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ABSTRACT 

We discuss the structure of the effective Lagrangian for the (2,2) Zn orbifolds 

and the corresponding Calabi-Yau manifolds which are obtained by "blowing-up" 

the orbifold singularities. The method to "blow-up* such singularities is reviewed. 

Results arc exact at the string tree-level. In particular the question of generating 

an intermediate scale Mi in such models is addressed, h is shown that for 'lu 

orbifolds (except one) atid the corresponding blown-up orbifolds which arc com­

pact ified on any six-torus 2'° which can be obtained by continuously deforming 

T*®T3, all the turmsof the type (2T2T)K arc absent from the effective superno-

lential, thus questioning the mcchnnism for generating a large intermediate scale 

lor such comfMictificatiojis. 
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1. Introduction 

Different coinpaclilications of superstring theories whose four-dimensional 

effective field theories possess a realistic gauge group, N ss 1 supexgravity and 

quarks and leptons as elementary fields have been proposed recently. They 

are believed to be consistent superstring vacua to at) finite orders in string per­

turbation theory. 

Here we will not discuss more general compaclifications of the lictcrotic string, 

which require only (supcr)conformal invariance of the worldsiieel action, with 

the contribution of the matter fields to the Virasoro and supcr-Virasoro central 

charges cancelling ihe ghost contribution, i.e. cj = 2G and ?, = 10, plus moduliT 

iiivaiiancc or scattering amplitudes. We shall rather study phenomenological 

implications of originally proposed compaetifkations of the E% x Bt hoterolk 

string on Calabi-Yau manifolds or left-right symmetric orbifolds, in which 

the spin and gauge connections arc identified. In these cases the theory possesses 

(2,2) worldshecl supersymmetry, i.e. there is both a left-moving (I) and a right-

moving (r) N - 2 worldsheet superconformal algebra.' ' 

Orbifolds arc especially attractive because interactions an orbifalds can be 

calculated exactly at the string tree-level. ' Thus all the parameters of the tree-

level effective Lagrangian can be determined exactly, I'.C. including contributions 

which arc nonperturbative in the ratio i/c?/R, whore a' is the string tension and 

R is the radius of the orbifold. For example, Uie effects of worksheet instantons 

arc automatically incorporated. 

On the other hand the methods for explicitly studying string interactions on 
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Calabi-Yau manifolds is limited, partly due to the lack of an explicit metric. The 

field theory limit (y/a'/R -* 0)results ' ' slate that the numbers of particular 

types of massless modes arc determined by the Hodge numbers, the topologi­

cal invariants of the Calabi-Yau manifolds. Also, certain Yukawa couplings 

are determined hy similar topological considerations. Nouperturbativc cuiitri-

buLions to the effective Lagiangian for Calabi-Yau cotnpaclificaUons have been 
2l1 

explored by studying worldsheet instanions. One result of this analysis is 

that some parameters of the effective Lagrangian can be modified by worldsheet 

instanton contributions, which arc proportional to «xp(-ii'j'tx'}. H lias been 

shewn that Yukawa couplings as well as masses of the matter Ec singiets re-

f.uivc nonzcio corrections in general, while 27 and 27 do not pair-up. However, 

the calculation is not entirely explicit, due to the unknown metric, 

A complementary approach to studying the complete true-level effective La-

giangiaiis for Calabi-Yau models has been given by choosing a Calabi-Yau 

manifold which is constructed by repairing ("blowing-up") the singularities of an 

orbifold. This approach makes use of the fact that each orbirbld singularity is as­

sociated with inassless scalar fields - blowing-up modes - whose potential is flat to 

all orders in the string loop expansion. ' ' Thus any vacuum expectation value 

(VEV) or three modi's, rorit'xpoiub to a vacuum solution to the string equations 

of motion, at least pcriurhativcly in the VF.V's. The case with all blowing-up 

modes having stcro VKV corresponds to the orbifold limit, while nonzero VF-V's 

for the mode lor a ted ai a particular singularity corresponds to repairing that 

singularity. Scattering amplitudes in the repaired Calahi-Yau background - and 

hence also parameters of the effective Lagrangian can be calculated by inserting 
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successively larger numbers of background blowing-up modes inlo orbifold ampli­

tudes. Although this method is perlurbative in the blowing-up VEV's, it enables 

one to obtain explicit values far parameters of the blown-up orbifolds, thus giving 

exact results at the string tree-level. 

In Litis paper we shall study the general structure of the effective Lagrangian 

of the Abclian Zn orbifolds as well as their blown-up versions corresponding to 

the Cafabi- Yau manifolds by using the above method. We shall first summarize 

already obtained results for parameters of dimension A or smaller for Z3 and 

Zt, orbifolds and their blewa-up versions. Then we shall concentrate on higher di­

mensional operators, for general Zu (blown-up) orbifolds, in particular (2727)* 

(with H > 2) terms of the superpotcntial. Such terms are relevant for generating 

an iiiicrm.cdJB.tu scale A// and therefore understanding the structure of such 

terms. 

