KCP--613-4336
DE91 005254

Distribution Category UC-705

ISAPS -~ INTELLIGENT SCHEDULING AND PLANNING SYSTEM

M. S. King
Published August 1990

Manuscript submitted to Design Productivity Institute Conferénce,
Rolla, Missouri. Conference held at Honolulu, Hawaii, February 5,
1991. ‘

WM

Technical Communications
Kansas City Division

Allied-Signal Aerospace Company

llied
Signal

B LI
“S DOC;‘\”\F“.‘,“\ Lt e b
P i S

Cut; L RIBUTION OF 'Th‘j} 0
sA T A

v

ISAPS - Intelligent Scheduling And Planning System

M.S. King, W.C. Rutherford, J.V. Grice, Allied-Signal Inc., Kansas City Division*
K.L. Kessel, M. Orel, IntelliCorp, Inc.**

ABSTRACT

ISAPS is a scheduling and planning tool for shop floor personnel working in a Flex-
ible Manufacturing System (FM@) environment. The ISAP system has two integrated
components: the Predictive Scheduler (PS) and the Reactive Scheduler (RS). These com-
ponents work cooperatively to satisfy the four goals of the ISAP system, which are: G1)
meet production due dates, G2) maximize machining center utilization, G3) minimize cut-
ting tool migration, and G4) minimize product flow time. The PS is used to establish
schedules for new production requirements. The RS is used to adjust the schedules pro-
duced by the PS for unforeseen events that occur during production operations. The PS
and RS subsystems have been developed using IntelliCorp’s Knowledge Engineering En-
vironment (KEE), an expert system development shell, and Common LISP. Software
Quality Assurance (SQA) techniques have been incorporated throughout the develop-
ment effort to assure the ISAP system meets the manufacturing goals and end user re-
quirements.

INTRODUCTION

The Kansas City Division of Allied-Signal Inc. is in the process of implementing a
Flexible Manufacturing System (FMS) which wili produce discrete, machined electrical
component housings. The FMS represents the first fully automated machining system to
be installed at the Kansas City Division (KCD). The system includes six four-axis hori-
zontal machining centers, two coordinate measuring machines (CMM), one automatic
wash station, two automated guided vehicles (AGV), four work in process pallet poois,
and five manual stations for loading and unloading parts, building fixtures, and reviewing
product that fails inspection (see Figure 1). The system is controlled by five computers
networked together using Ethernet/DECnet. The FMS is scheduled to begin operation in
December 1991.

The current production scheduling system for the shop tloor is largely manual input,
labor intensive, and without timely feedback. Decisions about product mix, priority of
jobs, and the allocation of finite manufacturing resources are aﬁ made with limited
knowledge of the imgact on production schedules, resource utilization, and overall oper-
ating efficiency. In the environment of an integrated, highly interdependent manufactur-
ing system such as the FMS, the volume of information and knowledge required to sched-
ule resources has the potential to quickly overwhelm the individual responsible for
decision making,

The ISAP system is being developed to provide scheduling and planning personnel
an integrated tool to assist them with the development of production plans, performing
"what-1f” scenarios off-line, and to shorten response and recovery time from unforeseen
events. The work reported in this paper covers the developmeni of the prototype ISAP
system, the architecture and technologies employed in the system, the constraints and
heuristics considered, how schedules are generated, the user interface, and the current
status of the system.

* Operated for the United States Department of Energy under Contract Number DE-AC04-76-DP00613
** Under a Subcontract with Allicd-Signal Inc.

weigerq dnewayos S [9rg

IOVIOLS
JANLXIS
/LATTVd

O

vIYV ONILLIS TO0L

MATATA
LIVvd

Wy
viM8p oo

piing
axmxiy IN/1

© 689

10/1 ocoo
@@DDDDW

I
133U
Fuiuiydey

(4
1U3)
Suuryory

£
1IU3)
Sunuiyoepy

(ala)

(=)]la)

(=)la)

7

m TADYV

)

7
u

TADV

)
)

@6

(=S

==

I

uonel§
ysem

T dim. DD@
oo

9
193
Suiuyoey

S
11ud)
Sututysey

1 4
191Uld)
Suuryoe

THE DEVELOPMENT PROCESS

The system development methodology being used is a hybrid of the classical water-
fall or cascade lifecycle approach plus a rapid prototyping technique typically found in ex-
pert szstem development environments. SQA requirements (design reviews, audits, code
walkthroughs) 2re an integral part of the development process.

