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Q.

.HIGHLIGHTS

An example 1s presented which demonstrates the advantage of dye-
enhanced radiographic techniques over conventional radiography for
surface flaw detection. In another example, acoustic-microscopy tech-
niques are used to reveal the presence of a small (100 x 50 pym) crack-
like flaw not detectable by other techniques. Progress in the develop-
ment of systems for helically scanning SiC tubing, employing acoustic-
microscopy techniques arnd using conventional ultrasonic techniques from
the bore side, is discussed.
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I. INTRODUCTION

High~-temperature ceramic components are of particular interest because
they. are lighter than their metallic counterparts, have good corrosion re-
sistance, and can be fabricated from inexpensive and abundant elements. As
a result, the use of these ceramics can lead to more efficient energy-
conversion systems. ' :

In recent years, significant progress has been made in the use of
ceramics for structural applications. Silicon carbide (SiC), for example,
is currently being used for heat-exchanger tubing because of its excellent.
thermal-shock resistance, low coefficient of expansion, high thermal con-
ductivity and strength at high temperature,

The reliable use of ceramics as structural components, however, re-
quires effective failure prediction and thus effective flaw-detection
capabilities., The lifetime of SiC components is affected by cracks,
porosity, inclusions and free silicon. The size of critical cracks leading
to fracture can be relatively small (an order of magnitude or more smaller
than in comparable metallic parts) and related to microstructural features
such as grain size. Many fracturé origins are adjacent to the surfacel,
indicating that surface cracks are an important cause of failure. Non-
destructive evaluation (NDE) techniques that are satisfactory for metals
may not be for ceramics, Depending on the component of interest, it may
be necessary to develop or advance conventional NDE techniques for .ceramic-
applications. Currently, the techniques most widely employed by industry
for ceramic NDE are x-radiography and fluorescent dye penetrant testing.
However,. efforts-are under way at several institutions to advance NDE
techniques  for structural ceramics, These techniques include high-
frequency (> 50 MHz) ultrasonic testing?, microfocus x-radiography?2,
microwave NDE3, acoustical surface-wave testingA, photoacoustic spectro-
scopys, and acoustic-emission detection.6

The purpose of the present ceramic NDE‘program is to compare the
effectiveness of conventional and unconventional NDE techniques for specific
high~temperature ceramic components,

The present investigation encompasses many NDE techniques, concen-
trating on those not under extensive evaluation at other institutions, -
The techniques under evaluation include dye-enhanced radiography, acoustic
microscopy, conventional ultrasonic testing, acoustic-emission detection,
acoustic impact testing, holographic interferometry, infrared scanning,

*Sonoscan, Inc., Bensenville, IL



internal friction measurements and overload proof testing. No single
technique is expected to serve as a universal detection method; several
techniques will be required to thoroughly assess ceramic components. After
an investigation of many NDE techniques, one or more NDE methods will be
developed further for the specific ceramic components of interest. The
current effort involves SiC heat exchangers; previous efforts have in-
volved silicon nitride gas-turbine rotors.’

The current report discusses recent results acquired with radiographic,
ultrasonic and acoustic-microscopy techniques.

II. RADIOGRAPHIC TECHNIQUES

~ The .effectiveneas of conventiuvnul x-radiography, dye-enhanced x-
radiography and dye-enhanced neutron radiography techniques were compared
using a hot-pressed silicon nitride bar, designated B2, with dimensions
150 x 6 x 6 mm., A Knoop indenter was employed to make three dents on one
surface of the bar. Figure 1 shows the bar and photographs of the three
surface flaws. The approximate dimensions (length x depth) of the dents are:’
B2-1, 500 x 50 pm; B2-2, 1000 x 25 pm; and B2-3, 900 x 70 ym. The depths
of the dents range from 0.4 to 1.2% of the bar thickness t and can be used
to compare the sensitivities of the three radiographic techniques, as shown
below. The conventional x-radiographic technique utilized 50-KeV x-rays
at a film-to-object distance of 100 cm, along with Type SR Kodak film. For
the dye-enhanced radiography technique, a silver nitrate doping agent was
used to fill the dent. The technique is described in a previous quarterly
report (ANL/MSD-78-2). Care had to be exercised in removing the excess sil-
ver nitrate from the bar so that the dye was not removed from the dent.

