
&Af-T(Db3(r-l-^
ucfcL- 9 6 0 8 0 ^jev jl
PREPRINT ^

; i
i 5

n •'■ T 1 ;338

UCRL—96080-Rev.2 

DE89 001814

Layering Central Authentication “
On Existing Distributed System Terminal Services

D. M. Nessett

1989 Symposium on Security and Privacy

Oakland California 
May 1-3, 1989

October 25. 1988

This is a preprint of a paper intended for publication in a journal or proceedings. Since 
changes may be made before publication, this preprint is made available with the 
understanding that it will not be cited or reproduced without the permission of the 
author.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.

,.CTj,KV!M O' THIS DOWHSHT IS



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



LAYERING CENTRAL AUTHENTICATION ON EXISTING 

DISTRIBUTED SYSTEM TERMINAL SERVICES 
D. M. Nessett

Lawrence Livermore National Laboratory 

Livermore, CA 94550

Abstract - Provision of terminal service in a distributed 
system requires mechanisms to logon and logoff as well as to 
move textual data between the terminal and remote host. 
Logon occurs in most distributed systems subsequent to the 
establishment of a terminal session by means of host specific 
logon procedures. However, in a distributed system of any 
size, this approach leads to security and password manage­
ment problems. When the distributed system is centrally 
administered, these problems can be rectified through the use 
of a central authentication service that presents a common 
logon interface to the user for all distributed system hosts.

Normally, central authentication is provided by either 
initially designing it into a distributed system or supporting it 
through the modification of distributed system and host 
operating system software. As an alternative strategy, central 
authentication can be layered onto existing terminal services. 
This approach suggests itself when a large installed base of 
computer systems that do not support central authentication 
already exists. Work to assess the feasibility of this approach 
was carried out. The results demonstrate that layering can 
be used In certain circumstances to provide central authenti­
cation services, although, as a result, the concomitant 
maintanence costs may increase. It was also determined what 
terminal service features are necessary so that central 
authentication is easily layered on existing terminal services. 
Recommendations are made concerning how to structure 
terminal services in a distributed system to support an 
integrated central authentication service.

1. INTRODUCTION

Terminal access to hosts in a distributed system requires 
the provision of three basic services: 1) a user must be 
able to logon to and logoff from distributed system hosts, 
2) the distributed system must move textual data between 
the terminal and the host, and 3) this data must be trans­
lated between the format understood by the terminal and 
that understood by the host. The structure of these services 
and of their supporting mechanisms is called the terminal 
service architecture of the distributed system.

Some terminal service architectures include two 
protocols, one called the logon protocol and the other the 
virtual terminal protocol [10]. The logon protocol 
allows the establishment of properly authenticated and 
authorized terminal sessions, while the virtual terminal

“Work performed under the auspices of the U.S. Depart­
ment of Energy, Office of Safeguards and Security, by the 
Lawrence Livermore National Laboratory under contract 
number W-7405-ENG-48.”

protocol provides all remaining terminal services. How­
ever, in many cases a terminal service architecture 
provides only a virtual terminal protocol, relying on 
mechanisms within each host to support logon.

Terminal service architectures that rely soley on host 
mechanisms to achieve logon have the following inade­
quacies:

• As the number of hosts with which a user interacts 
increases, the number of different passwords that he 
must remember also increases. Past experience 
shows that such situations encourage users to 
compromise security by writing down or otherwise 
physically recording these passwords on unpro­
tected media (e.g., write them on a slip of paper 
taped to the side of their desk or place them in the 
memory of smart terminals so that they can be 
transmitted by pressing a function key), or by using 
passwords that are easily guessed.

• Each distributed system host is required to maintain 
its own protected password database. When a 
distributed system is constituted of different types 
of hosts, each presents a different password 
management interface to the user (e.g., the number 
and type of characters that can be used in a pass­
word, the maximum lifetime of the password, 
whether the user or the system chooses new 
passwords). Dealing with multiple password 
management interfaces in a distributed system can 
lead to confusion about what passwords are 
legitimate, when they should be changed, and so 
forth.

• If it ever becomes necessary to revoke a user’s 
access privileges to the distributed system, all hosts 
must be instructed to invalidate that user’s identifier 
and password in their password database. This is 
both time consuming and operationally complex.

These problems can be met in a number of ways. One 
approach is to handle them administratively by assigning a 
single password to a user and then disseminating it to each 
host. However, this method has disadvantages:

• Updating a password requires changing it on more 
than one Host. This, in turn, requires the use of a 
distributed replicated data base management 
mechanism that supports reliable data base update 
to ensure password data base consistency. Support 
of such an update mechanism requires a significant 
investment in software design, implementation and 
maintanence.



• Storing the same password in more than one place 
raises the risk of password compromise [9]. This is 
especially significant if some systems are more 
secure than others.

• Not all hosts allow the same set of passwords to be 
used. Choosing a password from a common subset 
can lead to security problems if the number of 
passwords in the subset is small. Small sets allow 
password search activity by an intruder to succeed 
with an unacceptably high probability.