The rest of tins paper Is organized as follows. In KCCL 2 we review general 

properties of Calabi-Yau and orbifnld models, with the emphasis on the nature 

of interactions in the models. In sect. 3 we outline the calculation for the pa­

rameters of the effective Lagrangian Tor a general Abclian (blown-up) orbifold 

and summarize results for the parameters of dimension < 4. In sccL A we revisit 

the intermediate scale mechanism and address th« question of higher dimensional 

operates in the supcrpotcnlial, which are of the form (2727) K . (K > 2). Ph«-

iioiiiL-nalogical relevance of the obtained results is emphasized. Conclusions arc 

given in SL-ct. 5. 
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2. Features of Calabi-Yau and Orbifold Models 

Calabi-Yau models give rise to N — 1 supergravity in four dimensions and 

gauge group* 

G =• Ea x E8, (J) 

The masslcss particle spectrum consists of the gauge and the gravity supermul-

liplebs as well as zero modes (moduli) or the Ricci-fia (to 0(tt')) Calabi-Yau 

metric. In addition there arc masslcss matter mult'plcti, 27's, 27's, and (per­

haps) l's (the so-called matter singlets) of E& which arc ; II singlets of Eg. 

Due to the local light-moving superconfoimal invaruncc ' ' one can use 

the picture-changing formalism, in which vertices fo; a given state appear with 

different ghost numbers for the bosoniied right-moving superconformal ghost <£; 

i.e. they appear in dirTerenl,'p>cturesB. ' ' Tree-Jevel amplitudes involve collec­

tions of vertices such that the total ghost number equals - 2 . This simplest 

form of the vertex operator for a space-time fermion is the -1 /2 picture, while 

that for a apace-time boson is the -1 picture. The picture-changing formalism 

enables one to obtain vertices in other pictures. For example, the vertex for a 

space-lime boson in the 0 picture is obtained in the following way: 

H'i»W)o = iim «p(*)r rMp'a(»))- >. m 

• S|«ce-Cimc supet&ymmeiry irutriic* that the Cil*bi-Y»u tpin connectian has S{/(3) li'ilun-
omy; the vrVifold hotanomy group ii t diiercte (ubgrou|> of St/(3). In genera) tfa« gauge 
gfoupflj could t>c broken furttiei tl the toinr/actiricaliiiii icalt by employing the Wllion-
Ittop tnccriiii»n>. *' However, thi* will »bt affect the s(udy at the general structure of the 
effective Lagrangian. 
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Here {Va[z))-i is the corresponding vertex operator in tin; - 1 picture and 

TV - T P l ( * \ # . * < , * * ) + aX-4?- (3.o) 

is the worksheet supersyttimeUy generator16' - the energy-momentum tensor. 

Here A' end V" are the string bosonk and fermionie coordinates, respectively; the 

indices (i,t) = (1,2,3) and // = (1,2*3,4) denote the three complex internal and 

the four space-time dimensions, respectively. Partial derivatives are with respect 

to the right-moving wc-rldsheet coordinate s. For an orbifold model, T]/1 takes 

the simple form: 

TJ?l = 3A"^ + d ^ V . (3.6) 

The leTt- (right-) moving N = 2 superalgebra of a (2,2) model incorporates a 

t/(l) t [U{i)r) current algebra, geneiated by Jj ^ -lVadtfj (Jr - -i\/ZdH,)t 

where //j(j) {Hr{e)) is a free left- (right-) moving scalar field. Vertex operatorji 

can be classified according to their //|( f) charge. One can, for example, determine 

the 11, charges for vertices for the mass less chiral supcnnultiplcts in various 

pictures. One finds that 

11,-1 - ] picture 
( •« ) 

lll--\j2 - 1 /2 picture 

for the four dimensional chirat superfield with positive chirality. 

Another feature of these cotiipactiBcations is that everyBuch vacuum can be 

continuously deformed to a nearby vacuum of the same 

field theoretical language this corresponds to a flat potential for masslesa scalare 



which correspond to the "moduli*' of the compactified space. In the Calabi-Yau 

case the moduli aic identified with the zero modes of the metric. Namely, giving 

vacuum expectation values (VRV*s) to the moduli in one confarinuliy invariant 

background generates a nearby background configuration which is also a vacuum 

solution, at least perturbatively in these VEV's. This procedure can be carried 

out explicitly for the case of deforming an crbifold into the corresponding Calabi-

Yau manifold by giving VEV'e to the "blowing-up" modes " as was examined 

in detail in Ref. 22. 

Orbifolds arc a special limit of particular Calabi-Yau manifolds. This is a 

six-torus Ta with points being identified under a group F of discrete rotations 6: 

ft « Tc/P. (5) 

This identification leaves some [joints or even two-tori, Tj fixed. We shall confine 

our analysis to the 2N orbifolds where the group of rotations Zs = {$J <J — 

1,...,JV - 1) is alio the discrete holonomy group which should be a subgroup 

of SU(3) in order to end up with a four-dimensional supcrsymmctric theory. 

