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I. ABSTRACT 

In this paper, a method of computing laminar incompressible 
fluid-flow and heat transfer during the filling of a spherical annulus is 
presented. Transient fluid temperatures and heat flux rates in the 
spherical annulus are calculated for an insulated outer sphere and a 
constant temperature inner sphere with heated water filling the annulus 
from the bottom. 

To achieve a solution, laminar axially symmetric flow is assumed 
and the Marker-and-Ce11 (MAC) free surface computational method is 
applied to this problem in spherical coordinates. Changes in the stand­
ard MAC treatment are incorporated and special methods for handling the 
free surface are introduced. A variable mesh is used to improve resolu­
tion near the inner sphere where temperature and velocity gradients are 
steep and the governing equations are derived for variable fluid proper­
ties to allow an eddy viscosity turbulence model to be applied later. 

Calculations of velocity, temperature, and inner sphere heat flux 
in a spherical annulus of 139.7 mm inner radius, and 168.3 mm outer 
radius within an inlet tube diameter of 38.1 mm are presented. The inner 
sphere is held at 0°C and the inlet water temperature is 50°C. 
Laminar results corresponding to an annulus fill time of 20 seconds are 
presented and the major features of the flow are discussed. 

Computed separation point location is compared to experimental 
results from the literature. Differences in computed and experimental 
separation point location are shown to be a result of turbulence in the 
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experiments which was not accounted for in the calculations. Calculated 
flow patterns are in qualitative agreement with steady flow experimental 

[ 
'[ „ observations in the literature. 
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II. INTRODUCTION 

The spherical annul us is defined as the region between concentric 
spheres. This geometry is advantageous in certain heat transfer applica­
tions because it provides the maximum volume per unit surface area. Heat 
transfer applications for steady state flow between two concentric 
spheres include cryogenic storage systems and guard heating systems in 
which a material inside the inner sphere is maintained at constant tem­
perature by fluid in the annulus. A similar steady flow application is 
the cooling of gyroscopic gimbals by fluid flow in a surrounding spher­
ical annulus. In addition, steady flow spherical shell heat exchangers 
are used in homogeneous nuclear reactors to cool the spherical fuel 
elements. 

To date, the majority of the spherical annulus flow research has 
been applied to the study of steady forced or natural convection flow in 
a spherical shell heat exchanger. One of the first analytical treatments 
of fluid flow in a spherical shell was by Cobble (1). Cobble assumed a 
tangential velocity distribution and then calculated heat transfer based 
on the energy equation. Bird, Stewart and Lightfoot (2), presented the 
solution to isothermal creeping flow in a spherical annulus. Ward (3) 
provided a flow visualization study of isothermal flow in a spherical 
annulus between 60 and 120 degrees downstream of the entrance. He showed 
that the velocity profile cannot be predicted analytically by neglecting 
the radial velocity component. In addition, Ward stated that if the 
radial velocity component were left in the governing equations a simple 
analytical solution would not be possible and numerical methods would be 
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required. Rundell and Rundell et. al. (4,5) measured the temperature 
profiles between inner and outer spheres and the bulk heat transfer coef­
ficient for steady flow in a spherical shell heat exchanger. They 
obtained a heat transfer correlation for two sets of sphere sizes which 
was later extended by Cox et. al. (6) to include other sphere sizes. 
Bozeman and Bozeman et. al. (7,8) added to the isothermal flow visualiza­
tion work of Ward by focusing on the entrance region. They state that 
the most significant heat transfer occurs upstream of separation in the 
region near the inlet where the flow impinges on the inner sphere and 
jets off tangentially. 

Rundell observed a flow rate independant separation point located 
between 45 and 50 degrees downstream of the entrance. Bozeman added that 
upstream of the separation point the flow is characterized by a high 
velocity jet of fluid near the inner sphere with a relatively low veloc­
ity return flow near the outer wall. Downstream of separation, the main 
flow moves directly to the outer sphere creating a low velocity return 
flow near the inner sphere. The high velocity jet near the inner sphere 
upstream of the separation, point makes this an area of significant heat 
transfer. Beyond the separation point, the fluid is moving slowly near 
the inner sphere and as a result a lower heat transfer rate is expected 
in that region. 

The problem of laminar natural convection flow in a closed spheri­
cal annulus was solved numericclly by Brown (9). Brown solved the vorti-
city and temperature equations in spherical coordinates by an explicit 
finite-difference technique coupled to an iterative solution of the 
vorticity-stream function relation. The majority of the calculations 
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were for air while some calculations for water and mercury were 
included. Astill (10) applied a boundary-layer order of magnitude 
analysis to the dimensionless forced convection equations in spherical 
coordinates to reduce them to a set of parabolic differential equations. 
He simplified the inlet and outlet flow conditions by assuming a uniform 
velocity profile across the annulus at specified inlet and outlet 
angles. The solution was obtained by a finite-difference method that 
marches forward in the azimuthal angle. 

In this study, we are interested in calculating water temperatures 
and heat flux rates during hot water filling of a spherical annulus in 
which the inner sphere is isothermal and the outer sphere is insulated. 
Laminar, incompressible, axially symmetric flow is assumed and the 
governing equations of mass, momentum, and energy conservation are solved 
in spherical coordinates. A variable mesh is used to improve resolution 
near the inner sphere where velocity and temperature gradients are 

large. Variable fluid properties are assumed so that an eddy viscosity 
type turbulence model may be added later. 

The momentum equations are solved explicitly for the radial and 
azimuthal velocity components and these velocities are iteratively 
adjusted along with pressure until mass conservation is satisfied. 
Temperatures are obtained explicitly from the energy conservation 
equation which is coupled to the momentum equation by the fluid 
velocity. The Marker-and-Cell (MAC) computational technique (11) is 
modifed to handle the free surface aspects of this problem. A sketch 
illustrating the basic flow problem is shown in Fig. 1. 
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Free surface 

Flow in 

Figure 1. Basic configuration for spherical annulus filling. 
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To the best of our knowledge, this is the first study of the 
transient filling of a spherical annulus by either experimental or 
computational methods. However, we have an idea of the nature of the 
transient flow problem from the steady flow visualization work reported 
in the literature (3,5,8). As the spherical annulus fills, flow in 
regions away from the free surface soon establishes steady patterns. 
Flow in the inlet region, where the majority of the heat transfer occurs, 
becomes steady quite early in the filling process. As a result, a 
similar flow pattern and separation point location are expected in this 
region for the transient filling problem as was observed for steady flow 
in a full annulus. Results from Refs. (3), and (5) on separation point 
will be compared to our computational solution. 
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III. GOVERNING EQUATIONS 

The equations governing heat and mass transfer during the filling 
of a spherical annulus are the conservation equations of mass, radial 
momentum, azimuthai momentum and energy. In the solution of these equa­
tions, we use the primitive variables of pressure, velocity, and tempera­
ture and solve the equations in the spherical r - 0 plane shown in 
Fig. 2. The azimuthai coordinate 0, is measured from the lower • M e and 
the radius is measured from the common center. The sphere radaii are 
denoted as Rj for the inner sphere and R 2 for the outer sphere. 

ASSUMPTIONS 
For a?? equations, we assume larainar incompressible axially sym­

metric flow. Ward (3) and Rundell (4) have shown experimentally that 
axially symmetric flow is a valid assumption for the spherical annulus 
with uniform inlet flow. Although the flow in the spherical annulus is 
turbulent for most flow rates ,3,5,8), laminar flow is assumed for sim­
plicity and as a starting point for the analysis. The computational 
technique is essentially the same for variable property laminar flow as 
for turbulent flow with an effective eddy viscosity snd thermal diffu-
sivity. The equations are derived fo>- variable thermal diffusivity and 
variable viscosity to allow a turbulence model to be incorporated later. 

In the momentum equations, surface tension and buoyancy forces are 
neglected and in the energy equation, compression work and viscous dis­
sipation are neglected. In addition, zero free surface heat loss and no 
phase changes are assumed. 
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(a) Spherical coordinate system 

r: radial 
0: azimuthal 
0: longitudin?1 

(b) Spherical annuius coorainates 
Figure 2. Spherical coordinates — Application to the spherical annuius. 
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VECTOR EQUATIONS 
The vector equation expressing conservation of momentum for 

transient laminar incompressible fluid flow is 

U = - U(U-V) - ^ - 7X(>(VXU)] + g . (1) 

The velocity vector is defined as ti = ?u + jv, where f is the unit vector 
in the r direction, J is the unit vector in the 0 direction, and u and v 
are the velocity components. The kinematic viscosity is represented 
by v, the fluid density by o and V represents the spherical gradient 
vector operator. Pressure is denoted by P, time by t, and the gravity 
vector is defined by g = ig r + jg g. 

The momentum equation represents a balance of fluid momentum. 
Each individual term expresses a separate source of momentum change in a 
fluid element. The term on the left represents the time rate of change 
of momentum. The first term on the right expresses the convection of 
momentum by fluid motion and the second term represents momentum changes 
due to normal pressure forces. The next term is the mathematical repre­
sentation of diffusion of momentum by viscous forces and the last term on 
the right expresses momentum production by body forces due to gravity. 