A project team approach was selected to manage the development activities. The
team members and tneir roles are as follows:
KCD Personnel

' Project Manager - Provides technical guidance for the timely completion of the
project and is responsible for the development of a system that meets the needs of the
end users; ' ‘

Technical Consultant - Knowledgeable of operational issues related to the FMS (a
simulation and programming expert);

End Users - Provide scheduling and planning expertise and assist with the design
of the user interface.

SQA Administrator - An independent agent whose function is to assure that the
system being develo%ed meets the requirements set forth in the Scope of Work for
ISAPS. Also leads the review and audit meetings.

IntelliCorp Persot:nel

‘ Project Manager - Provides guidance for the timely completion of the project and
is responsible for the user interface, documentation, and user training;

Knowledge Engineer - Responsible for knowledge acquisition, coding, testing the
system, ard technical training;

"echnical Consultant - Reviews the project goals and assists with the selection of
technc.ogies that lend themselves to meeting the project objectives.
The development process used for ISAPS contains seven steps. The steps are:
1. Syster Requirements Analysis,
Functional Spe~ification Preparation,
Detailed System Design,
Ceding,
Unit and Integration Testing,
Acceptance Testing,
7. Technoiogy Transfer and User Training.

Rapid protceyping occurs throughout the process to explore solution techniques and
to keep the end users involved as the system is being developed.

THE ISAP SYSTEM ARCHITECTURE
The scheduling andé)lanning system is composed of two major components: the Pre-

dictive Scheduler {PS) and the Reactive Scheduler (RS). These components are accessi-
ble through a smg]e user interface that is graphical in nature with mouseable icons and

o v R W

pop up menus. The PS and RS are enhanced versions of the Scheduler Booster Module,
an IntelliCorp, Inc. product that runs on toE of KEE. The primary method for viewing
the schedules produced by ISAPS is through the ActiveGantt Booster Module, also an
IntelliCorp product. Figure 2 illustrates the relationship of the various components of
ISAPS. : |

ISAP SYSTEM
AS-DATA, AS-JOBS, AS-TOOLS,
PSHOP, FMS-ICONS,

ISAP CODE: FORWARD-BY-TIME

SCHEDULER
SCHEDULERS ACTIVEGANTT
CONTROL.PANEL GANTT

FACTORY, MLIB

KEE
OBJECTS
‘ METHODS
ACTIVEVALUES
GRAPHICS

Fig. 2 Components of the ISAP System

The PS is used to establish schedules for new production requirements on a variable
planning horizon. The RS is used to adjust the schedules produced by the PS for unfore-
seen events that occur during production operations, such as equipment failures, changing
priorities, and product mix. A common model of the FMS is employed by the PS and RS
which defines the basic system configuration and availability of resources to be consid-
ered for scheduling.

The data required to create the FMS model knowledge bases (KBs) are supplied
from external files, as are the data for the jobs to be scheduled, the tooling, and fixtures
to be used for the planning and scheduling session. Any of this data may be entered by
the users directly and any lozded knowledge base may be modified through the user in-
terface. The strategy of designing the ISAP system to be data driven from external files
was chosen early in the project to provide maximum flexibility during development and to
separate code from data for ease of maintenance.

There are ten KBs used in the ISAP system (refer to Figure 2). The Scheduler
Booster Module works with the KBs SCHEDULERS, CONTROL.PANEL, FACTORY,
and MLIB. The SCHEDULERS KB contains scheduling strategies, heuristics, reporting
capabilities, and modifications specific to the ISAP system. The CONTROL.PANEL KB
contains information to build the user interface to the ISAP system. The FACTORY KB
contains the factory objects, including fixtures, jobs, operations, tools, and other FMS re-
sources. The MLIB KB is a working copy of FACTORY. The ActiveGantt Booster Mod-
ule uses the GANTT KB to create the Gantt chart of the proposed schedule for the user.