Also each discrete space rotation 9 is accompanied by the corresponding discrete 

gauge connection •>. For (2,2) orbifolds one chooses 0 - 't, thus identifying spin 

j It turn* out tint Hie l-««toi o( Die vertex opeiaLurt for imiduli i> llir same u the 
v*H* x cjisriliu in I tit 0 picture In (lie theory with i local cuiiturnialinvaiiancci tic viitr* 
cperaloji in ttjr - 1 and 0 J>jrlnt« o n e s pond ID tlit lower and ujipei tomponemi nl Dir 
woitdihcct iupfrfiel-di-priiciity fields, ' ' winch jn the c u e of 'moduli* have ruttformai 
dimension h - \, ».«. *h«y satisfy Hi* constraint U a.* 1 and U ^. Al and II ~ ~l 
lot wtnldttie ct stipejftekb'ptitnar y fields with positive and nrgilwt c totality, scificrlively. 
Note alio that the primary fields with i / - H I cor<ck|tonii ID "moduli' tiansfbrming as 
(1,1) fount while those with if - 1 tttttespond tu "moduli" transforming as (1,2) forms 
of the <ofii|iactifie<l space 
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and gauge connection. The states of the four-dimensional theory should also be 

invariant under the diagonal transformation 9 =• ( 6 , ^ . 

The masstess spectrum falls into the untwisted (0°) and the twisted {gJ,J -

> N-l) sectors depending on whether the ma&slcss states arise as excitations 

of the string with periodic or twisted boundary conditions, respectively. Note 

that slates arising from strings with twisted boundary conditions arc located at 

a particular fixed point. 

Orbifolds possess the fallowing additional fixtures: 

t. f'ntnrgtd gauge group. In addition to the gauge group (1) there is a gauge 

group Go c SU(.'i) which commutes witlt the discrete tiolonomy group 

of Mic orbtfobls, t.g. the lis hoJonomy group for a Zn orbifold. For ZN 

nrbifolds, G^ is cither 31/(3), SU[2) X U(l), or V[l) x U(l). 

2. Enlarged symmetry o] (fie effective Lagraugian. A Zs orlriFold possesses 

a ZN symmetry which can be described as an additional selection rule on 

interactions. Blowing-up modes carry nonzero charge under these symme­

tries. Thus many nonzero parameters or the Calabi-Yau manifold become 

zero in the orbilbld limit, including certain mass terms and Yukawa cou­

plings of inaUcr multiplies. 

U. /iirrciisn/ warldshtet symmetry. In particular, the t7(l)(j,T) wurldsheet sym­

metry tif the (I ,r)-sec (or is enlarged to }W{1) * U{1) * "0)]fj,r) ' O I u %N 

iirbifoUi. Tints., instead of the two conserved charges li{i,t) -'• HisiPM'. ' i 

there wre nuw six conserved charges ff jj, r , ihi.n »"«i Mai.r-

U, chart's are classified*1 Tor *'/ the Zs orliifolds. Tlw (H,)r charges are 
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related to the matrix of the discrete rotation 6 acting on the three compactificd 

coordinates. For example for Z3 orbifolds 8 =• (u,u,u) in its diagonal form. Here 

w = exp[2jri/3). Such a 6 in following determines (Ht)r charges of the singly-

twisted sector (g 1) which aTe (5,5,5) in the - 1 picture. In table I we give 

(//,], charges of the singly-twisted sector for all the Zf/ orbifolds possessing 

N — 1 supersymmetry. 

N ( » l ) r (fl l)f (ff*)r 

3 1 
3 

I 
3 

1 
3 

4 1 
4 

1 
4 

1 
7 

6 ) 
6 z 2 

3 

6' 1 
6 

I 
3 

7 1 
1 

2 
1 

4 
7 

S 1 
I 

1 
4 5 

fi' 1 
S 

3 
8 

1 
3 

12 1 
12 

h 
12 

1 
5 L ] 

12 
1 
3 

7 

TABLE 1. (#,-), charges of the singly-twisted sector in the 
- 1 picture for Zn orbifolds possessing JV = 1 supersymmetry. 

{Hi)r charges in turn uniquely determine the r-sector of the vertex operator 
for emission of rnnssless stales at the string tree-level. For example in the -1 
picture (emission of a masslcss boson) and the — ^ picture (emission of a massless 
fermion) the r-sector of the •vertex operators are the following: 

{VB,)-\ =• exp{-tf)i&]l'exp(iA^A''') untwisted sector (6.a) 
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(Vjj,) -i = exp(-tf) Y\ oi3iexp(ikilX'') twisted sector (6.b) 

(vF,)-if2 = cxp(-c^/2)u J | exp( - ( i i 1 ) r / 2 )^ ' ex P ( r t ( l A'" ) untwisted sector 

(7.a) 

(V'F,)_]/2 = exp{-^/2)u J loicxpt- l /JOr^Siexptifc^X") twisted sector. 

(7.6) 
Here v = I , . . . ,4 and (i,t) = 1,...,3 again refer to the four space-time and the 
six compactificd dimensions, respectively and u refers to the spinor of the four 
uncompac titled dimensions. The bosonic twist fields o' and the fermionic twist 
fields j * correspond to the emission of the masslcss state from the propagating 
string with the twisted boundary conditions for the bosonic A'1 and the fermionic 
v£>' coordinates, respectively. Fermionic fields are presented in terms of the three 
bosonic U(l)r charges: 

V = exp | i(i/i)rl . ¥ = exp l - i (« ; ) r | ( M 
s> = exp[ikifNiHjM, s> = exp\-ikj/N(II,) T\. (8.4) 

The three separate charges ( / / / ) r should satisfy the constraint that JIt = 
53y(W ;) r = £ • kf/N = 1. For example, for the singly-twisted sector of the Z3 

orbifold kj/N = £,t = 1,2,3. 

