
KCP--613-4336

DE91 005254

Distribution Category UC'705

ISAPS - INTELLIGENT SCHEDULING AND PLANNING SYSTEM

M. S. King

Published August 1990

Manuscript submitted to Design Productivity Institute Conference,
Rolla, Missouri. Conference held at Honolulu, Hawaii, February 5,
1991.

WM

Technical Communications
Kansas City Division

Allied.SignalAerospaceCompany /j_llied
'_-_Signal

' L''

' 0 • ' __" ' ' ''_ ""'

ISAPS - Intelligent Scheduling And Planning System

M.S. King, W.C. Rutherford, J.V. Grice, Allied-Signal Inc., Kansas City Division*
' K.L. Kessel, M. Orel, IntelliCorp, Inc..**

ABSTRACT

ISAPS is a scheduling and planning tool for shop floor personnel working in a Flex-
ible Manufacturing System (FMS) environment. The ISAP system has two integrated
components: the Predictive Scheduler (PS) and the Reactive Scheduler (RS). These com-
ponents work cooperatively to satisfy the four goals of the ISAP system, which are: G 1)
meet production due dates, G2) maximize machining center utilization, G3) minimize cut-
ting tool migration, and G4) minimize product flow time. The PS is used to establish
schedules for new production requirements. The RS is used to adjust the schedules pro-

duced by the PS for unforeseen events that occur during production operations. The PS
and RS subsystems have been developed using IntelliCorp s Knowledge Engineering En-
vironment (KEE), an expert system development shell, and Common LISR Software
Quality Assurance (SQA) techniques have been incorporated throughout the develop-
ment effort to assure the ISAP system meets the manufacturing goals and end user re-
quirements.

INTRODUCTION

The Kansas City Division of Allied-Signal. .,Inc" is in the process of implementing a
Flexible Manufacturing System (FMS) which wlh produce discrete, machined elec,trical
component housings. The FMS represents the first fully automated machining system to
be installed at the Kansas City Diwsion (KCD). The system includes six four-axis hori-
zontal machining centers, two coordinate measuring machines (CMM), one automatic
wash station, two automated guided vehicles (AGV), four work in process pallet pools,
and five manual stations for loading and unloading parts, building fixtures, and reviewing
product that fails inspection (see Figure 1). The system is controlled by five computers
networked together using Ethernet/DECnet. The FMS is scheduled to begin operation in
December 1991.

The current production scheduling system for the shop floor is largely manual input,
labor intensive, and without timely feedback. Decisions about product mix, priority of
jobs, and the allocation of finite manufacturing resources are ali made with limited
knowledge of the impact on production schedules, resource utilization, and overall oper-
.ating efficiency. In the environment of an integrated, highly interdependent manufactur-
Ing system such as the FMS, the volume of information and knowledge required to sched-
ule resources has the potential to quickly overwhelm the individual responsible for
decision making.

The ISAP System is being developed to provide scheduling and planning personnel
an integrated tool to assist them with the development of production plans, performing
"what-if" scenarios off-line, and to shorten response and recovery time from unforeseen
events. The work reported in this paper covers the development of the proto.type ISAP

. system, the architecture and technologies employed in the system, the constrmnts and
heuristics considered, how schedules are generated, the user interface, and the current
status of the system.

* Operated for the United States Department of Energy under Contract Number I)E-AC04-76-l)P00613

** Under a Subcontract with Allied-Signal Inc.

iii i

. _1_,_ _ _

ii

THE DEVELOPMENT PROCESS

The system development methodology being used is a hybrid of the classical water-
fall or cascade lifecycle approach plus a rapid prototyping technique typically found in ex-
pert system development environments. SQA requirements (design reviews, audits, code
walkthroughs) ar_ an integral part of the development process.

A project team, aoproach was selected to manage the development activities. The
team members and tndir roles are as follows:

KCD Personnel

Project Manager- Provides technical guidance for the timely completion of the
project and is responsible for the development of a system that meets the needs of the
end users;

Technical Consultant - Knowledgeable of operational issues related to tile FMS (a
simulation and programming expert);

End Users- Provide scheduling and planning expertise and assist with the design
of the user interface.

SQA Administrator - An independent agent whose function is to assure that the
system being developed meets the requirements set forth in the Scope of Work for
ISAPS. Also leads the review and audit meetings.

IntelliCorp Persol:nel

Project Manager - Provides guidance for the timely completion of the project and
is responsible for the user interface, documentation, and user training;

Knowledge Engineer- Responsible for knowledge acquisition, coding, testing the
system, arrd technical training;

_chnical Consultant - Reviews the project goals and assists with the selection of
technc,ogies that lend themselves to meeting the project objectives.