Along with the momentum equation, a statement of mass conservation 
is required. The vector form of the continuity equation for incompress­
ible flow is 

(V-0) = 0 . (2) 
8-



The continuity equation states that mass must be conserved and acts as an 
incompressibility condition for the problem. The momentum equation is 
coupled to the continuity equation by the velocity. 

For numerical solution, equation 2 is used to modify the convec-
tive terms in equation 1 via the vector identity 

U(U-V) = V-(UU) - U(V-U) . (3) 

Using equations 2 and 3, equation 1 written in conservative form becomes 

^ = - v.<uu) - ̂  - vxHvxu)] + i . («i 

Equation 4 is the governing vector momentum equation for this study. By 
integrating each term in equation 4 over a control volume and by using 
the divergence theorem to convert volume integrals to surface integrals, 
it can be shown that this equation equates the flux of momentum through 
the control surface to the time rate of cliange of momentum in the control 
volume plus the change of momentum due to body forces. By using this 
form of the equation, we are directly equating changes of momentum within 
the control volume to fluxes of momentum through the control surface. In 
this form, the equation is a direct statement of conservation of momen­
tum and avoids nonconservative errors that are inherent in other forms of 
the equation. Roache, (13) states that the conservative form when passed 
on to the finite-difference equations is generally more accurate than 
nonconservative forms. In this solution, finite-difference techniques 
that preserve the conservative property of the equations are used. 
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The energy conservation equation can also be written in conserva­
tive form by using equation 2. The conservative form of the energy 
equation is 

|| = - 5.(UT) + V.(aVT) . (5) 

In the above equation, "a" represents the thermal diffusivity. The left 
hand side represents the time rate of change of local energy. The first 
term on the right side of the equation represents the convection of 
energy by fluid motion and is the term through which the energy equation 
is coupled to the momentum equation. The last term on the right is the 
heat conduction term. 

DIFFERENTIAL EQUATIONS 
In this axisymmetric flow problem, there are two differential 

momentum equations, one for each independent coordinate axis . The 
differential momentum equations are 

Radial Momentum: 

9" ^ I A,,3„2i A 1 JL, :_^ _ V? _ . ] 8P ot r2flr r sine d$ ' r p dr 

i (a / . flu] a / . a , . W 
(6) 
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Azimuthal Momentum: 

(7) 

i \ a a , . a au , 

The term (v'Vr) in the radial equation, and (uv/r) in the azimuthal 

equation do not appear in rectangular coordinates. These are the centr i ­

fugal and Coriolis terms respectively, and are a result of the curvature 

of the spherical coordinate system. 

The di f ferent ial form of the continuity equation is 

and the di f ferent ial form of the energy equation is 

i_ ±la„z§l} , i a / . „3T 

(9) 

T2 »r " arj - r a s i n e M l " " " ^ 

Equations 6, 7, 8, and 9, are the di f ferent ial equations governing this 

problem. They are four di f ferent ial equations written in terms of four 

independent unknowns. The unknowns are, radial velocity u, azimuthal 
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velocity v, pressure P, and temperature J. The momentum and energy equa­
tions are coupled, nonlinear, parabolic partial differential equations. 
An explicit finite-difference time marching scheme and an iterative tech­
nique will be used to solve the momentum =tnd continuity equations for the 
two velocity components and the pressure. Temperatures will then be 
found using the new velocities and an explicit finite-difference solution 
of the energy equation. 

BOUNDARY CONDITIONS 
The governing equations require boundary conditions on velocity, 

pressii-e and temperature at each physical boundary (r = R,, and r = 
Ro) aJJ along symmetry lines at the sphere poles (s = 0 and 0 = TT). 
Both normal and tangential velocity components are specified at sphere 
walls. The normal velocity is zero at a wall except at the inlet where 
it is constant. The tangential velocity at a wall is zero for a no-slip 
condition or calculated to give zero tangential shear stress for a 
free-slip condition. The symmetry lines at G = 0 and 0 = v are treated as 
free-slip boundaries. Free surface conditions on velocity and pressure 
are given special attention in Appendix D. 

Application of explicit boundary conditions on pressure at the 
walls is not required because a slope boundary condition is implicitly 
applied by the solution technique. This will be discussed in the section 
on numerical procedure. In addition, singularities in the equations at 
0 = 0 and 0 = n are avoided by the placement of velocities in the 
finite-difference mesh. 

The boundary conditions can be summarized as follows 
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Velocity: 
0 g 0 g e . n r = R 2 

u = O 0 g 0 g n r = R , , r = R 2 

3e « = 0 . w Rj s r g R a 

v = 0 or ^ ( v / r ) = 0 

Temperature: 

T = T , n 

o g e g r = R; , r = R 2 

0 g e g e j n r = R 2 

3T 
37 = ° o r T = T 0 0 g 6 g r = R. . r = R„ 

06 = 0 0 = 0 , w R . g r s R . 
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IV. NUMERICAL SOLUTION 

FINITE-DIFFERENCE EQUATIONS 
To achieve a numerical solution of the governing equations, we 

divide the flow region into finite cells and approximate derivatives by 
finite-differences. Mesh variable placement as in the MAC method (14) is 
shown in Fig. 3 and half cell notation is used to indicate cell face 
variables. For simplicity, constant size cells are used in this and all 
following figures. With variables located as shown in Fig. 3, the con­
servative property of the differential equations is preserved in the 
finite-difference equations. By applying a forward-time centered-space 
(13) finite-difference approximation for a variable mesh to equations 6 
and 7 and denoting time step by superscript n, we have equations 10 and 
11 shown in Figs. 4 and 5. The numerical time increment is represented 
by At and the fluid viscosity by y. .̂ Viscosity may be calculated as 
a function of temperature or as an effective turbulence parameter. In 
this paper, constant laminar viscosity is used and turbulence modeling is 
left to be done as a continuation of this study. 

The form of the convection terms allows variable donor cell 
differencing. With a = 1 the equations are equivalent to full donor cell 
"upwind" differencing and with a = 0 they reduce to centered differ­
encing. Centered differencing of convection terms is unstable and « must 
be slightly larger than the maximum of |^-| or \-^TQ\ occurring in the 
mesh (15). Donor cell differencing provides a more physically realistic 
treatment of convective derivatives because it allows information to be 
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Figure 3. Location of variables in the f inite-difference mesh. 
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r i + i /2 ( r , + l - r i ) ( l 2 J I 2 J) 

At 
sinfl. 

' i * i /a* i n «i{»i + i /2-Vi /2) i 8""" 1* 1 ' 2 

VT - UT + alVTI 
( u i + l / 2 , j - u i + 1 / 2 . j + l ) 

- sinfl. t -1/2 VB • Utl + «|VB| 

( u iWi- u i l i /2 j ) ]L A t W W At | . fl K+i/2,+i-^+1/2.1) 
iya s i n ( ? i - ' « 

K+1/2 . j~ u "+ l /2 , j - l ) 
9 I - « I - 1 0.. 

_ J At J . ('. + 1 ""+1.J+1/2 - ri«"j+1/2) 

( r i * i Vj+ij- iya - r i w " i - i / 2 ) I _ 1 At 
•".+V2.J-1/2 s i n 0 . - l / 2 ~ " " . " " " " ' \ -„ '—j. ~ ^ ( P i ' + I i - P " i ) + 9 r A t 

r i+1 r i ) e i + 1 / 2 - ^ j - 1 / 2 <°(ri-.1 - - r i ) K 1 , J •" ' 

Figure 4. Finite-difference form of radial momentum equation (equation 10). 



v.ntt*-vP At 

r i ( r i +1 /2 - r i - 1 /2 ) ( 
U R - V R + * R , ( * • " ; * « « « ) ] -,?_,„ UL -VL + alULI 

/ viP-1.i+1/2 - vU+1/2 \ ] ) At ( T , / v"i+1/2 - v"i+3/2 \ 1 

•s inO-
,1 _ .,n 

VB* + «|VB| ( ^ " f ^ ) 
At „ n 

~ vi.j+1/2 ui,j+1/2 + 

At ( / r i + 1 v " + : , j + 1 / Z ~ r i v " j + 1 / 2 \ 

Vi/2. j +i/2 - I 7 3 7 — 1 v i « j + i f l | - 7 7 ; — 1 7 — r 5 fl— 
y ' i -1 ' ) ri( ri+1/2 r i-1/2) ( \ V l _ e i / 

U i -1/2, j+1 _ u i - 1 / 2 . j \ ) At 
At 

Figure 5. Finite-difference form of azimuthal momentum equation (equation 11). 



converted downstream only- Partial donor cell differencing will result 
in less numerical diffusion than full donor cell differencing, but care 
must be taken not to exceed the above limits on alpha. 