On the other hand, the part of the vertices which carry the information 
of the !-sec tor, should be constructed explicitly, due to the lack of the local 
superconforrnal invariance in the I-sec tor; i.e. the picture changing formalism 
does not apply. However, for each slate one can again explicitly determine 
the (//,)j chaiges corresponding to the fermionic fields ? . They are deter­
mined by the first three entries of the lattice vectors of the Ta x T 8 lattice. 
These three entries correspond to the additional gauge symmetry G&. On the 
other hand the bosotlic derivatives dtX[dtX) appear in the vertex operator 

10 



whenever the state possesses a corresponding creation operator 5 (5). For ex­

ample a state of the twisted sector represented as ct^k./f/ \ki/N,k2/fJtk3/N)f 

would ha«e the vertices (6.b,7.b) multiplied by the expression g = dsXls with 

s = eJtp|iJti/J^(ifj)i + ifc2/Ar(Ha)j + i'Jt3/W(W3)i|- I" general the l-sector or 

the vertex operators should be constructed separately for each massless state. 

However, there is a general prescription for the vertex operators of the "mod­

uli", i.e. the "blowing-up" modes corresponding to the "blowing-up" of the fixed 

points and the massless modes corresponding to the deformation of the six-torus 

T 6 . It turns out that the 1-sectoi of these vertex operators is the vertex op­

erator in the 0 picture, obtained by using eq. (2) with ( V B ) - I being of the 

form (6). However, now all the notation applies to the 1-scctor, e.g. z -* i, 

•w —t u>, (Hi)T -* [H,)i, etc. For example the 1-Eector of the "blowing-up" 

modes of the Z$ orbifolds is obtained in the following way. In this case there 

is one "blowing-up" mode 6M located at each of the 27 fixed points of the 

singly-twisted sector (g1). This i>M transforms as (1,1) and therefore the cor­

responding vertex operator for the l-scctor at zero external momentum can be 

obtained by using the first term of TF (sec eq. (3.b)) which annihilates the 

state with Hi = 1, i.e. the vertex operator in the - 1 picture corresponds to 

the upper component of the worldsheet superfield with positive chirality. Then 

using (2) one obtains the l-scctor of the vertex operator foT such a bu as g = 

]irnf_.uj£idiX'^ ri/cxP 1 iftj/-*V(-Hj")11 W l l n *j/-N - 5- Such a 6JH is then in 

turn described as |0),x [ a ! _ J / 3 1 - | , | , i ) , + a* , / 3 1 | , - § , £ } , + a ? i / 3 j ^ , 5 . - § ) , ] - | 

On the other hand, for "moduli" which transform as (1,2) forms the correspond­

ing vertex operator of the l-sec'.or is obtained by acting with the second term of 

7V on the vertex operator in the - 1 picture corresponding to the upper com­

ponent of the worldshccl superficld with negative chirality and tliuj. J/j = — 1, 

Such "moduli" for example appear in the case of Z* orbifolds (sec Table I) in the 

* This result of course tm.rjjei as a consequence of the Urn quantitation of the bosonic 
suing coordinates Ntitc tint the only surviving t«m of dtX l&iX) coordinates irises 
from the first term in the "oscillilor" ex^dnsion of the bosonic coordinates. 
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untwisted [ga) and doubly-twisted [g*] sectors. 

One can also make general statements about the structure of the l-sector for 

27 and 27 of E&. For the parts of 27 (27) transforming as 16 (IB) of SO(lO) the 

vertex operator corresponding to the l-sector can be represented as vertex oper­

ator in the - 1 / 2 picture with i / , = - | [Hi = + £ ) (see eqs. (7)), respectively.* 

For example the first three entries of the lattice vectors (corresponding to the 

gauge symmetry Go) for 16's for the singly-twisted sector of the Zz orbifold is 

l - I _ ! _ i \ 

The above results also imply that in the orbirold limit the number of 27's 

(27's) is always the same as the number of "moduli" which transform as (1,1) 

((1,2)) formB of the compactified space. General analysis for the (Hi)i,r charges 

for 27'a, 5T*s, and the moduli will be given in sect. 4. 

Along with these "moduli" there are also additional massiess l 's of Ee, the 

so-called matter singlets. Some are states with bosonic excitations in the 1-

eector, while some appear without them. One can convince oneself by explicit 

construction that the number of the latter ones is at least equal to the number of 

27's. Those matter singlets which correspond to 27's can be obtained from the 

ptrt of 27'E transforming as a singlet under 50(10) by changing one [H,)\ charge 

by two units. For example for the Zt orbifold (see Table ]) in the doubly-twisted 

sector the singlet part of 27*s is denoted as j —i, — ^, —1 ^ and the corresponding 

matter singlet is then denoted as [—̂ » —A, l ) f . 

