotate the view point via the middle mouse button. The view
window can be cutplaned or sectioned by clicking on the "C" button to activate the cutplane manipulation
controls. The view window provides six independent cutplanes. In addition, the view window can
contain geometric objects.

ICERYVS Phase II Subsystem Design Report 7-52

uexbeld YOO O8O0 UOTIORISUI PUY UOFIVZTTIWNSTA ST-L O©anbyd

30 3xed 8I =

gozyTRIOedg

YITM POREOOSSY 81
uoyjoeuuc) obvssoN

OQdTRqOTHSAA

SMODUTA
MOTA Y30
T
sSNUOK
w'o
SNMODUTM X930 . MODUTMMOTASPAD
i
T T °
I
SI910WRIVINDGTAD
SNUOK
114 [} 0 . w 4 0
MOPUTMUTRHEPAD JUSTTORIRAOTIFOUNTOAD

AR
N 3 §§ *‘Q;:‘\\\"
R)
AR \\3\\\;\'“» g\\\ \"\"\\ AR
R AN AR
_aTT SOy T T RrH o0
NI TR S
RN \z}\\h_\\% §\\§\g
¥ R X

...,
¥
P

R
3 s\\\'
SRR

=
33

G Soast

R
X \\i\\‘_ R
N
e M S
i I ina
\\W\;}'i 2 Q\N \\\'s_\\\"
RN

SN0 T

X

RIS

X3

s

TSR

\‘e‘i\.\.~
N X
2R "*‘\Em:w RN
3 TS
R
X A

gr\\\\» Y
a0

o
3
R
-
R
:}\,« RN

N
: §Q‘.\§\Q\
.
\\{\\%”m\ e

I
N

% i
Z

T
R

RN

2

Ll
.

2 RO B0
N N
o N o
"‘“\M““ R’ @k\ % o
s&f ..)\\9:\ \\\\%\&‘\ '“%t‘\‘\\%‘:‘ﬁ& > \{\\\&,\‘\\ X

%

R N ¥
R) X I
: 2 R R \\\'\'\\\\ RN

S S

S X

X X A BN

N NN AR R \“'\\\.\ ~\“ R N
N NMInsmast X

S
&

ol
SRR
e

N
TR

2
R IS
$3

TS

':-Et
R

R
X

N :%: R 3 \N\ X @‘\ \\\\\ ;‘\\
-
.

%
5

A

RS

N

% N

N \\\“«\\\\ N
Nk

S
N = N \\ Z
-

RN S e T \\\\‘\
L
X R N R RN 2N

-

R N
X E:\:{ R &« \\‘\\.\\}N

N
AR

Ll

R R RN v\\\\\\\\\ X E"\‘
R _ ..
o

N

_/..
-
.

-
’Q/é’:éngy/)/gf/ﬁn il
CURHEND
s 7 7

RS
EL

)
) SR % =)
RN ‘@s&i\;‘wﬁ\t&“m a8
> Y R RN
&W&A* R
N .
R SN N
X N

I

IR NS

The menus on the VDS View Window (Display, Object, Options, and Output) allow the operator to
control the appearance of the data within the view window; activate an object control panel for interacting
with the geometric objects associated with the view window's dataset; tailor the view options for a
particular view window; and output hardcopies of the volumetric, property, and object databases. Figure
7-16b contains an example of a VDS View Window.

7.9.1.3 View Defaults Dialogs

Initial values for the VDS View Window control parameters come from a disk file (view.prm). A separate
parameter file exists for each dataset and the parameters for each dataset may be customize using the
View Defaults Dialogs. One dialog (refer to Figure 7-17) permits tailoring of all non-color related
parameters. The other dialog (refer to Figure 7-18) allows tailoring of the view window coloring.

When activated from the Volumetric Data Window VIEW menu (Defaults button), the dataset default
parameters can be edited. Each dialog supports a SAVE AS MASTER button that allows the current
settings to saved as the system Master View Parameters File (etc/viewprms.def) which become the initial
settings for all new datasets. When activated from the VDS View Window DISPLAY menu, the in-
memory copy for a particular view window can be edited. The SAVE AS MASTER button does not
appear.)

7.9.1.4 View WindowTransform Dialog _

" The View Window Transform Dialog is activated from the VDS View Window DISPLAY menu and
provides the functionality for rotating, translating, and scaling the data within a view window. These
functions are performed via sliders, edit fields, and buttons. Transforming the view can be perfromed by
either moving the slider bar to the appropriate position, by selecting one of the predefined values in the
pop-down selection dialog, or by entering the value manually into the edit field. The value contained in
the edit field will be applied to the view as soon as one of the push buttons are clicked. These buttons will
scale, rotate, or translate the view accordingly. Only arbitrary views can be rotated. This window is an
alternative to using the view window's scaling and translation sliders located on the sides and bottom of
the view window; and the rotation cube accessible from the menu bar "R" button. Figure 7-19 contains an
example of this window.

7.9.1.5 Geometric Object Dialogs

The Geometric Object Dialogs provide the capability to create and edit geometric objects. These dialogs
consist of a functions dialog (Figure 7-20a) and an editing dialog (Figure 7-20b) which can bring up an
object edit sub-window (Figure 7-21) and/or an object face reshaping sub-window (Figure 7-22). The
functions dialog allows the operator to perform functions on objects (delete, print, export, etc.), as well as
functions on library objects. The editing dialog allows the operator to create new objects, and bring up
object editing and resizing sub-windows.The object editing sub-window allows the operator to scale,
translate, and rotate a selected object or face of the object. The reshaping window allows the operator to
reshape a face of the object. The Geometric Object Functions and Editing Dialogs are activated from the
VDS View Window OBJECT menu.

ICERVS Phase II Subsystem Design Report 7-55

RRERINNN
RN
‘{:&"\?‘ \\}k\

ey

J\.\\x \\\.- N \\.\ R NI, R

N ey
R

W N =

%
744

R R R R A R
\‘\

7

i
.

O
T rm,,,rrsrrsrsrsEEEEEEOrEETErTEEssssss T e _e—e,Tsrr s>
R T TR \}m\&\;\\@\\\@.s\\w«m
& 38 §«\\\.\\\\\\\\\%\#}\ RN \‘\‘\"\\‘Q\\ \\ R R \\"\\X« *{\Q\i\\\& »\-
N
N
SN

RN

Co 22,

Sopnocece

.

AR T e R T . A

L
\ .

R N
AR N Y < N X\?%\\\\v\\\ \‘\%\\
:\\:\%{\i\k\g i \ Yo \A}“\s)\\'\\u\w""'_é‘“ ,._\:\ N 3 §§&§§§\\‘Q§§\<\\
4 N

777

W D 2
3 D e AR t\\ .\;.Q\\\v\
R N > X R ROk
§\;§\\\\\\‘\ X \\{'\y}' AR N \\\\\\“_&\\\:& NN
T g NS
NS

IR
Y R R RS

MM \}"\ N Rk
N N "\\'{ S %\:\\ X R RS
L SN FN e
DN s SR E s S -
MR D g&gﬁ&@%&% N o % \\\o\:s\\i;:?@ \%g.\\%mm X i - 3 N
R AT RS _ - . Y S X
R N S -
i T T T R
»‘N\\&x«(&«g&\ R R s R 3

TN

%\\\\\s ANYE:
\\;\\ s&iﬁ"« R
MR
AR >

NN A N

QR

.

&

3
3

I

7 N " DRI

o~ AR e =
N e e T A e BY \S*«m\&#\\w\ N
= NRAER :}\@ N N TR R
m%m“m\\\%\ NN SERINERER

AN <\"\‘\>=

R
(=D
w\m\w\w:mum AN AR

AN R N N 5
R R T s
TR ii\\§'\\\°\“\3§m&'\;\\\§§\\ %
3 R R ER , TR 3
4 TR -
7887 Y R Y R AR
T >
(o
1

43

R
N
D

N Nhale
N ,\\a“\z\\: \\f R N SIRNEN
il N R SRR
N RS W&.ﬁ}&g&% EAHONER
¥ Q, R SIS N0 o RN =
A NN ERIER NS ANy RN P
NAEAERT o TR IR
£a3% AN SO ey I O AR X AR s
N RN ‘
\

o
N

SR
NEAS

N N
R NS

DRSS \N\\’\\\G \,;\\\,
DN

*\W 3
RN
TR

R
R “ﬁ\&z\é@,

N
RIS

N
32

3 S RS R
s L s
gM\(‘:&\\\\m\}\\\\} Kg
=
3
%

4 Xz o
o5 NN s NN
2 S N D AR D W\
R IR
b RN s
R R AT LTSN
i ARt RN

S ONNARETAR, "\\a\&.ﬁ.\‘é&&&m&\%\ SRR ""\'#’.\"&‘5; S8
, TR AT ae R N I AR
2 SRR R T R T R R
i R R R Y

O R A A a2 A e A A T A A S A R A RN >

B R R T T TR R R ey

AR RR RS RS RGN §\\.-\"§\M R RN
% R R R SIS

N
prfirs O90n b0 S
PRI > x Ry

SRR R

i e)R
R R TR
RN DRA o
N R RS
A R S R R
R R T O
AR
SO -’\

e S S TS SRS A IRA IR L S

N
CoFL) Sy

235

o

NPIVA

¥
g
¥

AS D
SyLY ey Ro3 "
AT

A AL SN SN S AT AR AL

_ r e
X Nk
X
N s
R N \
AN

DR -_\,\-§§§.¢\ RIS X
\\\«\&\\\Qx\\\\i\\\‘\\ N Q\\'\\QSN.‘\?;\Z\\‘%\.Q\x\W.\&&\
R X X T R X
MR N \\,\\\ \\\\Kkﬁ\x\ R e
.
Rt *\\\\\\ TR TR .S
Tt s

N
N

R

R \g\}\\\;&\\\\\\\.\
R
T

% \\\\? N 3 \ D \\\\\,?\‘-\.‘&\ \-
R R HERTTR T T e T S i

R
\ N N
X N
RS

HHIRR ' ' ‘ TN «-\\x

7

x

7

SN R
»\\\\\\W \\\\\\\Q\\\\Q\\S\w\\\\\ \\ TR X § 3 w\‘:\\\\\i\ R %
Nk
RNRK \

PR
NGl

T //W@;;"
. |

R LSRN
W\..\\:\\\\\\\xg% ROt aEe X
LAY §§\t§<\§\§;§\«\\ 2 :\\\"\\%}w\'{ R :3\\\:\ :\.‘ R M
Nk nt \\\\\Q\\\\x\?\\s&xm\ s R
R R A S \N’\"\\‘_*"i\‘ R "'3\%\‘ R
L e
L
3 RO \%\\\k N N \\QQQN\\&\\Vm)% it AR
‘\ \. =
AT
N

AR
e
\ %\\}V&%g}\\\;&“ V\\;\ :ﬁ\

AN

3

szzggu

N
W \\ N X
R T TR
, =
s e
T T N R R o

X R
Y
R \"\"\{\\Q& . f*:\\ \
N) AN
3 j«\\‘z\\\%:} D N X

R X

SRS "v\...:@‘5 SRR
RS AR RN “9%%\\\‘%\-\‘\‘-%? NN
L ‘*‘»@% . \\\;\\\Q\\\\xﬁ\g\é’g\\‘?ﬁ*‘*&%\x o
S

N

N
& R I TR T P 5 QRS R o R
N I ﬁw*@\ X Gak-—-—ws
R R R R R TR RN
Vit i X
D

L3

N

o

bl

RS
) N AT TR N
N \ﬁ“\%&&%\\\\ N
..

\\\\\“ X SN \& SRS
NN \{\@‘Q&* \\3{\\\\ R \ S8
R R A R R s
L L e

R

3 N I
%?&x\:\i\&g\\:} e L \\&\\ R TRHRHERR E‘»ﬁ\“\ N
o -
HMITIH7 T R

MR
T S

N
TR

S
RN
2N

R

agrxserasse

O

T v\\\{» X3

3} X NN R RN N3
X R 3 3% R R R R0 Y
X T st \\ 'Q*W“\ S
L
R
R et e

42 sagamn ae 8 RN
55

v«wwv«vw«\
7

27
%

,5%;;7',
250
2
¥s

7
o
7

6"

Grh
R
q
S

2
5

2
%

2%
i
ﬁ.

