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ABSTRACT

We discuss the structure of the effective Lagrangian for the (2,2) Zy orbifolds
and the corresponding Calabi-Yau manifolds which are obtained by “Dlowing-up”
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tential, thus yuestioning the mechanism for generating a targe intermediale scale

for such compactifications.
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1. Introduction

Diflerent compaclifications of superstring throries whose four-dimensional
effective field theories possess a realistic gauge gronp, N = 1 supergravity and
quarke and leptons as elementary fields have been proposed recently -2 They

are believed to be consistent supersiring vacua te all finite orders in string per-

turbation theory.

Hete we will not diseuss more gencral compactifications of the heterotic string,
which require only (superjconforinal invariance of the worldshicet action, with
the contribution of the matter fields to the Virasoro and super-Virasoro central
charges canceliing the ghost contribution, t.e. & = 26 and &, = 10, plus modular

invariance of scattering amplitudes. ' \We shall rather study phenoimnenological

implications of originally propesed compactifications of the Ey x Eg heterotic

st.ring”] on Calabi-Yau manifolds'! or left-right symmetric orbil'olds;'l in which

the spin and gauge connections are identified. In these cases the theory possesses
(2,2) worldsheet supersymmetry, i.e. there is both a left-moving 1) and a right-

moving (r} N = 2 worldsheet superconformal algubra."“'ls]

Orbifolds are especially atiractive because interactions an orbifolds can be
calculated ezectly at the string tree-level!*'™ Thus all the parameters of the tree-
leve) efective Lagrangian can be determined exactly, i.¢. including contributions
which are nonperturbative in the ratio \/EFJR. where a is the string tension and
R is the radius of the orbifold. For example, the eflects of worldsheet instantons

are automatically incorposated,

On the other hand the methods for explicitly studying string intecactions on
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Calabi-Yau manifolds is limited, partly due 1o the lack of an explicit metric. The
field theory limit {(Va'/R -+ (l)renulls"“' slate that the numbers of particular
1ypes of massless modes are determined by the Hodge nuinbers, the topologi-
cal invatiants of the Calabi-Yan manifolds. Also, certain Yuhawa couplings 1920
are determined hy similar topological considerations. Nunperturbative contri-
butions to the effective Lagrangian for Calabi-Yau cotupactifications have Leen
explored ) by studying worldsheel instantons. One result of this analysis is
that some parameters of the effective Lagrangian can be medified by worldsheet

instanton contribatious, which are proportional to exp{~ {*/u’). 1t has been

shn:wn=ll

that Yukawa couplings as well as masses of the matter Eq singiets re-
ceive nonzero corseclions i general, while 2% and 27 do not pair-up, llowever,

the calculation is not entirely explicit, due to the unknown metric,

A comnplumentary approach to studying the complete tree-level effective La-
grangians for Calabi-Yau models has been gi\'en“] by choosing a Calabi-Yau
manifold which is constructed by repairing (“blowing-up™) the singularities of an
orbifeld. This approach makes use of the fuct that each orbilold singularity is as-
sociated with massless scalar fields - blowing-up modes - whose patentialis Aat to
all orders in the string loop expansicm.m'ﬂl Thus any vacmun expectation value
(VEN) of these modes conresponds to a vacoum solution to the string equations
of motion, at least perturbatively in the VEV’s. The case with all blowing-up
modes having xero VEV corresponds e the orbifeld limit, while nonzero VEV™s
for the mode lorated at a panticular singularity corresponds to repairing that
singularity. Scattering amplitudes in the repaired Calabi-Yau background - and

hence also parameters of 1he ellective Lagrangian  can be calculated by inserting



successively larger numbers of background blowing-up modes inte orbifold ampli-
tudes. Although this melhod is perturbative in the blowing-up VEV's, it enables

one Lo obtain exphieit values for parameters of the blown-up orbifolds, thus giving

exact results at the string tree-level.

In this paper we shall study the general structure of the effective Lagrangian
of the Abcelian 2y orbifolds as well as their blown-up versions corresponding te
the Catabi- Yau manifotds by using the above method? ? \We shall first summarize
already obtained®? results for parameters of dimension 4 or smallet for Z3 and
Z4 orbifulds and their blown-up versions. Then we shall concentrate on higher di-
mensicnal operatars, for general Zy (blawn-up) orbifolds, in particular (2727)%
(with K > 2) terms of the superpotential. Such terms are relgvant for generating

an intermediate scale’™ M; and therefore understanding the structure of such

terms.