The development process used for ISAPS contains seven steps. The steps are:

1. System Requirements Analysis,

2. Functional Spe'zification Preparation,

3. Detailed System Design,

4. Coding,

5. Unit and Integration Testing,

6. Acceptance Testing,

7. Technoiogy Transfer and User Training.

Rapid protetyping occurs throughout the process to explore solution techniques and
to keep the end users involved as the system is being developed.
THE ISAP SYSTEM ARCHITECTURE

The scheduling and planning system is composed of two major components: the Pre-
dictive Scheduler (PS) and the Reactive Scheduler (RS). These components are accessi-
ble through a single user interface that is graphical in nature with mouseable icons and

pop up menus. The PS and RS are enhanced versions of the Scheduler Booster Module,
an IntelliCorp, Inc. product that runs on top of KEE. The primary method for viewing
the schedules produced by ISAPS is through the ActiveGantt Booster Module, also an
IntelliCorp product. Figure 2 illustrates the relationship of the various components of
ISAPS.

ISAPSYSTEM

AS-DATA,AS-JOBS, AS-TOOLS,
PSHOR FMS-ICONS,

ISAPCODE: FORWARD-BY-TIME
|aliii ii i i

SCHEDULER

SCHEDULERS ACTIVEGANI_
CONTROL.PANEL GANTF
FACTORY,MLIB

li

OBJECTS
METHODS

ACTIVEVALUES
GRAPHICS

i llll

Fig. 2 Components of the ISAP System

The PS is used to establish schedules for new production requirements on a variable
planning horizon. The RS is used to adjust the schedules produced by the PS for unfore-
seen events that occur during production operations, such as equipment failures, changing
priorities, and product mix. A common model of the FMS is employed by the PS and RS
which defines the basic system configuration and availability of resources to be consid-
ered for scheduling.

The data required to create the FMS model knowledge bases (KBs) are supplied
from external files, as are the data for the jobs to be scheduled, the tooling, and fixtures
to be used for the planning and scheduling session. Any of this data may be entered by
the users directly and any loaded knowledge base may be modified through the user in-
terface. The strategy of designing the ISAP system to be data driven from external files
was chosen early in the project to provide maximum flexibility during development and to
separate code from data for ease of maintenance.

There are ten KBs used in the ISAP system (refer to Figure 2). The Scheduler
Booster Module works with the KBs SCHEDULERS, CONTROL.PANEL, FACTORY,
and MLIB. The SCHEDULERS KB contains scheduling strategies, heuristics, reporting
capabilities, and modifications specific to the ISAP system. The CONTROL.PANEL KB
contains information to build the user interface to the ISAP system. The FACTORY KB
contains the factory objects, including fixtures, jobs, operations, tools, and other FMS re-
sources. The MLIB KB is a working copy of FACTORY. 7['he ActiveGantt Booster Mod-
ule uses the GANTI' KB to create the Gantt chart of the proposed schedule for the user.

The remaining KBs are specific to the ISAP system. AS-DATA is the static or base-
line KB which represents the unaltered state of the FMS at the beginning of a scheduling
session. PSHOP is the working copy of AS-DATA used during scheduling. The AS-
JOBS KB contains information about the jobs to be scheduled and the AS-TOOLS KB
contains cutting tool information. The FMS-ICONS KB contains graphical information
which is used to create a two dimensional view of the FMS called FMS.VIEW.
FMS.VIEW is available through the user interface and is an alternative means of viewing
schedule information.

, i ,lH

CONSTRAINTS AND HEURISTICS

The ISAP system is being developed to achieve four goals: G 1) meet production due
dates, G2) maximize machining center utilization, G3) minimize cutting tool migration,

• and G4) minimize product flow time. The design of the ISAP system needed to account _
for a number of physical limitations or constraints imposed by the FMS design to accom-
plish _the stated goals.
Constraints

The first constraint the scheduling system has to consider is the number of machin-
ing centers and their availability. Machines in the FMS will have routine preventative
maintenanceperformed. Machining centers and CMMs will be off-line at regular inter-
vals for program testing and process prove in. These two conditions reduce the availabil-
it3, of the machines, which impacts goals G1, G2, and G4. ISAPS considers downtimes
during the scheduling process.