• ll also turn; out Ihit for the parti of 11 (37) transforming at alnglelt of 50(10) one can 
repiesrntthe litctot or the vertex operator with the vertex in the -1 picture correipond-
ing ID the upper component or the worldihcet •upeifiddt with loiifoimal dimcniion h = 1 
and Hi = +2 [Hi = - 2 ) . (See fief. 36 for details.) _ 

t Note that in the "orbifold terminology" the definition Tor 27's (27't) it juit the opposite 
from the one in "Calibi-Yau terminology*. 

| It has been shown Tor Calabi-Yau model, thai in (lie field limit, i.e. a'/R1 - • 0, the 
number of massleli matter ringlets it bound from below by the Hodge number ho_i), if-
the number of (2,1) forms of the CaUbi-Yau (pace. 
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3. Parameters or the Effective Potential -
Results for the Operators of Dimension < <1 

The calculation of parameters or the effective Lagrangian in a particular 
theory reduces to the study of the corresponding amplitude of the masslcss states 
emitted from the string propagating in thii particular background. In the orbifold 
limit the explicit form of the > -rtices for emission of massless slates allows for a 
direct calculation of the parameters of the effective Lagrangian because all the 
background blowing-up modes have zero VEV's. 

On the other hand for the blown-up orbifold this would correspond to cal­
culating the corresponding amplitudes by including in the orbifotd amplitudes a 
successive number of vertices corresponding to the blowing-up modes b/u, which 
now have nonzero VEV's. 

It is most convenient to calculate the following Yukawa-type n-point func­
tion: 

(VFlVFaVBl...VBlm_„) (9) 

Here VFi and Vgr denote the vertices for the emission of the massless fermionic 
and bosonic mode, respectively. 

This amplitude enables one to probe the parameters of the supcrpoiential 
for the blown-up theory directly, unlike the amplitude for n-bosons. Also the 
gaugino masses can be computed directly, thus determining the new gauge group 
in a direct way. 

The mass terms for the fermions V"i and Va arising from the chiral multiple! 
is obtained by choosing the appropriate vertex operators Vfl and V*, while all 
the bosonic vertices \'st correspond to the vertices for the blowing-up modes. On 

§ Note that in Ihit cue one ii probing the scalar potential, which is the mixture or Die F-
dtidD-tcrms. 

^ The new gauge group can in principle be drleiiiiint'l also by calculating the gauge boson 
masses- However, thik appears to be more complicated-
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the other hand the mass term for the milting between the fcrmions, ^,-, and the 
gauginos cun be obtained by inserting in (9) vertices for the blowing-up modes 
as well as their complex conjugates, because this arises from the D-term as well. 

Yukawa couplings for two fcrmions and the boson cf the chiral multiplets are 
obtained from (9) by taking all but, one bosonic vertices V^ to be the vertices 
for the blowing-up modes. Similarly, one can calculate any higher point function 
in the superpotenttal, which shall be explored in sect. 4. 

With the explicit form of the vertices (7,8,2), one can then evaluate the 
amplitudes in the background of the blown-up orbifolds, i.e. (bM) £ 0. These 

171 

amplitudes should obey the following selection rules. 

1. The total <p charge equals —2. 

2. (H,)T charges should be separately conserved. 

3. (H,)t charges should be separately conserved. 
4. The amplitude should bt- twist invariant. By this one means that in the 

amplitude the twist numbers J; associated with the bosonic twist fields aJi 

of the gJ- twisted sectors should sum up to O(rnodN). 
5. The amplitude should be invariant under the automorphisms of the lattice, 

i.e. under the group of discrete rotations P . In general the amplitudes de­
pend on the bosonic coordinates X*. Transformations on these coordinates 
which arc in the group of automorphisms of the Jattite should certainly 
leave the amplitudes invariant. 

6. The location of the twist fields should satisfy the space group selection 
rules described in Rcf. 17. They essentially determine the location of 
suing states, i.e. the location of the fixed points at which the particular 
states are located. 

Selection rules (1-4) can be in general trivially satisfied. The worldsheet 
fenniojue degrees of freedom are taken care of by applying the selection rules (1-
3). NOIH also that the (i/,)i conservation essentially implies that the amplitude 
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should be gauge invariant. Also some amplitudes could be determined to be zero 
by limply applying the selection rule 5. 

It has been shown that in the amplitudes (9) which probe the terms, of the 
Buperpotenlial, only the terms of (VB)O with HT = 0 contribute, i.e. only terms 
(V_]/ji V_i, Mr — •"!»!> respectively) proportional to dX'fr survive in such 
amplitudes in order to conserve the total llT charge. Thus the terms in ( V e ) 0 

coming from 6*X'*V, i.e. terms proportional to the four-dimensional external 
momenta Jf, do not contribute. Then such amplitudes assume the following 
form in general: 

{V-i/3v_1/av_1v0...Vo)c<{ci,x' w ' . — . a ! * * ) ^ eJn- (io) 

This in turn implies that the effective superpotential calculated in this way can­
not be mimicked by a massless exchange of gauge or gravitational particles; the 
amplitudes or such exchanges would be proportional to k2 which are absent in 
our case. 

Explicit calculations for the mass spectrum and Yukawa couplings have been 
done Tor the Z% and Z* blown-up orbifolils. It agrees with the genera) results 

n i t 

of the worldsheet msUnton calculations. In particular, all the matter singlets 
acquire masses which are proportional to exp{~R2fa') while 27and 27 do not 
pair-up.* Also, all the "moduli" remain massless as expected. On the other hand, 
Yukawa couplings of the form fc,yB271-27Jla for any pair (i,j) are nonvanishing 
for some a as well as Yukawa couplings of the type ft1Jt27,27J27j[ are nonzero in 
general. Some of these Yukawa couplings arc nonzero already in the field theory 
limit, i.e. a'jP? —• 0, while some become nonzero due to nonperlurbative effects. 