The rest of the paper s organized as follows. 1n secl. 2 we review general
propertivs of Calabi-Yau and orbifuld models, with the emphasis on the nature
of interactions in the models, In sect. 3 we outline the calculation for the pa-
rameters of the efleelive Lagrangian for a general Abelian {blown-up) orbifold
and summarize results for the parameters of dimension < 4, In seci. 4 we revisit
the intermediate scale mechanism and address the guestion of higher dimensional
operatars in the superpotential, which ate of the form (2727)%, (K = 2). Phe-
nomenological relevance of the olMained results is emphasized. Conclusions are

given in seet. 5.


http://iiiicrm.cdJB.tu

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibilily for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mcndation, or favoring by the United States Government or any agency thereof,
The views and apinions of authars expressed herein do not necessarily state of
reflect those of the United States Government or any agency thereol.



2. Fealures of Calabi-Yau and Orbifold Models

Calabi-Yau models give rise lo N = 1 supergravily in four dimensions and

gauge group’

G = Eg x Es. 1)

The massless particle spectrum consists of the gauge and Lhe gravity supermul-
tiplets as well as zero modes (moduli) of the Ricci-fla- (to O{a'}) Calabi-Yau
metric. In addition there are massless matter multiplets, 27's, 27's, and (per-
haps) 1's (the so-called metier singiots) of Eg which are )l singlets of Ej.

. \ . . 1,14,15
Due to the local right-moving superconforma) invariance | one can use

the picture-changing formalism, in which vertices fo. a given state appear with
different ghost numbers for the bosonized right-moving superconformal ghost ¢;
i.e. they appear in different"pictures” .:s.zsl Tree-Jevel amplitudes involve collec-
tions of vertices such that the total ghost number equals —2.‘5} This simplest
form of the vertex operator for a space-Lime fermion is the -1/2 picture, while
that for a space-time boson is the -1 piclure. The picture-changing formalism
enables one to obtain vertices in other piciures. For example, the vertex for a

space-lime boson in the D picture is obtained in the following way:""I

Vu(e))o = lim exp(¢)Tr (w)(Va(=))-,. {2)

» Space-time supetaymmetsy itplies that the Calabi- Yau spin connection has SU(3) halon-
omy; the orbilold kolonomy group is a discrete subgroup of SU(3). In general the gauge
group {3} coutd be brohen furthes at the compactibcation wcale by employing the Wilson-

Joop mehanism?* However, this will ot affect the study of Lhe general structure of the
cffeciive Lagrangian.



Here (Vp(z))-1 is the corresponding vertex operator in the ~1 picture and
T = TPYX, X0, ¢, 9) + axvge. (3.0)

is the worldsheet supersymtnetry generator“] - the energy-momentum tensor.
Ilere X end ¢ are the string bosonic and fermionic coordinates, respectively; the
indices (f,1) = {1,2,3) and p = (1,2,3,4) denote the three complex internal and
the four space-time dimensions, respectively. Partial derivatives are with respect

to Lthe right-moving worldsheet coordinate 2, For an orbifeld model, T} takes

the simple lorm:
Tt = AX'y + a Xy, (3.6)

The left- (right-) moving N = 2 superalgebra of a (2,2) model incorporates a
U{1h (U{1}+) current algebra, generated by J; = -iv/33M, (), = —iV38H,),
where Hy(£) (H.(2)} is a free left- (right-) moving scalar field. Vertex operators
can be classified according to their Hy(,) charge. One can, for example, determine
the M, charges for vertices for the massless chiral supermultiplets in various

pictures. QOne finds that
M,o=1 -1 picture
He=-172 —-1/2 picture

for the four dimensional chiral superfield with positive chirality.

Another feature of these compactifications is that every such vacvum can be
continuously deformed to a pearby vacuum »f the same (2,2) ty pc.w"”‘n 172,26} In

ficld thearetical language this corresponds o a flal potential for massless scalars
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which correspond to the “moduli” of the compactified spacc.' In the Calabi-Yau
case the moduli are identificd with the zeto modes of the metric. Namely, giving
vacuum expectation valvoes (VEV's) to the moduli in one confonnally invariant
backgronnd generates a nearby backgronnd configuration which ix also a vacunm
solution, at least perturbatively in these VEV's. This procedure can be carried
out explicitly for the case of deferming an orbifold into the corresponding Calabi-

6,17]

Yau manifold by giving VEV’s to the “blowing-up” modes' a5 was examined

in detail in Ref, 22,

Orbifolds are a special limit of particular Calabi-Yau manilolds. This is a

six-torus T® with points being identified under a group P of discrele rotations 6:
Ne= TP {5)

This identification Jeaves some points or even two-tori, 73 fixed. We shall confine
our analysis to the Zy orbifolds where the group of rotations Zy = {(¢4,J =
1,...,N = 1) is also the discrete holonomy group which shonld be a subgroup
of SU(3) in arder 1o end up with a four-dimensional supersymmetric theory.
Also cach discrete space rolation @ is accompanied by the corresponding discrete

gauge connection <. For (2,2) arbifulds one chaoses 8 = +, thus identifying spin

t 1t turns ant® 33 1hat the Leector of the vertex aperators for maduli s the same as the

vestex aperatof in the D picture In the theary with a tocal cgnlurmal invatiancethe vertes
operators in the =1 and 0 pirlures cortespond Lo the lower and upper components of the
worldsheet auperfields-pritnary l"icldu,""“l which in the case of *moduli” have conformal
dimension & = i. 3.¢. they valisfy the constraint 24 = 1 and H = 41 and H = -}
fot wosldaticet sypesfieldu-prisnary fiekds with pusitive and negative chirality, sespectively.
Note also that the primary fields with H = 11 contespond 1o "muduli™ transferming as

(1,1) forms while those with }f — 1 (ortespond to “ivaduli™ transforming as (1,2) forms
of the campaciified space



and

gauge connection. The states of the four-dimensional theory should also be

invariant under the diagonal trausfarmation g = {8, ).