Neutron-radiography techniquees are described in Ref, &, The principle
of dye-enhanced neutron radiography is the same as for dye=enhanced x-
rudiography; that is, the flaw is filled with (in this case) a neutron-
absorbing dye so that a shadow of the flaw can be obtained on the radiograph.
A dye consisting of gadolinium nitrate, alcohol and a wetting agent was
used here., The neutron-radiography facility of the CP=5 reactor at Argonne
NdLional Laboratory was employed for this test. The neutron-beam flux was
106 n/cm2/s. The exposure time was v 10 min and the film used was Kodak.

type M.,

Only dent B2-3 (1.2% t) could be seen on the conventional x-radiograph.
With dye-enhanced x-radiography, all three dents could be detected unam-
biguously; with dye-enhanced neutron radiography, all three dents could be
seen with even greater clarity. This is expected, of course, as the contrast
produced with dye-enhanced neutron radiography is much greater than that
attainable with dye-enhanced x-radiography. Figure 2 shows photographs
made from the radiographs. The dents are much more clearly evident in the
actual radiographs. The circles show the locations of the visualized dents.

An attempt was also made to detect these flaws using conventional
ultrasonic techniques. A pulse-echo mode was employed using contact and
Immersion transducers and a Sonic Mark III pulser-receiver. With normal-



incidence 25-MHz (Aerotech) longitudinal waves, only dent B2-3 could be
detected, and only by the presence of a slight but reproducible 'bump" on
the leading edge of the reflected backwall echo as the ‘transducer was
passed over the dent (see Fig, 3). With an immersion transducer in a
water-bath mode converting 10-MHz longitudinal to 45° shear waves (giving

a wavelength comparable to that of the 25-MHz longitudinal wave), dent B2-3
could be clearly resolved (Fig. 4). The other dents could not be detected
unambiguously (i.e., S/N < 2),

These tests have demonstrated that dye-enhanced radiography tech-
niques may be useful for flaw detection and characterization on surfaces
not readily accessible for visual or conventional dye-penetrant examination.
Both dye-enhanced x-radiography and dye-enhanced neutron radiography were
shown capable of revealing surface flaws (dents) not detectable via con-
ventional ultrasonic techniques.

III, ACOUSTIC MICROSCOPY

A hot-pressed silicon carbide bar, 150 x 6 x 6 mm, was used to compare
various techniques for detection of a small (100-um) surface flaw and il-
lustrate the capability of acoustic microscopy. A small "crack" was
introduced at the center of the bar via the Knoop indenter technique.

Figure 5 shows the defect, which is v 100 um long and (assuming the crack

is penny-=shaped) ~ 50 um deep. This defect could not be detected with
conventional radiography, dye-enhanced radiography, fluorescent dye-
penetrant techniques, or 15-MHz 45° shear waves, It could just barely be
detected with holographic interferometry. However, it could be clearly de-~
tected with the Sonoscan acoustic microscope. Figure 6 shows an acoustic .
micrograph of an v 3 x 2-mm area of the surface of the bar, in which the
defect is seen as a light area. The sound, incident from the left side of
the photograph, passes through the bar and is mode converted (angle-beam
shear wave to surface-skimming bulk wave) at the flaw site and backscattered
(as well as Doppler shifted). . The microscope electronics are adjusted
to detect the mixed mode consisting of the scattered and through-transmitted
waves, Figure 7 schcmatically shows the arrangement for obtaining the
micrograph of Fig. 6. :

From the separation of the fringes (v 31.5 um), the velocity of the
surface-skimming bulk wave can be estimated. In this case it is Vv 7.4 x
102 cm/s, within 5% of the measured shear-wave velocity of 7.65 x 10 cm/s.
This example demonstrates the ability of acoustic-microscopy techniques to
visualize flaws not detectable hy other means.

As a result of the success experienced with acoustic-microscopy tech-
niques for flaw detection in ceramic components, a stage is being developed
to demonstrate that silicon carbide heat-exchanger tubing can be helically
scanned by means of acoustic microscopy. The stage being developed would
be attached to the Sonoscan acoustic-microscope table. Figure 8 shows the
arrangement for carrying out the helical scan. A lathe bed is used which
allows the tube to be simultaneously rotated and translated axially under



a cover slip and scanning laser beam (Fig. 9). The transducer (100 MHz)
remains stationary as the tube is moved around and over it. The tube is
virtually sealed at both ends and filled with water through a small tube,
Water is also continuously fed to the cover slip as required. This arrange- (
ment should assure good acoustic coupling between transducer, tube wall and .
cover slip. As the tube is scanned, a real-time image is displaced on