The second constraint is the space available on each machining center for cutting
tools. Cutting tools to be used in the FMS have been grouped into toolkits, with each
toolkit capable of producing a finite number of part operanons. Ali tools for ali part op-
erations cannot reside in the FMS at the same t_me. As the product mix changes, ma-
chining centers must be retooled or sit idle until the product mix changes again, making
them available for scheduling. This constraint impacts G2 if the machine sits idle waiting
for jobs, G3 if the toolkits are swapped out frequently, and potentially G 1 and G4 due to
reduced availability of the machining centers.

The third constraint deals with fixtures and pallets. For each part operation tc) be
scheduled, only one fixture will be available. In addition, the maximum number of pallets
available to hold fixtures is less than the number of fixtures required to perform ali part
operations. This constraint implies that as the product mix changes, fixture/pallet combi-
nations _11 have to be broken down and rebuilt, impacting G1, G2, and G4 by recluced
availability of the required fixtures.

The preceding discussion points out that the four goals of the ISAP system are in
conflict with one another. Therefore, a strategy needed to be developed that would ad-
dress meeting as many of the goals G1 throughG4, while violating as few of the con-
straints, as possible• In the remainder of this section, the heuristics used by the ISAP sys-
tem will be presented. In the following section, the method by which the heuristics are
applied to generate a schedule that sansfies the goals of ISAP will be presented.
_I_Heuristics

Three heuristics have been identified as the most likely candidates to meet the goals
of the ISAP system. The heuristics are MINDOWN (MINimum DOWNtime), SLACK
(job SLACK time), and PRIORITY.

The MINDOWN heuristic finds the job that will cause the minimum downtime or
minimum time a machine has to wait for the job, This translates roughly into finding the
job with the earliest start time for a given machine.

The SLACK heuristic chooses jobs with the least amount of slack time available.
Slack time in this context is the difference between a job's due date and the maximum of

, , ,)the time a fixture will be available to run that job or the time that the job s last operam n
was completed. If a job has low slack tirae, it will tend to be selected earlier for schedul-

.. ing.

The PRIORITY heuristic is simply a numeric value between 1 and 100. Ali jobs
default priori.ty is 50. Hot jobs and those that are behind schedule will eventually have
their priority increased so they are chosen sooner for scheduling.

The default order of precedence for the three heuristics is MINDOWN, SLACK,
then PRIORITY. This means that if two jobs are available for scheduling that create the

same downtime for a machine, the one with the least slack time is selected by the SLACK
heuristic. If the jobs have identical slack times, then the job with the highest priority is
selected. If a tie still remains, the first job considered is selected. It should be noted that
as soon as a distinction has been made between two jobs, the application of the heuristics
stops. The default ordering of the heuristics can be changed through the user interface.
SCHEDULE GENERATION

The discussion that follows depicts how ISAPS generates a schedule for the FMS by
applying the heuristics described above and other LISP based functions. Fhe FOR-
WARD-BY-TIME strategy is the basis for the Predictive Scheduler in ISAPS. Figure 3
should be referred to for visualization of the process flow.

Jobs are sequences of part operations in the FMS. This means that if a part makes
three passes through the FMS, then one of those passes is a job. ISAPS uses a different
definition of job. For ISAPS, a job is ali of the operations done to one part. Thus, ali
three passes of a part through the FMS is called a job. Each operation Included in a job
(Loads, Machining, Unload) is then referred to as a part operation, operation, or activity.

FORWARD-BY-TIME first prioritizes the jobs by calling PRIORITIZE,JOBS with
a list of the jobs to be scheduled. PRIORITIZE-JOBS first creates job slack times and
then funct'ion JOB-SORTS sorts the jobs based on the heuristics: MINDOWN_ SLACK,
and PRIORITY. A list of prioritized jobs is returned.

The next significant operation is to obtain a prioritized list of ali FMS machines.
Prioritizing machines is done with the function, PRIORITIZE-MACHINES. PRIORITI-
ZE-MACHINES sorts the machines based on their time availabilities. Machines that are
available earliest are given highest priori .ty.

At this point, FORWARD-BY-TIME hasa list of prioritized jobs and prioritized
machines, lt then selects the highest priority machine and attempts to assign a job to that
machine. To assign a job to the highest priority machine, the function SELECT-BESq'-
ALLIED-JOB is called.

SELECT-BEST-ALLIED-JOB starts by obtaining a job, or jobs, that can be pet'-
formed on the machine. GET-DOABLE-JOBS selects jobs according to whether the
machine has the proper tooling to do the job and whether the job will be waiting for the
machine. If the machine does not have the correct tooling or must wait for the job, then
the job is included as a doable job only if there are no other jobs that were found that
cause less waiting. GET-DOABLE-JOBS returns a list of doable jobs, which may be an
empty list (no doable jobs found).