• Some systems do not support the concept of a 
disseminated password. They are designed to 
choose passwords themselves and distribute them to 
the user.

• It is still necessary to contact all hosts to revoke a 
user’s access privileges to the distributed system.

Another scheme is to trust hosts to vouch for a user’s 
identity during logon. This approach is taken by the 
rlogin mechanism supported in UNIX BSD 4.2 and 4.3 
[13]. Its disadvantages are:

• If one host is compromised, it potentially compro­
mises all hosts that trust it. Once these hosts are 
compromised, they, in turn, potentially compromise 
all hosts that trust them. Unless the transitive 
closure of the trust relation is carefully controlled 
(which is unlikely from a practical point of view), 
compromise of one host compromises them all. 
More succinctly stated, such mechanisms violate 
the principle of mutual suspicion which is a 
fundamental criterion of distributed system security 
[14,12].

• If one host can masquerade as another by using its 
internetwork or other host-level address (e.g., 
ethemet address), it can gain access to and poten­
tially compromise other hosts in the distributed 
system. Thus, one workstation in the hands of an 
intruder can compromise a distributed system by 
masquerading as other hosts and then taking 
advantage of the transitive closure of the trust 
relation.

• Again, it is necessary to contact all hosts to revoke 
a user’s access privileges to the distributed system.

Since neither of these approaches is satisfactory when 
the security of a distributed system is important, the 
provision of secure logon requires an alternative approach. 
One technique is to provide centralized facilities in the 
distributed system that are responsible for password 
management and to support access to these facilities 
through a logon protocol.

How a logon protocol operates depends on whether the 
distributed system is administered by one or many 
administrations. Distributed systems managed by multiple 
administrations are the most important case to consider 
when distributed system mechanisms are designed. 
However, with respect to terminal service provision, such 
distributed systems can be decomposed into parts admini­
stered by single administrations. If logon within these

parts is secure, logon between them can be made secure by 
means of gateways and an interfacing logon protocol (see 
section 6). The work reported here describes how logon 
within distributed systems managed by a single admini­
stration can be made secure by means of a central 
authentication service. It was conducted as part of an 
effort investigating secure logon in distributed systems 
managed by multiple administrations.

In addition to password management and system 
administration issues, other security requirements affect 
distributed system logon services. For example, in a 
classified environment a terminal session may be estab­
lished at one of many different security-levels. Determin­
ing whether a user is authorized to logon to a particular 
host at the level requested is an important decision during 
logon in these environments. A central authentication 
service must adequately support such decisions.

While some distributed systems are designed from 
inception to support central authentication [14,15], most 
are not. Certain distributed systems have been enhanced 
to support central authentication by modifying their 
terminal service architecture [1,2,3]. Among other 
things, this requires modifying the host software that 
supports distributed system logon. Such an approach is 
acceptible if host software is designed, implemented and 
maintained by the customer. However, when vendor 
supplied host software must be modified and maintained, 
this procedure can be expensive and is therefore unattrac­
tive.

It is also possible to enhance an existing terminal 
service architecture by layering central authentication onto 
existing terminal services, thereby eliminating costly 
changes to host operating system software. If successful, 
layering eliminates many design and maintenance prob­
lems that can occur when vendor supplied software is 
modified by customers. This approach is especially 
attractive if a large installed base of computer systems that 
do not support central authentication already exists. While 
the ideal solution might be to replace these systems with 
ones providing native central authentication support; 
economic, politcial and logistical realities make this 
approach infeasible in many cases. Layering is a practical 
alternative that can enhance the distributed system’s 
security profile at a reasonable cost.

A system development effort exploring the layering 
approach was carried out The results of this effort 
indicate that layering is possible under the constraints and 
conditions described in section 4. More importantly, it 
was determined when layering central authentication on 
top of existing services is possible and when central 
authentication is best achieved by modifying the terminal 
service architecture. From the experience gained during 
the system development effort, recommendations are 
made concerning how terminal service architectures 
should be designed so that central authentication can be 
effectively achieved.

2



The next section describes central authentication, 
discusses its advantages and disadvantages, and gives a 
brief history of its use. Section 3 describes the layering 
approach and section 4 discusses the results. From the 
results, recommendations are made in section 5 about 
terminal service architecture design. Section 6 briefly 
describes how central authentication can be used to 
support secure logon in distributed systems managed by 
multiple administrations.