2
A
5;.&}537 SIS

¢
s
Y
4%
o
oy

41

&
5%

S AR,

X%

\,‘
2

o

5%

3

A LRIEK

o b

{

V‘Z
o

RPN
(S
R
3

/|

%

g

<
AR

R
AN o NS
5 \\3@\%‘%
T Himn

R

3
W RN
T X
N D
o

\\

SRS

L

TR

3
X
D8 \»N_:\\

\\\&\“5&\
R

R
OSSN
N
T
R
NN 43 \;‘3&«
R R R
SRR w’%},&\;«}q\"ﬁg{‘&

S o5
AR
PRI S

AR
ey
S

R IR

ROEARE
A Mt R R SRS
RSN

0 AN
o
NI
3 R M‘Q\
AR Y
RN
B AL SRR I Eyr gy
N&\Q.

AN N

AR

Mg;ﬁ&: D RO

AR AN

o\i\;\y‘\’s:&;&"w. A
R %

NRRRR
o

R

Rl
NER R
\”Q\\@\\

X

R
e TR
Y\\W\w\\w\\\ ?vx\\\

N

R
R

RO
N

N

R

R
R
R

N X ‘
\t§\\\\\ M

N

ST N
TaaREHNSR

R R A

Ve

S %W.M
AR m\\% N
\Aﬁ \\\%\::«\ IR 'k\w«

S
TR

N

_,,
N

\\X\‘\Q.\\k:\\”\\\"" DA

R -§:\\\ R

*\\\ NS
5

\

TRt

N

S A AL
% R

N
Y DD S : —
ImmmmrrsrTETEETTEESE

55

£
ik bt

19

TR o
N

R

|

D
R
\sl'\

‘
AN

N
R S AN
= “'ﬁ'\\\z-\;;x:x AR
R R
P AN ~
AR R
e

m\\g}xﬂ S

S I IR~

=

3
2 N
RN

N ‘:‘ NN
R
W\a\\
SRR N
.Q\'i\:ﬁ\'{sxzﬁ R
SR

£

e

e
>§3\.§<\;&.€~% W
S

S

=T

AR N \ N
AR MR ‘\\\;\.;\ X \\\\\‘{}% R SERISRSRN:
=

B N
SRR

D
R

R
D
AN

(Rt

Nty

2 \\\\\ NSE
SRR
RN

L

R R
AR N
TR
< AN \\\
RN
R RRHH®H
‘-\\.\Q’.\;\%\\.
RN
\\:\):\\\ AN
RN
ARSI
AN
5:.5‘\@.&\\\ R

AN

& R

AR
a

e

3
AR v
AT
R RS oo
RGNS

AN NGRS
AR
3) \\ \\Xw&l
SN

o\ ‘5‘
S

5

AT

PO
33
ki

\\«.
3,
5%

\‘
¥

NS

N T

KRS
A

e
Ran "zh';:{W;ﬁR{j&é“ o
SRR

3
3
2%

¢

S5

f’

2 gt
e
G

S

A

e

)

el
S
R

NI
B E
TR

S

& N/:Jf f

R L A

e
AT

2 A e Y s
BN

4 s :
BT AN
AR A R
N
RIS 2\&\7@»»\@«:}5
RO
SRS

ites

TR UR

5 RN
o ENARAT g: R ot
S NI . Q RN ERATRAK

A3

0
A

IS RIS ISR AR ST
T

RN \kx«\\wmm =
RN N
A AN

RN R s
1R \\&\\\@x\\@
X TR T TEDINETINN N
FEvATRAR e e
AN *’x&\\\\»xt‘m&g\.\& - NN :§“§¢\\\§\\\\\\W‘®\\‘$«\§\w‘
ORI N X N R R
R Y e R "y

T RY: IR

R S P
D \@}\\}X\\\\%‘ NS .

PR
oA ANINN:
N T A N

X i*"*‘%“\t\&\\\"

N
3

N

%
D
X

Y

e\

S

Q

NI
A

Rt R
ittt
\\\\\\ W \\\\\'\\\,\\j‘ N m\\\r\{;
R \w\\\\\ RRITNENNNE
SRR Z\\&‘.\W& X Rempiae
N
RN
N \\i\

a3
/e
LA

3
23

;\);“bx\\:‘
‘! cﬁ{ 1“

e

53

:
R
:

N AR
R

S

ST
AW
AN A
‘s ‘l?
SO,

TR
PN
2e
N TS
\3{

o

~
0y
S ARSI B IR PR)

Y
>

raalion
Y%

§ N

R
e
R

B

o

TR

R

4

N

K, 'R‘\N}Y' "

RS
RS

3
S

<&
%5
209
33

i

2

A
e

&3 K

ALY

SR
:

W

H
,\.

S
NS

R ("s\-.'r?‘:? §

b3

Z

M“}Q%)M\y'
AUPANY: S N

AR anirasnay 58
R e R

3 AN
S AR

Q0 XODIIANT KT T VT T

WY R
RN
LFRLD

5
NP
N RN

X2 N

SN

A

%

I

RN

!

RN
10

5

.
\T iv
1 M \\‘.\. <-
¥
7

RS
NE,
S

[l

RES

33

R

R TR
NN \

it \‘x&&;\\'\\'\\\\\\\&\ﬁ\\\ <
A

2
o3

sl

. &“.’-’.\"

.

N

,.{%\\ D
NS N
\\“.\\

RO NHn
g \ N

)
o

7z
%

7

%

%7
%

7%
287

S
AATARN ~\,§\\ %
R 2

RN
D \\\«\ SN

BN
Ak
N7

RN

4
BIASE

2

N

7

\\\:\\ D
N

/7///
7
7

7

D
N

S

)
Y

o

LAY
8 B 22 P DM o ARRK
NN L NI R \\,,&:a;z\\ %
NN S 2 A TN
RN L3S e D N AR R
N b & N R
N R e T o R N N R A N
R .“\\.\Y\“ : A s T RS
X :\\\5-. AR &:\-\;—_«Q 63 3
X \\i o N G P WA O PR :
2 N .\m\\\'\\\\ D
3 £ A AR D
Faaaan
TEW RN

NN
\«@g‘&"
A

N

N
2

AR S R

IR R

A A AR

N

N R

R

N
AT
\\"}N:QQ\@(Q\

R RN

O o
RO R R AR NS,
R R
RV R A R s
R e

R

\\A
=

oo
R
Mrnmiaainsaae 3
NRRRN D m&&\}\\r«.\\ R
AR A R AR T N N0
A T R T N
s N e R T T

RN
=N

X SRR
3 3 B vorres e eon KX Shevmpmes B
o X '\Q

R
AN
%
TN

Ik
\\\ \

NN

T e
Ll
3 N

s
R e
AN \\A\ R

R

SOANTRINNY

R ».\\:N\\\
AR

NI

N \

N \\\X\\\\ R
RRIntuneg
nnines

TR
RN

RSN

RN
2 RS
AN

3 IR
AR

70

3
i

Fais
TR0

N0\ \
AN
NN
8

NN

R
Rainkines
Nt
AIikn
AR

R

N
N\

X
A A AR
AR

&

R

T D

co—t

N mmo/uL Nyddy

C wod.umm / Ud&.w

.

(e Fol§a) Gam] As jﬁ,a.u:«wﬁﬁ&ﬂ; Yotlda |

- oAt mass St am e m A 0t b emat s e @ e S s e memme

7.9.1.6 Data Input Dialogs

The Data Input Dialogs are activated from the Volumetric Data Wmdow INPUT menu and provide a
means to enter data into the Volumetric Data Subsystem. There is a separate dialog for each data input
function: Change Region (Figure 7-23), Add Point(Figure 7-24), Erase Point (Figure 7-25), and Add File
(Figure 7-26).

7.9.1.7 Analyze Dialogs

The Analyze Dialogs are activated from the ANALYZE menu on the Volumetric Data Window. The
dialogs allow either a volumetric difference between two datasets or a 2.5D surface map of the data for up
to two datasets. The results of the analyze functions are displayed in a variation of the VDS View
Window. The results view window can be manipulated: scaled, translated, or rotated (arbitrary view
only). The results view window can also be cutplaned or sectioned. The major difference between an
analyze results window and a VDS view window is the title label and the inability to define or view
objects in the analyze results window. Also, since analyze results windows aren't considered real views,
they can't be saved, restored, or copied. Figures 7-27 and 2-28 contain examples of the volumetric
difference and 2.5D surface map analyze dialogs.

7.9.1.8 Cutplane Dialogs

The Cutplane Dxalogs are activated from the CUTPLANE-Edit button on the Volumetric Data Window or
"from the "C" button on the VDS View Window menubar. The dialogs provxde the capability for defining
and viewing cutplanes in a dataset. These dialogs consist of an editing screen screen (or selection screen,
depending on from where the dialog was activated (Figure 7-29), and display windows for a selected view.
The editing (or selection) screen allows the operator to select the cutplane to be redefined, enable/disable
cutplanes, and define the cutplane's position/orientation.. If activated from the VDS View Window
Menubar, four types of cutplane windows can be displayed from the main cutplane selection window:

1. A cutplane cube window which allows the operator to redefine a cutplane and then apply it
to the current dataset. Refer to Figure 7-30 for an example of this control window.

2. A section cube window which allows the operator to redefine a section and then apply it to
the current view. A section is a single cutplane which has some width associated with it.
Only the data contained within the section will be displayed. This section can then be
selected and dragged to the desired location where the view will be updated to reflect the
latest position. Refer to Figure 7-30 for an example of this control window.

3. A profile window which allows the operator to view a horizontal or vertical slice of the data
in a specific view. Refer to Figure 7-36 for an example of this window.

4, A slice window which allows the operator to view an arbitrary slice of the data in a specific
view. Refer to Figure 7-37 for an example of this window.

ICERVS Phase II Subsystem Design Report 7-63

SRR
)

";f, ; ‘\\\sm\\n‘\ X %
B Q\\S\z\ §§\ \\ \%\& N N N AR Q\?,q;‘\w
Tr_Rnk \ X A S N TR
S \ L
' X *\\) X X MMMtk e
N N

N NN \} R N
RN X \\.kg NN N \\\\\\\N\\M\m\ N
43 R W;%\%w&t\ R {\ \\x\\\ ;\ \‘ “ﬁ%{%&\%\& “\\\5'\%;?\%“\ 5 S N \\~ RN S
AR TIInHin X N T e
Kt &\&'\E\Q\\\\\\\’f\\ ‘Q\\\ R

AT ~§{:\\\\\‘\\‘\$~\\ R

X \
R N A o
X \\ \\\\3\
3% R
RN
RN R
L ha
oA

.:\\‘\ R LR \;
AR N
T TR
e
AR
i

ERRER SR
DR SR RN X
R z“%\‘\\i}gb N .\,\\‘. \wﬁ\\\.\.\\ 3 %}ﬁm\w SN \\ 3
R AR T ERmlE e N
L
e \&\\\\{f\&@ﬁ\ R
R

N RN R R R R R \\\J\ PORTT
R T T T TRy
L
& S e
AR R AR N 3 AR SR %
R A AR Y \ RN MR SN
e
R N NN

% v R R

R
&

1

Z».\\

N e

R R

3
A

e
ath it

T3

NN

R RN

X
3357

RO
Q\\\i\\ﬁ*}'& R
Faiineaes
R
2 NN
A

SRR X PR NN TR \'ﬁ“ ARy

3 }\\%\ %«x’?’h %\\‘S W\\x\. 00 RN
STih N ERENV R
e S N R RN \3\\;\%5:@ R
RN R R \\\:‘\ SR

R,

20

et

vy
X

R
R
&;

g
2 -

3

DN

PN S

AR N

VIRNA:

¢

PR eNINE
w*j,s:a,s%,,\bzs
S

/i

‘s

SERRRREN
48
910

o
0

v %

PR YRIEE
e T o
NNy

AR VNAL, :\w\‘lrQ

P:"\\\Q(‘\
/5
.a

AN AN
N B
RN N
A S . (Y DN
SRR NN e
AR A e 3 AR
%3 R AV N RN R
3 \-\\‘;\\iw NN SHINORN ’\%%.o.
3 X SN

X AN
R AR
Pans v

ﬂ.z.
1%,

RN

SRR
i

o
5

e
<

Y

2N
R
N

HER
SERT
; RURORY

X

AR AR A R G
\\FQ\\“T Tan
R

= Y 5SS
- - AR AR R R %
SRV e Lo T Y A R R :
X0t S R R
: D S

RN

&3

W\

)
NSRS R
DY D S
RS

s

B

R
R

<

A

Y
3

&5

S AN
IR
S
22

R
AR
O

RIES

SR I T FR SIS RS

i

AR

AR

T

NN x\\;\\k«w\w S
N T RS
Dl
N R '\i&"‘\g_“'.“ \\\\:\. R
N N

RN R R N
\ X N RN N R \\& &:\ 2R
L
N\ Dl L
N b4 o DL e RUSORIIONY RN 3%&\;‘\\&&;‘&\'&':‘\
=
T T H =’ X R ' K Rt §; \3\ S \X\\«&&\@{\\\\\Q&*\
R 3 X DN AR) R R R
X AN : T
X R
D

2R
ORI
R
SRR
NN,
D

R 3 R
R .\;\%\.\\\
o > el S >
N2 SER S R IR A
N W e
X
3

22
.
0

R
L
R R R R R
e
A En
AR

N3
S

o3
R

S RN
N N e
n_aR Faoa e

\b‘fg\ N *@\\g\\\ S

N >

N Dppcx

R D R AR

R R e R s > Ry R

R \\N\,& RN - R 3 AR AR

K\"&\W&Q\\‘\K\k\i\\\\\\\\ u?gz\\\ X IR T ity
VRS \ :

\\k N R \':
L

S0

Z

3 N
3

IRB R R 3«\) R
= =
RRAIER .

