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I. ABSTRACT

In this paper, a method of computing laminar incompressible
fluid-flow and neat transfer during the filling of a spherical annulus is
presented. Transient fluid temperatures and heat flux rates in the
spherical annulus are calculated for an insulated outer sphere and a
constant temperature inner sphere with heated water filling the annulus
from the bottom.

To achieve a solution, laminar axially symmetric flow is assumed
and the Marker-and-Cell (MAC) free surface computational method is
applied to this problem in spherical coordinates. Changes in the stand-
ard MAC treatment are incorporated and special methods for handling the
free surface are introduced. A variable mesh is used to improve resolu-
tion near the inner sphere where temperature and velociiy gradients are
steep and the governing equations are derived for variable fluid proper-
ties to allow an eddy viscosity turbulence model to be applied later.

Calculations of velocity, temperature, and inner sphere heat flux
in a spherical annulus of 139.7 mm inner radius, and 168.3 mm outer
radius within an inlet tube diameter of 38.1 mm are presented. The inner
sphere is held at 0°C and the inlet water temperature is 50°C.

Laminar results corresponding to an annulus fill time of 20 secbnds are
presented and the major features of the flow are discussed.

Computed separation point location is compared to experimental
results from the literature. Differences in computed and experimental

separation point location are shown to be a result of turbulence in the
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experiments which was not accounted for in the calculations. Calculated
flow patterns are in qualitative agreement with steady flow experimental

observations in the literature.

e,

-jv-~



II. INTRODUCTION

The spherical annulus is defined as the region between concentric
spheres. This geometry is advantageous in certain heat transfer applica-
tions because it provides the maximum volume per unit surface area. Heat
transfer applications for steady state flow between two concentric
spheres include cryogenic storage systems and guard heating systems in
which a material inside the inner sphere is maintained at constant tem-
perature by fluid ir the annulus. A similar steady flow application is
the cooling of yyroscopic gimbals by fluid fiow in a surrounding spher-
ical annulus. In addition, steady flow spherical shell heat exchangers
are used in homogeneous nuclear reactors to cool the spherical fuel
elements.

To date, the majority of the spherical annulus flow research has
been applied to the study of steady forced or natural convection flow in
a spherical shell heat exchanger. One of the first amalytical treatments
of fluid flow in a spherical shell was by Cobble {1). Cobble assumed a
tangential velocity distribution and then calculated heat transfer based
on the energy equation. Bird, Stewart and Lightfoot (2), presented the
solution to isothermal creeping flow in a spherical annulus. Ward (3}
provided a flow visualization study of isothermal flow in a spherical
annujus between 60 and 120 degrees downstream of the entrance. He Showed
that the velocity profile cannot be predicted analytically by neglecting
the radial velocity component. In addition, Ward stated that if the
radial velocity component were left in the governing equations a simple

analytical solution would not be possible and numerical methods would be
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required. Rundell and Rundel) et. al. (4,5) measured the temperature
profiles between inner and outer spheres and the bulk heat transfer coef-
ficient for steady flow in a spherical shell heat exchanger. They
obtained a heat traasfer correlation for two sets of sphere sizes whiEh
was later extended by Cox et. al. (6) to include other sphere sizes.
Bozeman and Bozeman et. al. (7,8) added to the isothermal flow visualiza-
tion work of Ward by focusing on the entrance region. They state that
the most significant heat transfer occurs upstream of separation in the
region near the inlet where the flow impinges on the inner sphere and
jets off tangentially.

Rundell observed a flow rate independant separation point located
between 45 and 50 degrees downstream of the entrance. Bozeman added that
upstream of the separation point the flow is characterized by a high

velocity jet of fluid near the inner sphere with a relatively low veloc-

‘1ty return flow near the outer wall. Downstream of separation, the main

Flow moves directly to the outer sphere creating a low velocity return
flow near the inner sphere. The high velocity jet near the inner sphere
upstream of the separation, point makes this an area of significant heat
transfer. Beyond the separation point, the fluid is moving slowly near
the inner sphere and as a result a lower heat transfer rate is expected
in that region.

The prablem of laminar natural convection flow in a closed spheri-
cal annulus was solved numericzlly by Brown (9). Brown salved the vorti-
city and temperature equations in spherical coordinates by an explicit
finite-difference technique coupled to an iterative solution of the

vorticity-stream function relation. The majority of the calculations
-2-



were for air while some calculations for water and mercury were
included. Astill (10) applied a boundary-layer order of magnitude
analysis to the dimensionless forced convection equations in spherical
coordinates to reduce them to a set of parabolic differential equations,
He simplified the inlet and outlet flow conditions by assuming a uniform
velocity profile across the annulus at specified inlet and outlet
angles. The solution was obtained by a finite-difference method that
marches forward in the azimutha! angle.

In this study, we are interested in calculating water temperatures
and heat flux rates during hot water filling of a spherical annulus in
which the inner sphere is isothermal and the outer sphere is insulated.
Laminar, incompressible, axially symmetric flow is assumed and the
governing equations of mass, momentum, and energy conservation are solved
in spherical coordinates. A variable mesh is used to improve resclution
near the inner sphere where velocity and temperature gradients are
large. Varjable fluid properties are assumed so that an eddy viscosity
type turbulence model may be added later,

The momentum equations are solved explicitly for the radial and
azimuthal velocity components and these velocities are iteratively
adjusted along with pressure until mass conservation is satisfied.
Temperatures are obtained explicitly from the energy conservation
equation which is coupled to the momentum equation by the fluid
velocity. The Marker-and-Cell (MAC) computational technique (11) is
modifed to handle the free surface aspects of this problem. A sketch

illustrating the basic flow problem is shown in Fig. 1.
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To the best of our knowledge, this is the first study of the
transient filling of a spherical annulus by either experimental or
computational methods. However, we have an idea of thie nature of the
transient flow problem from the steady flow visualization work reported
in the literature (3,5,8). As the spherical annulus fills, flow in
regions away from the free surface soon establishes steady patterns.
Flow in the inlet region, where the majority of the heat transfer occurs,
becomes steady quite early in the filling process. As a result, a
similar flow pattern and separation point location are expected in this
region for the transient filling problem as was observed for steady flow
in a full annulus. Results from Refs. (3), and {5) on separation point

will be compared to our computational solution.



III. GOVERNING EQUATIONS

The equations governing healt and mass transfer during the filling
of a spherical annulus are the conservation equations of mass, radial
momentum, azimuthal momentum and energy. In the solution of these equa-
tions, we use the primitive variables of pressure, velocity, and tempera-
ture and solve the equations in the spherical r - O plane shown in
Fig. 2. The azimuthal coordinate O, is measured from the lower - “le and
the radius is measured from the common center. The sphere radaii are

denoted as Rl for the inner sphere and R2 for the outer sphere.

ASSUMPTIONS

For all equations, we assume laminar incompressible axially sym-
metric flow. Ward {3) and Rundell (4) have shown experimentally that
axially symmetric flow is a valid assumption for the spherical annulus
with uniform inlet flow. Although the flow in the spherical annulus is
turbuient for most flow rates (3,5,8), laminar flow is asrumed for sim-
plicity and as a starting point for the analysis. The computational
techrique is essentially the same for variable property Taminar flow as
for turbulent flow with an effective eddy viscosity and thermal diffu-
sivity. The equations are derived for variahle thermal diffusivity and
variable viscosity to allow a turbulence mode)l to be incorporated later.