* Thji letgll it general ' for any orbifolc* or Calibi-Yau manifold Wring nonptrturbative 
effecti of the rnadei eamiponding to thr moduli (pace of the VEV't. 

t Thii ii a general feature; namely modes corresponding lo the moduli spice have flat 
potential far atiy otbifold or Calabi-Yaq manifold, again birring nonperLurbalivc effect! 
in the VEV't of the moduli. 
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4. Intermediate Scale - ( 2 7 2 7 ) * Terms of the Superpotential 

We would now like to address the question or higher-dimensional operators, 
in particular (2727) K /A^ 4 * ~ a \ ( / f > 2) terms in the superpotential for a gen­
era! ZN (blown-up) orbifold. These terms can be relevant for generating the 
intermediate scale hit which breaks the gauge symmetry G appearing at the 
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compacUfication scale. The need for Mi is inevitable for a large class of mod­
els in order to ensure a proper evolution of the gauge coupling constants down to 
the lowest energies to prevent fast proton decay, N - ~N oscillations, and/or sat­
isfy other constraints from the low-energy experiments. It is generally believed 
that Afj should be 10 1 0 GeV or Larger?7,38' 

The originally proposed intermediate scale mechanism did not take into 
account the existence of the matter singlets. The Afj was generated by nonzero 
VEV of a particular 5, and Sy, which are the singlets of the standard gauge group 
S(/{3)xSU(2)xU(l), arising from 27; and 27,, respectively. By choosing the flat 
direction of the D-term {Si) =s {£,-) and assuming that the soft Supersymmetry 
breaking terms would generate negative mass squared for these fields of order 
Mw - 1DS GcV, the M) is bound to he 

S = {Si} ss (Sj) s M, = [ A % A 4 2 K " 3 ) ] 1 / ( 2 K _ I > ^ yfMwMfi * 0(10"GeV). 

t") 
This result is obtained by using the fact that in the superpotential the term which 
would contribute to the part of the potential with tUt S fields only is the first 
nonzero term [212?)K fAf£K~3\ Since the value of J/JW* is at most of Older 
1/A/pi, Mi has the lower bound (l l) . 

This originally proposed mechanism should be revisited because by now a 
better understanding of the structure of the effective Lagrangian has been gained, 
in particular the role of the matter singlets b well understood. As explained in 
the previous section, in general each 27 and each 27 couple to a particular 
matter singlet with nonzero Yukawa couplings and the matter singlets become 
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nonzero due to the nonperturbalive eiR-cls. ' What impact does this have 
for the low-energy phenomenology? Yukawa couplings h ; ; a 27 ,27 j l Q in principle 
spoil the intermediate scale mechanism. However, since the matter singlets do 
acquire mass nt] « Afjjtxpt—/£*/&') 3> Mj after integrating the heavy singlets 
out the effective contribution of the above Yukawa couplings is damped, i.e. 
hja —t {hija.MiJmi)1 due to the decoupling theorem. Minimization of the 
potential yields in general an upper bound on Mi: 

\i, = (/fivmi/Atf*) 1 ' 2 5 VMwMpi = 0(10 l l GcV) (12) 

where the equality sign applies only if A, J O is damped exponentially as well. 
The above constraint for Mj can be evaded in a particular ca.=e oniy if the 
relevant Yukawa coupliri^ h,)a is absent due to a specially symmetric choice 
of the Calabi-Yau manifold In this case the originally proposed intermediate 
scale mechanism would remain intact, i.e. eq. (11) would be valid, provided 
1/Afjf * 0 . 

It has been argued that \jMn ^ 0 for a general Calabi-Yau manifold, due 
to the worldsheel instanton contribution. This would in turn suggest that the 
intermediate scale mechanism is in general viable. However, here we would like 
to point out. that this is not the case for the following particular Zn orbifolds 
and their blown-up versions. 

We will show that 

l/MK = 0 (13) 

for all the ZN (except the 2 6 . , sec Table ]) orbifoiJi and their blown-up versions 
as long as they are compactificd on a six-torus 7*° which can be obia!«cd by 

\ Nal* thil far fnj < Afj the effjetive Yukuwacoupling would not h*vc been djnipf-d, Lliui 
Ml < 10" GGV {tec cq. (12)). Alto, w<• tiiv* «Murncd tint (I) - 0 whkli may not be 
the cisc in (cneial. ' 

9 Oneihould again paint out Ihat (lie tiplici' calculation sliuwi ' Llial this ii nut (lie c u e 
for the blown-up 7« orbifold. Even for the most lymmctric cubic lattice of the torus Ta 

of/Lhe maLtei singlet masses and the above Yukawacuuplingt aic nomc.-c-
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continuously deforming 7$ = T* ® T 2 . By T$ we mean the six-torus, which is a 
direct product of art arbitrary four-torus and a two-torus which are orthogonal 
with respect to each other. Therefore for T§ the four basis vectors have entries 
corresponding to the T* coordinates only, i.e. (a, t,0), and the two basis vectors 
have entries corresponding to the T2 coordinates only, i.e. (Ol01e).Here we have 
to choose the T2 coordinate ip = 3. 