The remaining KBs are specific to the ISAP system. AS-DATA is the static or base-
line KB which represents the unaltered state of the FMS at the beginning of a scheduling
session. PSHOP is the working copy of AS-DATA used during scheduling. The AS-
JOBS KB contains information about the jobs to be scheduled and the AS-TOOLS KB
contains cutting tool information. The FMS-ICONS KB contains graphical information
which is used to create a two dimensional view of the FMS called FMS.VIEW.
FMS.VIEW is available through the user interface and is an alternative means of viewing
schedule information.

CONSTRAINTS AND HEURISTICS

The ISAP system is being developed to achieve four goals: G1) meet production due
dates, G2) maximize machining center utilization, G3) minimize cutting tool migration,
and G4) minimize product flow time. The design of the ISAP system needed to account
for a number of physical limitations or constraints imposed by the FMS design to accom-
plish the stated goals.

Constraints

The first constraint the scheduling system has to consider is the number of machin-
ing centers and their availability. Macﬁines in the FMS will have routine preventative
maintenance performed. Machining centers and CMMs will be off-line at regular inter-
vals for program testing and process prove in. These two conditions reduce the availabil-
ity of the machines, which impacts goals G1, G2, and G4. ISAPS considers downtimes
during the scheduling process. ‘

The second constraint is the space available on each machining center for cutting
tools. Cutting tools to be used in the FMS have been grouped into toolkits, with each
toolkit capab%e of producing a finite number of part operations. All tools for all part op-
- erations cannot reside in the FMS at the same time. As the product mix changes, ma-
chining centers must be retooled or sit idle until the product mix changes again, making

them available for scheduling. This constraint impacts G2 if the machine sits idle waiting
for jobs, G3 if the toolkits are swapped out frequently, and potentially G1 and G4 due to
reduced availability of the machining centers.

The third constraint deals with fixtures and pallets. For each part operation to be
scheduled, only one fixture will be available. In addition, the maximum number of pallets
available to hold fixtures is less than the number of fixtures required to perform all part
operations. This constraint implies that as the product mix changes, fixture/pallet combi-
nations will have to be broken down and rebuiﬁ, impacting G1, G2, and G4 by reduced
availability of the required fixtures.

‘ The preceding discussion points out that the four goals of the ISAP system are in
conflict with one another. Therefore, a strategy needed to be developed that would ad-
dress meeting as many of the goals G1 througin4, while violating as few of the con-
straints, as possible. In the remainder of this section, the heuristics used by the ISAP sys-
tem will be presented. In the following section, the method by which the heuristics are
applied to generate a schedule that satisfies the goals of ISAP will be presented.

Heuristics

Three heuristics have been identified as the most likely candidates to meet the goals
of the ISAP system. The heuristics are MINDOWN (MINimum DOWNtime), SLACK
(job SLACK time), and PRIORITY.

.. The MINDOWN heuristic finds the job that will cause the minimum downtime or
minimum time a machine has to wait for the job. This translates roughly into finding the
* Job with the earliest start time for a given machine.

The SLACK heuristic chooses jobs with the least amount of slack time available.
Slack time in this context is the difference between a job’s due date and the maximum of
the time a fixture will be available to run that job or the time that the job’s last operation
was completed. If a job has low slack tire, it will tend to be selected earlier for schedul-
ing.

The PRIORITY heuristic is simply a numeric value between 1 and 100. All jobs
default priority is 50. Hot jobs and those that are behind schedule will eventually have
their priority increased so they are chosen sooner for scheduling.

The default order of precedence for the three heuristics is MINDOWN, SLACK,
then PRIORITY. This means that if two jobs are available for scheduling that create the

same downtime for a machine, the one with the least slack time is selected by the SLACK
heuristic. If the jobs have identical slack times, then the job with the highest priority is
selected. If a tie still remains, the first job considered is selected. It should be noted that
as soon as a distinction has been made between two jobs, the application of the heuristics
stops. The default ordering of the heuristics can be changed through the user interface.

SCHEDULE GENERATION

The discussion that follows depicts how ISAPS generates a schedule for the FMS by
applying the heuristics described above and other LISP based functions. The FOR-
WARD-BY-TIME strategy is the basis for the Predictive Scheduler in ISAPS. Figure 3
should be referred to for visualization of the process flow.