In the momentum equaticns, surface tension and buoyancy forces are
neglected and in the energy equation, compression work and viscous 1is-
sipation are neglected. In addition, zero free surface heat loss and no

phase changes are assumed.
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VECTOR EQUATIONS

The vector equation expressing conservation of momentum for

transient laminar incompressible fluid flow is

-

W o L G0-F) - - (X)) ¢+ e - (1)
ot P
The velocity vector is defined as U = ju + jv, where § is the unit vector
in the r direction, 3 is the unit vector in the O direction, and ¢ and v
are the velocity components. The kinematic viscosity is represented
by v, the fluid density by p and [ represents the spherical gradient
vector operator. Pressure is denoted by P, time by t, and the gravity
vector is defined by § = ggr + 39,
The momentum eguation represents a balance of fluid momentum.
Each individual term expresses a separate source of momentum change in a
fluid element. The term on the left represents the time rate of change
of momentum. The first term on the right expresses the convection of
momentum by fluid motion and the second term represents momentum changes
due to normal pressure forces. The next term is the mathematical repre-
sentation of diffusion of momentum by viscous forces and the last term on
the right expresses momentum production by body forces due to gravity.
Along with the momentum equation, a statement of mass conservation

is required. The vector form of the continuity eguation for incompress-

ible flow is

{(v-u) =0 . (2)



R

The continuity equation states that mass must be conserved and acts as an
incompressibility condition for the problem. The momentum equation is
coupled to the continuity equation by the velocity.

For numerical solution, equation 2 is used to modify the convec-

tive terms in equation 1 via the vector identity
U(0-9) = 9-(0U) - O(9-U) . (3)
Using equations 2 and 3, eguation 1 written in conservative form becomes

& Fu) - %F - IxX[v(WxU)] + & . (47

Equation 4 is the governing vector momentum equation for this study. By
integrating each term in equation 4 over a control volume and by using
the divergence theorem to convert volume integrals to surface integrals,
it can be shown that this equation equates the flux of momentum through
the control surface to the time rate of change of momentum in the control
volume plus the change of momentum due to body forces. By using this
form of the equation, we are directly egquating changes of momentum within
the control volume to fluxes of momentum through the control surface. 1In
this form, the equation is a direct statement of conservation of momen-
tum and avoids nonconservative errors that are inherent in other forms of
the equation. Roache, (13) states that the conservative form when passed
on to the finite-difference equations is generally more accurate than
nonconservative forms. In this solution, finite-difference techniques

that preserve the conservative property of the equations are used.
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The energy conservation equation can also be written in conserva-
tive form by using equation 2. The censervative form of the energy

equation is

aT_ - - - -
T V+(UT) + V-{a%T) . (5)
In the above equation, "a" represents the thermal diffusivity. The left
hand side represents the time rate of change of Tccal energy. The first
term on the right side of the equation represents the convection of
energy by fluid motion and is the term through which the energy equation

is coupled to the momentum equation. The last term on the right is the

heat conduction term.

DIFFERENTIAL EQUATIONS
In this axisymmetric {low problem, there are two differential
momentum equations, one for each independent coordinate axis . The

differential momentum equations are

Radial Momentum:

u 13, 22 L8, . v2 _ _ 1P
vt rzar(’ u) + r sine ao(“vs’“a) r g or
{6)
1 a . du a . a
+ aalvsinézs| ~ ——|vsine—(rv) + .
rzsinesao( FY) 30 ar g &r
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Azimuthal Momentum:

av 1 1 uv 1 @gP
at T «ar(" uv) + r sine ae(" sing) + r  pr de
(7)
1 du
+ —} ( (rv)) aa)i + g,

The term (v°/r) in the radial equation, and (uv/r) in the azimuthal
equation do not appear in rectangular coordinates. These are the centri-
fugal and Coriolis terms respectively, and are a result of the curvature

of the spherical coordinate system.

The differential form of the continuity equation is

]
r sing 9¢

5 a%_(rau) (vsmo) s (8)

and the differential form of the energy equation is

aT 1 1
TS 2ar(r uT) + T sine ao(v‘l‘sme)
{9)
1 @ 29T 1 9 aT
=~ a.lar - asing—
r2 Br( ar) r2sine ) 69)

Equations 6, 7, 8, and 9, are the differential equations governing this
problem. They are four differential equations written in terms of four
independent unknowns. The unknowns are, radial velocity u, azimuthal

=11-



velocity v, pressure P, and temperature 1; The momentum and energy equa-
tions are coupled, nonlinear, parabolic partial differential equations.
An explicit finite-difference time marching scheme and an iterative tech-
nique will be used to solve the momentum ind continuity equations for the
two velocity components and the pressure. Temperatures will then be
found using the new velocities and an explicit finite-difference solution

of the energy egquation.

BOUNDARY CONDITIONS

The governing eguations regquire boundary conditions on velocity,
pressﬁﬂe and temperature at each physical boundary (r = Rl’ and r =
R2) apd along symmetry lines at the sphere poles (o =0ando =n).

Both normat and tangential velocity camponents are specified at sphere
walls, The normal velocity is zero at a wall except at the inlet where
it is constant. The téngentia] velocity at a wall is zero for a no-slip
condition or calculated to give zero tangential shear stress for a
free-slip condition. The symmetry lines at® =0 and P = v are treated as
free-slip boundaries. Free surface conditions on velocity and pressure
are given special attention in Appendix D.

Application of expticit boundary conditions on pressure at the
walls is not required because a slope boundary condition is implicitly
appiied by the solution technique. This will be discussed in the section
on numerical procedure. In addition, singularities in the equations at
© =0 and 0 = 7 are avoided by the placement of velocities in the
finite-difference mesh.

The boundary conditions can be summarized as follows

-12-
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i
v=40 or B?(V/r) =0

Temperature:
T=Tln

ar
ar

aT
ae
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IV. NUMERICAL SOLUTION

FINITE-DIFFERENCE EQUATIONS

Yo achieve a numerical solution of the governing equations, we
divide the flow region into finite cells and approximate derivatives by
finite-differences. Mesh variable placement as in the MAC method (14} is
shown in Fig. 3 and half cell notation is used to indicate cell face
variables. For simplicity, constant size cells are used in this and all
following figures. With variables Tocated as shown in Fig. 3, the con-
servative property of the differential equations is preserved in the
finite-differencr equations. By applying a forward-time centered-space
{13) finite-difference approximation for a variable mesh to equations &
and 7 and denoting time step by super;cript n, we have eguations 10 and
11 shown in Figs. 4 and 5. The numerical time increment is represented
by At and the fluid viscosity by vi,j° Viscosity may be calculated as
a function of temperature or as an effective turbulence parameter. In
this paper, constant laminar viscosity is used and turbulence modeling is
left to be done as a continuation of this study.

The form of the convection terms allows variable donor cell
differencing. With o = 1 the equations are equivalent ta full donor cell
"upwind" differencing and with a = 0 they reduce to centered differ-
encing. Centered differencing of convection terms is unstable and o must
be siightly larger than the maximum of l%ﬁ?l or |¥%%| occurring in the
mesh (15). Donor cell differencing provides a more physically realistic
treatment of convective derivatives because it allows information to be

-14-
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convected downstream only. Partial donor cell differencing will result
in less numerical diffusion than full donor cell differencing, but care
must be taken not to exceed the above limits on alpha.

8y applying variablie donor cell differencing to the convective
terms in the energy equation and forward-time centered-space
finite-differences to all other terms, we have the finite-difference
energy equation shown in Fig. 6. The term ai,j represents the thermal
diffusivity of the fluid and is defined on cell faces.

Terms such as VT, VB, UT, UB, TT, TB, etc. in egquations 10, 11,
and 12 are velocities anu temperatures that do not 1ie on the usual mesh
point locations shown in Fig. 3. These terms are calculated by mass flow
weighted averages to account for changes in cell areas and are Tisted in
Appendix A in terms of regular mesh point variables.

Spatially centered finite-differences are used to write the con-

tinuity equation in finite-difference form.