2. CENTRAL AUTHENTICATION

Central authentication coalesces the password data 
bases of distributed system hosts in a system called an 
authenticator (Fig. 1). The role of the authenticator is to

Virtual Tenninal 
Protocol

Terminal 
Process 1

.Protocol

System Operating System

Remote Host
Authenticator

Fig. 1 - Central authentication terminal service elements

determine whether a user identifier and password provided 
in a logon request are matched properly, a process called 
authentication. If a successful match occurs, both the 
logon request and the user are said to have been authenti­
cated. If the user identifier and password are not matched 
properly, an authentication failure occurs. Central 
authentication also requires an authorization function that 
determines whether a particular user is allowed to logon to 
a particular host. Authorization decisions occur either in 
the authenticator or in the host 

Movement of information necessary for authentication 
and authorization is the responsibility of a logon protocol. 
In addition to the authenticator, a logon protocol support­
ing central authentication involves two other participants - 
the terminal and remote host 

A terminal interacts with the host to which it is con­
nected by means of a terminal process that assembles/ 
disassembles packets, interprets signals from the terminal 
such as break or attention key depression and handles any 
synchronization requirements such as matching a half­
duplex terminal to full-duplex communications. The 
terminal process also carries out one side of the virtual 
terminal protocol. The remote host participates in the 
logon and virtual terminal protocols through the combined

activity of a number of entities. In this paper these entities 
are refered to genetically as the remote host’s command 
language interpreter (CLI).

Once a request has been authenticated, it must be 
determined whether the identified user is authorized to use 
the remote host This decision can be made either by the 
authenticator or by the individual CLIs. Providing die 
authorization function in the authenticator permits 
centralized control of user access to distributed system 
resources. If CLIs perform authorization, resource access 
control is distributed to those who manage each CLI 
authorization data base. Whether authorization should be 
centralized or distributed depends on the management 
philosophy of the distributed system administration. If 
management responsibilities for distributed system 
elements are distributed, it is likely that authorization 
should be performed in the CLIs. If management respon­
sibilities are centralized, then authorization by the authen­
ticator is probably more suitable. For the remainder of 
section 2 it is assumed that authorization is performed by 
the CLIs. An example of authenticator-based authoriza­
tion is given when the layering approach is described.

Central authentication can be achieved in a number of 
different ways. Central authentication design issues 
include the logon protocol architecture and how it is 
impacted by the virtual terminal protocol architecture, 
how source address guarentees are made in the distributed 
system, and how recovery from password compromise is 
accomplished. If the distributed system supports security- 
level labeling, it must be determined how to restrict logon 
by users to the range of levels they are authorized to use. 
Password management is another important area. User 
identifiers must be added to the authenticator data base 
along with their associated passwords, it must be possible 
for users or an administrator to change passwords, and an 
administrator must be able to revoke the right of users to 
logon to distributed system hosts. These services may 
require an auxiliary protocol for password management or 
they may be provided by the logon protocol. In addition, 
mechanisms to protect password and terminal session data 
may affect the logon protocol architecture as well as 
terminal process, authenticator and CLI structure.

2.1 Around-the-Horn Logon Protocols

A logon protocol can be organized in one of two ways. 
An around-the-horn logon protocol requires the authenti­
cator to forward an authorization request to the CLI after 
successful authentication (Fig. 2). The CLI determines 
whether the user identified in the request is authorized to 
use the host’s resources and if so establishes a terminal 
session with the terminal process. If the user is not so 
authorized, an authorization failure message is returned to 
the terminal process. Use of an around-the-horn logon 
protocol assumes that: 1) the virtual terminal protocol and 
its implementation allow the CLI to establish terminal 
sessions, and 2) the terminal process can properly dis-

3



J~~l

Tenninal Session 
Establishment Request (3)

Request Accepted or 
Rejected (4)

Remote Host

rtiTetminalj^
.ProcessI" AutlfiorizaiionFailure

SJ*
Authentication Failure

;on Request (1)

X' / Authorization Request (2)
ure\/

Fig. 2 - Around-the-horn logon protocol.

criminate between authentic and bogus replies to a logon 
request (to prevent an intruder from masquerading as a 
CLI). These points are elaborated below.

2.2 Remote Procedure CalF (RPC) Logon Protocols

A remote procedure call (RPC) logon protocol 
requires the authenticator to return authorization informa­
tion to the terminal process after the successful authentica­
tion of a logon request (Fig. 3). The terminal process then

Remote Host

eO

Tenninal Session 
Establishment Request (3,

f\
L WTerminal ^ 
Process] ^

Request Acceptec 
\ or Rejected (4) u

Logon \

Authentication' 
Failure

Request (1)\ Authorization 
Information (2)

(uthenticato

Fig. 3 - RPC logon protocol

contacts the CLI, providing this information as proof of 
authentication.

The exact nature of the authorization information 
depends on the relationship of trust between the terminal 
process and the CLI. If the terminal process is trusted by 
all CLIs in the distributed system to guarentee that

f The use of the phrase remote procedure call to describe 
this type of logon protocol may be controversial. It is 
used in the spirit which originally gave rise to the termi­
nology. The terminal process makes a (remote) procedure 
call to the authenticator to obtain authentication service. It 
then makes a (remote) procedure call to the host to 
establish the terminal session.

authentication has taken place (for example, when 
tenninal processes are implemented on trusted tamper­
proof terminal multiplexors), the authorization informa­
tion might consist of the user identifier and an indication 
that the user has been properly authenticated [2]. The 
terminal process sends this indication to the CLI in a 
terminal session connection request. The CLI accepts the 
request if the user is authorized to use the host’s resources; 
otherwise, it is rejected. Secure operation requires the CLI 
to ensure that the requests it receives come from a trusted 
tenninal process and not from some intruder. This can be 
accomplished either by the provision of a trusted commu­
nications subsystem that guarentees source addresses or by 
means of message authentication based on encryption 
techniques [8].