Te.s

The massless spectrum * falls into the untwisted {g") and ihe twisted (g7 ,J =

.+ N — 1) sectors depending on whether ihe massless states arise as excitations

of the string with periodic or twisted boundary conditions, respeciively. Note

Lthal states arising from strings with twisted boundary conditions are located at

a particular fixed point.

]

Orbifolds possess the following eddilional features:

. Enlarged gauge graup, In addition to the gauge group {1) there is a gauge
group Ga C SU{3) which commutes with the discrete holonomy group
of tse orbifokls, e.g. the Zx holonoiny group for a Zy erbifold. For Zy

orbifolds, G is either SU(3), SU(2) x U(1), or U(1} x U1},

Entarged symonctsy of the effective Lagrangian. A Zy orbilold possesses
3 Zp symmeiry which can be described as an additional selection rule on
interactions. Blowing-up immodes carry nonzero charge under these symme-
tries. Thus many nonzere parameters of the Calabi-Yau manifold become

zero in the orbilold limit, including certain mass terms and Yukawa cou-

plings of matier multiplets.

. Inerensed worldsheet symmetry. In patticular, the (1}, warldsheet syin.
metry of the (Lr)-sector is enlarged to {F{1) » U(1) ~ U{1)); ) for u Zn
orbifold. Thas, instead of the two conserved charges Mgy = )_:.‘.: NEIRTPN

there are now six conserved charges Hyy ., Hay ., snd My,
L 1, L K

H, chawges are n:la:ss.il“utrcl'll for wif the Zn orbifolds. The (#,), charges are



related to the matrix of the diserete rotation 8 acting on the three compactified
coordinates. For example for Z orbifolds 8 = (w,w,w) in its diagonal form. Here
w = exp(27i/3). Such a # in following determines (M), charges of the singly-
twisted sector (g) which are (%,%. 1} in the -1 picture. In table I we gi\re"
(F1;) charges of the singly-twisted sector for ali the Zy orbilalds possessing

N =1 supersymmetry.

N | (1), [ (Ha)e {IT3)r
a{ s | 3 | 3
el
AEEERE
ol 3 18] 4
13 L33
ol s [ 2|8
&l ¢ 1§13
12| % | &5 | 3
2 5| 3|5

TABLE 1. {H;)}, charges of the singly-twisted seclor in the
—1 picture for Zy orbifolds possessing N = 1 supersymmetry.

{Hi}r charges in turn uniquely determine the r-sector of the vertex operator
for cmission of massless states at the string tree-level. For example in the -1
picture (emission of a massless boson) and the —% picture {emission of a massless

fermmion) the r-sector of the vertex operators are the following:

{Va,)-1 = exp{— ¢}’ explik, X ") untwisted sector (6.a)



(Ve Y1 = exp(—¢) H o;3; exp(ik, X¥) twisted sector (6.b)

(Vr)-o1j2 = c‘xp(wc"/?)uHexp[—(ﬂ.),/Z]\b" exp(ik, X*) untwisted secior

{7.a)
(VR = exp{—-d:ﬂ}uHa.-exp[—(H.-),/2).s.-cxp(£k,,)f“) twisted seclor,

(7.5
Herep=1,...,4 and (i, ?) =1,...,3 again refer to the four space-time and the
six compactificd dimensions, respectlively and u refers to the spinor of the four
uncompactified dimensions. The boesonic twist fields o' and the fermionic twist
fields s* correspond to the emission of the massless state from the propagating
string with the twisted boundary conditions for the bosonic X* and the fermionic

¢ coordinates, rcspectively.‘ 7 Fermionic fields are presented in terms of the three
bosonic I/(1), charges:

¢ = expli(H;)s], & = exp|-i(H;)] (8.a)
s = explik;/N(H,),), & = expl|-ik;/N{H,),|. (8.8)

The three separate charges (H;), should satisfy the constraint that H, =
32 (H5)r = ¥, k; /N = 1. For example, for the singly-twisted sector of the Z3
orbifold k; /N = },i=1,2,3.