SELECT-BEST-ALLIED-JOB then enters a conditional statement that first asks if
no doable jobs could be found. If none were found, then the function FIND-BEST-JOB
is called which finds doable jobs given a toolkit change is made.

FIND-BEST-JOB initially calculates the amount of time it will take for the ma-
chine to become available afler it has had a toolkit change. This time represents the new
machine availability time. FIND-BEST-JOB then calls the function BEST-JOB-FOR-
MACHINE which attempts to find a new best job based on the new machine availability
time.

BEST-JOB-FOR-MACHINE loops through the jobs attempting to find a doable
. job with a start time that is later than the new machine availability time. To find a doable

iob, ali machines with tools required for that job must be found. A conditional statement
ISentered that asks if there were any machines that can do that job. The two alternatives
are

1. There are no machines with tools that can do that job. A second conditional state-
ment is entered, lt determines if there are any jobs that are available before the

new machine availability time. If there are such jobs, then these jobs are added to
the list of doable jobs, and a toolkit change is required. If there are no jobs that
can b,.: started prior to the new machine availabilqty time, then the first job en-
countered that can be started after the new machine availability time is returned.

2. There are one or more machines that can do that job. The function asks if any of
those machines could do the job sooner than the machine with the new availability
time. If there is no better machine to do that job, and if the job does not have to
wait to be performed on the machine with the new availability time, then the job

becomes a doable job.
The function BEST-JOB-FOR-MACHINE then enters a final conditional state-

ment (not shown). If there are one or no doable iobs, then BEST-JOB-FOR-MA-
CHINE returns with either that job or an empty hst. If the function has found several do-
able jobs, then the function SELECT-BEST-JOB-FOR-MACHINE is called with the
machine and the list of doable jobs.

SELECT-BEST-JOB-FOR-MACHINE selects the best job out o! the doable jobs
based on ali but the highest priority heuristic. This approach is used because the highest
priority heuristic will already havebeen used to priontize the iobs. The next priority heu-
ristic is then invoked to break ties among the doable jobs.

Returning from BEST-JOB-FOR-MACHINE assigns the doable job to the vari-
able BEST.JOB in function FIND-BEST-JOB. If BEST.JOB has a non-nii value, then
the machine in question is retooled with the toolkit that can perform that BEST.JOB anu
also perform the greatest number of different jobs.

BEST.JOB is then returned to SELECT-BEST-ALLIED-JOB, which subsequently
returns to FORWARD-BY-TIME.

The next possibility that the function SELECT-BEST-ALLIED-JOB deals with is if
there originally were doable jobs for the highest priority machine. In this instance, SE-

LECT-BEST-JOB-FOR-MACHINE would have been called directly. This selects theBEST.JOB based on the remaining heuristics and would return that job to FORWARD-
BY-TIME.

The next conditional statement alternative within SELECT-BEST-ALLIED-JOB is
to ask if the doable job is the highest priority job. If the doable job equals the highest
priority job, then this job is returned to FORWARD-BY-TIME.

The last alternative of the conditional statement asks if the doable job's start time
causes more machine downtime than is acceptable (currently 30 minutes). If not, then the
doable job is returned to FORWARD-BY-TIME; otherwise, the job causes too much
downtime, and the function SELECT-BETI'ER-JOB-FOR-MACHINE is called.

SELECT-BETI'ER-JOB-FOR-MACHINE obtains (1) the doable job's start time
minus the maximum downtime. Since the job's start time is known to exceed the maxi-
mum downtime allowed, this will return a positive number. The function then finds (2)
the time at which the machine would become available after a toolkit change. If (1) is
less than (2), then this means that changing the machine's toolkit will take more time
than waiting for the downtime to run the doable job. ISAP will select the doable job,
even though it exceeds the allowable downtime to avoid a toolkit change. If (2) is less
than (1). then it will take less time to do a toolkit change than it will to wait past the

.. downtime to run the doable job. In this case, the function BEST-JOB-FOR-MACHINE
is called,

BEST-JOB-FOR-MACHINE proceeds as it did when called from FIND-BEST-
JOB, with the exception that it does not consider jobs whose start time is greater than (1).
If BEST-JOB-FOE,-MACHINE returns a job, then the machine is retooled and that job
is selected. Note that the selected job will be the highest priority job out of the job's list.