Jobs are sequences of part operations in the FMS. This means that if a part makes
three passes through the FMS, then one of those passes is a job. ISAPS uses a different
definition of job. For ISAPS, a job is all of the operations done to one part. Thus, all
three passes of a part through the FMS is called a job. Each operation included in a job
(Loads, Machining, Unload%is then referred to as a part operation, operation, or activity.

FORWARD-BY-TIME first prioritizes the jobs by calling PRIORITIZE-JOBS with
a list of the jobs to be scheduled. PRIORITIZE-JOBS first creates job slack times and
then function JOB-SORTS sorts the jobs based on the heuristics: MINDOWN, SLACK,
and PRIORITY. A list of prioritized jobs is returned.

‘The next significant operation is to obtain a prioritized list of all FMS machines.
Prioritizing machines is done with the function, PRIORITIZE-MACHINES. PRIORITI-
ZE-MACHINES sorts the machines based on their time availabilities. Machines that are
available earliest are given highest priority. -

At this point, FORWARD-BY-TIME has a list of prioritized jobs and prioritized
machines. It then selects the highest priority machine and attempts to assign a job to that
machine. To assign a job to the highest priority machine, the function SELECT-BEST-
ALLIED-JOB is called.

SELECT-BEST-ALLIED-JOB starts by obtaining a job, or jobs, that can be per-
formed on the machine. GET-DOABLE-JOBS selects jobs according to whether the
machine has the proper tooling to do the job and whether the job will be waiting for the
machine. If the machine does not have the correct tooling or must wait for the job, then
the job is included as a doable job only if there are no other jobs that were found that
cause less waiting. GET-DOABLE-JOBS returns a list of doable jobs, which may be an
empty list (no doable jobs found).

SELECT-BEST-ALLIED-JOB then enters a conditional statement that first asks if
no doable jobs could be found. If none were found, then the function FIND-BEST-JOB
is called which finds doable jobs given a toolkit change is made.

FIND-BEST-JOB initially calculates the amount of time it will take for the ma-
chine to become available afier it has had a toolkit change. This time represents the new
machine availability time. FIND-BEST-JOB then calls the function BEST-JOB-FOR-
MACHINE which attempts to find a new best job based on the new machine availability
time.

BEST-JOB-FOR-MACHINE loops through the jobs attempting to find a doable
job with a start time that is later than the new machine availability time. To find a doable
job, all machines with tools required for that job must be found. "A conditional statement
is entered that asks if there were any machines that can do that job. The two alternatives
are

1. There are no machines with tools that can do that job. A second conditional state-
ment is entered. It determines if there are any jobs that are available before the

A8a1eng Fuinpayds FWIL-Ad-AIAVMIOA € F14

g sawIiumoq Sululeway AUy PPV

| _

SUTYOEW MON U3ITM

uTesy IWII-X9-CQHVMHOJ ysnoayy dooq ‘ 97Qeod ST qOf UaylL
| amtT],
JUIYODRW 3IXAU = JUIYIBW BSTH oTQeTeAV SUTYIBK
s7qeoq ST qof osTd <
SANIHOVA-IZILI¥OIUd
| TIN ueylL TIN swti 1Je31§ QO JT
SH0r-3ZILIHOIHAIY swtl _ !
_ 8,qeTTeAY SUIYOEBNW TIN aniyL
NOILVHAd0-IdVd-Ag-ANII- X9 qHVMHOI < | I
| SWIL 3IXe1S qOf JI g0r-¥0Jd-ANTHOVWN-YILLIE ION
g0r "1S39 FI _ |
(o] sa
INTHOVA-¥0J-€0C -HILIIG~- 103 TES N ~— — A
qor e o
a1qeoa v SOUTGORH SIoUL 81V
uInisy TYOBN Yl aIv
‘ _ - TeuOoT3TpUO)
TIN aniy ~qor 91qeod uIiniay INIHOVW-H0J-90r-1S39 = 90r "1S3g
m | l (SOT1STINSY UO poseq) |
-, 9WIJUMOJ XBW (A3TIOTId 3ISSYSTH ANTHOVN-¥0J4-90r-1S39-10dTdS g0 -LSIE—ANIJ
- d _
QWT3uUMOg QOf 3TqRrod qor arawvod ,S9@7qeod JO 3ISTT wmmﬁnmor ON
l | : ‘ | |
v S9or-319voa-1an XIIYOIHd MOVTIS NMOAGNIW
TBUOT1TpUO)