-

X

> RN AN AN \"

N MRS RS RS R e R
. B
T T R T EN \\§\\Q\ NIRRT
-
T AN %&%\w&g&\& A
Ll e

N
N
N

Q
W\
00

5

N 3 AR SR o NN D K
-
N

\ AN \\-,i{\::.“‘:\\" A AR AR AR £ RO
TR
AR x\\\%§
> \ X ‘@\&%\\n R
s *\\i\\ﬁ\iﬁ L -
e N
Z ;,,\\\}é %‘t}.\‘“@x\\@} \%{‘}3‘3 -:'.,.:§>'\§ 2% gg\\ RN AR \\\ \<:\~
R A A A A R Ny 2NN R AN N
L ER T
. 8 e
2 by N 2 NS 3 > R R R SRR
i N X\;\\&s\%%gb\w Xp s
> 2 b R T A gy R AR s "\‘:\\"‘..~N'- NN \
SH L R e -
SR R R R TGS N
77 ?\‘&&\\ Q}\\}} X ‘%&\-\\A i&;\x\\.\. RN R

3 RS
R N e T e
) . &x&“\ﬁ& D e e N
R S AN AN T e A LA AR SRR 0
e

N
X
N
X

RS
N

N
2

"5

e
ot
‘/ﬁ,’/-/ ’/z’////f

R ”t;\l\\\

T 2

X
.\.:

£

X RS
B TR R A
3 "
S ‘“*‘N\‘N\\m&
BORR s RN
R R X R
AR (\\\ = %
.
3

S
. MMaaa,O,r,r,rr,sssssssssssss TS N
. X e %Q\\é&\i\ﬁ\ M-S S Rt

R TR
RO EEINY AR %%;w‘g

R KRR &M«s«& “\w T
RO s 3 R N R <’<’<~\\;\‘:~\§ TR
T .- Gl e
S T T R RN AR R T RN TR A
R 2

AN A
T TR R R T e R

W
N \\03&.,
N B NI AT TN, AN S N SR NN ‘{Q:O\‘VJN:"I.\A(\WX §~N(~"°.\.‘§Y§ § SUSNEAN
SRR .\>§: R

o v P S P R

3
X
S
3 3 3 I RRERAS AR SRR
X R ROe RO
RN A TR R 3 TR AR
SR .\?gg\\\x- R % SRR \\s\&@@% RN gm}@? %
3

AR WA \:Ké\
el %
R \.-\.«'@30‘\'5\ \\}\Qm:.\k‘ R A \§
SR .«\E_ ‘E"\\\%g“iz\' 3 \\z':\\ AN

R \ m)

R

D a@‘\\\\g\&“@}\\

N SN X '3;\\ B
AR 3

s

o

R
AN

B
RN
AR
PR

AR

N
R
T
S

X
AN RO

NaRa*tts
u‘&&s\\\\\\&\\e N

REE2
S
AR

A TR
AR

oa

FUAAINEA

N RN NN AN

RSNy
.@f i

sa
S

. e S 3 NN R A e

NN T -

RN o A A % AN R

N\ T
\\\!&\w& RN AR &\\\\\\@\g@\

\\\\\N..Z R

SRR X 2 R

N > 3 SR _ AR R
RADERDA NI DL D0 PAROT <23 430 3 3 X A R L R 3 R
Q R N AR R AR
L . L *g\\&*\\»\\\&
> N 3 R N

N

.

\\ NN R R

3 R 3 R
N X TR RN
. RN

A///

X
\%\\

i 7% /.f'
.

7:

RN N
R R %X\‘{\\\iﬁ-. __\\\‘:.\k\\\\.\ 3 3 :\\
e L \xé\\w\M\\
N \&,\ 2D 3 \\\\\\\NQ N m\&§\\-o&§\\\xz\\~\§®» \\\“\Q“"\‘
L » L
i)
N

RN
R

R .\%\\ ; : AW N R N R R
\ g 2 B R Ll L
X : & X

3
=

3 "&“"‘\}gg’
N f\.\&u\
AR R TRR

R

SRR X ﬂ' 2 3N %§}3Y}&:@5\ RN
& \Q’:\&(’&%\Q@ 3
e

2

\3 R
SRS v&\\»\
\%‘\%\M\\ o%\
\\\g@w\& %
-
N

. ‘§\%M 943
RN

.

i

7

>

s
S

2,

2

R

NG AY)

R %;? RRRK
3N

\? S f
Sty
.
.
/ <7
.

.

RS
S
R

N \i"ix%‘\‘*}i\\“é\‘ s
A
AR

e

AR R e A
-

X N
-

AR

S
RN 2 X S RN \\:g:%\\\“‘ \
>\\\\ \:.v' ‘§‘§* R : .\ X3 w&&%&%‘%\\
L e Lo
TS NN Rl T R N
R A T T T &R T e _H R T s
. .
3% [N R R TR kR e 3 R
L L

\ N RN

N
TN 3 X R

N
X
R

.

D
N
N

3

kS

7

A

7%

D

N
N
A N DR \\&%\«&
3% s R

N

XX

: ’“’\%@W\’W T .. R .
B
3 N \‘\‘Q“‘*\&\\Q\QQ\@“\&& N\M\ N ‘\\%\%&\\ R %\. 2 ‘
S %\“\%&&\\ZN‘&% R \W\%’"‘*\ RNt .‘\‘.\R&\\. SRR
-
N RN W\“%\b‘{%\\‘ T =t \\ \\\\‘\\ R N
PR 3—‘\\\\\:&\"\\&}27" = %\ ::\--\\\\».x\, NN .\3\\,\;*“‘&\'1 _\ TR \\' X \\\“\ \\.\Qw.\ N

AR N

SRR 'w\v\Q«@\-\Wﬂ%

A A R AR
RN \\{’\‘\ R

RN
N
X

X

R

TR S SRR

e
R

RN 3
L
MRt

P AN
i
LS

R
D11¢l

R

NNy

NERY, Dl S

3
el

o
-

SN

AN R AN
%\&\\\\‘*W\
S

X

\\

N N
N
\ W
"‘Q\““*

L
-
= RN \\

.\‘ s
TR a_ =

R N

L R R ¥

L
N

N
R R

X
RN
A -_
o=
A e R
R
L

AN #
B <&>§f&.’.-
\
R

a

&

' R
3 R
R \\‘ w\({‘:\}“.;m:«s&x\ \,f‘__ }‘\\\X“ R
TR e
.
\\x\\\“\'ﬂ\\%«\\\ N N
N

N
R
3 A RN
X \\v&\ \\\\\\Sﬁ
R

.
o
-
RN R :“\"\“‘t&‘ VRN
L
Py o ANV ASANBZAN AT

5
RN

S

\'\\ RN

M
_aOaOa d T T T
e

N %’31&\%\\ 5\\&\@\%&‘:&%‘\%‘?@5\

R IR R

R R R
SR 8 RN MR SRR

R T T O R R

N PR XD RO e B

L .

A AL A
R

N
R
N

\\"\\?%3\\%%
SUREN

N
%‘b‘:{‘ﬁw SRR

N

7

/v

2
5
i

SO

3358

,

A

7
T
A
255

%%
.

*%

%
.

7%
S

8

7
Sy

N
R RS 3
R TR R A

AN O
3 K5 AN
.
N

§\i\$\ R -;\'k’('\ R

TR

\\“ X A 3 R R ey
T T T SR
NN

N
A
R

R

% =
R TR L
‘ \%\\\&\Qt\\;\\\\&\ N \\‘%}\%\\‘%\\%\\\\ .
RN ‘g‘\-\ i
NN
N %s&& N

¥
R
R

N \\
R
A R e s
N
R

N

N x§~%§.\

N N
L
N&\\ii"'\‘“*}\&\

R
3

2>

N NS
R
X 3

% 2
RN
\\w RN
e
R ‘%{S}"&Q\Q\‘“ RN
S

3
o
e

NARS
R

N R 3

A AR RN
S N R R

AR

.\Q\\\ AN
SRR
L

% s
SRR
8 {“&.

X

:

2 = S
X

5 3 3
AR
s
3

X

NI
S

X

:

MR-

e
N
3 \\\ .§‘

S Y

RS
R
e
R
R ¥

B
N

\¥ R

R
IR

N X N 3 e Aot AR N\\\\kaw\\:“\&\\\\k&\ R
\Q\\\ \ N 2 L N
N

IR -_\w\&\\y,\._\\y\\'i\\.\:\ N \\'Ez..\ 3
-
&%\%\%@%‘3\”\‘ N

R

-
2

\ \%\Q\g\%}. j{\\\\ \%"\\Q\\:\
\\g\,\‘;\\» N
N R
N N
ﬁ? \@‘%‘1 R R
\z\v&\\\\w \\\\\\\} R
Nt

R
N .

N
xR

R

\‘:\
R
R

AN
\\&

-
N
\'-‘\;\\§ D

7%

R

%
2%
2

,
77

27

RS %\’&E

7%

.
}%
7
.

7
ik

4
ey

N
-
.

A%
i 2 %
2
,,4'/4
R
i
i

Z

2
%

02
4

RSN
Nl
%\\ 3%
o

R
R
R

o

IR
R
SETRER X

:‘”\\Q\x\\'\:\\s\‘\\\ .
L
\.\\\ .\Q‘\\‘ S *\x&% A
i AR
-
R N R R
\\)\t&m* \ N\ AR l N N \\xs. . N \\\\;\.\:}\:%\EE\\:

3 '
N

/%‘/f’

7

777

.
7

%

P RL

Nk
NN

L O

X
R

: R 2o 3 STREY, "W‘\
Q,v ‘s\w\‘f‘%\}f{*\“ \>\§%§. ¢ §§\ R rrmoooce \'\\ Sx .\\A R K \%&\:
LR e

\

RN SHOTHR AR ‘“‘ X KON R
LR L s
\\M \i&\ 37 R 353 ‘\f gy ™ 3

72
SE:

r

2
R

RN

TR \\\.\\%Z-,%wv:*a\ X 35
. s
T R hiteas A A R R
R R R AR PR
IR \\“:\\Q\‘\- : : AR % N &;\’X_\,\ \\\g
= \\@W&&%@w& .

R R A A O D RN R

D 3 e TN N R ‘\.\f‘\ NN
-
NN 3 R T T R R N
a R T T T S
L e

:
3 \;\%ﬁ y

=

N \.; N R X R) D R)
S .

s

L Ll
. ... W\W\M

T T
N

_T_TT "R
L

DA P A R
: \\ ‘Q‘\\\'\\\\\X&\\\\\\ X
,' \\\\ . \\\&;&wg§\

NN \»&\\W:\: 3
X \\ \\\\\\ 3\\ N
= &\\\l&%&\ =
S R e X
\ Q . XQ\\\&&\N\% Q\;\
NN A

& \\ \\\\ m\&m\\

N\ _ TR a-—_-_.-_.,
X \\\\\ §\‘§Z\(\\\\%\\\ N

RN R RN
) .

N
R
N
Itk
AT R R
L .

.
N

.

3%
%
x///'/_//

y,li
7
.

R N “b%_‘.:l::\-

NN

8 il
e N

R
N AR IR NN N
N M R it TR X
NN e

o
.'g/,

S50

RF OO \ \\\\\,&Q‘\z\}.\} 8 R R
SRR

R
5) N
7

///

LA

//7)
7

fa

L &\\s\&\\&\?\\?\\%

N
X .\.{\\{3\53\ R

\\g&:}“‘i"‘i&\

AR SRR

X R N
N

X
NN U -
N \,\ X =R _*9\\\\\.1\&{\\\“&_. S
T TR \\.Y\%%‘\\\\m\ SRR R
\\\ X N .\\ R ‘t&&‘%\\b\?\\ . 3 RRE X {\\\&\\\:‘i
N > '\3,5\\\\\\'\ ‘\ 3
L
\N@& > RN
e

S
N N
R’ \ N o
\\ TR “"‘ms 3R
BN IRNRR R t\«\\
_“\V\% T LR {&.{* RS R
3 S

2 N X ™)
) \’\;. R R R X AR
R R

%

2
7%
f‘ s,/i
Bt

R

L

v
S0
ﬁ/f‘ f‘
BRI

e

& N AR D
T

558 %:

S,
5
7%
.

N

N

- . .
. . .
L s = .
m»{w\g\{\%\i\\g b ’{/ N x*§ \\:\‘b \\\:.\\\s\

N
e

N Q’\w&\’&\
N \X@ Ik

D 3 R
L

SZARRRR WW\ Nk
N RN R AR AR A Y «\\ R el \ &’\\»& DN \\N}A%\N R 3
. s e «\g\\\ &W\\\\W L

R ; S TR . =
*‘-{f\'\\\&-\‘{‘ R R T \\‘\§Q§\\}§§\“\§ NN . N
A A R A e s N
RN \\\‘%\‘\ T)T, s 3 R
L &\Q\Q\\{\\g\ \\\\‘\\\;\\&\M*\Q\\\\Q\%&s L : S
R R S o R R T AIEARRINITR R R e X 3
- . .
R Q\«\\\g\\\\@&g\\ T Rt :

2
\\t 3 :‘k_

N

N \5%\\: &\ R

R

SRR
RS N 2
\x\\\\w DX

3

. 5\\\ \\N X X 22N
\Q\\Q\W\\\\\\ =

2 oA RN
N e A R
St

A A A A R AN A \Qh R A SRR N s AR AR
X \\‘_\’«:. e R AN SN _o\\»\\;gg. X
R AR SN : \ e %%\%’-\rﬁ’% X 3

NN

“\“ IR
RORERR

R

\ \', R Q"
N

%‘Z\;o{“}:\\ 7

SRR
N B .,&R‘sﬁ?\{%@*.g\ 3
3 S \;\§ %& X
-
R

IR N

NhEER

T
e

N BN
N

S

AR
AR
7 PO £

R
-
SRR

SERARINRR:

N A B X
R PSR SRR SR R 3
%:\Qg\ \\f@\\\ SRR
. N SRR AR AN
R x;.\\:_ R @3}'&\%‘.‘ :‘3\§:§{$&-¢:&& '\\\\}:‘g

IR

3 \z\\

DR
RN
A

(28

~

N
N

R
N

N
N

R

X N X) RS
AR R A Y : 3 2
AR AR \y-;\':\{\'«\\\ \ R \\\ i N RS S X s
.1 i e
A AR R R R R R R R AR
Do N .
o NN ~\ RN
N R NN
Q\\\\Q\\\\\\\\\\,\\ X \,\\ N
3 R

R ~§v\\\ it NN ST]
RS R \:\ \\\\\“\:‘\ N X N X
i RS &%\\\:{\{\‘\Q X \\\\\\N\ amlte
X 2 R \\:\\\'32\\\\\\&@;}‘ N
S
NN NN N \
NN §\ \\\\ N .\.‘\ N \ R \ ‘\\\\%\
IR I

AR
L Ll

N

R T T TR
AN i

IR R N\

0 A e AR

N N

7:

S

SRR

AN

RURAR Qe
N A
A "\

N

N
NNy
N\
N

0

b}

////}/

;,)

2%

A Q‘\“’m\\,\& RIR ; 5 X SERER SR \“
S E e . -
AR N N RIREETRTN R %

R ARREER
\».\»\:»»W#J-wo&iﬁ‘w RS SRR
D) T A ot
AT D R AR
SRS e

TR S N4 NEANR a RN
W X R RN T N 3
&g\§&§&\ R e R A N
TR TR R R R ; AR
R R R e SN S
AT s RN R R A R AN X
20 SRS 08 T IR
D, R SRR T &: “"‘*“{ :,?é\'»*\f‘gg{vg\/ =
I, oees e - b

0

JRPER RS

A4

2
7

5

N
NN AL TN AR

T RN
3 : AR
TR 3 \{\ﬁ}\:{&m;g\\n
: R

233
£

R

RV AR

AN

o

SRR R A R o L A L R R R R P
N T e
Ny R R T
B e ‘%;\Vv\«'ﬁ\\\\i\“&\.\w“% e &
RN SRS _\,.q\\v\\wt-@\\wv R
AN R AT AR

A N 3

AT
SOFWAN N
% RIS
RN
RS
3 R

s R
SRR
RN

3
R AR RO RN
e ~Z_...£ IR AEN O

R
A & e
A y? N AN N
LA % 5 RS0 N N P 2
AR et R
SN RS

o
%
R

S

SR
SR

=

Y
*
)

AW
!
RS

QALAOXA
\Q RN
AR

rora
SR

3
=

\
AR

£

¥

A S S A

7

el
2

RRRSR
G

cas
R

oS
B,

i R
Fues 2 % N

SN
U«““\éﬁ"”
YA
3

)}
N

Cm‘i‘\‘;\&\\z = |

-
L Help

| Eeply | Clos?