For proving (13) we would need to analyze only the propcuics of the corre­
sponding amplitude with respect to the (i/ , 0)i, r charge and the A',0 wcildsheet 
coordinate only. For this purpose we shall need the value of the {Hi0)t,r charges 
carried by 27's, 37's, and the "moduli" tfs (transforming as (1,1) forms) and 6's 
(transforming as (1,2) forms) whose nonzero VEV's correspond to the deforma­
tion of To ("moduli" of the untwisted sector) as well as to the blowing-up of the 
fixed points ("moduli" of the twisted sectors). 

First one observes that in the untwisted sector at most one 27 and the cor­
responding $M can appear, and this for orbifolds which are generated by the 
discrete rotation B which rotates one complex coordinate A' t u l let's say the third 
one (i'o = 3) by 180", These are all the orbifolds which have one (i / l a )r °f the 
- 1 picture equal to ~. This in turn implies that {IIi„}r change for 27 and the 
corresponding IM from the untwisted sector (g°) 

(#,-„), =1 ~1 picture 

(7/, e), =1/2 —1/2 picture untwisted sector (urio). ('"'.a) 

(/7,0)r =0 0 picture 

On the other ham J the (//,„) j for the part of this 27 which transfoims as 16 

^ This [Hull ii obtained by noticing that the 37 liaillfonil » [3 X 3)lniiiymmttric = 6" 
under a continuous SC/(3) lioloiiomy group. Noticing that the eigeni-alutiof thedisciele 
loUlionS ire (u|,uj,wii><]) luntform u 3 of the continuous £[/(3) halonomy jiaup. One 
can then derive Uiat the eigenvalues or states in the untwisted «e:io[ which transform u 
fl* arc ((;•!,wj.unwj.wj.wJ.wiw^J. Her* the u denotes a complex conjugate va!je of u. 
Tiiui, far W - 1 lupersymrneltic theory, it. all of the eigenvalues of i should be different 
horn ), the number of physical state* which transform as 6* of SU{2) ii at most 1. The 
iatlei it the case when one and only one of the eigenvalues of 0 is 1, e.g. «i<ij = - ) . 
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under SO(10) and the corresponding b are, respectively: 

(H f c ) i = - 1 / J 16 
untwisted sector funn). (H-M 

</.,„). =0 £ 

On the other hand the 27's and corresponding b'a from the twisted sector come 

only from the n-twislcd sectors (gn) which leave at least one complex direction 

unaffected, «.o. B" = fa, u», 1 ) in its diagonal form for i'0 = 3. H turns out that for 

ail Zfj oibifclds, except the Z& orbifold (sec Tabic 1), the direction which remains 

unaffected is the same as the one which corresponds to rotation 0, f l = 1, i.e. i'0 — 

i*o- On the other hand for 27's the three entries of the lattice vector corresponding 

to the gauge feroup Ga C 51/(3) are (fci/iV - l/2,*i/JV - l/2,Jt 3 /W • 1/2) with 

k{/N > 0 and 5 ,̂- A;,/Ar = 1. (Note that (//,)/ charges correspond to the vertex 

operator in the - 1 / 2 picture.) 

This in turn implies that the (Hia)T for 57's and o's coming from trie twisted 

sector ia fixed to be; 

(JAJr =0 - 1 picture 
twisted sector (luty). (15.o) 

( / / , J r = - l / 2 - 1 / 2 picture 

On the other hand ( / / I D ) I charges for the parts or 27's transforming as Tti's of 

SO(10) and S's are respectively* 

[H,a)l = + 1/2 10 
twisted sector (fiDn). (15.b) 

(//,J/=o s 
The constraints (14-15) for the (/7, u)i i r charges can be obtained by using the pic-

• Thit it Hit reason that in generJl one cannot prove {13} for Zai orbifold. 
4 This can be shown in the following way. Tin. pari of 27 (37j transforming as JO (ID) 

under 50(10] mutt nave a representation in terms of F» * Ft lattice vector whoie entries 
lo tic ill ,t i will) eight enlrui corresponding to the £u gauge symn'etty have an add 
{even} number»l plunigni, In oidet \o havtlT'i and Vl'i in > particular twiiird sector, 
37's can only be obtained by adding to the IMtirc vrctoi of 27 a lattice vector A ol PgX TM 
lattice which has one ±1 entry in one of llie eight entries corresponding to £ 0 and one 
+ 1 enlrj in one of the three entries corresponding to G0, i.e. one mull have for one IOI 
("•II)< - *io/W + ' / 2 The requirement that 37 and 27 both lie at thc»air»e (tcro) energy 
level furlhcr require), that itl,/N - 0. Q.E.D. 
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ture changing formalism. Note, that in the O-picture (// i 0 )j > r remains unaffected, 
because the energy-momentum tensor 3> acting on the vertex in thr —1 picture 
cannot change (//,„)],, H 0. On the other hand the (//,„)/,, charge of the 27s 
and i's (transforming as (1,1) form) is not restricted in general. 