Continuity Equation:

2 2 1
b _ 1 [ri+1/2 Wlei/a,5 ~ Ti-1ye Yi-1/2.
L B r, -r,
ri i+1/2 i-1/2 | (13)

H n - H n 7]
1 {5'“91+1/2Vi.j+1/z sSindy_q/pVy j-1/2

rismoj 9j+1/2 - 9j—l/2 |

NUMERICAL SOLUTION PROCEDURE
The numerical solution of these finite-difference equations

proceeds in three steps. The first step is the explicit solution of
-18-
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finite-difference equations 10 and 11 forﬁ?:;/z’j andV?T}+]/2 . The
tilde denotes that these ar~ tentative velocities which are not anite
complete because they do not in genera'l satisfy conservation of mass. In
the second step of the solution we impose equation 13 and simultaneously
iterate pressures and velocities until mass conservation is achieved. An
equivalent technique was introduced by Chorin (16) and has been applied
to MAC calculations by others (17,18). Pressure-velocity iterations are
performed in such a way as to preserve the vorticity of the original
tentative velocity field. Iterations are continued until the maximum
cell divergence drgps below a specified limit. At this point the solu-
tion for velocity and pressure at the rnew time step ic achieved. In the
third step, equation 12 is solved explicitly for temperature using the
velocity sq]ution from step two.

To achieve the pressure-velocity iterative solution in step two,

equations 10 and 11 are written in condensed form for the velocity com-

ponents on the sides of a cell. Y

- n+l ____L AP:

ntl
2% .= 0y -+ .
Yis1/2,j U205 T plr,, - T) i

n+l = Su+l R - * 1
Uisizz.g = Witizel T (r, -, APl

(14)

at

G+l = ynt+i —_ !
Vivivrsz = Vi, jerze t pri (8, - 7)) APy
n+l = gn+] S - S I
Vivjmi/2 T Vidi-uz T ori(e, - 6, ) 8P
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The tilde velocities in the above equations contain ali terms from the
right hand side of equations 10 and 11 including the pressure derijva-
tives. We have added a pressure adjustment term API to adjust the
pressure at the 1., iteration according to

1+1 - pl
P, =P

i +8P{ . (15)

i

The pressure adjusiment term, AP% j is calculated to force the velocity
L]

field to satisfy the continuity equation lecally. The equation for API

is found by substituting equations 14 into egquation 13 and solving for

API. The result is

pl = - —2p
&Py = ate, [Tei] (16)

In the above equation, Di j represents the finite-difference velocity

divergence for cell (i,j) given by equation 13 and Bi,j is a geometry

factor. !
D, . ;
1 v Tis1yz Fi-1/2 i
f; i =g {(— + L
ooy }ArilAri+1/2 ar;_y /2 ]
- !
(17}
+ 1 1 sind; ., /» . Sind;_, sp
rislnaj Aol A9]+|,2 AOJ_I/z
where:
Afy = Tiatsz ~Tieryz « 8Ty4ye S Tyyy = Fy VAT ypp =1 =1, ,
495 = Ojen/z T Oymi/e 2 BOpyye = 05y~ 05 L 88 s = 8; - 8, 2
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In equation 16, we have introduced a relaxation parameter ug to acceler-
ate convergence (19). For stability, Wy has the restriction 0< w, < 2.
We have found that Wo = 1.8 provides the most rapid rate of convergence
for our problem. Variations in w, near the free surface are discussed in
Appendix D,

If properly calculated, Bi,j will have a form for cells adjacent
to walls that is different from the form for interior cells given by
equation 17, Because the normal velocity component is zero at a wall the
term containing r$+]/2 will drop out near the outer wall and the term
containing r?_,/z will vanish near the imner wall. Essentially Bi,j has
a different form near walls because wall cells have only three degrees of
freedom (i.e., velocity components that may be iteratively adjusted) as
opposed to four for interiar cells. In adjusting Bi,j for wall cells, we
are effectively over-relaxing these cells an additional amount to account
for the reduced degree of freedom.

He begin the iteration to achieve mass conservation by calculating
the cell velocity divergence from equation 13 and finding a pressure
increment from equation 16. The pressure is then incremented in each
cell by equation 15 and cell velocity components are updated according to
equations 14, The entire mesh is swept and the same adjustments are made
for each cell. After the first iteration sweep the tilde velocities are
overwritten by the new adjusted velocities and the iteration equations

for the cell velocity components take on the form

~22-



n+l n+l
Uisize.) Y

(18)
n+1 at

yntl - yntl +
iJj+rt/2 i,j+1/2 pri(ej+l - Bj)

aP} o
etc. for all subsequent iterations. A surface cell pressure increment is
found by linear interpolation or extrapolation of the nearest full cell
pressure increment. The procedure for surface cells is discussed in
detail in Appendix D.

In this iteration technique, we are effectively calculating the
net excess mass flow into or out of a c£1! and adjusting the pressure and
the four surreunding velocity componenis accordingly to give zero veloc-
ity divergence. In doing so, the divergence of the neighboring cells is
affected, and as a result the mesh must be swept iteratively to ailow the
solution to relax. Iterations are continued until the maximum cell
divergence in the mesh drops below a specified limit. This limit is
chosen so that the excess mass flow in any cell due to nonzero velocity
divergence is Tess than 0.01% of the total mass in the cell. For this
problem a convergence limit of 0.0001/4t is used. When all cells have
converged, the velocity solution with correct vorticity and vanishing
divergence is achieved. At this point, we have the solution for pressure
and velocity at the new time step and we proceed to calculate the temper-
ature field explicitly from equation 12.

Because we are calculating pressure at the cell center based on
the cell velocity divergence, we are not required to apply explicit

boundary conditions on pressure. This is one advantage of this solution
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technique that is possible because velocity variables are positioned on

cell faces and pressure at the cell center.

FINITE-DIFFERENCE BOUNDARY CONDITIONS

Figure 7 shows a portinn of the finite-difference mesh with cell
flags and free surface location indicated. Cell flagging will be dis-
cussed in the next section. A surrounding layer of boundary cells facil-
itates boundary conditions by allowing a fictitious tangential velocity
outside the wall. The fictitious outside velocity is necessary because
of the location of variables as shown in Fig. 3, For the variable mesh,
boundary cells are the same size as adjacent cells inside the wall.

The outside velocity is calculated to give zero tangential com-
ponent at the wall for a no-slip condition. Using mass flow weighted
averaging as discussed in Appendix A, the outside velocity for a no-slip

wall is found according to
- Tin
Your = Vi (}-_ ) : (19)

For the free-slip condition the tangential stress must be zero at the

wall. The tangential stress in spherical coordinates is

r-éa;(v/r) + % g—:) . (20)

Trg = #

At a wall with zero normal velocity the tangential stress reduces to
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(<)
BF(V/P) =0 . (21)

This condition dictates the value of the outside velocity. The outside

velocity for a free-slip wall is given by

Yout

_— (51—‘) . (22)

Cin

FREE SURFACE TREATMENT

The presence of a free surface makes this a unique fluid mechanics
problem. The free surface is an unconfined moving boundary requiring
special treatment. The Marker-and-Cell computational method was devel-
oped to handle the free surface and all its complexities (14). Cell
flagging, marker particles and the treatment of surface cells character-
ize the MAC method. Massless marker particles mark the fluid and a cell
flagging scheme flags cells as full, empty, or surface. Several improve-
ments have been added since the method was first introduced.

Changes and additions to the MAC free surface treatment are
required for solution of this problem. There are four specific areas in
which the treatment here differs from classical MAC methodology. They
are: 1) multiple surface chains for breaking waves, 2) surface adjust-
ment by nonzero divergence in surface cells, 3) special surface or impact
cells, and 4) multiple surface cell pressure interpoTation from a single
full cell. In Appendix D, these features and the application of the

standard MAC methodology to our problem are described.
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V. COMPUTATIONAL RESULTS

The purpose of this section is to present computational results
that demonstrate the capability of the solution technique and represent
the major characteristics of the fluid-flow and heat transfer during
spherical annulus filling. Computational results for velocity, temper-
ature, and inner sphere heat flux are presented for a spherical annulus
with a 09C isothermal inner sphere, an insulated outer sphere, 50°C
initial annulus water temperature and 20 second fill time. Properties of
water at 50°C were used for these demonstration calculations.