On the other hand, the part of the vertices which carry the information
of the }-sector, should be constructed explicitly, due to the lack of the local
superconformal invariance in the l-sectar; i.e. the picture changing formalism
does not apply. However, for each slate one can again explicitly detecmine
the (H;): chaiges corresponding to the fermionic fields . They are deter-
mined by the first three entries of the lattice veclors of the Ty x I'y lattice.
These three entries correspond to the additional gauge symmetry Gg. On the

other hand the bosonic derivatives 3;X{8;X) appear in Lhe vertex operator

10



whenever the state possesses a corresponding creation operator & (&), For ex-
ample a ttate of the wwisted sector represented as Ez_k_.”,- k1 /N, kz/N. ka/N},
would have the vertices {6.1,7.b) muitiplied by the expression g = 2: X5 with
¥ = expliky/N{H) )t + tha[N(H3)i + 1kafN(H3)i]. In general the l-sector of
the verlex operators should be constructed scparately for each massless state.
However, there is a general prescription for the vertex operators of the “mod-
uli®, i.¢. the “blowing-up™ modes corresponding to the “blowing-up” of the fixed
points and the massless modes corresponding to the deformation of the six-torus
T¢ I turns out that the Lsector of these vertex operators is the vertex op-
erator in the O picture, obtained by using eq. (2) with (Vs)_; being of the
form (6). However, now all the notation applies to the l-sector, e.9. z — £,
w —+ @, {H)r — ()i, vtc. For example the l-sector of the “blowing-up”
modes of the Z3 orbilolds is obtained in the following way. In this case there
is one “blowing-up™ imode by located at each of the 27 fixed points of the
singly-twisted seclor (g!'). This bpy transforms as (1,1) and therefore the cor-
responding vertex operator for the l-sector at zero external momentum can be
obtained by using the first term of Tp (see eq. (3.b)) which annihilates the
state with H; = 1, i.e. the vertex operator in the —1 picture corresponds to
the upper component of the worldsheet superfield with positive chirality. Then
using (2) one ohta_.’ins the lsector of the vertex operator for such a byy as g =
lime—s 7 0: X7 [1; exp [iKs/N(H;)] with Bi/N = 3. Such a by is then in
turn described as |0), x [31,/3 |—%, :’-,, %}l + 32_1/3 (3.-3, %), + 3:.’_1,3 H. 3 —%),] I
On the other hand, for “moduli* which transform as (1,2) forms the correspond-
ing vertex operator of the l-sector is obtained by acting with Lhe second term of
Tr on the verlex cperator in the —1 picture corresponding to the upper com-
ponent of the worldshcet superfield with negative chirality and thus Hy = -1,

Such “moduli” for example appear in the case of Z4 orbifolds (sec Table I) in the

= This result of course vm-rges as a consequence of Lhe Arst quantizalion of the bosonic
string coordinates. Note thal the only surviving term of 8, X (83 X) coordinates wrises
from the first term in the *oscillalor” enpansien of the bosonic coordinates.

11



untwisted (%) and doubly-twisted (¢3) sectors.

One can also make general statements abeut the structure of the l-sector for
27 and 27 of Ey. For the parts of 27 (27) transforming as 16 (16) of SO(10) the
vertex operator corresponding to the l-sector can be represented as vertex oper-
ators in the —1/2 picture with Hy = =1 (Hy = +1) (see eqs. (7)), respectively.”
For example the first three entries of the lattice vectors {corresponding 1o the
gauge symmetry Go) for 18's for the singly-twisted scctor of the Za orbilold is
—1 _1 ..l)
TR AP I
The above results also imply that in the orbifold limit the number of 27's
(277s) is always the same as the number of “moduli™ which transform as (1,1}
{{1,2)} forms of the compactified space] Geseral analysis for the (H:)1,r charges
for 27%, 27's, and the moduli will be given in sect. 4.

Along with these “moduli® therc are also additional massiess 1's of Eg, the
so-called matter singlets. Some are states with bosonic excitations in the 1-
sector, while some appear without them. One can convince onesell by explicit
construction that the number of the Jattler ones is at least equal Lo the number of
27's! Those matler singlets which correspend to 27's can be obtained from the
past of 27 transforming as a singlet under SO(10) by changing one (H, )i charge
by two units. For example for the Z4 orbifold (see Table 1} in the doubly-iwisted
sector the singlet part of 27' is denoted as |-, -1, ~1), and the correspanding

matter singlet is then denoted as |-}, -1,1),.

» It also turns ovt that for the parts of 27 (37) transfonning as singlets of SG{10) one can
represent the ksector of the vertex operater with the vertex in Lhe -1 picture correspond-
ing 1o the upper component of the worldsheet superfields with conformal dimension h = 1
and H; = +2 (H, = ~2). (See Ref. 26 for details.)

{ Note that in the "orbifold Lerminology” the definition for 27's [27") is just the opposile

from the one in “Calabi-Yau terminology®.