8y applying variable donor cell differencing to the convective 
terms in the energy equation and forward-time centered-space 
finite-differences to all other terms, we have the finite-difference 
energy equation shown in Fig. 6, The term a. . represents the thermal 
diffusivity of the fluid and is defined on cell faces. 

Terms such as VT, VB, UT. UB, TT, TB, etc. in equations 10, 11, 
and 12 are velocities ano temperatures that do not lie on the usual mesh 
point locations shown in Fig. 3. These terms are calculated by mass flow 
weighted averages to account for changes in cell areas and are listed in 
Appendix A in terms of regular mesh point variables. 

Spatially centered finite-differences are used to write the con­
tinuity equation in finite-difference form. 

Continuity Equation: 

ri + l/2 Ui-H/3.j ri-l/2 ut-l/2.) 
r i + l / 2 - ri-l/2 J ( 1 3 ) 

j+l/2 v?,j+l/2 ~ s i n 0 j - l / g v " . j - l / g 
V i / 2 ~ 9j-i/a j 

NUMERICAL SOLUTION PROCEDURE 
The numerical solution of these finite-difference equations 

proceeds in three steps. The first step is the explicit solution of 
-18-
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Yn+1 _ Tfl _ Ml ' i i 
At 

r i vi+1/2 ~ r i - i /2) y 
| r ? t W [ u R . T H + ^ R | ( ^ l ^ i ) ] - ^ 1/2 UL-TL + a|UL|(T( ,_,,j-T£ j 

At 
r i s i n 9 j f S j + 1 /2 - e j -V2> 

sinfl; +1/2 VT -TT + VB 'TB + a|VBI 

f T U - 1 - T M At i CT+IJ ~ T ! j ) r i + 1/2 ai+1/2,i (Ti^j ~ T " - l . j 1 *i-1/2 ai-1/2.) 
+ r i 2 ( r i + 1/2-^-1/2) i r i + 1 _ r i r - r - ' 'i-'i-l 

At |Cn;i+1-Tu)*n»jtiy2«i^1/2 (TU-T"i-l)sinVl/2a,.j-1/2 
'f^j^w-Vwl * Vi~*i • , - « M 

Figure 6. Finite-difference form of energy equation (equation 12). 



finite-difference equations 10 and 11 foru^i/? •; andv? . + 1 / 2 . The 
tilde denotes that these ar» tentative velocities which are not quite 
complete because they do not in genera' satisfy conservation of mass. In 
the second step of the solution we impose equation 13 and simultaneously 
iterate pressures and velocities until mass conservation is achieved. An 
equivalent technique was introduced by Chorin (16) and has been applied 
to MAC calculations by others (17,18). Pressure-velocity iterations are 
performed in such a way as to preserve the vorticity of the original 
tentative velocity field. Iterations are continued until the maximum 
cell divergence drops below a specified limit. At this point the solu­
tion for velocity and pressure at the new timp step i<; achieved. In the 
third step, equation 12 is solved explicitly for temperature using the 
velocity solution from step two. 

To achieve the pressure-velocity iterative solution in step two. 
equations 10 and U are written in condensed form for the velocity com­
ponents on the sides of a cell. 

_ Al_ ,,n*l _ rrn-t 1 + — : At A p 

A t AP! 'i-i/g.j - ui-i/2,j p ( r . - r-j.,) ""i.i 
(14) 

„n+l _ v>»+l + — \P' 
'i.J+i/8 _ Vi.i+l/2 p r s ( e j + , - «j) A F 1 • ) 

At A P , 'i.j-i/z - v i.j-i/2 pri{ei - e j _ l ) a i i . j 
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The tilde velocities in the above equations contain ale terms from the 
right hand side of equations 10 and 11 including the pressure deriva­
tives. We have added a pressure adjustment terra AP to adjust the 
pressure at the I t h iteration according to 

.1 + 1 = D i • .J = P • • J + AP r t.J 
(15) 

The pressure adjustment term, AP? . is calculated to force the velocity 
field to satisfy the continuity equation locally. The equation forAP 
is found by substituting equations 14 into equation 13 and solving for 
AP 1. The result is 

AP • .j At/Jj j » . J (36) 

In the above equation, D- . represents the finite-difference velocity 
divergence for cell (i,j) given by equation 13 and g. . is a geometry 
factor, 

' » . J - £ * A T : 
r 2 . r a 
ri+l/2 r i - 1 / 3 

"T" Ar i + l/S Ar, i -1/2 

1 
r?sine,?Ae 

sine 
AS 

111/1 + 3 i n 0 J - l / 2 
j+i/a & e j - i / a 

(17) 

where: 
A r J = ri+i/a " ri-i/2 • A r i + i / 2 = r l + i ~ r, , A r L _ , / 2 = r, - r,., 

A 6 i = *j + l/2 " *j-l/2 • A , V l / 2 = e j + l - «j • ^i-y/z = 6. - fl._, 
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In equation 16, we have introduced a relaxation parameter m to acceler­
ate convergence (19). For stability, u has the restriction 0< co < 2. 
We have found that u =1.8 provides the most rapid rate of convergence 
for our problem. Variations in u>0 near the free surface are discussed in 
Appendix 0. 

If properly calculated, P,- ^ will have a form for cells adjacent 
to walls that is different from the form for interior cells given by 
equation 17. Because the normal velocity component is zero at a wall the 

2 
term containing r-j+]/2 will d r°P o u t n e a r t n e outer wall and the term 

2 containing <",-.)/g w i 1 1 vanish near the inner wall. Essentially B i ^ has 
a different form near walls because wall cells have only three degrees of 
freedom (i.e., velocity components that may be iteratively adjusted) as 
opposed to four for interior cells. In adjusting B^ ,- for wall cells, we 
are effectively over-relaxing these cells an additional amount to account 
for the reduced degree of freedom. 

We begin the iteration to achieve mass conservation by calculating 
the cell velocity divergence from equation 13 and finding a pressure 
increment from equation 16. The pressure is then incremented in each 
cell by equation 15 and cell velocity components are updated according to 
equations 14. The entire mesh is swept and the same adjustments are made 
for each cell. After the first iteration sweep the tilde velocities are 
overwritten by the new adjusted velocities and the iteration equations 
for the cell velocity components take on the form 
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nn+l _> ,,n+l , + — Apl 
ui+i/8.j ui+i/a.j + p ( r | + ) - r t ) A P > i ' 

08) 
,,n + l _» vn+l j. . ..At- Apl 
vi.j + i/a vi.j + i/2 +

P r f ( e j + 1 - e ^ a P i . j ' 

etc. for all subsequent iterations. A surface cell pressure increment is 
found by linear interpolation or extrapolation of the nearest full cell 
pressure increment. The procedure for surface cells is discussed in 
detail in Appendix D. 

In this iteration technique, we are effectively calculating the 
net excess mass flow into or out of a cf.ll and adjusting the pressure and 
the four surrounding velocity components accordingly to give zero veloc­
ity divergence. In doing so, the divergence of the neighboring cells is 
affected, and as a result the mesh must be swept iteratively to allow the 
solution to relax. Iterations are continued until the maximum cell 
divergence in the mesh drops below a specified limit. This limit is 
chosen so that the excess mass flow in my cell due to nonzero velocity 
divergence is less than 0.01% of the total mass in the cell. For this 
problem a convergence limit of 0.0001/At is used. When all cells have 
converged, the velocity solution with correct vorticity and vanishing 
divergence is achieved. At this point, we have the solution for pressure 
and velocity at the new time step and we proceed to calculate the temper­
ature field explicitly from equation 12. 

Because we are calculating pressure at the cell center based on 
the cell velocity divergence, we are not required to apply explicit 
boundary conditions on pressure. This is one advantage of this solution 
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technique that is possible because velocity variables are positioned on 
cell faces and pressure at the cell center. 

FINITE-DIFFERENCE BOUNDARY CONDITIONS 
Figure 7 shows a porting of the finite-difference mesh with cell 

flags and free surface location indicated. Cell flagging will be dis­
cussed in the next section. A surrounding layer of boundary cells facil­
itates boundary conditions by allowing a fictitious tangential velocity 
outside the wall. The fictitious outside velocity is necessary because 
of the location of variables as shown in Fig. 3. For the variable mesh, 
boundary cells are the same size as adjacent cells inside the wall. 

The outside velocity is calculated to give zero tangential com­
ponent at the wall for a no-slip condition. Using mass flow weighted 
averaging as discussed in Appendix A, the outside velocity for a no-slip 
wall is found according to 

For the free-slip condition the tangential stress must be zero at the 
wall. The tangential stress in spherical coordinates is 

rre = *(r£<v/ r> + I g) . (20) 

At a wall with zero normal velocity the tangential stress reduces to 
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Free surface 

Free-slip 

No-slip 

Figure 7. Spherical annulus computing mesh with cell flags. 
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a;(v/r) = o . ( 2 1 ) 

This condition dictates the value of the outside velocity. The outside 
velocity for a free-slip wall is given by 

.„. -... £f) • 

FREE SURFACE TREATMENT 
The presence of a free surface makes this a unique fluid mechanics 

problem. The free surface is an unconfined moving boundary requiring 
special treatment. The Marker-and-Cell computational method was devel­
oped to handle the free surface and all its complexities (14). Cell 
flagging, marker particles and the treatment of surface cells character­
ize the MAC method, Massless marker particles mark the fluid and a cell 
flagging scheme flags cells as full, empty, or surface. Several improve­
ments have been added since the method was first introduced. 