Computations are made with the variable mesh shown in Fig. 8.
There are 16 radial cells, 84 azimuthal cells and 4 cells across the
38.1 mn diameter inlet. A geometrically stretched mesh is used to
improve resolution near the inner sphere and in the inlet region, The
radial stretching factor is 1.07 and the azimuthal stretching factor is
1.007. The inner sphere radius of 139.7 mm and the outer sphere radius
of 168.3 mm were chosen to match a geometry studied by Ward {3), Rundell,
et. al. (5), and Bozeman, et. al. (8).

The no-slip velocity condition is applied at the inner sphere
where the mesh is fine enough to resolve boundary-layer details. Near
the outer sphere, where the mesh is course, the boundary-layer is not
resolved and the free-slip condition is applied.

Figure 9 shows calculated azimuthal velocity profiles and velacity
vectors at 9 and 19 seconds. These plots illustrate the characteristic

flow patterns before and after the free surface passes the point of wall
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INSIDE RADIUS= 1.397E+01
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FIRST DTH= 2.836E-02

LAST DTH= 4,322E-02

THETA CELL RATI0= 1,007E+00

and heat transfer.

Figure 8. Variable mesh for computing spherical annulus fluid-flow
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jet separation at © = 91 degrees. Velocity vectors and profiles are
scaled to the maximum velocity in each case.

In Fig. 9a, the inlet jet impinges on the inner sphere and jets
off tangentially, creating a high velocity wall jet near the inner sphere
and a uniform low velocity return flow in the outer portion of the
annulus. This flow pattern is similar to that observed experimentally by
Bozeman et al. (8) in the lower portion of the annulus for steady f1low.
The flow illustrated in Fig. 9a consists of a main toroidal shaped recir-
culation eddy and a very small secondary-eddy at the free surface next to
the inner sphere. The secondary-eddy is small and barely visible in the
figure. The main recircu1ation‘pattern is formed almost immediately when
filling begins and simply grows as the annulus fills. The secondary-eddy
is created when the surface passes O = 50 degrees. It moves along with
the free surface next to the inner sphere until reaching the stationary
separation point at © = 91 degrees. Separation is identified by an
inflection in the velocity profile followed by flow reversal near the
inmer sphere.

Figure 9b illustrates the typical flow pattern after the surface
has passed the separation point. The toroidal shaped recirculation eddy
and the wall jet become steady and no longer grow in length. The steady
wall jet thickness decreases initially until about © = 30 degrees,
remains approximately constant from 30 to 60 degrees, and then thickens
until eventually separting at ¢ = 91 degrees. Downstream of separation,
secondary-flow eddies are formed near the inner sphere. These secondary
flows and their effect will be seen more clearly in the temperature

results. Flow velocities beyond the initial separation point are nearly
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uniform across most of the annulus and are in general small compared to
the inlet velocity. This result is consistent with experimental observa-
tions from Refs. (3). (5) and (8} for steady flow in a spherical

annulus. During most of the filling process, transient behavior is
limited to the immediate region of the free surface and the remainder of
the flow exhibits quasi-steady behavior.

Computed temperature and pressure contours at 9 and 19 seconds are
shown in Fig. 10. The stair-step effect at the surface is caused hy the
finite cell sizes. Before the surface passes the separation point, tem-
perature is uniform across the annulus except for a thin layer near the
inner sphere as shown in Fig. 10a. The relatively high velocity of the
wall jet creates a thin thermal boundary-layer that appears as a black-
ened layer near the inner sphere.. The thermal boundary layer is thinnest
in the impingement region near © = 0 and thickens to a maximum at separ-
ation. The secondary-flow eddy is clearly visable in the temperature
contours shown in Fig. 10a. Downstream of separation, velocities and
heat transfer rates near the inner sphere vary considerably and are much
Tower than upstream. Separation and the presence of secandary-flow
eddies have a major effect on the temperature contours as shown in
Fig. 10b.

Computed temperature coniours at various times after the surface
has passed the separation point are shown in Fig. 11. The saguence
illustrates the development of temperature profiles with time. At t =
19.95 seconds, the flow next to the inner sphere reverses direction at
three locations creating three eddies. The first flow reversal occurs

at @ = 91 degrees where the wall jet separates. There is a reattachment
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Figure 11. Tumperature contours at various times after the surface has passed the separation
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point at © = 114 degrees and another separation point at o = 137
degrees. Locations of these points are indicated in Fig. 11. The iso-
therms point out the effect of the secondary-flow eddies on the temper-
ature field, The eddies in the upper half of the annulus were probably
not visible to Ward {3) or Rundell et. al. (5) because dye diffusion
obscured vision of any flow details in that region.

Figure 12 is a plot of inner sphere heat flux rate versus angle at
times of 5, 10, 15, and 19.95 seconds. Separation and the presence of
secondary-flow eddies create the peaks and valleys in the heat flux rate
curves. The sudden increase in heat flux rate at the ends of the 5 and
10 second curves is caused by the presence of the small eddy near the
surface, This eddy and the resultant effect on the heat flux rate move
with the surface until reaching the separation point at O = 91 degrees.
After the surface passes this point the eddy begins to grow in length
until the flow reattaches at © = 114 degrees. The growing eddy causes a
decrease in heat flux rate from t = 15 to 19.95 seconds betwren 0 = 91
and 114 degrees. Three secondary-flow eddies are eventually formed and
each one creates a separate valley in the heat flux rate curve as seen in
Fig. 12 at t = 19.95 seconds. The fipal increase in heat flux rate
beyond © = 160 degrees at t = 19.95 seconds is the resu:.t of increased
flow velocities near the inner sphere. This incrcase is a reversal in
the initial general downward trend in heat flux rate.

During the majority of the filling process, transient velocities
are limited to the immediate region of the free surface and the remainder
of the flow exhibits quasi-steady behavior., This is especially true

after the surface passes the separation point. As a resu«lt, we cxpect to
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Figure 12. Inne~ sphere heat flux rate versus angle at various times.
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be éble to compare our computed separation point at © = 91 degrees to the
experimental observations of others for steady flow.

Rundell (4) and Rundell et. al. (5) reported a steady separation
point between 0 = 45 and 50 degrees. The difference in the computed
separation point and the experiments can be attributed to the lack of
turbulence modeling in the calculations. The main effect of a turbulence
mode?l on the calculations would be an increase in the effective fluid
viscosity. Effective turbu1ept viscosity varies with flow properties and
can eastly be one hundred times larger than the laminar viscosity.

To geL an idea of the effect of increased effective viscosity on
the flow pattern, a test case was run with laminar viscosity ten times
the viscosity used in the previous calculations. Azimuthal velocity
profiles and temperature contours for the high viscosity calculation are
shown in Fig. 13. The wall jet has separated at © = 56 degrees, indi-
cating that the separation point location is affected by the fluid vis-
cosity in these problems. We expect to see the same qualitative shift in
calculated separation point location due to the increase in effective

viscosity from a turbulence model.
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T AT S T et

VI. SUMMARY AND CONCLUSIONS

In this paper, a computational technique for calculating Taminar
fluid velocities and temperatures during the filling of a spherical
annulus has been described. The nature of the free surface flow has
required special treatment beyond the standard technigues available for
free surface flow problems. Results of velocity, temperature, and heat
flux have been presented for a spherical annulus filling problem. These
sample results are intended to demonstrate the capability of the compu-
tational technique as well as display some of the major and important
features of the flow.

Results indicate the impingement region and the wall jet along the
inner sphere are the important areas for heat transfer. The location of
separation has a major effect on the predicition of total wall heat flux
and annulus fluid temperatures. Upstream of separation, heat is extrac-
ted from the annulus fluid as it flows along the inner sphere. The total
amount of heat extracted is directly dependent upon the tength of the
flow path along the inner sphere which is determined by the location of
the separation point. F£7ter separation, the main flow moves to the outer
sphere and velocities and heat transfer rates near the inner sphere are
lower than in the wall jet region. Large changes in heat flux rate as a
function of angle are present downstream of separation and have been
shown to be a result of secondary-flow eddies near the inner sphere.