It has been shown for Calabi-Yau models that in the ficld hmit, ie. af/R? — 0, the

number of massless matter singlets is bound from below by the Hodge number k(g 13, i.c.

the number of (2,1) forms of the Calabi-Yau space.

1l




3. Paranicters of the Effective Potential -
Results for the Operators of Dimension < 4

The calculation of parameters of the effective Lagrangian in a particular
theory reduces Lo the study of the corresponding amplitude of the massless states
emitted from the string propagating in this particular background. In the orbifold
lirnit the explicit Jorm of the  _rtices for emission of massless slates allows for a
direct calculation of the purameters of the effective Lagrangian because all the

background blowing-up modes have zero VEV's.

On the other hand for the blown-up orbifeld this would correspond to cal-
culating the corresponding amplitudes by inciuding in the orbifsld amplitudes a
successive number of vertices corresponding to the blowing-up modes by, which
now have nonzero VEV's.

Tt is mosL convenient to cal:ulatenl the following Yukawa-{vpe n-point fune-
tion:

(VFLVF:VBI ---V5|n_:)) (9)

Here Vg, and Vg, denote the vertices for the emission of the massless fermionic

and bosonic made, respectively.

This amplitude enables ane to probe the parameters of the superpotential
for the blown-yp theory directly, unlike the amplitude for »-bosons® Also the

gaugino masses can be computed directly, thus determining the new gauge group

in a direct way:l

The mass terms for the fermions ¢, and 13 arising from the chiral multiplet
is obtained by chuosing the appropriate vertex operators Vg, and Vi, while all

the bosonic vertices Vg, correspond to the vertices for the blowing-up modes. On

§ Note that in thit case one is probing the scalar polential, which is the mixtute of Lhe F-
and D-terms,

% The new gauge group can in principle be delermine! also by calculaling ihe gange boson
masses. However, this appears to be more complicated.

13



the other hand the mass term for the mixing between the fermions, 4%, and the
gauginos can be obtained by inserting in (9} vertices jor the blowing-up modes

as well as their complex conjugates, because this arises from the D-term as well.

Yukawa couplings for twa fermions und the boson ¢f the chiral multiplets are
obtained from (9) by taking all but one bosonic vertices Vg, to be the vertices
for the blowing-up modes, Similarly, one can calculate any higher point function

in the superpotential, which shall be explored in sect. 4.

With the explicit form of the vertices (7,8,2), one can then evaluate the
amplitudes in the background of the blown-up orbifolds, i.e. {bas} # 0. These

amplitudes should obey the following selection rules!’!
I. The total ¢ charge equals —2.
2. {Hi}r charges should be separately conserved.
3. (H.)i charges should be scparately conserved.

4. The amplitude should be twist invariant. By this one means that in the
amplitude the twist numbers J; associated with the bosanic twist fields 0%

of the g7+ twisted sectors should sum up to O(madN],

5. The amplitude should be invariant under the avtomorphisins of the lattice,
i.c. under the group of discrete rotations P. In general the amplitudes de-
pend on the bosonic corrdinates X*. Transformations on these coordinates
which are in the group of automorphisms of the Jattice should certainly

leave the amplitudes invariant.

6. The location of the twist fields should satisfy the space group sulection
rules described in Ref. 17. They essentially delermine the location of
string states, i.e. the location of the fixed points at which the particular

states are Jocated.

Selection rules (1-4) can be in general trivially satisfied. The worldsheet
ferinionic degrees of freedom are taken care of by applying the selection rules {1-

3}. Nole also that the (H;); conservation essentially implics that the amplitude

4



should be gauge invariant. Also some amplitudes could be determined to be zero
by simply applying the selection rule 5.

It has been shown ™ that in the amplitudes (9) which probe the Lerms of the
superpotential, only the terms of (Vg)o with H, = 0 contribute, t.c. only terms
{V_i/3, Vo, ¥y = —%,l, fespectively) proportional to B3X*Y# survive in such
amplitudes in order to conserve the total H, charge. Thus the terms in (Vp)o
coming from #X*{#, i.¢. terms proportioral to the Jour-dimensional external
momenta k¥, do not contribute. Then such amplitudes assume the following

- 22l
form in general;

(VaspaVeryaVoiVo... Vo) & {8 X5, .. 09 X7,...,8: XF) (10)

ct1...0%n

This in turn implies that the eflectlive superpotential calculated in this way can-
not be mimicked by a massless exchange of gauge or gravitational particles; the
amplitudes of cuch exchanges would be proportional to k2 which are absent in
our case.

Explicit calcun)ations for the mass spectrum and Yukawa couplings have been
done for the Z3 and Z, blown-up orbifolds, It agrees with the general results
of the worldsheet instanton calculations’ 2 In particular, all the matter singlels
acquire masses which are proportional to exp(~K?/a') while 27and 27 do not
pair-up. Alse, all the “moduli” remain massless ! asexpected. On theother hand,
Yukawa couplings of the form k,;,27:27;1, for any pair (i,5) are nonvanishing
for some 2 as well us Yukawa couplings of the type h;;%27;27;27; are nonzero in
general. Some of Lthese Yukawa couplings are nonzero already in the field theory

limit, f.e. a’/ 22 -+ 0, while some become nonzero due to nonperlurbative effects.