g0r-QATTIV-1S3IE-103 73S //////F\\\\\\\

2qof 'qol o13stTInay [reoung
SINIHOVIN-JZILIH01Y¥d 1y0S-40r

-

g SHOf-JZIL1I¥0TIHd
L

JNII-AE—QUVMHOJ

new machine availability time. If there are such jobs, then these jobs are added to
the list of doable jobs, and a toolkit change is required. If there are no jobs that
can b started prior to the new machine availability time, then the first job en-
countered that can be started after the new machine availability time is returned.

2. There are one or more machines that can do that job. The function asks if any of
those machines could do the job sooner than the machine with the new availability
time. If there is no better machine to do that job, and if the job does not have to
wait to be performed on the machine with the new availability time, then the job
becomes a doable job.

The function BEST-JOB-FOR-MACHINE then enters a final conditional state-
ment (not shown). If there are one or no doable jobs, then BEST-JOB-FOR-MA-
CHINE returns with either that job or an empty list. If the function has found several do-
able jobs, then the function SELECT-BEST-JOB-FOR-MACHINE is called with the ‘
machine and the list of doable jobs.

SELECT-BEST-JOB-FOR-MACHINE selects the best job out of the doable jobs
based on all but the hi%hest prioritﬁ heuristic. This approach is used because the highest
priority heuristic will already have been used to prioritize the jobs. The next priority heu-
ristic is then invoked to break ties among the doable jobs.

Returning from BEST-JOB-FOR-MACHINE assigns the doable job to the vari-
able BEST.JOB in function FIND-BEST-JOB. If BEST.JOB has a non-nil value, then
the machine in question is retooled with the toolkit that can perform that BEST.JOB and
also perform the greatest number of different jobs.

BEST.JOB is then returned to SELECT-BEST-ALLIED-JOB, which subsequently
returns to FORWARD-BY-TIME.

The next possibility that the function SELECT-BEST-ALLIED-JOB deals with is if
there originally were doable jobs for the highest priority machine. In this instance, SE-
LECT-BEST-JOB-FOR-MACHINE would have been called directly. This selects the

BEST.JOB based on the remaining heuristics and would return that job to FORWARD-
BY-TIME.

The next conditional statement alternative within SELECT-BEST-ALLIED-JOB is
to ask if the doable job is the highest priority job. If the doable job equals the highest
priority job, then this job is returned to FORWARD-BY-TIME.

The last alternative of the conditional statement asks if the doable job's start time
causes more machine downtime than is acceptable (currently 30 minutes). If not, then the
doable job is returned to FORWARD-BY-TIME; otherwise, the job causes too much
downtime, and the function SELECT-BETTER-JOB-FOR-MACHINE is called.

SELECT-BETTER-JOB-FOR-MACHINE obtains (1) the doable job’s start time
minus the maximum downtime. Since the job’s start time is known to exceed the maxi-
mum downtime allowed, this will return a pcsitive number. The function then finds (2)
the time at which the machine would become available after a toolkit change. If (1) is
less than (2), then this means that changing the machine’s toolkit will take more time
than waiting for the downtime to run the doable job. ISAP will select the doable job,
even thouEh it exceeds the allowable downtime to avoid a toolkit change. If (2) is less
than (1), then it will take less time to do a toolkit change than it will to wait past the

dowrllltime to run the doable job. In this case, the function BEST-JOB-FOR-MACHINE
is called.

BEST-JOB-FOR-MACHINE proceeds as it did when called from FIND-BEST-
JOB, with the exception that it does not consider jobs whose start time is greater than (1).
I[f BEST-JOB-FOR~-MACHINE returns a job, then the machine is retooled and that job
is selected. Note that the selected job will be the highest priority job out of the job's list.