——— e

Sect \on?\ o\;\e Trow s@vw ‘AW

/1

;

|

| — ,

L Aeply Close

]

cuigione *]

L 3n)

7.9.2. Interface To VDS Server

Functionally, this CSC is a client of the VDS Server. It consists of a CVolumetricDataClient object which
encapsulates the client-side interface to the VDS Server. All requests to perform non-user interface
functions are channeled through the CVolumetricDataClient class, which accepts requests, formats VDS
commands, transmits the commands to the VDS server for processing, then waits for a reply from the
Server.

7.9.3. Class Descriptions

The Visualization and Interaction CSC software is objected oriented, implemented in C++ and consists of
approximately 49 classes. This section identifies the CSC classes and discusses their general
characteristics (attributes, behavior and relationships). Section 7.10.3 will discuss the major functions
assigned to the CSC and describe how the software classes implement the functions.

In keeping with good object-oriented analysis practices, classes are grouped by the categories Problem
Domain Component (PDC) and Human Interface Component (HIC).

7.9.3.1 Problem Domain Classes
There are no Problem Domain Component classes for the Visualization and Interaction CSC. However,
the HIC classes for this CSC interact with PDC objects from the other CSCs, including::

CCutplane T CSetOfCutplanes ~ ~
CVdsDataset CSetOfVdsDatasets
CGeometric3dObject CSetOfGeometric3dObjects
CMaterialProperty CSetOfMaterialProperties
CSite CSetOfSites

CVdsView CSetOfVdsViews
CVolumetricDataClient

7.9.3.2 Human Interface Classes

The HIC classes are broken into two functional groups: the VDS Main Window classes and the VDS View
Window classes. Refer to Figure 7-31 and 7-32 for OOA/OOD diagrams of the interactions among these
classes. The classes for the Visualization and Interaction CSC are identified and described below. Much
of the layout and code for these classes will be generated by the UNIRAS UIMX tool.

7.9.3.2.1 VDS Main Window Classes

VdsGlobalHIC: Class contains all the global data definitions for the VDS HIC classes.

ICERVS Phase II Subsystem Design Report 772

S808SRTD MODPUTM UTPH SAA T€-L oImbtd

botetrgeTTaanduId boterakjxedoagsjurodandurd
boretgebueyosuotHayd boTetappusjutodindurd botrergesergsjurodnduId
borerQgesuexeITd
OTIJOUNTOABOILD
J03TPASIOTOONSTAD
boterader
I03TPASUOTIAONSTAD 90RVIINGAS ZOOILO
boTeTalos8RIRAOARSD
HorerazrpaeueTdindd
botrerazesvyvquedod
SMODUTA I8Y30 boTeTa31o8wIRANGND

MOPUTHUTVHSTAD

B808BRTD MODUTM MOTA SUA 2Z€-L oanbid

botergestrgoueTdindd
botetraerTFoxgeurtdindd
MODUTMSOULIDIITA botergedeysay
OTI}OUMTOASILLD FTPEF00LqOTOPOHD |—
boreiaeqnoourtdindd
soputrmdueneovzamg bHoreiquLrogsuwal,
borergicetegeurtdindd dsZoe9IId ITPATOPONIOOLA0D | —
borerasxoTopletdsTad
HOTRTAUIOFSURILO boterareporfaod
Botetrasuorizdolerdstad
SMODUTM I9Y30 . |boTeTqeTSUR]Oa ez RIOND MODUTMEN3RVISMOTAD

MODUTMMOTASDPAD

CCloseDataSetVerifyDialog: Class to display a dataset close message for the operator to
verify. It is instantiated when the CLOSE button is pressed from the CVdsMainWindow. YES, NO,
HELP buttons are supported.

CCloseViewsVerifyDialog: Class to display a view close message for the ope_rafor to verify. It is
instantiated when the VIEW-Close button is pressed from the CVdsMainWindow menubar. YES,
NO, HELP buttons are supported.

CCutplaneEditDialog: Class to display a dialog that allows the operator to edit the positions
and orientations of the six predefined cutplanes for the currently sclected dataset. The dialog contains
a selection list of all six cutplanes for the operator to select the one to be edited. This dialog is
displayed when the CUTPLANE-Edit button is pressed from the CVdsMainWindow menubar. OK,
CLOSE, and HELP buttons are supported. Refer Figure 7-33 for an example of this dialog.

CDefaultViewColorsEditor: Class to display a control panel that allows the operator to change the
default view colors for the currently selected dataset. These colors will pertain to all views for the
current dataset. The operator can save the edited changes as the new master default file in the \etc
directory which will become permanent for subsequent sessions. This dialog is displayed when the
VIEW-Default Color button is pressed from the CVdsMainWindow menubar. OK, CANCEL, and
HELP buttons are supported. Refer to'Figurc 7-18 for an example of this dialog window.

CDefaultViewOptiongEditor: Class to display a control panel that allows the operator to change any
default view options for the currently sclected dataset. These options will pertain to all subsequent
new views for the current dataset. The operator can save the edited changes as the new master default
file in the \etc directory which will become permanent for subsequent sessions. This dialog is -
displayed when the VIEW-Default Options button is pressed from the CVdsMainWindow menubar.
OK, CANCEL, HELP buttons are supported. Refer to Figure 7-17 for an example of this dialog
window. :

CDeleteDataSetVerifyDialog: Class to display a dataset deletion message for the operator to
verify. It is instantiated when the DELETE CURRENT button is pressed from the
CVdsMainWindow YES, NO, HELP buttons are supported.

CInputFileDialog: Class to display a dialog that allows the operator to input an ASCH file of
dimensional and possible property data The format of the file is. yet to be determined. The tree
resolution, node type, and sculpting options must be entered before the file is read in and will apply to
all points in the file as they are entered into the octree. This dialog is displayed when the INPUT-File
Add button is pressed on the CVdsMainWindow menubar. ADD, CLOSE, and HELP buttons are
supported. Refer to Figure 7-26 for an example of this dialog window.

ICERVS Phase II Subsystem Design Report 775

ClInputPointAddDialog: Class to display a dialog that allows the operator to input a data point
and possible property value. If sculpting is selected, then the line of sight origin and direction must
be input. In addition, the tree resolution, node type and property type must be entered. If the desired
property type is not in the selection list, then the operator may add one with the ADD PROPERTY
button. The property type must be consistent for all points in a given dataset and cannot be changed
midstream. However, the node type, resolution, and sculpting can vary from point to point. This
‘dialog is displayed when the INPUT-Point Add button is pressed on the CVdsMainWindow menubar.
ADD, CLOSE, ADD PROPERTY, and HELP buttons are supported. Refer to Figure 7-24 for an
example of this dialog window.

CInputPointEraseDialog: Class to display a dialog that allows the operator to erase a data point
and possible property value. The resolution of the point must also be inputted to be able to find the
exact node to be removed from the octree. This dialog is displayed when the INPUT-Point Erase
button is pressed on the CVdsMainWindow menubar. ERASE, CLOSE, and HELP buttons are
supported. Refer Figure 7-25 for an example of this dialog window. .

ClInputPropertyDialog: Class to display a dialog that allows the operator to input a property
value for the currently inputted data point. This is a separate dialog as opposed to a field on the input
dialog because it is not known yet how complex the property values will be. This dialog is displayed
when a Property Type other than "dimensional” is selected from the CInputPomtAddealog. OK,
CANCEL, and HELP buttons are supported.

ClInputRegionsChangeDialog: ™ ~ Class to display & dialog that allows thé gperafor to definca -
region and to change the node type for the region (eg.. change full nodes to empty nodes) The region
definition will be handled like the object definition is done. This dialog is displayed when the
INPUT-Region Change button is pressed on the CVdsMainWindow menubar. CHANGE, CLOSE,
and HELP buttons are supported. Refer to Figure 7-23 for an example of this dialog window.

ClInputRegionsEraseDialog: Class to display a dialog that allows the operator to define a region and
to erase all nodes in the region (eg. change all nodes to empty or unknown) This is grayed out in
Phase I because the input regions change function can be used to accomplish the same purpose.

CNewDatasetDialog: Class to display a dialog that allows the operator to define a new
dataset. The operator must define the site and dataset description as well as the type of universe that
the data will start out as (empty or unknown). The dataset name is automatically generated and
displayed. The type of property is not needed to be known until data is actually being stored in the
new dataset. This dialog is instantiated when the NEW button is pressed from the
CVdsMainWindow. OK, CANCEL, and HELP buttons are supported. See Figure 7-34 for an L
example of this dialog window.

ICERVS Phase II Subsystem Design Report 7-76

— TS R
. .
N N N \‘\: N \\' \k\ . R '\\ K
D R RRRE R \\‘\\\'.\\\ R
N \ \ \\‘\\\\\\\\\\%“\\

N Nnk
N SR

FNIL v AN Con s TS ae Fr e

cdiy oss e 2ot £ Fes oViivn Te g oT AT e e ns 2 AR
N nn X \\N N \§§3\\§“ka3 FRR
_ Ll .

R \‘\\&\ AN
N

R
R
R X
.
\ N X R g QRQ:&&;&\M
i E28S 3 \:::"‘.
\\ \\\
X

L
\5\\\\%

)
'

S

ey
NN \&\Z\ R
IR
N

N
ARG RN ;
TON N ‘\3‘”\\\\‘\\\, x\\\bs‘\\ e AR “\“&%\&Q\‘Q&\ 2
2 \x\mk\\\\\\x\\\\ N

X B
- ‘
N T TR
L \§\\§§ o
L \
N

R
R
.
S

-

T

\E TN B
MEAR

RN X

\,«3‘*@ A ;g\%}w

N %:\\\\3 §§‘: Eﬁ%”\x&\
R '\
= e S RSN VA S

RN

R
\% vy
8
X
N

W RS
N

3 \\\\f\\\\\ s T X N e R e
3 AR .\Q\~\\“\ R \\\\. \ B nnin v‘5&’5‘-‘) R % RS _\\,-§.\\\\\--\~ R
%K TR xR %

TR ﬂaxgm A2 2 \ i . ; ;: R &1\%\\ R

N R R R 3 N R AR A
G e

AaTR ‘\\&\“\\‘\W\\\&\Q\\b\ Ll
SAHRTIORIRERRATREINNNR S A

SRS R EaE T

.

L

)
N
N

. 2
'»f;ze)

PO
A

4)
)é‘

s

& R
..{}, :
o

e
oo

-

4

SN
(L
i
5%

I\}c

\
L
d

S L
R v:& %&M\&Ni\ X

R

Ry RO TAINR o

S 8 NE LRI
Ny P N
W

C\R‘t&#&‘\: S

. X .
A X N X RN
SRR R _ e Rl
TR R T . R R O RO ik 3
NTN x\\\ TR SR
o R R 0
NH_HhH-=E &

3 \\\ N 3
N X 3\\\ RS D W N \\\ R % R RN
R SRR \ RNk R : SN

% §§§§>\,\i\\\ X :Qi \\\ N M g\\ R T AR \él\{:&n
IR "

R
\\{». 0 x&\’%\.\ A % "\‘\ RN \'\\ § SSRGS R

RO m\\ X ..