« This result is general®® for any erbilold or Calabi-Yau manifold barring nonperturbative
eflects of Lthe modes cartesponding Lo the moduli space of the VEV's,
t This is a general fnlure;“l namely modes correaponding 1o the moduli space have flat

petential for any otbilald or Galaki-Yay manifold, again barring nonperturbative effccts
in the VEV"s of the moduli.
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4. Intermediate Scale - (2727)¥ Terms of the Superpatential

We would now like ta address the question of higher-dirnensional aperators,
in particular (21_2?)"/!64}:“_3),(!( > 2) terms in the superpotential for a gen-
eral Zy (blown-up) orbifold. These terms can be relevant for generating the
intermediate scale Ad; which breaks the gauge symmetry G appeating at the
compactification 5cale.23] The need for 3 is incvitable for a Jarge ¢less of rmod-
els in order 1o ensure a proper evolution of the gauge coupling constants down to
the lowest energies, Lo pravent fast proton decay, N — N oscillations, and/or sat.
isly other constraints from the low-energy experiments. 1t is generally believed

that M; should be 10'® GeV or larger2™"!

The originally proposed intermediate scale mechanism“] did not take into
account the existence of the matter singlets, The My was generated by nonzero
VEV of a particular S; and 5;, which are the singlets of the standard gauge group
SU(3)x SU{2) x U(1), arising from 27; and 27,, respectively, By choosing the flat
direction of the D-term {5;) = (Ej) and assuming that the soft supersymmetry
breaking terms would generate negative mass squared for these fields of order
Mw = 107 GeV, the M; iz bound to be

— ap a1/ (2K-2)
S=(S)=(E)=M-= [MWME;" 3’ > V3w My = 0(104 GeV).

(11)
This result js oblained by using the fact that in the superpotential the term which
wauld contribute to the part of the potential with the 5 fielde only is the fiest
nonzero term (2777)“/&!&”"3,. Since the value of 1 /M) is at most of order
1/Mg1, M; has the lower bound (11).

This ariginally propused mechanism should be revisited because by now a
better understanding of the structure of the efiective Lagrangian has heen gained,
in particular the role of the matter singlets is well understood. As explained in
the previous section, in general each 27 and cach 27 couple to a particular

matter singlet with nonzere Yukawa couplings and the matter singlets become
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noenzero due to the nonperiurbative effects? 2 What impact does this have
for the low-energy phenomenoclogy? Yukawa couplings hi;a27,27,1, in principle
spoil the intermediate scale mechaniom. However, since the matler singlets do
acquire mass m; ix Myexp{~R?/a’) > M;t after integrating the heavy singlets
out the efective contribution of the above Yukawa couplings is damped, i.c.
h%, — (hisaM1/my)® due to the decoupling theorem™ Minimization of the
potential yields in general an upper bound on M;:

My = (Mymyfhija)? < VMe M, = 0(10*'GeV) (12)

where the equality sign applies only if h,js is damped exponentially as well.
The above constraint for Afy can be evaded in a particular casezﬂ enly il the
relevant Yukawa coupling hija is absent due ta a speciaily symmetric choice
of the Calabi-Yau manifolé? In this case the originally proposed interinediate

scale mechanism ) would remain intact, i.e. eq. (11} would be valid, provided

/Mg #0.

It has been arguec.‘.sll that 1/My # 0 for a general Culabi-Yau manifold, due
to the worldsheet instanton contribution. This would in turn suggest that the
intermediate scale mechanism is in gencral viable. However, here we wouid like

to point out that this is net the case for the following particular Zy orbifolds
and their blown-up versions.

We will show that
1/Mx =0 {18)

for all the Zy (except the Zg, see Table 1) orbifoids and their blown-up versions

as jong as they are compactified on a six-torus 7% which tan be obtained by

1 Nate thal far my < Afy the eflctive Yuhawa coupling would not have been damped, Lhus
My & 1011 GeV {see cq. [12)). Alsa, we have assumed thae {1} = 0 which may not be
Lthe case in |cn:ul.”l

§ Oneshould again peint aut that the explici! calculation shiows 31 | hat this is nol the case
for the blown-up 2, orbilald. Even for the most symmetric cubic lattice of the torus T
alf the matter singlel masses and the above Yukaws couplings are nonzerc
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continuously deforming T¢ = T4 ® T2, By T¢ we mean the six-torus, which is a
direct product of an arbitrary four-torus and a two-torus which are orthogonal
with respect to each other. Therefore for T§ the four basis vectors have entries
corresponding to the T* coordinates only, i.e. {a,b,0), and the two basis vectors
have entries corresponding to the T2 coordinates only, i.e. (0,0,¢).Here we have

to choose the T2 coordinate ip = 3.