An important feature of the flow, is the quasi-steady behavior in
all regions except the immediate vicinity of the free surface. This fact
allows us to compare qualitative calculated features of the filling prob-

lem to the results of steady flow experiments from the literature.
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The computed ‘1nw pattern upstream of separation agrees qualita-
tively with experimental results in the literature for steady spherical
annulus flow. The fact that the main flow moves to the guter sphere
downstream of separation with nearly stagnant flow near the inner sphere
has also been observed experimentally for steady flow and reparted in the
literature (3,5,8). Downstream eddies near the inner sphere were
probably not seen in experiments because of reduced visual resolution due
to dye diffusion.

The major difference between transient calculations and the steady
flow experimental results is the location of wall jet separation. The
calculations indicate separation at 0 = 91 degrees compared to experi-
mental observation of separation between 0 = 45 and 50 degrees (4,5).
Turbulence in the flow has a major effect on the Tacation of separation.
We have shown that increasing the laminar viscosity causes the calculated
separation point to move downstream in closer agreement with experi-
ments. The increased effective viscosity of a mixing length (or ather)
turbulence model will have the same qualitative effect on separation as
the increased laminar viscosity.

Calculations for slow filling in the laminar flow regime and the
addition of a turbulence model aimed primarily at modeling the wall jet
region are planned. The wall jet and impingement region are the impor-
tant areas far heat transfer and this is where we plan to facus the
attention of the turbulence modeling. The quasi-steady boundary-layer
like nature of the wall jet makes mixing length turbulence models look
promising for this region. We plan to consider mixing length and other

models for the impingement and downstream regions.
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APPENDIX A

NONSTANDARD TERMS FOR FINITE-DIFFERENCE EQUATIONS

The finite-difference momentum and enerqgy equations in Section IV
(equations 10, 11, and 12) contain terms that do not lie on the defined
mesh point locations as shown in Fig. 3. In past MAC applications, these
terms have been calculated by linear averaging for cartesian or cylindri-
cal geometry. Linear averaging in the radial direction of cylindrical
coordinates introduces a small error which has been neglected in past
applications.

In spherical coordinates, cell face areas change in every coordi-
nate direction and linear averages can be impraved by accounting for area
changes. We account for area changes by calculating velocities for non-
standard locations from a linear average of mass flow. For incompres-
sible flow this is eguivalent to averaging the product of velocity and
area.

Below is a list of nonstandard velocity terms from eguation 10
(the radial momentum equation) with subscripts referenced to cell (i,3)

as in Fig. 3, Section IV
voo r.Ar. + v? . r Ar
VT = 0 . 2 = i, p+1/2 090 i+, j+1/2  i+1%0 41 ,
/2. ie1/2 =
i+1/2.itl/ Rri41/28T 4y /2

n n
VB = vP ~ ViLi-1g2ti8rg vV /2T 418 e
T Visy/z,j-1/2 T ?

2T 41/28T 54172

n i n .
UT = u® _ ui+l/2|j51nejA6j + ui+l/2.j+lsln9j+1Aﬂj+l'
= Vis1r/2,j+1/2 T -
/205%1/ 25in6, ., /580, /5
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Nonstandard terms for equation 11 (the azimuthal momentum equation) are

n o n :
_ Mis1s2,8i00;86, + Ui, /0, ;4181068;4,46,,,
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The nonstandard terms used in equations 12 (the energy equation) are

calculated by linear averaging
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APPENDIX B

NUMERICAL STABILITY CONDITIONS

The finite-difference momentum and energy equations (equations 10,
11, and 12, Section IV) are restricted by numerical instabilities to a
maximum allowable time step. Attempts by many authors to analyze the
numerical stability conditions of general ngntinear finite-difference
equations have failed to provide both sufficient and necessary conditions
that insure numerical stability. Some of the methods reported in the
Jiterature provide necessary stability conditions that can be used as a
guideline {(Bl). The final test, however, lies in numerical experimenta-
tion using available stability conditions as guidelines.

The most straight-forward and generally accepted method of stabil-
ity analysis is the von Neumann method for linearized equations. A
discussion of the von Neumann method is presented by Roache (B2). In the
von Neumann analysis, the equations are linearized by assuming constant
coefficients in the convection terms and the solution is expanded in
terms of Fourier components. For our momentum and energy equations the

Fourier components are

Radial Momentum:

Weize,j = ¥lexp I(i+1/2¢  + itg) (8-1)

Azimuthal Momentum:

V?,j+l/2 = y"exp I(ig, + j+1/2¢a) (8-2)
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Energy Equation:

T?.j = ylexp I[(ig. + )9,) {B-3)

In the above equations,vn is the amplitude function at time level n for
the particular component with phase angle ¢ and | = (-1)7/2. Positive
convection velocities are assumed for upwind differencing terms with o =
1 and the above Fourier components are substituted into the

finite-difference equations. The amplification factor

n+l
¢ =Y, (B-4)

wn

is introduced to define stability and the stability criteria
6] <1, (B-5)

must be satisfied for all possible ¢. and ¢g. The resulting stability

conditions for the linearized momentum and energy equations are

Radial Momentum Stability Condition:

1

B-6

| ey * 15l men + [ 525 ; e

Ar 'hhax rag'max rzﬁaa max

Az imuthal Momentum Stability Condition:
1

at < A TS %0 © (B-7)

max rae'max orimax * ‘Z:Elm,x
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Eneray Equation Stability Condition:

1

at 1 (8’8]

r2a6?

<
u v 1
‘H max ¥ |m max ¥ 23[; + Jnax

The above expressions 1imit the convective plus diffusive fluxes
to Tess than a cell width in a sing’e cycle. In our prohlem, the convec-
tive flux limitation, often called the Courant condition, is the dominant
factor.

The results of the von Neumann stability aralysis provide neces-
sary stability conditions for the nonlinear equations but do not in
general predict nonlinear instabilities. Experience in computing with
equations 10, 11, 12, and 13 has shown the equations are generally stable
within the conditions of the Tinear von Neumann analysis. The numerical
viscosity effect of donor cell differencing of convective terms plays a
large role in damping out instabilities and stabilizing the numerical

solution.
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APPENDIX C
CONSERVATION OF VORTICITY BY PRESSURE-VELOCITY ITERATIONS,
THE POISSON EQUATION FOR PRESSURE, AND THE MAC CORRECTIVE TERM

The purpose of this appendix is: 1) to demonstrate that the
numerical iterations on pressure and velocity presented in Section IV
conserve vorticity, 2) to show that the iterative procedure is equivalent
to solving the Poisson equation for pressure and 3) to prove the exist-

ence of the MAC corrective term in the numerical solution technique.

ITERATIVE VORTICITY CONSERVATION

In Section IV, we discussed how the numerical iterations achieve
mass conservation by adjusting pressures according to the cell velocity
divergence and ;hen adjusting velocities to reflect the new pressure
gradient. The ¢e1ocity field was iteratively adjusted by effectively
adding tle gradient of the scalar pressure field to each velocity com-

ponent in the fashfon

al+l _ {t opl
U+t = gt + ¢,vPl, (c-1)

where:

From this equation and the definition of vorticity (2A = U ), we can

calculate the vorticity of the new velocity field as
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aal*! = 9xUl*l = UxU! + Vx(TP!), (c-2)

However, the last term is the curl of the gradient which is identically

zero (Cl). Thus,.the new vorticity is equal to the original vorticity
aalt) = Gxﬁl+1 = GXGI, {C-3)
and the solution has preserved vorticity.