N T Rt

NN

R 3 RN SRS RN R R

R
R
W N
AN N
RN
RS
AN
0y Lty o s S Pt b ey Sy 222

R
R DRI
R R R \\§ N
R T R (S RRRRRR N
AT e W\\\\\@W
A I T R e N R T R
> v, e e Ny ST e e o \“»‘\ “\{1 N
e s, % 3 SRR S SR R
: N PAEN TR TS R R 3 3% TR

RN R R X R
R BRI 3 TR S NN R
R T T R N NG R R e X 3 =
Ll N L

3 X R 3 \ N (R :‘\.\\‘5\'&@":-:

R
N O R AR B
R 2% AR AR R
80N TSR : NIRRT R R
i f\\.%x%\‘%\iﬁii\‘é*it\&?*“%; " TN \\%M‘“m
" :&@,\\,%‘?‘A’ﬁ& R _,O,;sss:: N \?&W
2 W N2 R aE
Qﬁi\b}\\\ \i\\\\ S S "\g*%\“'m\\ Q‘%&%& N %ﬁm
3 NI Nnpsia

SR

X
N
o

\\:_\-\\
-

AR AR
N s
N 3

‘%\5.\3 \‘&"
RN
AT AN M\.A:«W%
TR T T RS
R S S
o

7.
K7

NSO
IR Tt
R R SRR MR
P
R A R T R R
0 ALY AT AT Y AN AWWA“WWWWWMW

AN T AR TINAY, . o

N ‘.,&\\\Q\‘.«i{‘ SRR \J\‘\‘_‘.\}\“\ \\\\"'\\\\N D '*:‘z«.%f\\“\“\\\\‘\;_‘&§$ S
R AR N W.\y\\\’}\, D \\Q\ \\\ \\ AR
AR RN T R AR
\;%\gx TR \%\@W\\&

N R
N X N
N
SR

3 X\\\ SRR
SRR
g@@%

0
R Ik R
.

N
N
RN AR 3
L A SRR T TN e AN R YRR s ST P PP Y,

s %
NN NN W .

AR RS N \\v&\&\&\:\\\.\\\\\
Nt AR
SRG ‘o«lwm\\\v\\\ RN RN

RO AR

=

l;»’&‘sg‘:
1
.2 4

N
N N
X N
s .
> S NN
SRR RN

y,-.\z;);\é\)
i
7

R

53

D

332

o

w\
R
s

N
ceses
%t

GRE

S

N RV
N ¥
e

a

QT

X
N
e

N,
N

N

COpenDatasetDialog: Class to display a dialog that allows the operator to select an existing
dataset. The operator must select the site and dataset. The type of property is displayed
automatically. It is instantiated when the OPEN button is pressed from the CVdsMainWindow. OK,
CANCEL, and HELP buttons are supported. Refer to Figure 7-35 for an example of this dialog
window.

CSaveDatasetSelectionListDialog: Class to display a dialog that allows the operator to define a
new dataset for the purposes of saving an existing dataset. The operator must define the site and
dataset description. The dataset name is automatically generated and displayed. The type of property
is already known from the current dataset. It is instantiated when the SAVE AS button is pressed
from the CVdsMainWindow. OK, CANCEL, and HELP buttons are supported.

CSaveDatasetVerifyDialog: Class to display a "save changed dataset?” message for the operator to
verify. It is instantiated when the CLOSE button is pressed from the CVdsMainWindow and the
dataset has changed. YES, NO, HELP buttons are supported.

CSavedViewFileRequestNameDialog: Class to display a dialog that allows the operator to
define a saved view file within the current site and dataset. Both the filename and description are
required for'opexaior'input. -This dialog is displayed when the VIEW-Save or VIEW-Save All buttons
are pressed from the CVdsMainWindow menubar. OK, CANCEL, and HELP buttons are supported.

CSavedViewFileSelectionListDialog: Class to display a dialog that allows the operator to
select an saved view file within the current site and dataset. Both the filename and description are
displayed for operator selection This dialog is displayed when the VIEW-Restore button is pressed
from the CVdsMainWindow menubar. OK, CANCEL, and HELP buttons are supported.

CSavedViewerérivaialog: Class to display a view save message for the operator to verify. It is
instantiated when the Save or Save As button is pressed from the CVdsMainWindow. YES, NO,
HELP buttons are supported.

CTree25DSurfaceMapDialog: Class to display the 2.5D surface map control panel that
allows the operator to define up to two datasets to be analyzed and the function to be performed on the
dataset(s). For Phase IT we must select the two datasets within the same site. This dialog is displayed
when the View/Analyze/2.5D Surface button is pressed from the CVdsMainWindow menubar. A, B,
A-B, B-A, CLOSE, HELP buttons are supported., Refer to Figure 7-28 for an example of this dialog
window.

ICERVS Phase II Subsystem Design Report 7719

S }‘\%b\\ &\\‘
CatepestoRNSe) e o
\\ R \ i+ N T TR S T 1
AT S N

N
D

R 3 RIS R R R

N ._\._\\\\
N - \\Q\\§§
§ R A A 3 : AR \\'\\‘.\‘N R RN
TRIR T T T T e R

NI 3 Tl

N & M }
. &@@5\\“\\ .

RS

R . R Rkt

R AR R R e

L L g‘%&\‘i\:\\&\\gj\m@% .
R X

X R o
AR IRAGRR) N & A AR RN R R X
*«‘%,\‘Qﬁ\\\‘\\%&\%\ TR RRER ‘\\\%\\&Q S N N s
RS R A TR R R R R R R R R R
X $ N R R g R : R R
Thns R N . T

D

. .

R > R N D RANR R

R T T T T T -t

- === .
AT TR R T ——_—

AR EERTA N
NS

:\\:S«\

PR

RN

3
N N

\ N \\\:N\«Q\\

N
R
NN

\\\\otg\\

Ry NN

D SO S A NN

Tl

ROOR \w N
A

N,
o

R
i

3 e Sk 2 k\\% %
N S RN St
W . & S 33 RS SR
N x B 2 3 \\ N \\ 3 %\ 3
N

NS
R 3
ol e e N

TR
R 5 o ARAR NN A R AR BN
R R R ﬁ\im\\\'\ﬁwﬁr “\W& \”@QQ@E\‘%&\W
SRR \ SIRTINER SRR R
5 S el o

R RN X 3

AR R 3 X
NIRRT \\\'\\\wa. R A o~ SRR x R Q

L e

S -

: N r_ T OSSR aaas

s
.
N
NS

S
AR

X X% Q‘\>~\‘>\\\\‘\§=¢\“@\\\\§g\'®%§ \'?\\" R
NN SN RN
N \.'\i

% R N
‘g@cs\’t\\\\\\ R AT
\&%5@\@&%\& X \§§:
3

V%
%5

/% é
»:'/%)

%
ST
%

%
%
b

%

R
NN

R

5

R

CTreeVolumetricDifferenceDialog: Class to display the volumetric difference control panel that
allows the operator to define the two datasets to be analyzed and the function to be performed on the
datasets. For Phase IT we must sclect the two datasets within the same site. This dialog is displayed
when the View/Analyze/Volumetric Difference button is pressed from the CVdsMainWindow
menubar. COMPUTE, CLOSE, HELP buttons are supported. Refer to Figure 7-27 for an example of
this dialog window.

CVdsMainWindow: Class to display the VDS main window and handle all its callbacks, Typically
the callbacks make calls to a CVolumetricDataClient object to send commands to the VDS Server
program to perform PDC type functions. It is instantiated from the VDS user interface program.
Refer to Figure 7-15 for an example of this window.

CViewSelectionListDialog: Class to display a dialog that allows the operator to select a view from
a list of currently displayed views. OK, CANCEL, BELP buttons are supported.

7.9.3.2.2 VDS View Window Classes

CCutplaneCubeDialog: Class to display a dialog that allows the operator to edit the sclected
cutplane's position within the view. The cutplane can be repositioned in the cube using the middle
mouse button or via sliders. An arrow is displayed on the cutplane to show sidedness (side of the
plane on which the cutting will occur). This dialog is displayed when the Cutplane or Section bttton
is pressed from the CCutplaneSelectDialog. CLOSE, and HELP buttons are supported. Refer to
Figure 7-30 for an example of this window.

CCutplaneProfileDialog: Class to display a dialog that allows the operator to view a horizontal
or vertical slice of the data in the current view. This dialog is displayed when the Profile button is
pressed from the CCutplaneSelectDialog. CLOSE, and HELP buttons are supported. Refer to Figure
7-36 for an example of this window.

CCutPlaneSelectDialog: Class to display a dialog that allows the operator to select one of the
six predefined cutplanes for redefinition. The dialog contains a selection list of all six cutplanes for
the operator to select the one to be redefined. In addition, each cutplane can be individually enabled
or disabled for viewing. Each cutplane's position and angle can be redefined via the edit fields, or
they can be redefined visually by pressing the Cutplane or Section button which brings up a
CCutplaneCubeDialog. This dialog is displayed when the "C" (Cutplane) button is pressed from the
VDS View Window menubar. CLOSE, and HELP buttons are supported. Refer to Figure 7-29 for an
example of this dialog window.

ICERVS Phase II Subsystem Design Report 7-81

. . . s ;
27 z 2 7 ok ..\ww\..\\\%\.,\\ww \\s&u\\ 3 S : ¢ 3 H
. / . g
1 e : . : ;

7 m.w§§ \\N B
8

R

R o

A S A OT 0 SR o

N

8
3

74 :
e %
7 i G)

(S SRR

DO

ki

e

3 x\\.w\N\.x\v...\\
7 \\W\NW e
72

X
o
R

IR

.
.

Ritees

RN

7
¥4
7

AR

(%508

AR

vy
7
% 7

T

. .
o .
meen -

L

\
NS N . aaEs
R ATy R /,./f// A

3R
AN NEREN O

o o ¥ o

CCutplaneSliceDialog: Class to display a dialog that allows the operator to view an arbitrary
slice of the data in the current view. This dialog is displayed when the Slice button is pressed from
the CCutplaneSelectDialog. CLOSE, and HELP buttons are supported. Refer to Figure 7-37 for an
example of this dialog window.

CDisplayColorsDialog: Class to display a color control panel that allows the operator to
change any view color for the currently displayed view. It is instantiated when the DISPLAY-Colors
menu button is pressed from the CVdsViewWindow menubar. These colors will pertain to only the
view in which the colors option window was invoked. APPLY, CLOSE, and HELP buttons are
supported. Refer to Figure 7-38 for an example of this dialog window.

CDisplayOptionsDialog: Class to display a dialog that allows the operator to change any view
option for the currently displayed view. It is instantiated when the Display/Options menu button is
pressed from the CVdsViewWindow menubar. These options will pertain to only the view in which
the display option window was invoked. APPLY, CLOSE, and HELP buttons are supported. Refer to
Figure 7-39 for an example of this dialog window.

CGeametricObjectFunctionsDialog: Class to display a dialog that allows the operator to perform
functions on the geometric objects in the view. This class is instantiated when the OBJECT-
Functions menu button is pressed from the CVdsViewWindow menubar. CLOSE and HELP buttons
are supported. Refer to Figure 7-20a for an example of this dialog window. This dialog contains 2
subsections:

GeometricObjectFunctions: - Allows the operator to perform functions on the objects
in the view. Object information can be added to the library, deleted, edited, printed, and
exported.. In addition a volumetric difference and consistency check can be performd on a
selected object or all objects.

GeometricObject Library Functions: Allows the operator to perform functions on the
objects in the object library. The object library is a stored set of standard or special
geometric objects that may be used when creating a new geometric object.. These objects can
be deleted, edited, and printed

CGeometricObjectEditingDialog: Class to display a dialog that allows the operator to interface
with geometric objects in the view. The operator can create and edit geometric objects, and save and
recall special objects in the object library.. This class is instantiated when the OBJECT-Editing menu
button is pressed from the CVdsViewWindow menubar. CLOSE and HELP buttons are supported.
Refer to Figure 7-20b for an example of this dialog window. This dialog contains two subsections:

ICERVS Phase II Subsystem Design Report : 7-83

N AN TANAT e 7

. . . e st
7 7 7 Z o 5 ; R 30400080 A]
i sv.\\w\\\\\w&\\\\\\\\ \\\\\\\\\ \N\N\\\\\ i Z &N\“\\\m&“&“\m\ \\.\\\ix\m“\% - , 8 i 35 S ;

%
7 G

AT

“

‘“.\\\\\ : \\\
.

RSN

i

L B A R A R IR AR B

o A SN
RN
RO

2 \ .
s VIR
.
i
\\\

NN

7

N

i
vhv
A
.

N
I

W\
.
.\\VW\%\
7%
-
iy
]

:

OXOX(

SN RO

AR
XA

77
7
N

L . . |
B 0 e
e .
%%ﬁ&%&:f..af§§%%§§§§ N@.

S

.//////

.%//,u;///// I

TR NI 3

R T X 3 R

S 2 2

e
ST
“hs

R

LA

7

15y

3 R

‘.“.;Q.Q
i

SR

QIR
N IPEENTYS
Wall
SIS

/'%
o

75

s
r

S8
A
757
G

B

=

.W
b;*@-m
SN ST

s

T
r AL
/%}”;(
AT
563
AN

v A
2
4 /;%//" Z
T
-

2,

&*&%v
R

NI
AR IR

AT RRRAN
AR AN AN
SRR
WW‘“

RS SR AT
L

AT R
AR AU

.(\?&n;\«@?&‘m \A%:‘:?«\ e

Nk
N

3

N
R e,

e

SRR

o,

.. \\Q‘X\\\ N RRRR TS _ ~\f:~z§ %
...

S
.

TR
N

W

DR

n N
' '%\\%R.«
NN

?'&\ R
D&
.