For proving (13) we would need to analyze only the propeities of the corre-
sponding amplitude with respect to the (H;, )i charge and the X;, werldsheet
toordinate only. For this purpose we shall need the value of the (H;, )i, charges
carried by 27's, 27’5, and the “moduli” 4's (transforming as {1,1) ‘orms) and b's
(transforming as (1,2) forms) whose nonzero VEV's correspond to the deforma-
tion of T§ (“maduli” of the untwisted sector) as well as to the blowing-up of the

fixed points (“maduli® of the twisted sectors).

First one observes that in the untwisted sector at most one 27 and the cor-
responding bas can appear, and this for orbifolds which are generated by the
diserete rotation & which rotates one complex coordinate Xy, let’s say the third
one (ip = 3) by 180°Y These are all the orbifolds which have one {H,)r of the
—1 picture equal to % This in turn implies that (H;,}r change for 27 and the

corresponding bas from the untwisted sector (g°)

(H:), =1 ~1 picture
(I, ), =142 —1/2 picture untwisted sector (uno). (14.a)
(i), =0 0 picture

On the other hand the (H;,); for the part of this 27 which transfoims as 16

% This resull is oblained by nolicing that the 3T transform as (3 X Mantuymmarric = @°
under & continvous SU(3) holonomy group. Noticing that the eigenvajuesrof the disciele
sotation # are [wy, w3, wig) Lansfarm as 3 of the continuaue SU(3) halonomy group. One
can then derive that tha eigenvalues of states in the untwisted seztor which tranafarm as
8* arc (@, 43, wiwz, wi,wi,@d). Here the & denotes a complex conjugate valae of w.
Tous, for N = } supersymmelric theory, L¢. all of the eigenvalues of # should be different
from 3, the number of physical states which Lransform as 6° of SU(3) is at mast 1. Tie
jatler is the case when one and only one of the eigenvaluesof 8 is 1, e.g. &y = - 1.
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under 50(10) and the corresponding b are, respectively:

(Hyi=-1/2 186

_ untwisted seclor {ung). (14.5)
u’lu)’ =0 b

On the other hand the 27% and corresponding &% from the twisted sector come
only from the n-twisted sectors (g™) which leave at least one complex direction
vnaffected, e.g. B* = {w,©, 1) in its diagonal form for i, = 3. It turns out that for
all Zy orbilolds, except the Zgr orbifold {sec Table 1), the direction which remains
unaflecied is the same as the one which corresponds to rotation 8;, = 1, i.e. 1 =
9. On the other hand for 27’s the three entrics of 1he laltice vector corresponding
to the gauge group Go € SU(R) are (ky/N — 1/2,kqf/N — 1/2, kaf N -- 1/2)} with
kifN > 0and Y, ki/N = 1. (Note that (#;); charges correspond to the vertex
operator in the —1/2 picture.)

This in turn implies that the (H,,), for 77's and b's coming from the twisted
sectar i fixed to be:

(H.,), =0 --1 picture

twisted sector (fuy). (15.a)
(Hiy)e = —1/2 -1/2 picture

On the other hand (H;,)1 charges for the parls of 27's transforning 2s 10% of
50(10} and &'s are respccthly:‘

{H, ) =+1)2 16

(Ho)r = twisted seclor (tuwg). (15.5)
wlt =

The constraints {14-15) lor the (M, )i, charges can be obtained by using the pic-

s This is the reason Lhal in gencral one cannot prove {13} far Zg orbifold.

# This can be shown in the lollowing way. The part of 27 (7] transforming as 16 (16)
under SO[10) must nave a representation in terms of Ty x Tg lattice vector whose entries
to be alt 4§ with eight enteies cotresponding ko the Eu gauge symmelty have an odd
{even) number of plus signs. In order 40 have 37'3 and 77's in a particoiar Lwisted sector,
27’6 can only bLe obtained by adding Lo the lattice vector of 27 a lattice veclor A ol I'gx Ty
lattice which has one 4] entry in one of Lthe eight entries coricsponding to Eg and one
+1 entry in onc of the theee entries correwponding te Ga, i.e. one must have for one 1,
(M = K /N4 12 Thesequitement that 27 and 27 Loth lie at the same (zero) energy
level Further raquites that &, /N = 0. QE.D.
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ture changing formalism. Note, that in Lhe O-picture (¥, )i, remains unaflected,
because the energy-momentum tensor Tx acting on the vertex in the —1 picture
cannot change (Hi )i = 0. On the other hand the {#; )i, charge of the 27's

and b's (transforming as {1,1) form) s not restricted in general.