When SELECT-BETTER-JOB-FOR-MACHINE returns, SELECT-BEST-AL-
LIED-JOB also returns. As a result, the variable BEST.JOB, in the function FOR-
WARD-BY-TIME, has an assigned value. Note that the value could be nii. The rune-

" tion FORWARD-BY-TIME then enters a conditional with two options (the lower A
' connector in Figure 3). The first option asks if BEST.JOB is non-nii. If it is, then FOR-

WARD-BY-TIME-BY-PART-OPERATION is called. FORWARD-BY-TIME-BY-
PAR_F-OPERATION schedules the job on the selected machine. This function will be

' coveredbelow.

Afterthejobisscheduledby FORWARD-BY-TIME-BY-PART-OPERATION, the
jobsand machinesarereprioritizedtotakethisinformationintoaccount.Forthejobs,
thefunctionREPRIORITIZE-JOBS iscalled.Forthemachines,PRIORITIZE-MA-
CHINES iscalledagain.

REPRIORITIZE-JOBS updatesthejobsinformationwiththeschedulingofthe
BEST.JOB. IfallinstancesofBEST.JOB arefinished,itisremoved from thejobslist.If
itisnotfinished,thenthejcb'sslacktimeisrecalculatedand thejobsarereoi'deredac-
cordingtothefunctionJOB-SORT.

The secondoptionintheFORWARD-BY-TIME conditionalisinvokedif
BEST.JOB isnil.ltsetsthemachinestotheremainingmachinesand beglnstheloop
again(theupperB connectorinFigure3),selectingthefirstmachineGn thenew listof
machines.Inotherwords,ifa job couldnotbe foundforthefirstmachineon thelist,
thenthesecondmachineon thelistisselectedand a job isfoundforthesecondmachine.
Thisloopcontinuesuntilthereareno more machines,or urltilallthejobsarescheduled.

The onlyremainingtaskforFORWARD.-BY-TIME istoscheduleremainingdown-
times.Remainingdowntimesarethosedowntimesthatwere notscheduledaspartoftile
call to FORWARD-BY-TIME-BY-PART-OPERATION. Remaining downtimes will ex-
ist when all of the jobs were scheduled prior to a downtime's start time. Downtimes that
begin after ali of the jobs end will not have been scheduled. Thus, those downtimes will
be scheduled after ali of the jobs have been scheduled. For each machine, any remaining
downtimes are added to the schedule. FORWARD-BY-TIME then returns.

The preceding discussion was a step by step walk through of how the Predictive
Scheduler in ISAPS generates a schedule for the FMS. The functional description for
FORWARD-BY-TIME-BY-PART-OPERATION was deferred during the description of
the scheduling process to avoid confusion. The following paragraphs provide a brief re-
view of the functions required to create the schedule once a BESZJOB has been found.

The function FORWARD-BY-TIME-BY-PART-OPERATION, called from FOR-
WARD-BY-TIME, receives the BEST.JOB and the selected machine. The function ob-
tains the fixture required for BESZJOB's next operation and assigns a pallet to that fix-
ture if the fixture does not already have a pallet.

If the fixture requires a pallet, then the first operation that is scheduled is a build
An activity is created that represents the build operation. An activity is represented as'a
Common LISP defstruct. The activity is then scheduled by a call to the function, SCHE-
DULE-ACTIVI I Y. After the build is scheduled, a call is made to the function, FOR-
WARD-BY-FMS-PASS.

FORWARD-BY-FMS-PASS takes the BEST.JOB, the selected machine, and the

'" fixture as input. The function has a conditional statement with two options, lt asks if theoperation to be performed next is a load operation. If it is, then the k)ad is scheduled:
otherwise the alternative operation is scheduled (this can occur during reactive scheduling

" when a partially completed job must be rescheduled). Ali operations are scheduled with
a call to SCHEDULE-ACTIVITY. Scheduled jobs are updated so that their complete-
ness is known.

The function SCHEDULE-ACTIVITY requires all of the information needed to
schedule an activity. SCHEDULE-ACTIVITY finds the time that the fixture is available,
the time that the activity will start, and the time that it will end. It then takes ali of this

• information, and the other information needed to schedule an activity (e.g., job, activity,
. fixture, etc.), and calls one of three functions with this information. Which function

SCHEDULE-ACTIVITY calls depends on whether the activity to be scheduled is a ma-
chining center activity, and whether a BEST.HOLE must be found for a non-machining
center activity. A BEST.HOLE is an open interval between to scheduled activities that
may be used to place the current activity being scheduled. If the activity is a machining
center operation, then the function FORWARD-ASSIGN-JOB-TO-MACHINE is
called. If the activity is a non-machining center operation, and a BEST.HOLE is to be
found, then the function FORWARD-ASSIGN-JOB-TO-SPECIAL-MACHINE is
called. Otherwise, the function FORWARD-ASSIGN-SPECIAL-ACTIVITY is called.