In order to calculate the parameter l/Mn in the general background of the 
above Zf/ (blown-up) orbifolds one li.is to evaluate the following amplitude; 

l/M*"^ « A = <OT* B H 1

K

u ;*27j w .27~' .3T™' ( ,27£: w ' ' " ' " ' 

Here the fields symbolically denote the corresponding vertex operators. Here unn 
(iu/o) refer to the states of the untwisted (twisted) sector where 27's and 6's (and 
also corresponding 27\i and i's) appear. On the other hand un' {tw') refer to 
the states of the untwisted (twisted) sector with H charges such that only/ 27's 
and 6's appear. Note also that states 2 7 o n . (6 u n.) have the same (//,0)i,r charges 
as 27 ) U J o (A ( U J u). Also recall that (H,a), trf 27's [i.e. 2 7 u r W u i a } is - ( i / , J j of 
the corresponding 27's (i.e. 27un0,((*<,)- We a ' c 0 choose two 27's to be in the 
— 1/2 picture (for the r-scitor) and one 27 in the - 1 picture, while the rest of 
tlie vertices arc in the 0 picture. Note again that insertion of moduli from the 
untwisted sector in amplitude (16) corresponds to deformation of TQ while moduli 
from the twisted sector correspond to the blowing up of the orbifold singularities, 

Using (14) one £ees thai (Uia)i,T = 0 from i w ' e , i Un». and 6 u n o because in 
the 0 picture of the untwisted sector //, = 0(i = 1,2,3). However, from operation 
(2) the above modus give the following contribution to the amplitude (1C) with 
respect to the i„th bosonic coordinate: 

a,K,*°3d>Kd*K3- [n) 

Note that this pari of the amplitude is ah. ays invariant under the automorphisms 
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of the lattice. Analogously one can study the contribution from the rest of the 
vertices. Using (2,6,7,14,15) one arrives at the following contribution to the 
amplitude (16) from the i'oth coordinate: 

•-*£«•*£- (is) 

Conservation of (Hia)t,r charge yields 

a = 2r>i - 1 + 0 (19.a) 

with 

0 = m a - A + Ni + Nr (19.fr) 

where JVj and N, refer to the sum of f/(„ charges in the -1 picture for 27 l u / s 
and 6|Ui'a. Obviously (18) is not invariant under the automorphism of the lattice 
fl,'0, neither is then the total amplitude (16). Thus eq. (13) is proven for the 
above models. 

The absence of terms (2727)* /MJf* - 3 ' in the superpotential, Tor the ZN 

(blown-up) orbifdds except ZQ> again implies that either there cannot be any Mj 
or Mi should satisfy the bound (12). 

0 When #,„ = — 1 implies that ft jt 0 in general, i.e. there is SUn0- In thii cue (17) is 
invariant under *\0. On the other hand when * j 0 ji - 1 , there it no L» D and 6 = 0. Then 
alio in this cue (IT) ii invariant under #,'D. 

4 Note that in eq. (IS) there ii no contribution of the type diX? which could in principle 
come from l i„ t •. However, in iuch sectors where E|U u'i appear, /f,„ = 0 in the — 1 
picture and there could be no contribution or the type 8iXt„ when one appliet the picture 
changing (see eq. (2)) from the -11» the 0 picture. 

O For ?,, = - J and thus also (»,tft) £0, A changes *ign uttder the action of tta+ On the 
other hand for 0fe ^ - 1 one hat # = rfc £ 0, i.t. there *r« tin Vtuaa't and/or SUn0*». In 
this case >t picka up the phase fl,0 under the action ot this rotation. 

| Here we would like lo emphasize that for arty Zfi (blown-up] orbifcld (independent of 
the itruClUle of the six-torus) the amplitude (16) ii afuKiyi of moil exponentially damped, i.e. 
ot eKp(-AVo'). See R*f. 31 for detaili. 

• Note that the proof for Zti (blown-up) orbifold doc* not go through because one cannot 
ehooie the same t'o dircciion for the classification of (W^ Ji.r charges of the untwisted and 
twisted sector*. Actually we obtained the form of the amplitude A which ncmi to he 
nonieio, in general. However, for the case of the Zv orbifold limit, the lint -value of K 
for whieh i/Mx '" possibly nonzero is K = 7! 

31 

http://19.fr


5. Conclusions 

We studied the structure of the effective Lagrangian for the ZH orbifolds 
and their blown-up versions. We discussed in detail the general structure of the 
vertices for the emission of the massless states for such modes, in particular for 
those of "moduli" as well as for 2V& and 3T's. These vertices are exact at the 
string tree-level. The calculation of the amplitudes in the general background, 
i.e. with "moduli* acquiring arbitrary VEV'e, is outlined. This in turn allows one 
to extract the value of the corresponding parameters of the effective Lagrangian, 
which are exact at the string tree-level. Special care is given to the higher di­
mensional terms or the type (27 l7) K (with K > 2) in the suporpotential and 
the importance of such terms to generate an intermediate mass scale, Af; in such 
models, is emphasized. We showed that for all the Zft orbifolds and their blown-
up versions in general background, such terms, if they are nonzero, are at most 
exponentially damped. However, interestingly wc showed that ail such terma are 
absent for all the %s orbifolds and their corresponding blown-up versions when 
compaclified on a six-torus T6 which could be continuously obtained by deform­
ing Tp = T*®r 2 , with T* and T1 being orthogonal to each other. This certainly 
imposes strong phenomenological constraints on such models. 
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