the CRT screen. Each acoustic micrograph will cover an Vv 2 x 3-mm area,

IV. ULTRASONIC BORE-SIDE INSPECTION OF SiC TUBES

In the previous quarterly report (ANL/MSD-79-1), the possibility of
carrying out an in-service ultrasonic bore-side inspection of silicon car=-
bide heat-exchanger tubing was discussed. Because of the high velocity of
sound and small critical flaw size in SiC, higher frequenclcus than are
used for metal heat-exchanger tubing will be required. A system is cur-
rently being planned to establish the feasibility and adequacy of employing
20-MHz (or possibly higher-frequency) longitudinal and shear waves to
inspect ceramic tubing from the bore side, Normal-incidence longitudinal
waves would be employed for detection of wall thinning, delamination, voids
and inclusions. Circumferential and axial mode-converted shear waves would
be used to detect flaws (mainly cracks), Various types of single- and
multiple-crystal probes are being considered for this test. The system for
helically scanning the tube has already been acquired, and is shown in
Fig. 10. The probe would be carried down the tube via the axial-drive
mechanism of the vertically oriented lathe bed. The tube would be rotated
simultaneously to generate the helical scan. The tube is sealed at the
bottom and filled with water, which serves as the couplant. With this
mechanism and an adequately designed probe, the adequacy of ultrasonic bore-
side tube inspections can be assessed. Plans are being madc to ewpluy
complitér techniques for data acquisition and analysis of flaw signals to
aid in the overall analysis of the inspection concept. Tube standards with
artificial flaws will also hc fabricaled, :

V. SUMMARY

Tests comparing the effectiveness of radiographic and couventional
ultrasonic techniques have shown that dye-enhanced neutron- and x-
radiography techniques are capable of revealing surface flaws (in this case,
small dents in a silicon nitride bar) which cannot be revealed by con-
ventional radiographic¢ or ultrasonic means. These results support the idea
that dye-enhanced radiography may be useful for detcction of flaws on
surfaces not accessible for conventional dye-penetrant examination,

A small (v 100 x 50-um) '"crack" was made on the surface of a hot- -
pressed silicon carbide bar and various techniques were used in an attempt
to detect it. Dye-penetrant, ultrasonic and radiographic techniques were
not capable of detecting this flaw. Holographic-interferometry methods .
(with ‘the bar stressed in a four-point bending fixture) were barely adequate



to reveal the presence of the flaw. However, the Sonoscan acoustic micro-

scope was able to detect the flaw.unambiguously, via mode-converted surface

waves. scattered backwards from the flaw.

Progress has been made in the development of a stage to be used with

‘the acoustic microscope for demonstrating the feasibility of helically
scanning S1C heat-exchanger tubing. Also, some apparatus has been acquired

for demonstrating the adequacy of ultrasonic bore—side inspection of SiC

tubing.
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~ 100X B2-1
v 100X B2-2
~ 100X B2-3

Fig. 1. Hot-pressed Silicon Nitride Bar (B2) and 100X Photographs of
Three Dents Placed on One Surface of the Bar as Indicated.



Fig. 2. Reproduction of Radiographs of Bar B2. (Top to bottom) con-
ventional x-radiography, dye-enhanced x-radiography, and dye-
enhanced n-radiography. Circles indicate locations where dents
are visible in the radiographs.



Fig. 3.

Fig. 4.

. 10 MHz
.;25 MHfzj 45° SHEAR WAVE {IMMERSDN)
LONG’ wAVE (CONTACT) A= 0.6 mm ;

I 7 oo lew

Schematic Representation of Conventional Ultrasonic Method Used
in an Attempt to Detect Dents in Bar B2,

Radio-frequency Traces of Ultrasonic Signals from Bar B2 10-MHz
45° shear waves (1/2-in.,-diameter immersion transducer) were used
in conjunction with a Sonic Mark III pulser-receiver. (Top) echo
from dent B2-3; (bottom) signal in flaw-free region.



Fig. 5. Flaw Made on Surface of SiC Bar with a Knoop Indenter. The flaw
is v 100 uym long x 50 uym deep. 218X magnification. 9

Fig. 6. Acoustic Micrograph of Surface Defect Shown in Fig. 5. Defect
appears as a light area (arrow).
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Schematic Showing the Dynamic Ripples Produced by the Transmitted

Fig. 7.
Bulk Wave (a) and the Wave Scattered from a Surface Flaw (B).
C is the velocity of sound; 6 is the angle of incidence of the
beam.
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Fig. 8. Schematic of Arrangement for Carrying Out Helical Scan of SiC
Heat-exchanger Tube Sections,
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Fig. 9. Photograph of Acoustic Microscope and Partially Assembled
Stage for Scanning SiC Heat-exchanger Tube Sections,

Fig. 10. Part of the System for Helically Scanning SiC Heat-exchanger 4
Tubing from the Bore Side Using Conventional Ultrasonic
Techniques.
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