If CLIs don’t trust terminal processes to guarentee that 
authentication has taken place, more substantial authoriza­
tion information must be provided by the authenticator.
For example, in the layering approach described below the 
authenticator returns a secondary user identifier and 
password that allows the terminal process to logon to the 
host identified in the logon request The secondary user 
identifier and password are presented to the CLI after a 
terminal session has been established (Fig. 4).

Secondary Logon Request (3)
Remote Host

established terminal
session) /A

L w JcLI 1
[Tenninal] ^ Secondary Logon 1 /
l Process] ^ ^ Reply (4) vy

JZ2

Authentication 
Failure

Logon \ Authorization 
Request (l\ Information (2)

. (secondary user-id 
I and password) 

Vuthenticaton

Fig. 4 - RPC logon protocol utilizing secondary user-id and 
password

2.3 A Comparison of Around-The-Horn and RPC 
Logon Protocols

One advantage that an RPC logon protocol enjoys over 
an around-the-horn logon protocol is that under its rules of 
operation the terminal process, rather than the CLI, 
establishes the terminal session. This is the only mode of 
operation supported by most virtual terminal protocols or 
at least by their implementations. The terminal process 
still must be able to discriminate between authentic and 
bogus replies to its logon request; although, since these 
replies always come from the authenticator, reply valida­
tion can be accomplished by guaranteeing that the source 
address of the logon reply message is correct.

4



On the other hand, an RPC logon protocol employing 
reusable authorization information such as secondary user 
identifiers and passwords has the disadvantage that such 
information passes through the terminal process. If a 
terminal process is compromised, certain complications 
arise in restoring secure operations after compromise 
detection.

When a security compromise is detected, around-the- 
hom logon protocols allow the recovery of secure opera­
tions by changing all primary passwords that passed 
through the compromised terminal process. RPC logon 
protocols that rely on reusable authorization information 
require more elaborate and costly recovery procedures. 
Since the authorization information returned to the 
terminal process can be reused, an intruder can retain and 
use it after the primary passwords have been changed. In 
this case, compromise recovery requires changing all 
primary passwords and all reusable authorization informa­
tion that passed through the compromised tenninal 
process. This is a much more expensive and elaborate 
procedure than changing the authenticator’s password data 
base since all involved CLIs must be contacted. Design­
ing an RPC logon protocol without universally trusted 
terminal processes that doesn’t have this disadvantage 
requires that authorization information be valid for a 
single terminal session. This is not easily achieved.

Note that while a compromise remains undetected, 
neither type of logon protocol offers security advantages 
over the other. In both schemes primary user identifier 
and password data pass through the terminal process. This 
data allows an intruder who has compromised the terminal 
process to masquerade as the identified user.

2.4 Advantages and Disadvantages of Central Authen­
tication

Some advantages associated with central authentication 
have already been pointed out. It requires the user to 
remember no more than one password and it presents him 
with a single password management interface. In addi­
tion, central authentication allows an administrator quickly 
to revoke access to distributed system hosts by a particular 
user. If authorization is performed by the authenticator, 
even more refined control is possible. An administrator 
can specify and quickly change the set of hosts accessible 
by a user and in a classified environment can control the 
security-levels at which a user is allowed to operate on 
those hosts.

There are also disadvantages of central authentication.
If more than one administrative authority controls the 
distributed system, each must trust the one that controls 
the authenticator. In an aUnosphere of mutual suspicion, 
this may not be possible. In that case an authentication 
approach is necessary that allows each administrative 
authority to trust only those other authorities it chooses 
and only to the degree it desires [11].

Secondly, the authenticator becomes a central point of 
failure in the logon process. Trying to eliminate this 
disadvantage by using multiple authenticators that are 
geographically distant from each other introduces prob­
lems of distributed authenticator data base management, 
selecting an authenticator to which to send logon requests 
and maintaining convergent authenticator software. 
However, it is possible to implement the authenticator on 
closely coupled redundant processors and to use redundant 
communications channels to ensure that down time is 
acceptably small.

Thirdly, central authentication requires the participation 
of the terminal processes and CLIs in the distributed 
system logon protocol. If these entities were not designed 
with such participation in mind, retrofitting them may 
require significant modification to their internal structure 
as well as to the structure of the existing terminal service 
architecture.