POISSON PRESSURE EQUATION

The iterative technique is exactly equivalent to solving the
Poisson equation for pressure, as was done in the original MAC treat-
ment. We will illustrate this by going back to equaticn 4 in Section IV,

and Tumping terms together to get the equation

U _ gz TP
at =M (c-4)
where:
- - - - - - - c-5
l";"j = =~ V(W) - wx[v(¥xU)] + g, (c-5)

Taking the divergence of equation C-4 and pulling the time derivative
outside of the divergence, since the spatial coordinates are independent

of time, we have



¥ o

- - - - 2P (C_s)
. = . n - T —
2 (7°Y) = v.rt -

To prevent error accumulation due to nonzero velocity divergence the

additional constraint

2.3.0) = (c-7
S(7°U) =0, )
is imposed. With this constraint equation C-6 reduces to the P&issnn

equation for pressure

2 -
P _ g.pm (c-8)
p tel

<13

Another way of showing this is by substituting equations 14 into equation
13 in Section IV and rearranging to find the resulting expression is

exactly the finite-difference equivalent of the above Poisson equation.

MAC CORRECTIVE TERM

Our solution technique contains the MAC corrective term to prevent
errors due to the finite convergence 1imit from accumulating from time
step to time step (C2). To illustrate the corrective term we go back to

equation C-4 and write the finite-difference form far the time derivative

n+1 _ mn I
uit Ul —fn VP, (c-9
at T P -9)
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We then solve for ﬁ?+;

and take the divergence to get

v.unt

- 4 - Zp
; = v-U',.'_j + AL(V'I“?'- - — (c-10)

Zero velocity divergence at cycle n+l in equation C-10 requires that

4

-..-.I’l
T (c-1)

_— Lo+
o 1,) At

This equation is the same as equation C-8 with the exception of the
F N
correction term v Ui,j . If the solution at cycle n were perfect this

term would be exact%; zero, Since the iterations proceed only to a given
limit, this term will have a small but finite value and will act to
correct slightly the n+l time level pressures to account for past errors
in divergence. In this way, the divergence error from each cycle is

corrected and not allowed to increase with time.
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APPENDIX D

DETAILS OF FREE SURFACE TREATMENT

BACKGROUND

The original MAC method was simplified by Amsden and Harlow in the
SMAC method {D1), by adding a more efficient solution of the governing
equations and a simplified treatment of pressure at houndaries. Hirt and
Shannon (D2), added refinements in the free surface stress conditions for
low Reynolds number flow, Chan and Street (D3), defined the surface by a
single valued height function and eliminated the need for marker parti-
cles. In addition, they developed a scheme to use marker particles only
on the surface. Both methods were limited to low amplitude wave motion
with a single valued free surface. The surface particle chain reduced
the required number of particles from several thousand to @ few hundred.
This refinement also made precise location of the surface possihle
allowing accurate conditions on pressure to be applied. Nichols and Hirt
(D4), extended the surface marker particle scheme to multiple valued
surfaces that result from highly contorted flows. In addition, Nichols
and Hirt improved the free surface stress conditions and discussed their
use for higher Reynalds number flow. Hirt et. al. (D5), developed the
SOLA code which is capable of calculating incompressible flow in closed
spaces and is simplified for use by persons with little or no experience
in numerical fluid mechanics. A modified version (SOLA-SURF), handles
free surface flow by defining the surface with a single valued surface
height function in the manne- .f Chan et. al. (D3). The solution method

in SOLA is essentially the same as the method used here.
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For our problem, we use the surface marker scheme and free surface
stress conditions of Nichols and Hirt (D4) with modifications to fit our
situation. The method and modifications are discussed in more detail in

the following sections.

CELL FLAGGING

Cell flags tell us whether or not a cell contains fluid and indi-
cate which cells contain the free surface. An example of cell flags was
shown by Fig. 7, in Section IV. Cells are flagged based on the location
of the surface mavker particle chain. At the beginning of the filling
process, all cells are flagged empty and as fluid enters the annulus,
cell flags are adjusted according to the location of the surface. During
each cycle after the velocity solution has been obtained, marker parti-
cles are moved by linear interpolation of the velocity field and the mesh
is swept to update cell flags. On the first sweep, cells containing
marker particles are flagged surface. On the second sweep, we check for
surface cells that do not contain marker particies. These cells are
flagged full if there is no empty neighbor and empty if an empty neighbor
exists. Finally, any cell containing particles and having no empty
neighbors is flagged full,

Normally a cell flag would not jump directly from empty to full in
one cycle, however, situations occur in this flagging scheme that cause a
cell flag to jump from empty to full. This situation occurs when the
inlet jet impacts the inner sphere and also when a wave hits a wall.
When a cell jumps from empty to full, there is an apparent net gain in
fluid mass which results in the annulus filling too rapidly. Total

-55-



accumulation of extra mass is dependent upon the size of the cells and
the number of times this situaiton occurs during the filling process.
Figure D1 illustrates the situation when the fluid jet impacts the inner
sphere.

We define special surface cells to avoid this error near wglls,
Special surface cells allow the surface to move within less than a cell
width of the wall. We have determined the following requirements as
necessary for a special surface cell. The cell must be directly adja-
cent to a solid boundary, contain part of the surface marker chain, and
have been flagged full by the standard flagging routine indicating that
it has no empty neighbors. Then, if more than half of the particles in
the cell are in the outer one-fifth, the flag is left full indicating the
surface has contacted the wall. If the fraction of particles in this
layer is less than half, the cell is still eligible to be a special sur-
face cell and the theta coordinate of the chain attachment point is
compared to the coordinate of the cell center. If the attachment point
has a smaller theta, the cell is flagged as a special surface cell, if
not, the flag is left full.

A special surface cell is distinguished by a nonzero normal wall
velocity calculated by equation 13, in Section IV, to give zero velocity
divergence for the cell. This is the same ireatment given a regular
surface cell with a single empty neighbor. The effects of the special
surface cells are: 1) presence of the wall is not felt until the surface

effectively touches it and, 2) artificial mass creation is reduced.



Inner sphere

Symmetry —
line

Inlet flow
(2) Fluid jet about to enter final Tayer of cells before inner sphere wall.

Added mass —1

Non-zero wall
velogities

(¢} Special surface cells allow fluid to enter cells near wall.

Figure D1. Special surface cells prevent artificial mass creation near walls.
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SURFACE MARKER CHAINS

Replacing marker particles in the fluid body with a chain of
particles at the surface is a significant improvement in MAC methodology
(D6,D7). The surface marker chain reduces the number of particles and
computer storage required and provides more accurate location of the
surface. With the surface precisely located within a cell, the pressure
can be extrapolated or interpolated from the nearest full neighbor to the
exact surface location instead of the cell center. The essential
features of the surface marker chain are: 1) seguential particle
numbering, 2} maintenance of uniform particle spacing, and 3) attachment
of chain ends to walls.

When particles move, they tend to bunch up or thin out. As a
result, we must add or delete particles during each computational cycle
to keep uniform spacing and accurately mark the surface. After editing
particle spacings the chain ends are attached by moving the first and
last particles radially to the walls. This prevents chain ends from
drifting away from the walls.

When a surface wave breaks an interior cell may jump from empty to
full in a single cycle as illustrated in Fig. D2. Special surface cells
handle this situation near walls but do nothing for interior cells.
Motion of the type illustrated results in a folded and tangled surface
chain with some particles that may not lie on the surface. To keep the
chain from tangling and determine when chain splitting is necessary,
particles in full cells are removed each computational cycie. After
particles are removed the gap distance is checked to determine if the

chain should be split. 1If the gap exceeds 2.5 times the Tocal cell
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{a). Breaking wave about to collapse on a single empty cell.

Added mass

(b}). Added mass due to removal of particles in full cells.

Figure D2. Cell resolution and chain straightening cause artificial
mass creation.



diagonal and is near a boundary, the chain is split and the new end
points are attached to the wall. If the chain is not split, particles
are replaced in the full cell along a straight line segment. The effect
of the straight line replacement is straightening of the surface chain.
We will see the advantage of straightening the surface chain later when
we attempt to find the surface location in each surface cell.