Changes and additions to the MAC free surface treatment are 
required for solution of this problem. There are four specific areas in 
which the treatment here differs from classical MAC methodology. They 
are: 1) multiple surface chains for breaking waves, 2) surface adjust­
ment by nonzero divergence in surface cells, 3) special surface or impact 
cells, and 4) multiple surface cell pressure interpolation from a single 
full cell. In Appendix D, these features and the application of the 
standard MAC methodology to our problem are described. 
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V. COMPUTATIONAL RESULTS 

The purpose of this section is to present computational results 
that demonstrate the capability of the solution technique and represent 
the major characteristics of the fluid-flow and heat transfer during 
spherical annulus filling. Computational results for velocity, temper­
ature, and inner sphere heat flux are presented for a spherical annulus 
with a 0°C isothermal inner sphere, an insulated outer sphere, 50°C 
initial annulus water temperature and 20 second fill time. Properties of 
water at 50°C were used for these demonstration calculations. 

Computations are made with the variable mesh shown in Fig. 8. 
There are 16 radial cells, 84 azimuthal cells and 4 cells across the 
38.1 mm diameter inlet. A geometrically stretched mesh is used to 
improve resolution near the inner sphere and in the inlet region. The 
radial stretching factor is 1.07 and the azimuthal stretching factor is 
1.007. The inner sphere radius of 139.7 mm and the outer sphere radius 
of 168.3 mm were chosen to match a geometry studied by Ward (3), Rundell, 
et. al. (5), and Bozeman, et. al. (8). 

The no-slip velocity condition is applied at the inner sphere 
where the mesh is fine enough to resolve boundary-layer details. Near 
the outer sphere, where the mesh is course, the boundary-layer is not 
resolved and the free-slip condition is applied. 

Figure 9 shows calculated azimuthal velocity profiles and velocity 
vectors at 9 and 19 seconds. These plots illustrate the characteristic 
flow patterns before and after the free surface passes the point of wall 
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INSIDE RAOIUS= 1.397E+01 
OUTSIDE RADIUS= 1.683E+01 
NO. RADIAL CELLS= 16 
FIRST DR= 1.026E-01 
LAST DR= 2.829E-Q1 
RADIAL CELL RATIO= 1.070E+00 
NO. THETA CELLS= 84 
FIRST DTH= 2.836E-02 
LAST DTH= 4.922E-02 
THETA CELL RATIO= 1.007E+00 

Figure 8. Variable mesh for computing spherical annulus f luid-f low 
and heat transfer. 
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(a) t = 9 seconds (b) t = 19 seconds 

Figure 9. Azlmuthal velocity profiles and velocity vectors before and after separation. 



jet separation at 0 = 91 degrees. Velocity vectors and profiles are 
scaled to the maximum velocity in each case. 

In Fig. 9a, the inlet jet impinges on the inner sphere and jets 
off tangentially, creating a high velocity wall jet near the inner sphere 
and a uniform low velocity return flow in the outer portion of the 
annulus. This flow pattern is similar to that observed experimentally by 
Bozeman et al. (8) in the lower portion of the annulus for steady flow. 
The flow illustrated in Fig. 9a consists of a main toroidal shaped recir­
culation eddy and a very small secondary-eddy at the free surface next to 
the inner sphere. The secondary-eddy is small and barely visible in the 
figure. The main recirculation pattern is formed almost immediately when 
filling begins and simply grows as the annulus fills. The secondary-eddy 
is created when the surface passes 0 = 50 degrees. It moves along with 
the free surface next to the inner sphere until reaching the stationary 
separation point at 0 = 91 degrees. Separation is identified by an 
inflection in the velocity profile followed by flow reversal near the 
inner sphere. 

Figure 9b illustrates the typical flow pattern after the surface 
has passed the separation point. The toroidal shaped recirculation eddy 
and the wall jet become steady and no longer grow in length. The steady 
wall jet thickness decreases initially until about 0 = 30 degrees, 
remains approximately constant from 30 to 60 degrees, and then thickens 
until eventually separting at e = 91 degrees. Downstream of separation, 
secondary-flow eddies are formed near the inner sphere. These secondary 
flows and their effect will be seen more clearly in the temperature 
results. Flow velocities beyond the initial separation point are nearly 
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uniform across most of the annulus and are in general small compared to 
the inlet velocity. This result is consistent with experimental observa­
tions from Refs. (3). (5) and (8) for steady flow in a spherical 
annulus. During most of the filling process, transient behavior is 
limited to the immediate region of the free surface and the remainder of 
the flow exhibits quasi-steady behavior. 

Computed temperature and pressure contours at 9 and 19 seconds are 
shown in Fig. 10. The stair-step effect at the surface is caused by the 
finite cell sizes. Before the surface passes the separation point, tem­
perature is uniform across the annulus except for a thin layer near the 
inner sphere as shown in Fig. 10a. The relatively high velocity of the 
wall jet creates a thin thermal boundary-layer that appears as a black­
ened layer near the inner sphere. The thermal boundary layer is thinnest 
in the impingement region near G = 0 and thickens to a maximum at separ­
ation. The secondary-flow eddy is clearly visable in the temperature 
contours shown in Fig. 10a. Downstream of separation, velocities and 
heat transfer rates near the inner sphere vary considerably and are much 
lower than upstream. Separation and the presence of secondary-flow 
eddies have a major effect on the temperature contours as shown in 
Fig. 10b. 

Computed temperature contours at various times after the surface 
has passed the separation point are shown in Fig. 11. The sequence 
illustrates the development of temperature profiles with time. At t = 
19.95 seconds, the flow next to the inner sphere reverses direction at 
three locations creating three eddies. The first flow reversal occurs 
at 0 = 91 degrees where the wall jet separates. There is a reattachment 
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(a) t = 9 seconds (b) t = 19 seconds 

Figure 10. Pressure and temperature contours before and after separation. 



t = 13 seconds t = 15 seconds t • 17 seconds t - 19 seconds t » IE ?5 seconds 

Figure 11. Temperature contours at various times after the surface has passed the separation 
point at 0 = 91 degrees. 



point at 0 = 114 degrees and another separation point at o = 13' 
degrees. Locations of these points are indicated in Fig. 11. The iso­
therms point out the effect of the secondary-flow eddies on the temper­
ature field. The eddies in the upper half of the annulus were probably 
not visible to Ward (3) or Rundell et. al. (5) because dye diffusion 
obscured vision of any flow details in that region. 

Figure 12 is a plot of inner sphere heat flux rate versus angle at 
times of 5, 10, 15, and 19.95 seconds. Separation and the presence of 
secondary-flow eddies create the peaks and valleys in the heat flux rate 
curves. The sudden increase in heat flux rate at the ends of the 5 and 
10 second curves is caused by the presence of the small eddy near the 
surface. This eddy and the resultant effect on the heat flux rate move 
with the surface until reaching the separation point at 0 = 91 degrees. 
After the surface passes this point the eddy begins to grow in length 
until the flow reattaches at e = 114 degrees. The growing eddy causes a 
decrease in heat flux rate from t = 15 to 19.95 seconds between 0 = 91 
and 114 degrees. Three secondary-flow eddies are eventually formed and 
each one creates a separate valley in the heat flux rate curve a* seen in 
Fig. 12 at t = 19.95 seconds. The final increase in heat flux rate 
beyond 0 = 160 degrees at t = 19.95 seconds is the resuit of increased 
flow velocities near the inner sphere. This increase is a reversal in 
the initial general downward trend in heat flux rate. 

During the majority of the filling process, transient velocities 
are limited to the inmediate region of the free surface and the remainder 
of the flow exhibits quasi-steady behavior. This is especially true 
after the surface passes the separation point. As a resylt, we expect to 

-34-



201 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r 

5 I I I i I i I i I l 1 i I l I i 1 i I 
20 4 0 60 80 100 120 140 160 180 

Angle - degrees 

Figure 12. Inne- sphere heat flux rate versus angle at various times. 
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be able to compare our computed separation point at 0 = 91 degrees to the 
experimental observations of others for steady flow. 

Rundell (4) and Rundell et. al. (5) reported a steady separation 
point between o = 45 and 50 degrees. The difference in the computed 
separation point and the experiments can be attributed to the lack of 
turbulence modeling in the calculations. The main effect of a turbulence 
model on the calculations would be an increase in the effective fluid 
viscosity. Effective turbulent viscosity varies with flow properties and 
can easily be one hundred times larger than the laminar viscosity. 