It has already been mentioned that an around-the-hom 
logon protocol requires the CLI to establish a terminal 
session. If the virtual terminal protocol does not support 
terminal session establishment by a CLI, either it must be 
modified to do so (which requires modification of all of its 
implementations, a costly procedure), an out-of-band 
signal must be given to the terminal process so that it can 
establish the terminal session (which requires modifica­
tions to the terminal process and CLI) or an RPC logon 
protocol must be used, introducing the disadvantages 
described above.

Modifying existing terminal process and CLI programs 
may be undesirable because of the costs associated with 
the design, implementation, promulgation and mainte­
nance of these changes. This is especially true in distrib­
uted systems with hosts from many different manufactur­
ers, many of which may not be willing to provide central 
authentication support, forcing customer modifications to 
manufacturer software. Layering central authentication on 
top of an existing terminal service architecture also 
requires design, implementation and maintenance efforts 
that are costly. The advantages and disadvantages of 
layering are discussed in Section 4.

2.5 History of Central Authentication

To the author’s best knowledge, the first distributed 
system using central authentication is the Lawrence 
Livermore National Laboratory Octopus network [2, 3]. It 
uses an RPC logon protocol with reliance on trusted 
terminal multiplexors. An around-the-hom logon protocol 
was developed for the ICN network when central authenti­
cation was established at the Los Alamos National 
Laboratory. A central authentication service using 
multiple authenticators that controls terminal access from 
dial-up lines to the ARPANET is described in [1], Hosts 
also may use this service to authenticate their own logon 
requests.

5



The LINCS distributed operating system being imple­
mented at Lawrence Livermore National Laboratory uses 
an around-the-hom logon protocol in concert with 
capability-based resource access control to establish a 
terminal session with a CLI [14,15]. A LINCS CLI can 
maintain many different contexts for the same user as well 
as contexts for different users and there may be many 
CLIs running on a single host

While technically not a central authentication scheme as 
defined in this paper, Israel and Lindon describe a context 
establishment mechanism for the Xerox internetwork with 
features similar to central authentication [7]. Their 
approach is unique in that logon does not connect a 
terminal to a host, but rather brings a user context to a 
personal workstation. User passwords are stored in a 
distributed data base system called the Clearinghouse, 
and logon requests are directed to it from a workstation. 
Upon authentication by the Clearinghouse, one of two 
things happen. If the user context is stored on the work­
station at which the user is located, the user is allowed to 
access it If the context is not on that workstation, it is 
retrieved either from the internetwork file system or some 
other workstation and moved to the workstation at which 
the user sits.

3. THE LAYERING APPROACH

3.1 Objectives

A prototype system was developed to explore the 
layering approach to central authentication. A major goal 
of building this system was to identify factors that are 
important when enhancing a terminal service architecture 
to support central authentication; to determine whether 
this approach is satisfactory; and if not, to identify what 
changes to a terminal service architecture are necessary to 
achieve an acceptable central authentication service. 
DECNET was chosen as the target distributed system 
architecture and VMS as the host operating system over 
which the layering software was placed.

A collateral objective was to design the central authenti­
cation service to allow terminal sessions to be established 
at one of a number of different security-levels. As with a 
large number of other protocol families and operating 
systems (e.g., SNA, XNS, APPLETALK, VM, MVS, 
UNIX, DOS, the Macintosh OS), neither DECNET nor 
VMS support security-level labeling. This necessitated 
layering die labeling service on top of existing VMS and 
DECNET services. As explained in section 4.2, a number 
of difficulties were encountered in the pursuit of this 
objective.

3.2 The Virtual Terminal Protocol

The DECNET tenninal service architecture supports 
two virtual terminal protocols, LAT and CTERM. The 
LAT protocol provides communications between terminal

servers (i.e., terminal multiplexers) and DECNET hosts 
over an ethemet Since LAT does not support store-and- 
forward services through DECNET nodes, whereas 
CTERM does, it was decided to layer the central authenti­
cation service over CTERM.

CTERM is based on a remote system-call service 
paradigm similar in philosophy to remote procedure call. 
The advantage of the remote system-call approach is that 
programs see the same terminal interface whether termi­
nals are local or remote. Programs need not be concerned 
with the location of the terminal to which they are 
communicating.

The disadvantage of this approach is the restrictive 
homogeneity required for it to work. Since system-calls 
are passed between the remote and terminal hosts, both 
systems must have the same or very similar operating 
system interfaces, at least with respect to terminal serv­
ices. Such an environment is unlikely to exist unless all 
systems are from the same manufacturer or from manufac­
turers making compatible equipment While a subset of 
the CTERM protocol is implemented on an operating 
system of significantly different architecture than VMS 
[6], this required greatly restricting the protocol services 
available to processes.

3.3 Layering Central Authentication Over DECNET

Layering central authentication over DECNET requires 
authenticator, terminal process and logon protocol 
support In keeping with the layering approach, provision 
of these services is accomplished without modification to 
the host operating system.