N

3
X 3
3
MR @&\ﬁ”‘*‘é-
N R Ay
\\Q‘“’\\““Q
> TRHHHR
N \

-
AN
\\\g\%\\’&g

L
R N

N TR
N
N \k\f\\\‘\& R

R W

=
Rk
L

NaTrEESEsE=
X ‘*\\g“\%ﬁ\\‘ﬁ\\\
\“ \\'\\\e&:\ \%&\%\\ D

AR
RN

X N N @
Ry
AR
R SRR

.

s
\\\’:’é&»‘&\i“?@@’\\@a\\
Nl
SRR \\\ X
-

3 x\%‘ 3

AN
N

,.
/7 .
i

o

Vs
2

i
:::
LA

e
,,

.
e

5

o
e
555

257

)

AR
N
N R

R
\§~\\

SERANMIRER i R R AR
\\§>}\>\§§}§‘3\§\\§ ;“v\\\%\\\\\\\\\i\\\\ ;\\\\\ \\\&\\\i\\s\%\\ S

AL X A N NN R N R R
R T T R R \Q\\\\‘\.\‘?&;&c\\\\k\\‘v\ R
\\’\%\)\5 §§~\\\ \\‘Wcﬁ\w“\‘\\\\\\\%}\.\\\y‘ \:\\ \\K\\‘--\\.h\\@\ \\‘\\\S AR

Ml D o

—wea—— weseasusmem—
R A

.. -

s e

RRRRNRR D A R ® “\‘W\\l‘ﬁ\\
SRR -\\\\i N

W
A R ey T T - = oy
AR ‘%\ AN \\\\,:\\‘u&\._\\:::,\\\\
- .
AW

D

%%

N N
SRR 2N ARt
R

7

A
N

et A A AR Ay ¥ v]

) % & >R % R W\\\\\:\\ N
s e
\: \\\ '\\‘..%\é\&}\.ﬁ%‘_} \\ N SR \: 3 ::;. N X
é{‘\\\\:\\\:\@%\\\‘\(& N \\\ X R R R R

X R e RhTHHHH
N AR RN 0 .\\R W Q

TS
.

oS

N
2Q

TN

SN

S

ST
N
X

R
3

R

\-}@_‘\

IR

S

I

AT A AV A AN

TN R
TONEANR R,
Bme e .
£ AN ST >
AN N

N 2 D
NN e AL 3 N s
% SRR \\‘\%&§ AN R \\ A
R R TR RGN
N Q > RO RN N
£ w\w"\\x“\gs&\\\\\\\ R \\\\‘Wm‘\\""‘&\\\éﬁk\\“—&\\\'ﬁ\\ N \\‘t;\\ Q
N I

AN w““\;.\‘ 3 o5
\\m RN NS
\.sx\‘ R @Qﬁ\ﬁb\“%\ o v\«%
R
7

D
A

0
X

ek
NS s\\v— 2N
3 R <$-r§ix-m e
X R BN RN S
S hRrer PR R \C&Q\w
m;&‘(m& '\‘\‘\\\\\W% KR
3 R T R TR
R s s
N R A H TR
& \m“‘\\\ RRINRENE NN s*\&x\‘\
3 N o
v.:‘vi\l.\\ Q*%} AR AR .‘:, :\ﬁi‘\“."x t\\\'\\%\q\
R NN AREA R S AT BN
RN N

T8 2 N

VAN
W AN %
NN % AR
RN N $ N > NN A
e e e e v e
A A AR e AT : f
R {
SN N §
e L
A A
X -’er\\sf\»\ AN,
T

Y

I."I/Y

2)
A SRR RS
-&g\w‘:«n#\\ﬂ\\w "ANTRRVALOAAAANNN sV Y :‘
N

PPN TN
N X
VIR

R 3 R AR
R A R S QR
ASORNNTIY, O AR N ‘3\\4\}\}&
e

NN
WAV
3 RN oY AN
N A AR T A A A S A & NN RN
e AR
TR ¢
QRBSRNR
SRS

8

X
NS
NS

SN A A T AN
SR §
SR AR
A RAN

24575

ARy

?,

SPIPIeeces

35
7%

1,
(3

GeometricObjectCreation: Allows the operator to create geometric objects in the
view. To create an object, the operator selects a type of object to create and provides the
necessary parameters for that selected object type. The operator then presses the Create
Prismoid button. The object will appear in the various views for the current dataset.
Alternatively, an object can be created from the stored set of library objects. The operator
presses the Library Select button, and the object will appear in the various views for the
current dataset.

GeometricObjectEditing: Allows the operator to edit objects and/or faces of objects
in the view. Editing consists of rotating, translating, and scaling objects or faces of objects,
in addition to reshaping faces of objects.

CGeometricObjectEditReshapeDialog: Class to display a dialog that allows the operator to
reshape a selected object's faces. Both faces are displayed in this dialog and the operator may select
the vertices with the mouse and drag them to a new position. This class is instantiated when the
Reshape Faces button is clicked from the GeometricObjectEditing subsection of a
CGeometricObjectsEditingDialog. A CLOSE button is supported. Refer to Figure 7-22 for an
example of this dialog window.

* CGeometricObjectEditTransformDialog: - Class to display a that allows the operator to rotate,
scale, and translate a selected object or its faces. Sliders are used to reposition the object in the view.
This class is instantiated when the Transform button is clicked from the GeometricObjectEditing
subsection of a CGeometricObjectsDialog. A CLOSE button is supported. Refer to Figure 7-21 for
an example of this dialog window.

CGeometricObjectConsistencyCheckResultsDialog: Class to display the results of a consistency
check calculation for a selected or all objects. This class is instantiated when the Consistency Check
button is pressed from the GeometricObjectFunctionsDialog. It displays a browse dialog containing
the result of the consistency check on the object (consistent or not consistent). Not consistent means
that the object is floating in space and should be deleted from the dataset. It also contains a
permanent color button to allow the bright color in which any inconsistent objects were redisplayed to
become a permanent feature of the object. This bright coloring will ensure that the operator
remembers to delete the inconsistent objects at some future point. PRINT, CLOSE, and HELP
buttons are also supported. Refer to Figure 7-40 for an example of this dialog window.

CGeometricObjectVolumetricDifferenceResultsDialog: Class to display the results of a
volumetric difference calculation for a selected or all objects. This class is instantiated when the
Volumetric Difference button is pressed from the GeometricObjectFunctionsDialog. It displays a
browse dialog containing the volume of the octree, the volume of the selected object(s), and the
volumetric difference between the two. PRINT, CLOSE, and HELP buttons are supported. Refer to
Figure 7-41 for an example of this dialog window.

ICERVS Phase II Subsystem Design Report 7-87

i’&‘\w
R
R

e
% 3 5 337

T R R R R R R R R R R B R SR S e SRS A s,
D A A A g N A IR Il N A A g N N N N 2 YR N AR A N N A I I Nt NIRRT A AN A AN

i

.......
\
L
\\

&)

<

”

*t

.

~
<
[A%
[

“
-t
[¥AN

3

~

N

CRotateRectangleDialog: Class to display a dialog that allows the operator to rotate the data's
position within the view. The control rectangle can be rotated to any orientation with the sliders on
the attached control panel and the data in the view will be reoriented the same as the rectangle. This
dialog is displayed when the "R" button is pressed from the CVdsViewWindow menubar. CLOSE,
and HELP buttons are supported. Refer to Figure 7-42 for an example of this dialog window.

CSetofViewWindows: Class that implements a collectxon of CVdsViemedow objects

CViewTransformDialog: Class to display a control panel that allows the operator to change the
position (for all view types) and rotation (for arbitrary views only) for a view. It is instantiated when
the Display/Transform menu button is pressed from the CVdsViewWindow menubar. These -
transforms will pertain to only the view in which the transform option window was invoked. CLOSE,
and HELP buttons are supported. Referto Figure 7-19 for an example of this dxalog window.

CTreeVolumetricDifferenceWindow: Class to display an analyze/volumetric difference view
window. This is actually derived from a CVDSViewWindow w1th addmonal things added to make
the window into an analyze window. This class is a temporary view window and is not considered
part of the set of views for save and restore purposes. It is instantiated when the Compute button on
* the CTreeVolumetricDifferenceDialog is pressed. S -)

CTree25DSurfaceWindow: Class to display an anal§2d25]5 surface view “window. This is ‘
actually derived from a CVDSViewWindow with additional things added to make the window into an
analyze window. This class is a temporary view window and is not considered part of the set of views
for save and restore purposes. It is instantiated when one of the Compute buttons on the
CTree2.5DSurfaceMapDialog is pressed.

CViewOnptionsDialog: " Class to display a dialog that contains debugging information for the
system. It is instantiated when the Options menu button is pressed from the CVdsViewWindow
menubar. CLOSE and HELP buttons are supported. Refer to Figure 7-43 for an example of this
dialog window.

CViewStatusWindow: Class to display a status dialog which is attached to the bottom of the
view and can be turned on or off at any time. The dialog contains axis information, cutplane
information, and the current mouse position. It is instantiated when the status window button is
turned ON from the CViewOptionsDialog. No buttons are supported. Refer to Figure 7-44 for an
example of this window.

ICERVS Phase II Subsystem Design Report 7-90

...
T 7 07757 7 . .
v s

.

o \ 1 _

.

RN
R
R
SRR
RN

N N
n NiHnt:IR IIHH R
L L

3 .) R 3R
n .. O EEITHITERNRY N A R
2 R 'y o dt e X .'\ S \;

3
W

2 g SRR P A P LA

T
T TS

B &
S
R

N
R SRR
-3\ RN

" AR > >) £ 2 N o S 2
PRRY! N ."S: \\\§.\ R
TS, MErEar .-
\ RN N) X R AR
\g\\\@ .
N RS R » R o 0 \
L e

3
SR

RS AR PR
e b
SRR 3
9',,

A

AT

3

R

X
2

AT AN 12
M\C{;‘\Q\:

o

N
3 X R
.

AR R
R -
e e
2 R R &
N \/‘N\\E\ NEN 3 3 N g‘;\ig\\mfi‘:
N SR N

xﬁ\ﬁ\' RS
R TR
TR
TR
N

DI R N 2 AN
- .

L
L
::%@s\,\ R

X

.
LEL

=
N

am}'m
&
SRR RR

AR

\3? 2 \\ e \ §~\ > R
R 0NN TR NN
o = .
L Al
. AN \\\\:;\‘\\\\\ 3 £ N &\\ BRI
R &\\\\ \\\‘\\\'\\\ SR IR M\)\ R
L
3 3 TRl X =
N %ﬁ&ﬁk T %@g*\ R
OOy

SE
i

e

Yot
AR

rXerr,

S

Jecfoteere e

R R R R e
A RN N 3 S RTINS %\\ RO
a“\:;\\cgﬁ NN Al

300553 3% RS RS R R S S A T R RS TR
LIS g g " NN

Hbnnka

R

R

%

v .

RS 3 \ RN
SN \§\3 N SR %\\}:‘\\\“5‘« SRR
g?;f&bi\\\i NN N . IR w: s\\:\ TN

RN TN
S
N »\\ R
PR \\\\\\\\N{\‘\\\\\\C‘\'\\\\‘(\\\\\ \\\\\\\V\
ERATIRUNATEY \c\.\:t}\\\y(\“\\ SRR D >
DT R SRR
R iRhEines S
“:-m%\\ﬁ\& m\?\% > AN \\\\.\\E}\ \{.\\.\N‘M\?&\\‘eﬁ

N

N

TR

TNARAR
SRR \\»i
.

?sg%\\\%.\f&\ %

\:‘3_\\@\:%:‘3\»\3&\\\\\\\\\\“'“%. 2
N %“*:{N? 3
\ R
R

N D
.

N
SN N
WA
NN

A9 08 U TP PR AL T 0 PERR N LENN 8 KIS LAPE S P M TUAALIP RNTI 4

%00T thurTeos
000°009T ©3 000°0 ISTIRY [RITIAAA
000°009T ©3 Q00°0 :STXY TRJUOZTION

. \\\\\\\ Dl 7 \\\x\\\t\\\vm\\“‘\\\ s .)
R A # 77 387 27 % 7 Z
< i

2, 2o amsd oA, %

7% G A i 4

R

R

NS R
. R X A

AN RN N R AR R RN RN
S L RN A TRTRATT s 3 X 3 3 T 3 3 7 RSO AN SO,

CVdsViewWindow: Class to display a view window and handle all its callbacks. Typically the
callbacks make calls to the CVolumetricDataClient class to send commands to the VDS Server
program to perform PDC type functions. It is instantiated when the View/Create button is pressed
from the CVdsMainWindow menubar. It is derived from a CViewParameters class which obtains its
values from the View Parameters File (view.prm). Refer to Figure 7-16 for an example of this
window.

CViewParameters: Class to encapsulate the view parameters for a specific dataset. It is a base class
for the CVdsViewWindow class and contains the default view parameters file contents initially, It
may be subsequently edited for each view window to customize per view.

7.9.4. Major Function Descriptions

The HIC major functions are broken into two groups: the VDS Main Window menu functions and the
VDS View Window menu functions.. These functions are identified and described below. Their related
classes are mentioned where applicable in italics. . . _..

7.9.4.1 VDS Main Window Menu Functions

The volumetric data system (VDS) main window (CVdsMainWindow) is activated from the Demonstration
Application main window's VOLUMETRIC DATA menu (refer to section 6.0) by issuing the
VDS_EnableUserInterface command.. The VDS main window supports menu functions that pertain to
the volumetric data; viewing datasets, inputting datasets, analyzing datasets, creating/deleting datasets,
and reading/writing datasets. ‘

A dataset is the main concept in the VDS. A dataset can be thought of as "containing a collection of data
that characterizes a waste site at a particular point in time", A list of defined datasets is maintained in a
selection list on the CVdsMainWindow. In addition, datasets can be further characterized into groups
with attached IDs. Each point in the dataset can have an ID number attached to group the data, if desired.
This can be later used to turn on or off groups of data at display time. The operator must select a dataset
to work with before performing any functions on the dataset.

The following menu functions are defined for the VDS main window: (Note italicized functions are not
implemented in Phase II)

View Input Analyze Cutplanes
Create Region..Change Volumetric Difference Edit
Close All Erase 2.5 D Surface Maps
Restore Point.....Erase | Surface Connectivity
Save Add
Save All File.......Add
Defaults..Options
Color

ICERYVS Phase II Subsystem Design Report 7-94

The following button functions are defined for this window: They all have to do with creating, deleting,
reading and writing datasets.