To geL an idea of the effect of increased effective viscosity on 
the flow pattern, a test case was run with laminar viscosity ten times 
the viscosity used in the previous calculations. Azimuthal velocity 
profiles and temperature contours for the high viscosity calculation are 
shown in Fig. 13. The wall jet has separated at 0 = 56 degrees, indi­
cating that the separation point location is affected by the fluid vis­
cosity in these problems. We expect to see the same qualitative shift in 
calculated separation point location due to the increase in effective 
viscosity from a turbulence model. 
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Figure 13. Velocity profiles and temperature contours at t = 10 seconds 
for laminar viscosity 10 times larger than water 
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VI. SUMMARY AND CONCLUSIONS 
In this paper, a computational technique for calculating laminar 

fluid velocities and temperatures during the filling of a spherical 
annuius has been described. The nature of the free surface flow has 
required special treatment beyond the standard techniques available for 
free surface flow problems. Results of velocity, temperature, and heat 
flux have been presented for a spherical annuius filling problem. These 
sample results are intended to demonstrate the capability of the compu­
tational technique as well as display some of the major and important 
features of the flow. 

Results indicate the impingement region and the wall jet along the 
inner sphere are the important areas for heat transfer. The location of 
separation has a major effect on the predicition of total wall heat flux 
and annuius fluid temperatures. Upstream of separation, heat is extrac­
ted from the annuius fluid as it flows along the inner sphere. The total 
amount of heat extracted is directly dependent upon the length of the 
flow path along the inner sphere which is determined by the location of 
the separation point. After separation, the main flow moves to the outer 
sphere and velocities and heat transfer rates near the inner sphere are 
lower than in the wall jet region. Large changes in heat flux rate as a 
function of angle are present downstream of separation and have been 
shown to be a result of secondary-flow eddies near the inner sphere. 

An important feature of the flow, is the quasi-steady behavior in 
all regions except the immediate vicinity of the free surface. This fact 
allows us to compare qualitative calculated features of the filling prob­
lem to the results of steady flow experiments from the literature. 
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The computed 'low pattern upstream of separation agrees qualita­
tively with experimental results in the literature for steady spherical 
annulus flow. The fact that the main flow moves to the outer sphere 
downstream of separation with nearly stagnant flow near the inner sphere 
has also been observed experimentally for steady flow and reported in the 
literature (3,5,8). Downstream eddies near the inner sphere were 
probably not seen in experiments because of reduced visual resolution due 
to dye diffusion. 

The major difference between transient calculations and the steady 
flow experimental results is the location of wall jet separation. The 
calculations indicate separation at 0 = 91 degrees compared to experi­
mental observation of separation between 0 = 45 and 50 degrees (4,5). 
Turbulence in the flow has a major effect on the location of separation. 
We have shown that increasing the laminar viscosity causes the calculated 
separation point to move downstream in closer agreement with experi­
ments. The increased effective viscosity of a mixing length (or other) 
turbulence model will have the same qualitative effect on separation as 
the increased laminar viscosity. 

Calculations for slow filling in the laminar flow regime and the 
addition of a turbulence model aimed primarily at modeling the wall jet 
region are planned. The wall jet and impingement region are the impor­
tant areas for heat transfer and this is where we plan to focus the 
attention of the turbulence modeling. The quasi-steady boundary-layer 
like nature of the wall jet makes mixing length turbulence models look 
promising for this region. We plan to consider mixing length and other 
models for the impingement and downstream regions. 
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APPENDIX A 
NONSTANDARD TERMS FOR FINITE-DIFFERENCE EQUATIONS 

The finite-difference momentum and energy equations in Section IV 
(equations 10, 11, and 12) contain terms that do not lie on the defined 
mesh point locations as shown in Fig. 3, In past MAC applications, these 
terms have been calculated by linear averaging for cartesian or cylindri­
cal geometry. Linear averaging in the radial direction of cylindrical 
coordinates introduces a small error which has been neglected in past 
applications. 

In spherical coordinates, cell face areas change in every coordi­
nate direction and linear averages can be improved by accounting for area 
changes. Me account for area changes by calculating velocities for non­
standard locations from a linear average of mass flow. For incompres­
sible flow this is equivalent to averaging the product of velocity and 
area. 

Below is a list of nonstandard velocity terms from equation 10 
(the radial momentum equation) with subscripts referenced to cell (i,j) 
as in Fig. 3, Section IV 
V T _ v „ _ ( v ? . i ^ / 2 ' - i ^ i * v?+,, j + 1 / 2 r i + ,*r i + 1 ) 

V B ~ v"+i/2.j-i/a ™ 
^ . j - i / ^ i ^ i + v"+i.j- i/g ri+i A ri+i 

2 ri+l/2 i ri+l/2 

U ? + t / B , j S ' n < ? j A f ) i + u ? + l / 2 . j + l s i n 9 j + l A V l 
U T " " * • » / « . J * l / * " 2 s i n e j + ] / 2 A 0 j + 1 / 2 
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n _ 1 u i + i / 2 . j s i n V 8 i + u ? + i / a , j - i s i n f l j - i * ° j - i 

u i + i / a , j r i - n / a -*• u n - 3 / 2 , j r i + 3 / g ; 
2 r i + i 

,„ _ . n ( U " + l / 2 . t r ! + l / g + U " - l / a . j r ? - l / 2 ; 

( 8 p ! ) 

s i n 8 ] + 1 / a V T + s i n O j . ^ a V B ) 

Nonstandard terms for equation 11 (the azimuthal momentum equation) are 

'+1/2.J ~ ? SsinCj 

n ( u i + l / 2 , l s i n V f l J + u ? + l / 2 , J - M s i n V l A * i + 3 
""* • ul+l/2.J+l/2 = f 2sin«j +,/ 24 f l

j +i/3 

n ( u " - i / e , i s i n & j & e j •*• u"-i/a,j-n s' n ej.fi A 9j.n 

„ _ V U l Q / 8 B l n * l » 3 / 8 + v l . j * l / 8 a l n f l l * l / » j 
- v i . j + i - J 2 s i n 8 j + 1 < 

VB = v n > I. ^3/2"""^+3/2 T v i . j + l / 2 a l " g j + l / 2 j 
i.j / 2 s i n e j + 1 

,n _ \ v i . J + l / B r l A r l + Vi+l,j+l/2 ri+l* ri-
'i+i/a.j+i/a " 2 r i t l / a A r l + 1 / 8 
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V I _ n - ; V ? . i + l / 3 r . A r i + v ? - 1 , j t l / 2 r i - 1

A r . - l 

_ (rf + 1 / 2UR + rf_, / gUL ) 

The nonstandard terms used in equations 12 (the energy equation) are 
calculated by linear averaging 
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APPENDIX B 
NUMERICAL STABILITY CONDITIONS 

The finite-difference momentum and energy equations (equations 10, 
11, and 12, Section IV) are restricted by numerical instabilities to a 
maximum allowable time step. Attempts by many authors to analyze the 
numerical stability conditions of general nonlinear finite-difference 
equations have failed to provide both sufficient and necessary conditions 
that insure numerical stability. Some of the methods reported in the 
literature provide necessary stability conditions that can be used as a 
guideline (Bl). The final test, however, lies in numerical experimenta­
tion using available stability conditions as guidelines. 

The most straight-forward and generally accepted method of stabil­
ity analysis is the von Neumann method for linearized equations. A 
discussion of the von Neumann method is presented by Roache (B2). In the 
von Neumann analysis, the equations are linearized by assuming constant 
coefficients in the convection terms and the solution is expanded in 
terms of Fourier components. For our momentum and energy equations the 
Fourier components are 

Radial Momentum: 

U" + 1/ E.j =* nexp I(l + l/ 8 0 r + j^) 

Azimuthal Momentum: 

v " . j + i / 2 = ^ n exp I ( i 0 r + j + l / 2 0 f l ) ( B - 2 ) 
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Energy Equation: 

T 1 ^ = V nexp t ( i « r + i<l>e) (B -3 ) 

In the above equations,V is the amplitude function at time level n for 

the particular component with phase angle * and I = (-1) ' . Positive 

convection velocities are assumed for upwind differencing terras with « = 

1 and the above Fourier components are substituted into the 

f inite-difference equations. The amplification factor 

G = * > fB-4) 

is introduced to define stability and the stability criteria 

|C| < 1, (B-5) 

must be satisfied for a l l possible 4>r and <t>0. The resulting s tab i l i ty 

conditions for the linearized momentum and energy equations are 

Radial Momentum Stabi l i ty Condition: 

At < J » , (B-6) 
( IJL I + | _ v_ | + I - Z" I 

Azimuthal Momentum Stability Condition: 

At < |JL| + |_v_| + IJLI + |8E_| ' (B-7) 

- a * -



Energy Equation Stability Condition: 

l I . j. fB-8) 

The above expressions limit the convective plus diffusive fluxes 
to less than a cell width in a sint/e cycle. In our prohlem, the convec­
tive flux limitation, often called the Courant condition, is the dominant 
factor. 