3.3.1 Security-Level Labeling. The logon protocol 
software allows a terminal session to be established at one 
of several possible security-levels. The authenticator 
parses the requested terminal session security-level from 
the logon-line, using it in a number of tests to determine 
whether to establish a terminal session (see section 3.3.2). 
Since, as mentioned above, neither VMS nor DECNET 
supports the labeling of resources with a security-level, an 
additional mechanism is required to communicate secu­
rity-level information between the terminal process and 
the authenticator.

Similarly, the CTERM protocol does not support 
security-level labeling. Thus, no security-level is commu­
nicated between the terminal process and the remote host 
when a terminal session is established. Operational 
constraints are necessary to ensure that terminal session 
data is properly protected. They are discussed in section 
4.2.

33.2 The Authenticator. The authenticates allows a fine 
granularity of control over logon requests. To provide 
centralized control of network resources, the authenticator 
supports both authentication and authorization functions. 
Upon receipt of a logon request, the authenticator:

6



• determines whether the user identifier and password 
given in the logon-line are properly matched,

• determines whether the host is allowed to partici­
pate in terminal sessions at the security-level 
specified in the logon-line (i.e., the security-level 
being requested for the tenninal session),

• determines whether the terminal is allowed to 
participate in terminal sessions at the requested 
security-level, and

• determines whether the user is authorized to run on 
the identified host at the requested security-level.

If these tests succeed, the authenticator retrieves a 
secondary user identifier and password valid on the 
remote host This is communicated to the tenninal 
process in the manner described below.

3.3.3 The Logon Protocol. Since the CTERM protocol 
allows only terminal processes, not hosts to initiate 
tenninal sessions, an RPC logon protocol was employed. 
The following sequence of events occur during logon:

• The CTERM program is executed by the tenninal 
process. This can occur either by requiring the user 
to execute the program from the command language 
interpreter, or by using the automatic logon and 
captured account features of VMS to bind a 
particular terminal to the program execution.

• The tenninal process prompts the user for a 
machine identifier, user identifier, security-level 
and password. These are sent to the authenticator 
in a logon request If the logon request is valid, the 
authenticator returns a secondary user identifier and 
password to the tenninal process. If the logon 
request is invalid, an enor message is returned to 
the terminal process which is displayed to the user.

• If the logon request is valid, the tenninal process 
uses the secondary user identifier and password to 
establish a tenninal session with the target machine.

4. RESULTS

Layering central authentication over existing tenninal 
services turned out to be more complicated and time 
consuming than originally expected. The prototype 
required approximately two man-years to complete, most 
of the effort going into the CTERM protocol implementa­
tion. While the layering objective was successfully 
accomplished, upgrading the layering software and then 
placing it into production will result in a significant 
maintenance cost, especially tracking changes to the 
CTERM protocol. Thus, the penalty for retrofitting an 
existing operating system and protocol family with central 
authentication is increased maintanence costs. However, 
the layering approach limits these costs to software written 
and maintained by the customer. Vendor supplied 
software is not modified and thus does not require 
customer maintenance. If the vendor chooses not to 
support central authentication in its products, this may be 
the only way to achieve acceptibly secure distributed

terminal services.
The authenticator required the least implementation 

effort even though it was written from scratch. Imple­
menting the terminal process turned out to be very time 
consuming because of the complexity inherent in the 
CTERM protocol, while the logon protocol was fairly easy 
to implement.

4.1 The Logon Protocol

During the logon protocol design, a decision was 
required whether to use the around-the-hom or RPC 
technique. An around-the-hom logon protocol was 
considered, but rejected for the following reasons:

• CTERM’s asymmetry (allowing only terminal 
processes to open a terminal session) makes it 
difficult to implement an around-the-hom logon 
protocol (see section 2.4).

• Implementing a separate virtual terminal protocol 
for DECNET that provides the necessary features 
for an around-the-hom logon protocol would be a 
major undertaking. In addition to the costs associ­
ated with implementing a new virtual terminal 
protocol, layering it on top of the VMS operating 
system would be difficult

• An around-the-hom logon protocol requires 
communications between the authenticator and the 
CLI as well as between the authenticator and the 
tenninal process. An RPC logon protocol only 
requires communications between the authenticator 
and terminal process. Thus, an RPC logon protocol 
normally is simpler and quicker to implement than 
an around-the-hom logon protocol.

However, because of the way CTERM works, the RPC 
logon protocol has a number of disadvantages:

• Secondary user identifier and password data sent to 
complete the logon process must pass through a 
terminal process that is vulnerable to intruder 
access (especially if the terminal process runs on a 
workstation). Thus, it can be retained and used at a 
later date, creating the compromise recovery 
problems described section 2.3.

• To ensure logon control is maintained by the 
authenticator, secondary password data must be 
changed whenever a user’s access rights to a host 
change. This requires a supplementary protocol by 
which the authenticator requests secondary pass­
word data update by a remote host The require­
ment for such a protocol somewhat offsets the RPC 
logon protocol advantage of not requiring commu­
nications between the authenticator and hosts for 
logon purposes.