As a result of chain straightening and interior cells jumping from
empty to full, the total system fluid mass increases as illustrated hy
the shaded area in Fig. D2. A small increase in mass occurs every time
we straighten a segment of surface chain and when a wave breaks.

Repeated mass erraors of this type add up to the point of causing signif-
icant error in the total system mass. We have not found a feasible way
to prevent mass creation when a surface breaks. This error is incurred
due to the finite size of the computational cells. 1In addition, if we do
not destroy particles in full cells each cycle, the surface chain becomes
tangled and causes problems for surface pressure interpolation. A
soTution to the added mass problem is to correct the surface location
periodically. We will discuss a method of dning this in the section on
surface adjustment.

We have discussed what happens when the surface folds over and
creates a bubble that is smaller than the local cell size. Another
situation we must deal with is a bubble larger than the local cell size
as illustrated in Fig. D3. 1In this situation, the chain is split to mark
different sections of the curface. The two types of surface chains
(regular and bubble) are shown in part d of Fig. D3. Both chains are

treated identically with the exception of the chain ends. A regular
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Regular chain

Bubble chain

.174 seconds

(d) t

(e} t = .162 seconds

Sequence of inlet jet forming a bubble and surface marker chain splitting.

Figure D3,



chain is attached at both ends to houndaries and a bubble chain is
attached to itself head to tail. When the bubble size shrinks to the
order of the ilocal cell, all surface cells are flagged full and the
bubble chain is destroyed. Once again the unavoidable jump of a cell

flag from empty to full will occur.

FREE SURFACE VELOCITY COWDITIONS

The first step in calculating velocities at a free surface is to
insure that mass is conserved in all surface cells., This is done by
using equation 13 from Section IV to calculate velocities on surface cell
faces adjacent to empty cells. The configuration of a surface cell with
a single empty neighbor appears commonly and is shown in Fig. D4. The
velocity component on the top face is calculated to make the cell diver-
gence zero. The position of this velocity is indicated by -a dot and the
arrows on the sides of the surface cell indicate velocities calculated
from the momentum equations. The dashed arrows indicate borrowed veloci-
ties. The calculation of these borrowed velocities will be discussed in
a following section on surface stress conditions. More complicated
configurations exist when there is more than one empty neighbor and more
than one unknown velocity.

The possible arrangements of empty cells abecut a single surface
ceil and a numerical scheme to determine the configuration were explained
in detail by Amsden et- al. (D1). The scheme involves an integer sum
varying from 1 to 15 based on the arrangement of empty cells about a
surface cell. Figure D5 sh;ws the fifteen arrangments and the assigned

numbers. The dot indicates the zerg divergence velocity and other
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Figure D4. Surface velocity conditions for surface cell with a
single empty neighbor.
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Figure D5, Surface-empty cell arrangements and velocity treatment for
each.
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velocity components are horrowed from neighboring full cells as indicated
by the curved arrows. In each case the borrowed velocity is adjusted to
maintain equal mass flow. OQur treatment differs from early methods,
primarily because each cell face has a different area. When
there is more than one unknown velocity the treatment is not rigorous
(D?).

Nonzero wall velocities for special surface cells are calculated
in this portion of the calculation. Figure D6 shows a typical configur-
ation of surface and special surface cells and the positions of the zero

divergence velocities.

SURFACE ADJUSTMENT

Added mass caused by cell resolution and chain straightening must
be accounted for. This is accomplished by periodically adjusting the
surface location. The surface position is adjusted by setting a nonzero
divergence in all surface cells for a portion of the calculation that
affects only the particle movement. During each computational cycle,
theoretical fluid volume is compared to the volume of all full cells plus
surface cells. The theoretical volume should be between the full cell
volume and the combined volume of full cells plus surface cells. If the
theoretical fluid volume is outside these 1imits, then the calculated
volume is adjusted. Excess volume is calculated from the following

equation:

Vex = (Vf + V’/E _vth)' (D-1)
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Figure B5. Typical cell configuration and valocity treatment for
regular and special surface cells.
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In the above equation, Vf is the summed volume of all full cells, VS
is the summed volume of all surface cells, Vth is the theoretical
volume and vex is the excess volume. A nonzero divergence for each

surface cell is calculated from the expression

Pex = = yat' (0-2)

The condition for surface cell velocities adjacent to empty cells during

the adjustment portion of the cycle is
(D-3)

in place of V-0 = 0. The nonzero surface cell divergence is used only
for particle movement and is set back to zero before the cycle is con-
tinued. The effect is an adjustment in surface velocities by the proper
amount to correct in a single time step for an existing volume error.
The adjusted surface velocities cause a small increment to be added tn or
subtracted from the location of the surface chain and force the calcul-
ated fluid volume to be approximately equal to the theoretical volume.
The approximate method used to calculate excess volume is accurate
to within the order of the size of surface cells and provides a simple
method of volume adjustment. Volume adjustment is required only periodi-
cally during the computation. The more irregularity in the surface

shape, the more.often the correction is required,
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SURFACE STRESS CONDITIONS

For low Reynolds number flows. tangential and normal stress condi-
tions can be applied at the surface to calculate pressure in a surface
cell and velocities just outside the surface. For this problem we use
the inviscid surface stress condition as suggested by Nichols and Hirt
(D). Tc approximate the inviscid free surface, we set P = 0 at the sur-
face and obtain velocities outside the surface by reflecting mass flow
from below the surface. For the case shown in Fig. D4, the outside
velocity is calculated according to

s i . A@.
mO, 0J

“?+|/z.j+| = ”?+1/2.j sing AB (D-4)

i+t j+1

The inviscid form of the normal stress condition is applied by
setting pressure equal tp zero at the surface. Qriginally in MAC, the
surface was assumed to be at the center of the surface celi and the sur-
face pressure was applied there. With the addition of the surface marker
chain, it became possible to set the surface pressure exactly at the free

surface location.

SURFACE PRESSURE INTERPOLATION

The surface pressure is applied at the exact surface location by
interpo];ting or extrapolating pressure along the line between surface
and adjacent full cell centers. To accomplish the interpolation, the
location where the surface crosses this line must be known. In Fig. D7
we show a typical surface configuration and the distance needed for

interpolating or extrapolating zero pressure to the surface.
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To Tocate the intersection point of the surface chain and the Tine
between cell centers, we march along the ¢hain and note where the r
and/or O coordinate of the neighboring full cell is crossed. There are
two such points for cell (i,j) shown in Fig. D7. Finding these points
can be difficult if the surface chain is irregular. If the chain is
folded on itself and crosses the line several times, it may be impossible
to locate the correct point. Chain straightening plays a very important
role by keeping the surface chain regular and single valued inside a cell.

The interpolation neighbor for each surface cell is chosen based
on the minimm distance in cell units from the cell center to the fluid
surface. The expressions used to determine the intepelation neighbor for
cell (i,j) in Fig. D7 are

d d

! 2
‘l - and 1 - L
Tieg = Ty ‘ l‘i(ﬂj —ej—l)[
The minimum of these quantities dictates the full cell interpolation
neighbor for surface cell (i,j). The interpolation factor n is then

calculated and according to

n= d, or n =
depending on which full cell is chosen as the interpolation neighbor.
The pressure in surface cell (i,j) is calculated by linear interpolation

according to the equation
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P,=1(1 - "')P'a (D-5)

where Ps is the surface cell pressure and Pf is the pressure of the

full cell interpolation neighbor. Equation D-5 is used to update the
surface cell pressure during the iteration phase of the calculation. On
each swegp through the mesh, new surface cell pressures are calculated
from updated pressures in the full neighbors. In additign, velocities on
cell faces betweeen surface and full cells are updated to reflect the new
pressure gradients.