The results of the von Neumann stability analysis provide neces­
sary stability conditions for the nonlinear equations but do not in 
general predict nonlinear instabilities. Experience in computing with 
equations 10, 11, 12, and 13 has shown the equations are generally stable 
within the conditions of the linear von Neumann analysis. The numerical 
viscosity effect of donor cell differencing of convective terms plays a 
large role in damping out instabilities and stabilizing the numerical 
solution. 

41 < 
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APPENDIX C 
CONSERVATION OF VORTICITY BY PRESSURE-VELOCITY ITERATIONS, 

THE POISSON EQUATION FOR PRESSURE, AND THE MAC CORRECTIVE TERM 

The purpose of this appendix is: 1) to demonstrate that the 
numerical iterations on pressure and velocity presented in Section IV 
conserve vorticity, 2) to show that the iterative procedure is equivalent 
to solving the Poisson equation for pressure and 3) to prove the exist­
ence of the MAC corrective term in the numerical solution technique. 

ITERATIVE VORTICITY CONSERVATION 
In Section IV, we discussed how the numerical iterations achieve 

mass conservation by adjusting pressures according to the cell velocity 
divergence and then adjusting velocities to reflect the new pressure 
gradient. The velocity field was iteratively adjusted by effectively 
adding t'.e gradient of the scalar pressure field to each velocity com­
ponent in the fashion 

u I + 1 = u ' + C 0 VP ' , ( c _ 1 } 

where: 

From this equation and the definit ion of vor t ic i ty (2A = ?xfl ), we can 

calculate the vor t ic i ty of the new velocity f ie ld as 
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2 A I + 1 = V X U 1 + l = VXU 1 + VX(VP !). fC.2) 

However, the last term is the curl of the gradient which is identically 
zero (CI). Thus, the new vorticity is equal to the original vorticity 

2A I + 1 = VXU , + 1 - VXU 1, (C-3) 

and the solution has preserved vorticity. 

POISSON PRESSURE EQUATION 
The iterative technique is exactly equivalent to solving the 

Poisson equation for pressure, as was done in the original MAC treat­
ment. We will illustrate this by going back to equation 4 in Section IV, 
and lumping terms together to get the equation 

at " ri.i 0 ' (c"4' 

where: 

!•? . = - V-(UU) - VX[i/(VXU)] + i. (C-5) 

Taking the divergence of equation C-4 and pulling the time derivative 
outside of the divergence, since the spatial coordinates are independent 
of time, we have 

-50-



A c v . u i . v . r f . , - ^ . C c" 6 ) 

To prevent error accumulation due to nonzero velocity divergence the 
additional constraint 

JLtf.V) = 0, fC-7) 

is imposed. With this constraint equation C-6 reduces to the Poisson 
equation for pressure 

V2P = v - r ^ j - fC-8) 

Another way of showing this is by substituting equations 14 into equation 
13 in Section IV and rearranging to find the resulting expression is 
exactly the finite-difference equivalent of the above Poisson equation. 

MAC CORRECTIVE TERM 
Our solution technique contains the MAC corrective term to prevent 

errors due to the finite convergence limit from accumulating from time 
step to time step (C2). To illustrate the corrective term we go back to 
equation C-4 and write the finite-difference form for the time derivative 

^ ^ = ?« • - 5P- fC-9) 
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Me then solve for ft? . and take the divergence to get 

/- - v 2p\ 
v-u»+] = v-.u"^ + M v - r ^ - -j-1 (c-10) 

Zero velocity divergence at cycle n+1 in equation C-10 requires that 

p '.i At 

This equation is the same as equation C-8 with the exception of the 
V ir correction term i,j . If the solution at cycle n were perfect this 
At 

term would be exactly zero. Since the iterations proceed only to a given 
limit, this term will have a small but finite value and will act to 
correct slightly the n+1 time level pressures to account for past errors 
in divergence. In this way, the divergence error from each cycle is 
corrected and not allowed to increase with time. 
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APPENDIX D 
DETAILS OF FREE SURFACE TREATMENT 

BACKGROUND 
The original MAC method was simplified by Amsden and Harlow in the 

SMAC method (Dl), by adding a more efficient solution of the governing 
equations and a simplified treatment of pressure at boundaries. Hirt and 
Shannon (D2), added refinements in the free surface stress conditions for 
low Reynolds number flow. Chan and Street (D3), defined the surface by a 
single valued height function and eliminated the need for marker parti­
cles. In addition, they developed a scheme to use marker particles only 
on the surface. Both methods were limited to low amplitude wave motion 
with a single valued free surface. The surface particle chain reduced 
the required number of particles from several thousand to D few hundred. 
This refinement also made precise location of the surface possible 
allowing accurate conditions on pressure to be applied. Nichols and Hirt 
(D4), extended the surface marker particle scheme to multiple valued 
surfaces that result from highly contorted flows. In addition, Nichols 
and Hirt improved the free surface stress conditions and discussed their 
use for higher Reynolds number flow. Hirt et. al. (D5), developed the 
SOLA code which is capable of calculating incompressible flow in closed 
spaces and is simplified for use by persons with little or no experience 
in numerical fluid mechanics. A modified version (SOLA-SURF), handles 
free surface flow by defining the surface with a single valued surface 
height function in the manne- jf Chan et. al. (03). The solution method 
in SOLA is essentially the same as the method used here. 
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For our problem, we use the surface marker scheme and free surface 
stress conditions of Nichols and Hirt (D4) with modifications to fit our 
situation. The method and modifications are discussed in more detail in 
the following sections. 

CELL FLAGGING 
Cell flags tell us whether or not a cell contains fluid and indi­

cate which cells contain the free surface. An example of cell flags was 
shown by Fig. 7, in Section IV. Cells are flagged based on the location 
of the surface marker particle chain. At the beginning of the filling 
process, all cells are flagged empty and as fluid enters the annulus, 
cell flags are adjusted according to the location of the surface. During 
each cycle after the velocity solution has been obtained, marker parti­
cles are moved by linear interpolation of the velocity field and the mesh 
is swept to update cell flags. On the first sweep, cells containing 
marker particles are flagged surface. On the second sweep, we check for 
surface cells that do not contain marker particles. These cells are 
flagged full if there is no empty neighbor and empty if an empty neighbor 
exists. Finally, any cell containing particles and having no empty 
neighbors is flagged full. 

Normally a cell flag would not jump directly from empty to full in 
one cycle, however, situations occur in this flagging scheme that cause a 
cell flag to jump from empty to full. This situation occurs when the 
inlet jet impacts the inner sphere and also when a wave hits a wall. 
When a cell jumps from empty to full, there is an apparent net gain in 
fluid mass which results in the annulus filling too rapidly. Total 
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accumulation of extra mass is dependent upon the size of the cells and 
the number of times this situaiton occurs during the filling process. 
Figure Dl illustrates the situation when the fluid jet impacts the inner 
sphere. 

We define special surface cells to avoid this error near wells. 
Special surface cells allow the surface to move within less than a cell 
width of the wall. We have determined the following requirements as 
necessary for a special surface cell. The cell must be directly adja­
cent to a solid boundary, contain part of the surface marker chain, and 
have been flagged full by the standard flagging routine indicating that 
it has no empty neighbors. Then, if more than half of the particles in 
the cell are in the outer one-fifth, the flag is left full indicating the 
surface has contacted the wall. If the fraction of particles in this 
layer is less than half, the cell is still eligible to be a special sur­
face cell and the theta coordinate of the chain attachment point is 
compared to the coordinate of the cell center. If the attachment point 
has a smaller theta, the cell is flagged as a special surface cell, if 
not, the flag is left full. 

A special surface cell is distinguished by a nonzero normal wall 
velocity calculated by equation 13, in Section IV, to give zero velocity 
divergence for the cell. This is the same treatment given a regular 
surface cell with a single empty neighbor. The effects of the special 
surface cells are: 1) presence of the wall is not felt until the surface 
effectively touches it and, 2) artificial mass creation is reduced. 
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Inner sphere 

Symmetry-
line 

Outer sphere 

Inlet flow -
(a) Fluid j e t about to enter f inal layer of cells before inner sphere wal l . 

Added mass 

(b) Artificial mass creation due to finite cell size and flagging scheme. 

Non-zero wall 
velocities 

(c) Special surface cells allow fluid to enter cells near wall. 
Figure Dl. Special surface cells prevent artificial mass creation near walls. 
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SURFACE MARKER CHAINS 
Replacing marker particles in the fluid body with a chain of 

particles at the surface is a significant improvement in MAC methodology 
(D6.D7). The surface marker chain reduces the number of particles and 
computer storage required and provides mo^e accurate location of the 
surface. With the surface precisely located within a cell, the pressure 
can be extrapolated or interpolated from the nearest full neighbor to the 
exact surface location instead of the cell center. The essential 
features of the surface marker chain are: 1) sequential particle 
numbering, 2} maintenance of uniform particle spacing, and 3) attachment 
of chain ends to walls. 