When SELECT-BETTER-JOB-FOR-MACHINE returns, SELECT-BEST-AL-
LIED-JOB also returns. As a result, the variable BEST.JOB, in the function FOR-
WARD-BY-TIME, has an assigned value. Note that the value could be nil. The func-
tion FORWARD-BY-TIME then enters a conditional with two options (the lower A
connector in Figure 3). The tirst option asks if BEST.JOB is non-nil. If it is, then FOR-
WARD-BY-TIME-BY-PART-OPERATION is called. FORWARD-BY-TIME-BY-
PART-OPERATION schedules the job on the selected machine. This function will be
covered below.

After the job is scheduled by FORWARD-BY-TIME-BY-PART-OPERATION, the
jobs and machines are reprioritized to take this information into account. For the jobs,
the function REPRIORITIZE-JOBS is called. For the machines, PRIORITIZE-MA-

CHINES is called again.

_REPRIORITIZE-JOBS updates the jobs information with the scheduling of the
BESTJOB. If all instances of BEST.JOB are finished, it is removed from the jobs list. If
it is not finished, then the job’s slack time is recalculated and the jobs are reordered ac-
cording to the function JOB-SORT.

The second option in the FORWARD-BY-TIME conditional is invoked if
BESTJOB is nil. It sets the machines to the remaining machines and begins the loop
again (the upper B connector in Figure 3), selecting the first machine cn the new list of
machines. In other words, if a job could not be found for the first machine on the list,
then the second machine on the list is selected and a job is found for the second machine.
This loop continues until there are no more machines, or until all the jobs are scheduled.

The only remaining task for FORWARD--BY-TIME is to schedule remaining down-
times. Remaining downtimes are those downtimes that were not scheduled as part of the
call to FORWARD-BY-TIME-BY-PART-OPERATION. Remaining downtimes will ex-
ist when all of the jobs were scheduled prior to a downtime's start time. Downtimes that
begin after all of the jobs end will not have been scheduled. Thus, those downtimes will
be scheduled after all of the jobs have been scheduled. For each machine, any remaining
downtimes are added to the schedule. FORWARD-BY-TIME then returns.

The preceding discussion was a step by step walk through of how the Predictive
Scheduler in ISAPS generates a schedule for the FMS. The functional description for
FORWARD-BY-TIME-BY-PART-OPERATION was deferred during the description of
the scheduling process to avoid confusion. The following paragraphs provide a brief re-
view of the functions required to create the schedule once a BEST.JOB has been found.

The function FORWARD-BY-TIME-BY-PART-OPERATION, called from FOR-
WARD-BY-TIME, receives the BEST.JOB and the selected machine. The function ob-
tains the fixture required for BEST.JOB's next operation and assigns a pallet to that fix-
ture if the fixture does not already have a pallet.

If the fixture requires a pallet, then the first operation that is scheduled is a build.
An activity is created that represents the build operation. An activity is represented as a
Common LISP defstruct. The activity is then scheduled by a call to the function, SCHE-
DULE-ACTIVITY. After the build is scheduled, a call is made to the function, FOR-
WARD-BY-FMS-PASS.

FORWARD-BY-FMS-PASS takes the BEST.JOB, the selected machine, and the
fixture as input. The function has a conditional statement with two options. It asks if the
operation to be performed next is a load operation. If it is, then the load is scheduled:
otherwise the alternative operation is scheduled (this can occur during reactive scheduling
when a partially completedpjob must be rescheduled)., All operations are scheduled with
a call to SCHEDULE-ACTIVITY. Scheduled jobs are updated so that their complete-
ness is known.

The function SCHEDULE-ACTIVITY requires all of the information needed to
schedule an activity. SCHEDULE-ACTIVITY finds the time that the fixture is available,
the time that the activity will start, and the time that it will end. It then takes all of this
information, and the other information needed to schedule an activity (e.g., job, activity, -
fixture, etc.), and calls one of three functions with this information. Which function ‘
- SCHEDULE-ACTIVITY calls depeads on whether the activity to be scheduled is a ma-
chining center activity, and whether a BESTHOLE must be found for a non-machining
center activity. A BESTHOLE is an open interval between to scheduled activities that
may be used to place the current activity being scheduled. If the activity is a machining
center operation, then the function FORWARD-ASSIGN-JOB-TO-MACHINE is
called. If the activity is a non-machining center operation, and a BESTHOLE is to be
found, then the function FORWARD-ASSIGN-JOB-TO-SPECIAL-MACHINE is
called. Otherwise, the function FORWARD-ASSIGN-SPECIAL-ACTIVITY is called.