There are limits that must be placed on the interpolation para-
meter . By placing the lower limit at 0.667, we effectively 1imit the
maximum distance 4 in Fig. D7 to 1.5 cell widths. This limit is reached
when the surface intersects the 1ine between cell centers on the empty
side of the surface cell. If the intersection point lies in the full
cell, then n is greater than 2.0 and an instability in the
pressure-velocity iteration will occur (D4). In this case, a change in
full cell pressure will cause a greater change in surface cell pressure
and on the next iteration the full cell pressure will change by a larger
amount in the opposite direction to account for the change in surface
cell pressure. This process ~ontinues and the pressures oscillate and
diverge. To prevent iterative divergence a relaxation parameter W for
use in equation 16 is calculated that 1imits changes in the full cell
pressure depending on the value of n.

To derive Wes WE begin by rewriting equations 14 (Section IV) in

the form
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1 = »n+l —_ e n
ullize.; = 9isi/z. t Priar - Ty) (PRyy 5= PR
D-6)
n+1l = gh+1 ___At—_ n - PN ),
Vii+ti7z2 = Vijagz pri(0,,y — ;) (PRey,;= PLLY)

etc. for all cell velocity components. We have dropped the pressure
adjustment term API and pulled the pressure derivative term outside the
tilde velocities. The new velocity terms uH]/2 j and v Vi ;+1/, etc, are
equivalent to the right hand sides of equations 10 and 11 without the
pressure derivative. Next, the cell velocity compenents from the above
equations are substituted into equation 12 (Section IV) and rearranged

into the fellowing expression:

2
plel o |+1/z pn . Ti-1/2 pn ]
tel Bi.j A'"x-n/z Pler,; ari_y/2 ""’J
(D-7)
N 1 sing, e . sing;_,/p _ 8,.;r%
Sinojﬁaj AOI+1/2 Ly j+t Ao]—l/z i.j-1 At *

Grid spacing terms such as Ariand Aqiwere previously defined and Bi Jts
»

given by equation 17 in Section IV. The source term Si j is defined by

)

the equation
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K r2 Fietyz ~ Ti-172
{D-8)
1 Sind i yse VY jeize — SIN0 0 VY 4
r,stnﬂl aj+|/2 - 9]-1/2

The pressure given by efquation D-7 is the Gauss-Siedel iterative vaijue
for pressure at the [+l iteration and is denoted as P%:;. At this point,
we drop the time level superscript n, and indicate iteration level by
superscript I. For successive-over-relaxation (S0R), the Gauss-Siedel
value (D8) is extrapolated using the relaxation parameter W, according to

Pit] = (1mwg)P ; + wPit). {0-9)
In using this equation, the mesh is swept and pressures are updated con-
tinuously resulting in trailing cells (i-1) and {j-1) at iteration level
1+1 and advance celis (i+l) and (j+1) at iteration Tlevel I.

The purpose of this derivation is to find an equivalent relaxation
parameter for a full cell interpolation neighbor. We will do this for
the case of a full cell at (i,j) and a surface cell at (i,j+l1). In
equation D-7, P?’j+] is replaced by the interpolated valuye at the new

iteration level

PR jer > (1 =y j4) PIYLL (p-10)

The result is substituted into eguation D-9 to yield
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* S7me B (1 P R R
smojAGj Aoj+l/2‘ ' j~-1/2

3 2 r?
wg 1 [ Tieize pl + _i-1/2 P{:} ,
2 [ar |ar e PV T BTGy ‘

2 -1
oy (D-11)
at

+
Next, we bring Pi } outside the brackets and rearrange terms to recover
the Gauss-Siede! value as given by the right hand side of equation D-7.

avi tion is then cast into a form similar to equation D-9.

plet o fg o —20 o1 420 FI*1  (p-12)
i.j 1-‘"07i._|+l [ | ]"GJOTE'j+1 1.,

where:

Iy ; Sind,, /2 } (0-13)

Y =
e ﬂl.] r? sinG‘ABIAO“_‘/a

By comparing the form of equation D-1Z ~ith equation D-9 we see that the

new relaxation parameter for the full interpolation cell has the form

[}
w = —— (D-14)
1 =@, 441
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We also note in this equation that wg = Wy for n = 1. For a full cell at
(i,j) and surface cell at (i,j+1), ¥ is given by equation D-13. The
subscripts on v and n indicate the location of the surface cell in
relation to full cell {i,j}. By repeating the above steps for the other
possible interpolation neighbars we arrive at the following expressicas.

For full cell at (i,j), surface cell at (i,j-1):

l"”t.j-l } sim9j_l/2 i
172

Tii-1 = 2 - {D-15)
B, ri (sinejae;ae,_
For full cell at (i,3), surface cell at {i+l,j):
2
1541, E Fivi/2 g
v . = . _
i+l,]) Bi,j rzi AriAri+1/2 (D 16)

Full cell at (i,j), surface cell at (i-1,j):

2

17y, Ti-1/2

Yiey,j T 2 ) (D-17)
By TS Ar ATy /2

The relaxation parameter given by equation D-14 will maintain a stable
jteration for all values of n when a single full cell pressure is inter-
polated or extrapol-ted to a single suvface cell.

In some situations, it is possible for a single full cell to act
as an interpolation neighbor for more than one surface cell. This is the
case illustrated = Fig. D7 for full cell (i,j-1). The same procedure is
followed to derive Wg for a double interpolation as for a single inter-
polation. This time, we replace two interpalated values into equation

D-7 for the appropriate surface cell pressures. The resulting expression
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for we js fdentical to equation D-14 with differences appearing in the
form of y. For interpolation by a single full cell to two surface cells,
the expression for y turns ocut to be the sum of y for the individual

single interpolations. For example

Yeivr g)aGivg+ry = Yisr, 5 T Y e {D-18)
Double interpolutions are far less common than single and are avoided if
single interpolation can be done. TIterative convergence is slowed down

somewhat when n>2, especially if a double interpolation is being done.
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APPENDIX E

THE COMPUTER CODE SAFFA

The computer code used for these calculations is named SAFFA, for
Spherical Annulus Fluid-Flow Algorithm. A flow chart illustrating the
cade logic is shown in Fig. E1.

The logic consists of a main time loop composed of three phases.
The first phase deals with the computation of fluid velocities, pres-
sures, *~d temperatures. In the second phase the free surface and marker
particles are handled and in the third phase, prints, plots, and restart
dumps are made.

Surface and boundary cell velocities are set hefore particle move-
ment so that particles maybe moved based on a completely updated velocity
field. After particles are moved, cell flags are changed and surface and
boundary cell velocities are set again to reflect changes in cell flags.

The Fortran source deck contains approximately 4000 cards
inctuding comments, printing, plotting, and input subroutines. An aver-
age calculation of an annulus fill requires about 1 hour on the CDC
7600. The code is still being developed and has not been streamlined for

production work.
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FigureE1. Flow diagram for SAFFA computer code.
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APPENDIX F

NOMENCLATURE

thermal diffusivity
interpolation distance
divergence

gravity vector

gravity constant
amplification factor

radial unit vector

- azimuthal unit vector

Pressure
Gauss-Siedel iteration pressure

radial coordinate

inner sphere radius

outer sphere radius

t ime

Temperature

radial velocity

tenative radial velocity
velocity vector

azimuthal velocity

tenative azimuthal velocity
vo lume

upwind differencing parameter
geometry factor

interpolation geometry factor

combined convection, viscous, and gravity terms
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partial dertvative
interval of change
interpolation parameter
azimuthal coordinate
vorticity

kinematic viscosity
density

shear stress
longitudinal coordinate
phase angle

amplitude function

over-relaxation parameter

Vector Operators

V.- spherical gradient

v'{

Laplacian

Subscripts

ex
f

in

th

excess
full

inside

radial cell index
azimuthal cell index
inside

outside

radial direction
surface

theoretical

azimuthal direction
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1 - iteration number
N - time step number

* - special surface cell
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