• To accomplish logon, the terminal process must 
maintain logon-phase state information indicating 
whether the user identifier or password has been 
sent and whether logon has completed successfully. 
To determine changes in the logon-phase, the

7



program must examine character strings embedded 
in the tenninal session data sent by the remote host 
that indicate the success or failure of the logon 
process. If such strings change over versions of 
VMS, modifications to the program will be neces­
sary to ensure correct operation.

The experience of adding a logon protocol to DECNET 
leads to the recommendations for terminal service archi­
tecture design given in section 5.

4.2 Terminal Session Security-Level Labeling

Since VMS does not support security-level labeling, 
each host can handle information at only one security- 
level. All resources managed by a host are implicitly 
labeled at this level. In addition, since DECNET network- 
level messages do not carry a security-level, intermediate 
hosts are unaware of the security-level associated with the 
data they store-and-forward. These two characteritics 
create a number of problems related to the support of 
labeled terminal sessions.

When a logon request is received by the authenticator, 
the security-level in the request is compared with the level 
of the remote host (which is kept in an internal authentica­
tor table) to ensure their equality. This guarentees that 
terminal sessions to that host always operate at its level. 
However, the terminal process also runs on a host that can 
process information at only one level. This implies that 
the authenticator must ensure that the terminal and remote 
host operate at the same security-level.

Strict adherence to the single-level host requirement 
leads to severe operational inconvenience. In particular, 
terminal sessions established from a particular terminal 
can run at exactly one level and therefore must only 
connect the terminal to hosts running at that level. If a 
user needs to access hosts of different security-levels, the 
use of separate terminals connected to different terminal 
hosts is necessary, one terminal for each level. Obviously, 
this is greatly inconvenient, especially if a user works 
from his office.

A number of solutions to this problem are possible. 
Security-level labeling could be added to VMS and 
DECNET. This approach is cost prohibitive for VMS and 
DECNET customers.

Terminals could be connected to user activated line 
switches that physically connect/disconnect them to/from 
different terminal hosts. When a user wishes to operate at 
a particular security-level, he selects the appropriate 
terminal line that connects his terminal to a host running at 
that level. While this approach allows a user to contact 
hosts at different security-levels by means of a single 
terminal, it requires that offices or other areas containing 
terminals are wired with multiple terminal lines. This is 
both costly and contrary to modem trends that minimize 
physical plant wiring. Furthermore, for each security- 
level that a user might use, a separate terminal line from a 
host operating at that level must be brought to the termi­

nal. This may not be physically possible, independent of 
wiring costs.

Another approach is to use certain hosts as trusted 
terminal multiplexors (fig. 5). Since VMS, like most

Security-Level B

Security-Level A

Security-Level C

Authenticatoi

Trusted Terminal
Multiplexors

All Terminals Connected Only To 
Multiplexors

Fig. 5 - Using trusted terminal multiplexors to support 
security-level labeling

commercially available operating systems, has a number 
of security vulnerabilities, no programs written by users 
other than trusted system programmers should be allowed 
to run on the multiplexors. This requires that all logon 
requests to the multiplexors (other than from a directly 
connected operator console) be denied. All terminals 
supporting the establishment of terminal sessions at more 
than one level must be connected to one of these misted 
terminal multiplexors. To ensure that primary password 
data does not travel through vulnerable hosts, each trusted 
terminal multiplexor must be directly connected to the 
authenticator. In addition, the CTERM program must be 
trusted to separate terminal session data so that informa­
tion at different security-levels is not mixed and DECNET 
must be trusted to separate transport-level connections.

The trusted terminal multiplexor approach also can be 
used to overcome the lack of security-level labeling in the 
DECNET network-level protocol. Hosts operating at a 
particular level can be segregated into sub-networks by 
connecting them only to other hosts operating at that level 
or to one or more multiplexors. In this way data traveling 
through general purpose hosts is always at the same 
security-level. Data traveling through the multiplexors is 
of multiple levels, but they only run the CTERM program 
which is assumed to properly segregate terminal session 
data.

8



While the trusted tenninal multiplexor approach is 
viable, it is only partially satisfactory for the following 
reasons:

• Secure operation involves trusting the CTERM 
program. While written to separate terminal 
sessions, critical review of its structure is necessary 
to develop confidence that it achieves this objec­
tive.

• Secure operation also involves trusting VMS not to 
mix data from separate DECNET transport-level 
connections. While this is probably a safe assump­
tion, a detailed analysis of the relevant parts of 
VMS and DECNET implementations is necessary 
to develop confidence that this is true.

• The trusted terminal multiplexor approach imposes 
network topology constraints that may not be 
possible or may be very costly or inconvenient in 
some operational environments. Requiring the 
connection to trusted terminal multiplexors of all 
terminals that support multiple levels may impose 
costly plant wiring or equipment upgrades of the 
network. Segregating hosts into sub-networks 
operating at a single security-level can be cosdy 
due to the increased network connectivity required 
(nearby hosts may not be allowed to store-and- 
forward traffic through each other), the increased 
failure sensitivity of the star-like network topology, 
and the separation of host functions (i.e., multi­
plexor hosts and general purpose hosts) that may 
underutilize distributed system resources.