The behavior of FORWARD-ASSIGN-JOB-TO-MACHINE and FORWARD-AS-

SIGN--SPECIAL-ACTIVITY is similar. They insert the activi .ty's start and end times, fix-
ture, machine, andso on, into the activity s structure (LISP defstruct). The information
contained in the structure can then be used to build the Gantt chart using ActiveGantt.

Machining center downtimes are also inserted into the schedule by FORWARD-AS-
SIGN.-JOB-TO-MACHINE.

USER INTERFACE

The user interface for the ISAP system is graphical in nature, using mouseable but-
tons, icons, and pop up menus. The relationship of the user interface to the rest of
ISAPS is shown m Figure 4.

The primary output of ISAPS is the Gantt chart display. It shoWs the machines
scheduled vertically and the times they are scheduled horizontally. The blocks of time
scheduled for each machine represents an instance of a job operation. Selecting a block
using the mouse provides information related to the processing of the job, such as job
number, start time, completion time, fixture number, and duration.

Reports available to the user include detailed information about jobs, machines, op-
erations, fixtures, and their associated schedules. Machine utilization is tracked by ISAPS
for"scheduling sessions and is also available through the user interface. Ali reports may
also be written to files for later review.

A second interface is available to the System Manager for ISAPS. Direct manipula-
tion of the KBs and associated LISP cede may be accomplished using KEE commands.
The end users will not have the capability to permanently change the static FMS model
information. Only the System Manager will be allowed to make such changes. This fea-
ture has been developed to assure the integrity of the system and to provide tighter con-
figuration control over the baseline system.

CURRENT SYSTEM STAI'US

The prototype for the ISAP system Predictive Scheduler has been completed. Ali of
the functionality described above has been implemented. The detailed system design for

,. the,Reactive Scheduler is near completion, with a working test version currently under
review.

The ISAP syatem is being developed on a Symbolics 3620 workstation using KEE
, "version 3.1. The delivery platform for the full prototype system is an Apollo DN45()0

workstation runmng Domain/OS SR10.2 and using KE""E Version 3.1. T'he deveh_F_rnent• , ,, , 1"" , "

of the addlnonal scheduling funcnons used Domaln/CommonLISP Versmn 4.0,

TO BUILD PSHOP _ SCHEDULER

MODELS AS-JOBS IACrlVEGArCrri

LISP FILES: ISAP INFERENCING

FORWARD-BY-TIME

I
SELECT-BEST-ALLIED-J OB

I
FORWARD-BY-TIME-BY-PART-O PERATIO N

ISAP
USER INTERFACE

ACTIVEGANTF MENUS REPORTS
COMMANDS

-- iiii

WORKSTATION _ ' "-'-"--"
1[

USER

Fig. 4 ISAPS User Interface

ACKNOWLEDGMENTS

IntelliCorp® and KEE® are registered trademarks of IntelliCorp, Inc.

ActiveGantt_, Scheduler_, and Knowledge Engineering EnviLonment_ are trademarks
of IntelliCorp, Inc.

Apollo', Domain/OSm, and Domain/CommonLISP® are trademarks of Apollo Com-
puters Inc.

Symbolics_ is a trademark of Symbolics Inc.

e •

;.

REFERENCES

1. KEE Software Development System Core Reference Manual, Version 3.1, Intelli-
Corp, Inc. Mountain View, CA, July, 1990.

2. Scheduler Booster Module: Reference and User Manoal, Scheduler Version 1.0,
IntelliCorp, Inc. Mountain View, CA, 1989.

3. ActiveGantt Booster Module: User and Reference M_nu_l, ActiveGantt Version
1.0, IntelliCorp, Inc. Mountain View, C_ 1989.

4. Domain/CommonLISP User's Guide, Domain/CornmonLISP Version 4.0, Hew-
lea-Packard Co., April 1990.

5. Software Ouality Assurance Handbook, Software Quality Assurance Group, Al-
lied-Signal Aerospace Company, Kansas City Division, Document Number
KCP-613-4118, June 1989.

• _ ii . , ii_ _ ,!

r ' r -_

b , i