When particles move, they tend to bunch up or thin out. As a 
result, we must add or delete particles during each computational cycle 
to keep uniform spacing and accurately mark the surface. After editing 
particle spacings the chain ends are attached by moving the first and 
last particles radially to the walls. This prevents chain ends from 
drifting away from the walls. 

When a surface wave breaks an interior cell may jump from empty to 
full in a single cycle as illustrated in Fig. D2. Special surface cells 
handle this situation near walls but do nothing for interior cells. 
Motion of the type illustrated results in a folded and tangled surface 
chain with some particles that may not lie on the surface. To keep the 
chain from tangling and determine when chain splitting is necessary, 
particles in full cells are removed each computational cycle. After 
particles are removed the gap distance is checked to determine if the 
chain should be split. If the gap exceeds 2.5 times the local cell 
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(a ) . Breaking wave about to collapse on a single empty c e l l . 

Added mass 

(b}. Added mass due to removal of particles in full cells. 
Figure D2. Cell resolution and chain straightening cause artificial 

mass creation. 
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diagonal and is near a boundary, the chain is split and the new end 
points are attached to the wall. If the chain is not split, particles 
are replaced in the full cell along a straight line segment. The effect 
of the straight line replacement is straightening of the surface chain. 
We will see the advantage of straightening the surface chain later when 
we attempt to find the surface location in each surface cell. 

As a result of chain straightening and interior cells jumping from 
empty to full, the total system fluid mass increases as illustrated by 
the shaded area in Fig. D2. A small increase in mass occurs svery time 
we straighten a segment of surface chain and when a wave breaks. 
Repeated mass errors of this type add up to the point of causing signif­
icant error in the total system mass. We have not found a feasible way 
to prevent mass creation when a surface breaks. This error is incurred 
due to the finite size of the computational cells. In addition, if we do 
not destroy particles in full cells each cycle, the surface chain becomes 
tangled and causes problems for surface pressure interpolation. A 
solution to the added mass problem is to correct the surface location 
periodically. We will discuss a method of doing this in the section on 
surface adjustment. 

We have discussed what happens when the surface folds over and 
creates a bubble that is smaller than the local cell size. Another 
situation we must deal with is a bubble larger than the local cell size 
as illustrated in Fig. D3. In this situation, the chain is split to mark 
different sections of the rurface. The two types of surface chains 
(regular and bubble) are shown in part d of Fig. D3. Both chains are 
treated identically with the exception of the chain ends. A regular 
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Figure D3. Sequence of inlet jet forming a bubble and surface marker chain splitting. 



chain is attached at both ends to houndaries and a bubble chain is 
attached to itself head to tail. When the bubble size shrinks to the 
order of the local cell, all surface cells are flagged full and the 
bubble chain is destroyed. Once again the unavoidable jump of a cell 
flag from empty to full will occur. 

FREE SURFACE VELOCITY CONDITIONS 
The first step in calculating velocities at a free surface is to 

insure that mass is conserved in all surface cells. This is done by 
using equation 13 from Section IV to calculate velocities on surface cell 
faces adjacent to empty cells. The configuration of a surface cell with 
a single empty neighbor appears commonly and is shown in Fig. D4. The 
velocity component on the top face is calculated to make the cell diver­
gence zero. The position of this velocity is indicated by a dot and the 
arrows on the sides of the surface cell indicate velocities calculated 
from the momentum equations. The dashed arrows indicate borrowed veloci­
ties. The calculation of these borrowed velocities will be discussed in 
a following section on surface stress conditions. More complicated 
configurations exist when there is more than one empty neighbor and more 
than one unknown velocity. 

The possible arrangements of empty cells abcut a single surface 
cell and a numerical scheme to determine the configuration were explained 
in detail by Ansden et-al. (Dl). The scheme involves an integer sum 
varying from 1 to 15 based on the arrangement of empty cells about a 
surface cell. Figure D5 shows the fifteen arrangments and the assigned 
numbers. The dot indicates the zero divergence velocity and other 
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i+7 

Figure D4. Surface velocity conditions for surface cell with a 
single empty neighbor. 
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14 15 

Figure D5. Surface-empty cel l arrangements and velocity treatment for 
each. 
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velocity components are borrowed from neighboring full cells as indicated 
by the curved arrows. In each case the borrowed velocity is adjusted to 
maintain equal mass flow. Our treatment differs from early methods, 
primarily because each cell face has a different area. When 
there is more than one unknown velocity the treatment *s not rigorous 
(D7). 

Nonzero wall velocities for special surface cells are calculated 
in this portion of the calculation. Figure 06 shows a typical configur­
ation of surface and special surface cells and the positions of the zero 
divergence velocities. 

SURFACE ADJUSTMENT 
Added mass caused by cell resolution and chain straightening must 

be accounted for. This is accomplished by periodically adjusting the 
surface location. The surface position is adjusted by setting a nonzero 
divergence in all surface cells for a portion of the calculation that 
affects only the particle movement. During each computational cycle, 
theoretical fluid volume is compared to the volume of all full cells plus 
surface cells. The theoretical volume should be between the full cell 
volume and the combined volume of full cells plus surface cells. If the 
theoretical fluid volume is outside these limits, then the calculated 
volume is adjusted. Excess volume is calculated from the following 
equation: 

Vex - < Vf + V„/2 - V t h ) . (D-l) 
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Figure D5. Typical cell configuration and velocity treatment for 
regular and special surface cells. 
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In the above equation, v f is the summed volume of all full cells, V $ 

is the summed volume of all surface cells, V t h is the theoretical 
volume and V is the excess volume. A nonzero divergence for each 
surface cell is calculated from the pxpression 

e* " V BAt* (0-2) 

The condition for surface cell velocities adjacent to empty cells during 
the adjustment portion of the cycle is 

V-U = D „ . ( t )" 3 ) 

in place of ?-U = 0. The nonzero surface cell divergence is used only 
for particle movement and is set back to zero before the cycle is con­
tinued. The effect is an adjustmerit in surface velocities by the proper 
amount to correct in a single time step for an existing volume error. 
The adjusted surface velocities cause a small increment to be added to or 
subtracted from the location of the surface chain and force the calcul­
ated fluid volume to be approximately equal to the theoretical volume. 

The approximate method used to calculate excess volume is accurate 
to within the order of the size of surface cells and provides a simple 
method of volume adjustment. Volume adjustment is required only periodi­
cally during the computation. The more irregularity in the surface 
shape, the more ..often the correction is required. 
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SURFACE STRESS CONDITIONS 
For low Reynolds number flows, tangential and normal stress condi­

tions can be applied at the surface to calculate pressure in a surface 
cell and velocities just outside the surface. For this problem we use 
the inviscid surface stress condition as suggested by Nichols and Hirt 
( W ) . Tc approximate the inviscid free surface, we set P = 0 at the sur­
face and obtain velocities outside the surface by reflecting mass flow 
from below the surface. For the case shown in Fig. DA, the outside 
velocity is calculated according to 

sine, A » . 
«?+./*.,•. = « ? + , / 8 . i - 8 l n 9 j + ; A e^ +;- (D-4> 

The inviscid form of the normal stress condition is applied by 
setting pressure equal to zero at the surface. Originally in MAC, the 
surface was assumed to be at the center of the surface cell and the sur­
face pressure was applied there. With the addition of the surface marker 
chain, it became possible to set the surface pressure exactly at the free 
surface location. 

SURFACE PRESSURE INTERPOLATION 
The surface pressure is applied at the exact surface location by 

interpolating or extrapolating pressure along the line between surface 
and adjacent full cell centers. To accomplish the interpolation, the 
location where the surface crosses this line must be known. In Fig. D7 
we show a typical surface configuration and the distance needed for 
interpolating or extrapolating zero pressure to the surface. 
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Figure D7. Surface pressure Interpolation distances. 
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To locate the intersection point of the surface chain and the line 
between cell centers, we march along the chain and note where the r 
and/or 0 coordinate of the neighboring full cell is crossed. There are 

two such points for cell (i,j) shown in Fig. D7. Finding these points 
can be difficult if the surface chain is irregular. If the chain is 
folded on itself and crosses the line several times, it may be impossible 
to locate the correct point. Chain straightening plays a very important 
role by keeping the surface chain regular and single valued inside a cell. 

The interpolation neighbor for each surface cell is chosen based 
on the minimum distance in cell units from the cell center to the fluid 
surface. The expressions used to determine the intepolation neighbor for 
cell (i,j) in Fig. D7 are 

The minimum of these quantities dictates the full cell interpolation 
neighbor for surface cell (i,j). The interpolation factor n is then 
calculated and according to 

v = T or r, = > J ' 
Mi dg 

depending on which full cell is chosen as the interpolation neighbor. 
The pressure in surface cell (i,j) is calculated by linear interpolation 
according to the equation 
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P, = (1 - v)Pt, (0-5} 

where P is the surface cell pressure and P- is the pressure of the 
full cell interpolation neighbor. Equation D-5 is used to update the 
surface cell pressure during the iteration phase of the calculation. On 
each sweep through the mesh, new surface cell pressures are calculated 
from updated pressures in the full neighbors. In addition, velocities on 
cell faces betweeen surface and full cells are updated to reflect the new 
pressure gradients. 