New

Open

Close Current
Save Current
Save Current As
Delete Current

VIEW - CREATE (Create a view of the currently selected datasef): Creates a view or set of views for
the currently selected data set. Dimensional data is the default property type that is displayed when a view

is created. Other property types may be viewed by selecting them from the DISPLAY-Options menu on
the CVdsViewWindow display. The type and number of views created is determined by the default view

parameters,

VIEW - CLOSE ALL (Close all view windows for the currently selected dataset): Closes all view
windows for the currently selected dataset. A dialog to save data (CCIoseVewsVerijlemIog) before

; closmg the views wxll be xssued if data in any vlew has changed.

———— . [OPNIE_ SO0 Jhunt ™ TV S SR D

o espemt

VIEW - RESTORE (Open a previously saved view): Allows selection of a previously saved view
" file via a CSavedViewFileSelectionListDialog and creates a new view or set of views from the saved view

information. View files contain dataset information (i.e. dataset mame) as well as view context
information (i.e. current display options).

- VIEW - SAVE (S’aveaseleéted view in current datasef): First-selects the -CVdsViewWindow to be

saved via a list selection box of available views (CViewSelectionListDialog). If only one view;the list box
is not necessary. Then brings up a CSavedViewFilesRequestNameDialog for the opexator to select the
filename for the view to be saved. If the saved file is a new one, the operator must enter the filename and
description. View files contain dataset information (i.e. dataset name) as well as view context information-
(i.e. current display options).

VIEW -SAVE ALL (Saves all views in the current datasef): A verification will be required to
ensure that the correct dataset will be used when saving all views (CSavedViewsVerifyDialog). Brings up
a CSavedViewFilesRequestNameDialog for the operator to select the filename for the view to be saved. If
the saved file is a new one, the operator must enter the filename and description. View files contain
dataset information (i.e. dataset name) as well as view context information (i.e. current display options).

VIEW - COPY (Copy an existing view to a new view): First selects the CVdsViewWindow to be
copied via a list selection box of available views (CViewSelectionListDialog). If only one view, the list
box is not necessary. The view will be copied to a newly created view with all display options duplicated.

ICERVS Phase II Subsystem Design Report 7-95

VIEW - DEFAULTS (Brings up the default view editor): Either the Default Options Edit window
(CDefaultViewOptionsEditor) or the Default Colors Edit window (CDefaultViewColorsEditor) will be

displayed for operator editing. If the operator changes any default settings for the views and saves them as
the master file, they will become the new default values. Otherwise the changes are local for the current
dataset. Clicking on the OK button will exit the window with editing changes saved. Clicking on the
Cancel button will exit the window with no editing changes saved. Refer Figures 7-17 and 7-18 for
example screens.

INPUT - REGION - Change (Change a region): Allows the operator to change the node type for a
selected region. An Input Region Change window (ClnputRegionsChangeDialog) is displayed for the
operator to define the region to be changed. The region must be defined by entering the correct number of
sides for the polygon and pressing the create polygon button. A polygon will appear in the upper right
corner of the creation view and can be moved and sized on the view until positioned properly via the
Object Edit and Object Create windows. Any other view of the same tree will also show the polygon. The
operator can press the Change button to change all nodes in the selected region to the node state entered
in the Node Type edit field. To erase a region, simply set the node state to unknown for the selected
region. Clicking on the Close button will exit the Input Region Change window. Refer to Figure 7-23 for
an example screen. '

INPUT - REGION - Erase (Frase a region in the current datasef): Alows thé operator fo erase the
nodes for a selected region. An Input Region Erase window (CInputRegionsEraseDialog) is displayed for

the operator to define the region to be erased. The region must be defined by entering the correct number
of sides for the polygon and pressing the Create Polygon button. A polygon will appear in the upper right
corner of the view and can be moved and sized on the view until positioned properly via the Object Edit
and Object Create windows. Any other view of the same tree will also show the polygon. The operator
clicks the Erase button to change all nodes in the selected region to the UNKNOWN node state. Clicking
on the Close button will exit the Inpﬁt Region Erase window.

INPUT - POINT (Add or erase a point in the current datasef): If erase is the function being
performed, the operator must supply the x,y,z, property type, and level (resolution) of the data to be erased
(CInputPointsEraseDialog). If "add” is the function being performed, the operator must supply the x,y,z
for the spatial information of the point, the property value and type (if any), the resolution (tree level), and
the node type (ClnputPointsdddDialog). If the inputted property type doesn't exist in the currently
selected dataset, a-warning should be issued indicating that a new property file is being created for the
inputted point. If the property type does exist in the currently selected dataset, then the inputted point is
added to the appropriate file in the dataset based on property file. Based on the inputted property type, one
of many property value window will pop up allowing a property to be entered. If sculpting is required,
then the operator must specify the location and angle of the sensor with which the data was acquired. The
newly deleted or added points are updated on the view as well as any other view containing the same data
set. Clicking on the Erase or Add button will execute the function. Clicking on the Close button will exit
the Input Point Erase or Input Point Add window. Refer to Figure 7-24 for an example screen.

ICERYVS Phase II Subsystem Design Report 7-96

INPUT - FILE (A4dd a list of points to the current dataset): Allows the operator to add a list of points to
the current dataset from an ASCII file. An Input File Add window (ClnputFileDialog) will be displayed
to allow the operator to select some data input options and enter a filename. The file being read will
contain data for a given property type which is defined in the file header information. Clicking on the
Add button will read in the file. Clicking on the Close button will exit the Input File Add window. Refer
to Figure 7-26 for an example screen.

CUTPLANES - EDIT (Bring up the Cutplane Edit Panel);: The Cutplane Edit Panel
(CCutplaneEditDialog) is a modeless window that contains all cutplane parameters for the currently

selected dataset. The operator may define up to six cutplanes. Each cutplane is defined by selecting the
cutplane to be edited and defining the required parameters for that cutplane. The cutplane is typically a
simple plane with a predefined handedness to it (right and below). A half space is created with the side
facing to the right and below remaining, and the other half cut away. If the section option is selected for a
cutplane, then the cutplane becomes a section plane. This option actually defines a section between two
cutplanes spaced a specific width apart (definable by operator). For section planes, it is implied that the
sidedness is on the outside of each cutplane such that only the area in between the 2 section planes is
visible. When the operator moves a section plane, both section planes move together. Each defined
cutplane may be enabled or disabled. When cutplanes are displayed from the view window menubar, only
the enabled cutplanes will be displayed. The Cutplane Edit Panel is exited with all editing changes by
clicking the OK biitton. Clickinig the Cancél buiton will éxit the window with no editing changes. Refer
" to 7-29 (or is it 7-33) for an example screen.

.. -~

ANALYZE - VOLUMETRIC DIFFERENCE (Compute volumetric difference between two_datasets):
Compute the volumetric difference between two datasets. Computation will include the union,
intersection, subtraction, minimum, maximum, and mean of two sets of data. The Analyze Volumetric
Difference window (CTreeVolumetricDifferenceDialog) is displayed to allow the operator to select the
data sets, and the type of function to be performed. When the Compute button is pressed, an Analyze
Volumetric Difference view window (CTreeVolumetricDifferenceWindow) is displayed with the computed
data displayed in it. When the Close button is pressed, the Analyze Volumetric Difference view window
is also closed. Refer to Figure 7-27 for an example screen.

ANALYZE - 2.5D SURFACE MAP (Compute 2.5D surface map for up to two datasets): Compute the
2.5D surface map for up two datasets. If one dataset is selected, the 2.5D surface map for only that dataset
will be computed. If two datasets are selected, the 2.5D surface map will be the difference between-the
two. The 2.5D Surface Map window (CTree25DSurfaceMapDialog) is displayed to allow the operator to
select the data set(s), and the type of function to be performed, along with the data combination type and
grid size. When the Compute button is pressed, a 2.5D Surface Map view window
(CTree25DSurfaceMapWindow) is displayed with the computed data displayed in it. When the Close
button is pressed, the 2.5D Surface Map view window is also closed. Refer to Figure 7-28 for an example
screen.

ICERVS Phase II Subsystem Design Report 7-97

NEW _(Open a new datasef): Brings up a Dataset Definition dialog (CNewDatasetDialog) for the
operator to specify the site and description for a new dataset. In addition the operator must specify
whether the initial data universe is empty or unknown. The dataset name is generated by the computer
(i.e. datasetl, dataset2,...datasetn) and represents the name of the subdirectory within the selected site.
The operator clicks on the OK button to continue or the Cancel button to abort the operation, Refer to
Figure 7-34 for an example screen.

OPEN (Open an existing datase_t):Brings'up a dataset selection dialog (COpenDatasetDialog) for the
operator to select the site and dataset to open. The dataset name contains not only the directory name, but
the dataset description and. creation date/time. When the site and dataset have been selected, the
associated property types are listed for operator viewing. The operator clicks on the OK button to
continue or the Cancel button to abort the operation, Refer to Figure 7-35 for an example screen.

CLOSE CURRENT (Close the current dataset): Closes all views for the currently selected dataset.
Requires verification if-there are-any views currently displayed for the selected dataset to be closed
(CCloseViewsVerifyDialog)... ...

SAVE CURRENT (Save the current da}aseg): .- Saves the current dataset under its existing name.
SAVE CURRENT AS (Save the current dataset as another datasef): Brings up a dialog

(CNewDatsetDialog) for the operator-to define the dataset name for the dataset being saved.

7.9.4.2 VDS View Window Menu Functions

The view windows (CVdsViewWindow) are created from the Volumetric Data Window's VIEW-Create
menu function. View windows contain information that represents the 3 dimensional waste volume..
They can be either fixed orthogonal or arbitrary views of the data. The type and number of view windows
that initially come up are defined in the view defaults file (view.prm). They are Motif windows and
contain 2 scroll bars for scrolling or "panning” the image and 1 scroll bar for "scaling” the image. In
addition they contain a button on the menu bar labeled "C* for defining and displaying cutplanes.
Arbitrary views also contain a button on the menu bar Iabeled "R" for rotating the image. A view window
contains a status window attached to the bottom of it that can be turned on or off. This status window
(CViewStatusWindow) contains detailed information about the data such as current mouse location, grid
size, and cutplane locations. The following menu functions are defined for this window:

Display OBJECT OPTIONS OUTPUT R Cc
Options Show... On Open Hardcopy
Color Off Postscript
Transform Type... Solid ASCII file
Refresh Wireframe
D Transparent
Editing
Functions

ICERVS Phase II Subsystem Design Report 7-98

DISPLAY - Options (Bring up the Display Options Control Panel): The Display Options Control Panel
is a modeless window (CDisplayOptionsDialog) that contains all view display parameters. The
parameters can be applied to the view by clicking the Apply button. The window can be exited by clicking
the Close button. Refer to Figure 7-40 for an example screen. It allows the operator to set values for the
following:

Property Type: Sets the property type of the data being displayed. The allowable choices
are listed in a pull-down selection dialog. All views default initially to dimensional data and can
be changed with this option. The current property type will be highlighted. When the Apply
button is clicked, the view will be redisplayed using the new property type.

Plot Range: Sets the plot range for the Z-axis when displaying the data. The minimum and
maximum values must be supplied. The current plot range will be displayed. When the Apply
button is clicked, the view will be redisplayed using the new plot range.

Tree Level (resolution): Sets the tree level (1-10) to be used for displaying the tree. This is
the resolution at which the data will be displayed. The current tree level will be displayed
highlighted as the 1st selection of the pop-down select menu. When the Apply button is clicked,
the view will be redisplayed using the new level,
View Type: Sets the view type to be used for displaying the tree. The view type can be one of 6
fixed orthogonal viewpoints or an arbitrary viewpoint. The default view type radio button will be
highlighted. When the Apply button is clicked, the view will be redisplayed using the new view
type.

. Status Window: Turns the view window's status window on or off. The status window
contains information pertaining to the coordinates (i.e. xy,z, ranges, cutplane information,
current mouse position). The default status window radio button will be highlighted. When the
Apply button is clicked, the view will be redisplayed using the new status window option.

Grid: Turns the view window's grid option on or off. The default grid option radio button
will be highlighted. When the Apply button is clicked, the view will be redisplayed using the new
grid option.

Interpolation: Turns the view window's interpolation option on or off. The interpolation
option is used to fill in holes in the data. The default interpolation option radio button will be
highlighted. When the Apply button is clicked, the view will be redisplayed using the new
interpolation option.

Auto Digplay: Turns the view window's auto display option on or off. The auto display
. option is used to turn off automatic redisplay of the data every time that the window is updated.

ICERVS Phase II Subsystem Design Report 7-99

This can save a lot of time, especially if there are several view on the screen at once that need to
be updated. If this option is turned off, the view may be updated manually by clicking on the
right mouse button. The default auto display option radio button will be highlighted. When the
Apply button is clicked, the view will be redisplayed using the new auto display option.

Display Override: The default display override option radio button will be highlighted.
When the Apply button is clicked, the view will be redisplayed using the new display override
option.

Cutplane: Turns the view window's defined cutplanes on or off. These cutplanes are defined in
the volumetric data window and apply to all views which contain the same data set. The default
cutplane option radio button will be highlighted. When the Apply button is clicked, the view will
be redisplayed using the new cutplane option. If cutplanes are turned on, then all defined,
enabled cutplanes will be displayed on the view. Initially, each cutplane will be located at the
position defined in the View-Cutplane-Edit window. Thereafter, cutplanes may be moved by
clicking on the "C" on the right part of the View window menubar to enable cutplane
movement.