In order to calculate the parameter 1/My in the general background of the

above Zy (Mewn-up) orbifolds one has Lo evaluale the following amplitude;

VAR o A = (BT TT 0,2 20T 2Tl e
xb32,6%2 B2 bF, BE. BY

P
un' YungVune “twe Yruy tw')'

(19)

Here the fields symbolically denote the corresponding vertex operators. Here ung
{twp) refer 1o the states of the untwisted (twisted) seclor where 27’s and b%s (and
also corresponding 27" and b's) appear. On the other hand un’ {tw') refer to
the states of the untwisted (twisted) sector with H charges such that only 27'
and &'s appear. Nole also that states 27,0+ (byar) have the same (Hi )i charges
as 27y, (bew,). Also recall that (H, 4 of 27 (i.e. 27Tung twa) 5 —(Hig)i of
the corresponding 27's (i.e. 27un, two)- We aleo choose twa 27's to be in the
~1/2 picture (for the r-sector) and one 27 in the —1 piclure, while the rest of
the vertices are in the 0 picture. Note again that insertion of moduli from the
untwisted sector in amplitude (16) corresponds to deformation of T§ while moduli

from the twisted sector correspond to the blowing up of the orbifold singularities,

Using (14) oue zees that (Hi )1e = 0 from bun''s, bung. and bug, because in
the O picture of the uniwisted sector N, = B(f = 1,2,3). However, fron operation

(2) the above modes give the following contribution to he amplitude (16) with

respect 1o the 1,th bosonic courdinate;

X213, X0 8, X702 (17)

Note that this parl of the amplitude is alv. ays invariant under the automorphisms
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of the lattice. Analogously one can study the contribution from the test of the
vertices, Using (2,8,7,14,15) one arrives at the following contribution Lo the
smplitude {16} from the igth coordinate®

. X5 a.x (18)

Conservation of (H; )¢ charge yiclds

a=2m—-1+8 {19.¢)
with
B=mp~ta+ NI+ N, (19.5)

where N; and N, refer to the sum of H;, charges in the ~1 picture for 27,
and b;,'s. Obviously (18) is not invariant under the automorphism of the lattice

8;,7 neither is then the total amplitude (16). Thus eq. (13) is proven for the
above models’*

The absence of terms (27?)"/&!}?“'3‘ in the superpotential, for the 2y

(blown-up) erbifolds except Zg: again implies that ejther there cannol be any M,
or M) should satisfy the bound (12).

O When #,, = —1 implies that & # 0 in genersl, i.c. there i Bung. In this case (17) is
jnvariant under & . On the other hand when 85, # =1, there is no bung and & =0, Then
also In Lhis case (17) is invariant under 4y,

4 Nole that in eq. (18) there is no ccntributlun of the type 22X which could in prineiple
ceme frem bew, 5. However, in such sectors where Biw, appear. H;, = 0in the -1
picture and there eould be no contzibution of the type 8y X;, when one applies the picture
changing {see eq. (2)) from the -~1 to the O picture.

& For 8, = =1 and thus also (&, ) £ 0, 4 clunges sign under the action of &;,. On the
other hand for &, # ~1 one bas & = i = 0, s.c. there are 10 Funy's and/or buny's. In
this case A picks up the phase 8;, under the aclion of this zotation.

! Heze we would like to emphasize that for ony Zn (blown-up] orbifeld {independent of
the structute of the six-torus) the amplitude (16) is dwys of most expanentially damped, i.c.
o exp{~- i /a’). See Ref. 31 for details.

¢ Note that the proof for 2, (blown-up) orbilold docs uol go througl because one cannot
choose the same 1g disection for the classification of (M )e.c charges of the untwisted and
twisted sectors. Actuaily we obtained the lorm of the amplitude A which scems Lo be
nongero, in genecal. However, fas the case of the 2y orbifald limil, the first value of K
for which /My is possibly nonzewo s K = 7!
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5. Conclusjons

We studied the steuctuse of the effective Lagrangian for the Zy orbifalds
and their blown-up vetsions. We discussed in detail the general structure of the
vertices for the emission of the massless states for such modes, in particular for
those of "moduli® as well as for 27’5 and 3T’s. These vertices are exact at the
siring tree-level. The calculation of the amplitudes in the general background,
i.¢. with *moduli* acquiting arbitrary VEV's, is outlined. This in turn allows one
to extract the value of the corresponding parameters of the effective Lagrangian,
which are ezact at the siring tree-level. Special care is given to the higher di-
mensional terms of the type (2727)F (with K > 2) in the superpotential and
the importance of such terms Lo generate an intermediate mass scale, M; in such
models, is emphasized. We showed that for all the Zy orbifolds and their blown-
up versions in general background, such terms, if they are nonzero, are st most
exponentially damped. However, interestingly we showed that all such terma are
absent for all the Zy orbifolds and their corresponding blown-up versions when
compactified on 8 six-torus T which could be continuously vbiained by deform-
ing TS = T4@T?, with T* and T2 being orthogonal to each other. This certainly

imposes strong phenomenological constraints on such models,
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