The behavior of FORWARD-ASSIGN-JOB-TO-MACHINE and FORWARD-AS-
SIGN--SPECIAL-ACTIVITY is similar.” They insert the activity's start and end times, fix-
ture, machine, and so on, into the activity’s structure (LISP defstruct). The information
contained in the structure can then be used to build the Gantt chart using ActiveGantt,

Machining center downtimes are also inserted into the schedule by FORWARD-AS-
SIGN-JOB-TO-MACHINE. |

USER INTERFACE

The user interface for the ISAP system is graphical in nature, using mouseable but-
tons, icons, and pop up menus. The relationship of the user interface to the rest of
ISAPS is shown in Figure 4.

The primary output of ISAPS is the Gantt chart display. It shows the machines
scheduled vertically and the times they are scheduled horizontally. The blocks of time
scheduled for each machine represents an instance of a job operation. Selecting a block
using the mouse provides information related to the processing of the job, such as job
number, start time, completion time, fixture number, and duration.

Reports available to the user include detailed information about jobs, machines, op-
erations, fixtures, and their associated schedules. Machine utilization is tracked by ISAPS
for scheduling sessions and is also available through the user interface. All reports may
also be written to files for later review.

A second interface is available to the System Manager for ISAPS. Direct manipula-
tion of the KBs and associated LISP ccde may be accomplished using KEE commands.
The end users will not have the capability to permanently change the static FMS model
information. Only the System Manager will be allowed to make such changes. This fea-
ture has been developed to assure the integrity of the system and to provide tighter con-
figuration control over the baseline system.

CURRENT SYSTEM STATUS

The prototype for the ISAP system Predictive Scheduler has been completed. All of
the functionality described above has heen implemented. The detailed system design for

the Reactive Scheduler is near completion, with a working test version currently under
review.

The ISAP system is being developed on a Symbolics 3620 workstation using KEE
Version 3.1. The delivery platform for the full prototype system is an Apollo DN4500
workstation running Domain/OS SR10.2 and using KEE Version 3.1. The development
of the additional scheduling functions used Domain/CommonLISP Version 4.0.

[JOBS] FMS MODELJ SYSTEM I\éANAbER

LISP CODE KEE
TO BUILD SCHEDULER
MODELS ACTIVEGANT1

LISP FILES: ISAP INFERENCING

FORWARD-BY-TIME
‘ | :
SELECT-BEST-ALLIED-JOB
(
FORWARD-BY-TIME-BY-PART-OPERATION

ISAP
USER INTERFACE

ACTIVEGANTT MENUS REPORTS

COMMANDS
WORKSTATION ;
USER
Fig. 4 ISAPS User Interface

ACKNOWLEDGMENTS
IntelliCorp® and KEE® are registered trademarks of IntelliCorp, Inc.

ActiveGantt®, Scheduler®, and Knowledge Engineering Envionment® are trademarks
of IntelliCorp, Inc.

Apollo®, Domain/OS®, and Domain/CommonLISP® are trademarks of Apollo Com-
puters Inc.

Symbolics® is a trademark of Symbolics Inc.

REFERENCES®

1.

2.

Refe nual, Version 3.1, Intelli-
Corp, Inc. Mountain View, CA, July, 1990.

. 1, Scheduler Version 1.0,
IntelliCorp, Inc. Mountain View, CA, 1989.

. ActiveGantt Booster Moduie: User and Reference Manual, ActiveGantt Version

1.0, IntelliCorp, Inc. Mountain View, CA, 1989.

in/ ’ ide, Domain/CommonLISP Version 4.0, Hew-
lett-Packard Co., April 1990.

» Software Quality Assurance Group, Al-
lied-Signal Aerospace Company, Kansas City Division, Document Number
KCP-613-4118, June 1989.

r—--— I g— ~g——— =~ “a——————

|
!

[——— - ’v*“'"j

~—