Cutplane Override: Overrides the display of the view window's defined cutplanes. This allows
a view to define a cutplane and another view to display the effect of the cutplane.

DISPLAY - Color _(Bring up the Color Control Panel): The Color Control Panel
(CDisplayColorsDialog) is-a modeless window that contains all view color parameters. The parameters

can be applied to the view by clicking the Apply button. The window can be exited by clicking the Close
button. Refer to Figure 7-39 for an example screen. It allows the operator to set values for the following:

Color Options: ' Allows the operator to set the color of several view features, both general in
nature and relating to the node types. The initial color displayed is the default color for the
feature which is currently highlighted. The color can be changed by clicking on the Change
Color button and selecting the desired color from the Color Selection window (UNJRAS widget).
A different feature may be changed by selecting the radio button for that feature and selecting
another color. The default color options radio button will be highlighted. When the Apply button
is clicked, the view will be redisplayed using the new color options.

DISPLAY - Transform_(Bring up the Transform Control Panel): = The Transform Control Panel
(CTransformDialog) is a modeless window that contains all view transformation parameters. The window
can be exited by clicking the Close button. Refer to Figure 7-19 for an example screen. It allows the
operator to set values for the following:

Scaling: Sets the amount of scaling that the view will perform. The value (between 0-1) can
be either set with a slider, input into an edit field, or selected from a list of predefined values. A
reset button is available to allow the operator to return to the default value. The default value

ICERVS Phase II Subsystem Design Report 7-100

will be displayed in the edit ficld. When changed, the view will be redisplayed using the new
scaling parameters.

Rotation: Sets the amount of rotation that the view will perform. The value (between 0-360)
can be either set with a slider, input into an edit field, or selected from a list of predefined values.
The direction of rotation can be selected by pressing the appropriate button (up, down, left, right,
ccw, cw). A reset button is available to allow the operator to return to the default value. The
default value will be displayed in the edit field. When changed, the view will be redisplayed
using the new rotation parameters.

Translation: Sets the amount of translation that the view will perform. The value can
be either set with a slider, input into an edit field, or sclected from a list of predefined values.
The direction of translation can be selected by pressing the appropriate button (up, down, left,
right, to, away). A reset button is available to allow the operator to return to the default value,
The default value will be displayed in the edit fiecld. When changed, the view will be redisplayed
using the new translation parameters.

DISPLAY - Refresh (Refresh the screen): Redraws the screen to update with the latest data and display
options.

DISPLAY - ID (Select the IDs to be displayed): Allows the operator to select the IDs to be displayed
in the view and the color with which to display each ID.. The dataset being displayed may contain from
zero to six different IDs. That is, each data point in the dataset is tagged with an ID between 0 and 12.
These IDs correspond directly to the node type in the tree. The IDs contained in the dataset are listed in a
multiple sclection window for the operator to select which ID(s) will be displayed and how to display
them. Each ID may be displayed colored by Z value or property value (depending on what property type is
being displayed), or they may be displayed colored by ID or node type (the color for each node type can be
set in the DISPLAY COLOR option). Initially, all IDs are displayed colored by Z value or property value
(depending on what property type is being display). This is a way for the operator to display multiple dig
sites of data on the same view for comparison purposes. See Figure 7-45 for an example of this screen.

OBJECT - Show_(Turn ON or OFF the object in the view): This option allows the geometric objects to
be displayed or hidden in a view. None of the other object functions can be selected until this option has
been turned ON.

OBJECT - Type_(Select the object display type): This option allows the geometric objects to be
displayed one of three different ways (solid, wire frame, or transparent). This option does not apply when
the objects are being edited. During editing, the objects are always wire frame. This is disabled until the
object option Show Object is turned ON.

ICERVS Phase II Subsystem Design Report 7-101

EtErasreetererer et ertetany
R0 R 3

A A R NN R R NN N

o

”

o el

PN NN O NI VOOV OO N E NSO NN NN N SN NSO NN NN

DM

o X 2

e ete vt vt e e e e e v e v e v e e e e s e s e v e v s v e e e s e v e e s e ve se ve NN e

OBJECT - Editing (Bring up the Object Editing Dialog): The Object Editing Dialog
(CObjModelEditinglDialog) is a modeless window that contains all object editing parameters. These are
the parameters needed to create and edit volumetric objects. Two categories of parameters are displayed:
Object Creation, and Object Editing. The window can be exited by clicking the Close button. This is
disabled until the object option Show Object is turned ON. Refer to Figure 7-20b for an example screen.
It allows the operator to do the following:

Objcct Creation: Allows the operator to create an object on the view by either creating a
prismoid from scratch, or selecting a predefined geometric object from the object library. If
creating an object from scratch, the operator must enter the dimensions of the object (number of
vertices, radius and length) and then press the CREATE PRISMOID button to create the object.
If selecting an object from the object library, the operator must press the LIBRARY SELECT
button to select the object. Either way, the object will appear on the view. If the view is an
arbitrary view, the object will be 3 dimensional otherwise the object will be 2 dimensional. The
operator will be automatically prompted to identify the object being created with a name. Any
other view of the of the same tree which has objects enabled will also show the object.

Objcct Editing: This object category is used to change the shape or position of the currently
selected object. An object must be selected first with the mouse button or via the object selection
list in order to edit the object. When the Transform button is pressed, the Object Editing
Transform Window (CObjModelTransformDialog) is displayed and the operator is given the
ability to set the scale, rotate, and translate parameters to change the placement of the selected
object or faces of the object. When the Reshape Faces button is pressed, the Object Editing
Reshape Faces Window (CObjModelReshapeDialog) is displayed, showing the two end faces of
the object and allowing the operator to change the shape of one or both faces.

OBJECT - Functions (Bring up the Object Functions Dialog): The Object Functions Dialog
(CObjModelFunctionsDialog) is a modeless window that contains all object functions. Two categories of
functions are displayed: Object Functions and Library Functions. The window can be exited by clicking
the Close button. This is disabled until the object option Show Object is turned ON. Refer to Figure 7-
20a for an example screen. It allows the operator to do the following:

Object Functions: This object category is used to execute the object functions. Each function
applies to the currently selected object.

Library Add (Add an object to object library) Allow the operator to add an object or
all objects in the view to the object library. The object library is a storage location for special
or standard geometric objects that may be used for subsequent object creation. The object
must have been first selected via the object selection list to identify which object is to be
added to the library, otherwise the menu item is not active.

ICERVS Phase II Subsystem Design Report 7-103

Delete _(Delete a volumetric object): Allow the operator to delete an object or all
objects from the view. The object must have been first selected via the object selection list to
identify which object is to be deleted, otherwise the menu item is not active,

Edit (Modify object information): Allow the operator to edit an object or all object's
information. The object information includes object name, color, description, type, and data
vertices. The object must have been selected via the selection list to identify which object's
information is to be viewed, otherwise the menu item is not active.

Print (Print object information): Allow the operator to view and print an object or all
object’s information via a scrollable browse window. The object information includes object
name, color, description, type, and data vertices. The object must have been first selected via
the object selection list to identify which object's information is to be printed, otherwise the
menu item is not active,

Information (Get short information on the selected object): When this button is clicked
on, some identification of the object will show up about the currently selected object such as
its name and volume, etc.

Export_(Export object information): Allow the operator to export an object or all
object's information to a file of another format. The object must have been first selected via

the object selection list to identify which object's information is to be exported, otherwise the
menu item is not active,

Volumetric Difference (Compute volumetric difference): » Allow the operator to

check an object or all objects to compute the -volumetric difference between an octree solid
model and the object model. The object must have been first selected via the object selection
list to identify which object's information is to be computed, otherwise the menu item is not
active. The results are display in the Object Volumetric Difference Dialog window
(CObjVolumetricDifDialog).

Consistency Check (Scan object for consistency (suspended in air): Allow the operator to

check an object or all objects to determine whether the object(s) are suspended in air. The
object must have been first selected via the object selection list to identify which object's
information is to be computed, otherwise the menu item is not active. The results are
displayed in the Object Volumetric Difference dialog window
(CObjConsistencyCheckDialog).

Library Functions: This object category is used to execute the library functions. Each function
applies to the currently selected object.

ICERVS Phase II Subsystem Design Report 7-104

Delete (Delete a library object): Allow the operator to delete an object or all objects from
the object library. The object must have been first selected via the object library selection list
to identify which object is to be deleted, otherwise the menu item is not active.

Edit_(Modify library object information): ~Allow.the operator to edit a library object or all
library object's information. The object information includes object name, color, description,
type, and data vertices. The object must have been selected via the object library selection
list to identify which library.object's information is to be viewed, otherwise the menu item is
not active.

Print _(Print library object information): ~ Allow the operator to view and print a library
object or all library object's information via a scrollable browse window. The object

information includes object name, color, description, type, and data vertices. The object
must have been first selected via the object library selection list to identify which library
object's information is to be printed, otherwise the menu item is not active.

Information_(Get short information on the selected library object): When this button is
clicked on, some identification of the object will show up about the currently selected library
object such as its name and volume, etc.

OPTIONS - Open_(Bring up the Options Control Panel): The Options Control Panel

(CViewOptionsDialog) is a modeless window that contains all options parameters. These are typically
options that are used for debug purposes. The window can be exited by clicking the Close button. Refer
to Figure 7-44 for an example screen. It allows the operator to set values for the following:

Show Tree (Show the tree nodes): Shows the tree node information in a scrollable file for
operator browsing. Used for debug only.

Show Stats (Show the tree statistics): Shows the tree statistics information in a scrollable file
for operator browsing. Used for debug only.

View Parameters (Show the view paramelers): Shows the view parameters in a
scrollable file for operator browsing. Used for debug only.

OUTPUT - HARDCOPY (Print the screen): Print the screen to a connected printed. If no printer
exists, the screen will be dumped to a Postscript file named: "screendump.ps".

OUTPUT - POSTSCRIPT (Output the screen to a Postscript file): Outputs the screen to a Postscript
file. A dialog (CNewFileSelectionDialog) is display to get the name of the Postscript file to be generated..

ICERVS Phase II Subsystem Design Report 7-105

OUTPUT - ASCH FILE (Output the data in the view to an ASCII file): Outputs the data in the
view (x,y,z,property value) to an ASCII file. A dialog (CNewFileSelectionDialog) is displayed to get the
name of the ASCII file to be generated. This file can later be used for post processing with another
software package.

C _(Redefine Cutplanes). The Cutplane Selection Control Panel (CCutplaneSelectDialog) allows the
operator to redefine the cutplanes. Refer to Figure 7.9.1.6-1 for an example of this dialog window. This
can be done by selecting a cutplane and editing its values, Four types of cutting functions can be
generated.

1. A cutplane is a defined plane that cuts the data in the view. All data defined to the right and
below the cutplane will be clipped from the view. A cutplane cube window allows the
operator to redefine a cutplane and then apply it to the current dataset. Refer to Figure 7-30
for an example of this window. This is done by selecting a cutplane from a selection list of
all cutplane definitions on the Cutplane Selection Control Panel and clicking on the
Cutplane button. When the cutplane is selected, it should become highlighted and ready for
motion. A cutplane cube and translation box will be displayed in a Cutplane Redefinition
window (CCutplaneCubeDialog) for the operator to use for translation and rotation of the
selected cutplane. Moving the cube with the mouse will rotate the cutplane accordingly.
Moving the sliders in the translation box will translate the cutplane accordingly. Once the
cutplane has been redefined in the view, all other linked views containing the same data
which have cutplanes enabled will update their screens to display the data with the latest
cutplane definition.

2. A section is a single cutplane which has some width associated with it. Only the data
contained in the section will be displayed. This section can then be selected and dragged to
the desired location and the view will be updated to reflect the latest position. A section
plane cube window allows the operator to redefine a cutplane and then apply it to the current
view. Refer to Figure 7-30 for an example of this dialog window. This is done by selecting
a cutplane from a selection list of all cutplane definitions. on the Cutplane Selection Control
Panel and clicking on the Section button. A section plane cube and translation box will be
displayed in a Cutplane Redefinition window (CCutplaneCubeDialog) for the operator to use
for translation and rotation of the selected section plane. It is here that the width of the
section plane can be defined. Moving the cube with the mouse will rotate the section plane
accordingly. Moving the sliders in the translation box will translate the section plane
accordingly. Once the section plane has been redefined in the view, all other linked views
containing the same data which have cutplanes enabled will update their screens to display
the data with the latest section plane definition.

3. A profile is a 2 dimensional, horizontal or vertical slice of the data for the current view. A
profile window (UNIRAS ContourXplore) allows the operator to view a profile of the data for
either a horizontal or vertical position.. This is done by clicking on the Profile button from

ICERVS Phase II Subsystem Design Report 7-106

the Cutplane Selection Control Panel. Any cutplane selection is ignored here since the
profile function has nothing to do with the predefined cutplanes. Moving the sliders in the
profile window will display the profile of the data at the point indicated by the line on the
data. No views will be updated as a result of this function

4. A slice is a 2 dimensional, arbitrary slice of the data for the current view. A slice window
(UNIRAS ContourXplore) allows the operator to view a slice of the data for any arbitrary
position.. This is done by clicking on the Slice button from the Cutplane Selection Control
Panel. Any cutplane selection is ignored here, since the slice function has nothing to do with
the predefined cutplanes. The operator must define 2 endpoints of a line and then move that
line with the mouse to display the slice of the data at the point indicated by the line on the
data. No views will be updated as a result of this function

R _(Rotate data in view): The rectangle rotation box (CRotateRectangleDialog) allows the
operator to rotate the data in the view. This can be done by orienting the rectangular box with
the mouse to the same position that the data should be positioned. This window can be exited by
clicking the CLOSE button.

ICERVS Phase II Subsystem Design Report 7-107