There are limits that must be placed on the interpolation para­
meter r\. By placing the lower limit at 0.667, we effectively limit the 
maximum distance d in Fig. D7 to 1.5 cell widths. This limit is reached 
when the surface intersects the line between cell centers on the empty 
side of the surface cell. If the intersection point lies in the full 
cell, then n is greater than 2.0 and an instability in the 
pressure-velocity iteration will occur (D4). In this case, a change in 
full cell pressure will cause a greater change in surface cell pressure 
and on the next iteration the full cell pressure will change by a larger 
amount in the opposite direction to account for the change in surface 
cell pressure. This process continues and the pressures oscillate and 
diverge. To prevent iterative divergence a relaxation parameter u.* for 
use in equation 16 is calculated that limits changes in the full cell 
pressure depending on the value of n. 

To derive to,, we begin by rewriting equations 14 (Section IV) in 
the form 
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,,n+l _ .In+l + _ 
" i - n / z . j " u i + i / a , j +

 p ( r i + 

A t 

'•> 
fpn _ p n \ 

(D-6) 

,n+l At „..-ri _ 5n-'l + ii± (pn - P n 1, 
v i . j + l / B " V i . j + l / 2 + p r , ( » J + , - * , ) ^ » + l . J ^ » . l ' ' 

etc. for a l l cel l velocity components. We have dropped the pressure 

adjustment term AP and pulled the pressure derivative term outside the 

t i lde velocit ies. The new velocity terms u L , « • and v? , - + - i / - etc. are 

equivalent to the right hand sides of equations 10 and 11 without the 

pressure derivative. Next, the cel l velocity components from the above 

equations are substituted into equation 12 (Section IV) and rearranged 

into the following expression: 

pi + i _ 1 

' i . j r ? 
J_ 

(Ar, 
**+*'* pn + Azlll pn 

M + I . J + ar P l A r , i + l /B i - 1 / 2 . - . I j 

s i n 0 , A 0 j 
sins i-n/e 

LB J + l / 2 
pn . 

sine j - i / z 
AS j - l / 2 

pn ./? 
At 

fD-7) 

Grid spacing terms such as Ar.and A0.were previously defined and g. . is 

given by equa 

the equation 

given by equation 17 in Section IV. The source term S. . is defined by 
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*f*3 |̂ n _ «2 »n 
l_ ri+l/2 "1+1/2.J ri-l/2 "1-1/2,1 
rf [ ri + l/2 ~ r i-1/3 

(D-8) 

sinO j + l / g v^.j^/g - s i n g ^ ^ g v^.j.t/a 
Sj+l/2 ~ °j-l/2 J 

The pressure given by equation 0-7 is the Gauss-Siedel iterative value 
for pressure at the 1+1 iteration and is denoted as p| +!. At this point, 
we drop the time level superscript n, and indicate iteration level by 
superscript I. For successive-over-relaxation (SOR), the Gauss-Siedel 
value (D8) is extrapolated using the relaxation parameter w according to 

P\*\ = (1-Vp!,j + -oPlTJ- < D- 9> 

In using this equation, the mesh is swept and pressures are updated con­
tinuously resulting in trailing cells (i-J.) and (j-1) at iteration level 
1+1 and advance cells (i+1) and (j+1) at iteration level I. 

The purpose of this derivation is to find an equivalent relaxation 
parameter for a full cell interpolation neighbor. We will do this for 
the case of a full cell at (i,j) and a surface cell at (i,j+l). In 
equation 0-7, P" .=+1 is replaced by the interpolated value at the new 
iteration level 

p?.j + l " M l - * i > j + i) P}tj. (D-10) 

The result is substituted into equation D-9 to yield 

1 
r .s ino 
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Pltj - (i-"o)P|.j 

sine.Afij 

s i n f l j » l / 2 s ine , , / -
' j + I / Z 

A e j - i / a 

I r 2 l A r l I . J r l ' 

r l + ' / 2 pi 

S . , i r t 
4 t 

( Q - l l ) 

Next, we br ing P̂  2 outside the brackets and rearrange terms t o recover 

the Gaoss-Siedel value as given by the r i g h t hand side of equation 0-7. 

j c i ' t i on is then cast i n to a form s imi la r to equation D-9. 

p i + i _ 
' • J 

1 -
1 " " o V j t i ' . i 1 a 0 7 i . j + l 

B i + i 
1 • J (D-12) 

where: 

'1 .J + 1 
r i . J + l s in© 

* i . J r i 

j + l / 3 

[ s i n e , A 9 j A » j + 1 / a j 
(D-13) 

By comparing the form of equation D-l£ ̂ fth equation D-9 we see that the 

new relaxation parameter for the ful1 interpolation cell has the form 

' ' " a 0 T i , J + I ' 
(D-14) 
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We also note in this equation that u>e = w for n = l . For a f u l l cell at 
t o 

( i , j ) and surface cell at ( i , j + l ) , y is given by equation D-13. The 

subscripts on Y and n indicate the location of the surface cel l in 

relation to f u l l cel l ( i , j ) . By repeating the above steps for the other 

possible interpolation neighbors we arrive at the following expressions. 

For f u l l cel l at ( i , j ) , surface cell at ( i , j - l ) : 

' - ^ i . j - i ( s i n e j - i / a ) 

"l-'-l%i.i rf ( . I n V W , , , ) ' ^ 1 5 > 

For full cell at (i,j), surface cell at (i+l,j): 

7'*'.i - $ l . rf ( A r l A r i + l / 8 ) ' (D-16) 

Full cel l at ( i , j ) , surface cel l at ( i - l , j ) : 

' - " i - i . j ( r f - i / a ) 

The relaxation parameter given by equation D-14 will maintain a stable 
iteration for all values of q when a single full cell pressure is inter­
polated or extrapolated to a single surface cell. 

In some situations, it is possible for a single full cell to act 
as an interpolation neighbor for more than one surface cell. This is the 
case illustrated n Fig. D7 for full cell (i,j-l). The same procedure is 
followed to derive co- for a double interpolation as for a single inter­
polation. This time, we replace two interpolated values into equation 
D-7 for the appropriate surface cell pressures. The resulting expression 
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for uif is identical to equation D-JA with differences appearing in the 
form of Y- For interpolation by a single full cell to two surface cells, 
the expression for y turns out to be the sum of y for the individual 
single interpolations. For example 

7 < i + i . j ) . n . i + >> = 7 i + i . j + 7 i , i * i fD-18) 

Double interpolations are far less common than single and are avoided if 
single interpolation can be done. Iterative convergence is slowed down 
somewhat when n>2, especially if a double interpolation is being done. 
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APPENDIX E 
THE COMPUTER CODE SAFFA 

The computer code used for these calculations is named SAFFA, for 
Spherical Annulus Fluid-Flow Algorithm. A flow chart illustrating the 
code logic is shown in Fig. El. 

The logic consists of a main time loop composed of three phases. 
The first phase deals with the computation of fluid velocities, pres­
sures, ••'-••d temperatures. In the second phase the free surface and marker 
particles are handled and in the third phase, prints, plots, and restart 
dumps are made. 

Surface and boundary cell velocities are set before particle move­
ment so that particles maybe moved based on a completely updated velocity 
field. After particles are moved, cell flags are changed and surface and 
boundary cell velocities are set again to reflect changes in cell flags. 

The Fortran source deck contains approximately 4000 cards 
including comments, printing, plotting, and input subroutines. An aver­
age calculation of an annulus fill requires about 1 hour on the CDC 
7600. The code is still being developed and has not been streamlined for 
production work. 
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Figure El. Flow diagram for SAFFA computer code. 

-79-



APPENDIX F 
NOMENCLATURE 

thermal diffusivity 
intnrpol.it ion distance 
divergence 
gravity vector 
gravity constant 
amplification factor 
radial unit vector 
azimuthal unit vector 
Pressure 
Gauss-Siedel iteration pressure 
radial coordinate 

inner sphere radius 
outer sphere radius 
time 
Temperature 
radial velocity 
tenative radial velocity 
velocity vector 
azimuthal velocity 
tenative azimuthal velocity 
volume 
upwind differencing parameter 
geometry factor 
interpolation geometry factor 
combined convection, viscous, and gravity terms 
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3 - partial derivative 
A - interval of change 
n - interpolation parameter 
0 - azimuth,!I coordinate 
A - vorticity 
v - kinematic v i scos i t y 

P - densi ty 

T - shear stress 
• - lonqitudinal coordinate 
- phase angle 

* - amplitude function 
c - over-relaxation parameter 

Vector Operators 
$ - spherical gradient 
^ - Laplacian 

ex - excess 
f - full 
in - inside 
i - radial cell index 

J - azimuthal cell index 
in - inside 
out - outside 
r - radial direction 
s - surface 
th - theoretical 
9 - azimuthal direction 



I - iteration number 

N - time step number 

* - spec ial surface eel 1 
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