Distributed system and operating system designers must 
become aware that security-level labeling is an important 
design issue. Retrofitting operating systems and distrib­
uted system protocols to support security-level labeling is 
non-trivial. Supporting applications that require security- 
level labeling with operating systems and protocols 
lacking this service leads to clumsy and inconvenient 
operational constraints such as those described above. 
Designers who wish to allow their systems to operate in an 
environment in which security-level labeling is important 
should include this security service in their initial designs.

5. RECOMMENDATIONS

5.1 Requirements for Layering Central Authentication 
on an Existing Terminal Service Architecture

This effort identified general characteristics of a 
terminal service architecture that are necessary for central 
authentication layering to be successful. Specifically:

• It must be possible to implement the virtual 
terminal protocol or at least the terminal session 
establishment phase of the protocol in a user 
process. If terminal session establishment is carried 
out solely by operating system code, protocol 
implementation changes necessary to contact the 
authenticator cannot be made without modifying

the underlying operating system. Such changes 
violate the layering objective.

• If primary/secondary user identifiers and passwords 
are used, host password management interfaces 
must allow externally controlled password update.
If the remote host updates passwords, the authenti­
cator cannot maintain the proper mapping between 
primary and secondary data, since notification of 
password update returns to the host to which the 
terminal is attached rather than to the authenticator. 
Allowing the terminal’s host to forward the new 
password to the authenticator would introduce a 
denial of service hazard whereby a compromised 
host could completely change the authenticator’s 
password data base (i.e., by sending a bogus update 
message for each user in the distributed system).

• For general central authentication service, the 
virtual terminal protocol cannot be tied to a 
particular network-level mechanism. This type of 
limitation is present in the LAT protocol.

5.2 Recommended Terminal Service Architecture 
Features for Embedding Central Authentication

While the feasibility of layering central authentication 
on an existing terminal service architecture was demon­
strated, the results indicate that central authentication is 
more efficiently, conveniently and maintainably supported 
when it is an embedded service. To support such service, 
the architecture should possess certain features. In 
particular:

• The use of an RPC logon protocol is preferable 
when the virtual terminal protocol does not support 
terminal session establishment from the host/CLI 
side. Since RPC logon protocols based on reusable 
authorization information are susceptible to 
compromise control problems and since RPC logon 
protocols that rely on trusted terminal multiplexors 
are impractical in many environments, virtual 
terminal protocols should support host/CLI side 
terminal session establishment This allows the use 
of an around-the-hom logon protocol which has 
superior password compromise recovery properties. 
However, use of an around-the-hom logon protocol 
requires a mechanism whereby terminal processes 
can discriminate between valid and bogus responses 
to their logon requests. For example, the LINCS 
stream number mechanism [5] provides the 
necessary service to accomplish this.

• If an around-the-hom logon protocol is used, some 
mechanism must guarantee that authorization 
requests come from the authenticator. If the 
underlying connectivity of the distributed system is 
properly protected, source address guarantees are 
possible. If such protection is not available, 
message authentication based on encryption 
techniques [8] can be employed.

9



• The provision of a central authentication service is 
more convenient if CLIs are explicitly designed for 
such operation. CLIs that are expected to operate in 
environments that support central authentication, as 
well as in environments that do not, should be 
designed to separate their implementation into a 
module that handles logon and one that performs 
other services. Clean separation of the logon and 
command language interpretation functions allows 
different styles of logon to be supported by replac­
ing the logon module. Module replacement by 
customers should be possible so that they can 
employ authenticator and logon protocols suitable 
to their needs.

• If a distributed system is to operate in an environ­
ment in which security-levels are required, its 
protocols and host operating systems should 
support security-level labeling. Layering a labeling 
service on top of existing distributed system 
services is difficult and leads to unsatisfactory 
operational requirements such as the use of trusted 
terminal multiplexors.

In addition to these requirements, those designing 
terminal service protocols should consider combining 
logon and virtual terminal protocols. Logon is viewed 
most effectively as the secure establishment of a terminal 
session; while logoff is best viewed as terminal session 
closing. Separating terminal session opening activity from 
other terminal session support services by means of a 
logon protocol obfuscates and complicates terminal 
service provision. New research and standards activity is 
required to develop and promulgate second-generation 
terminal service protocols that provide logon as well as 
virtual terminal services.

6. FUTURE DIRECTIONS

This paper describes and analyses one approach to the 
secure logon problem in distributed systems managed by a 
single authority. However, the woik described here was 
conducted as part of an investigation into logon support in 
multiply administered distributed systems. A brief 
description of the relationship between the two problems 
is now given.

Solving terminal service security and password manage­
ment problems in a multiply administered distributed 
system is possible by partitioning it into singly admini­
stered parts called administrative domains [14]. Within 
an administrative domain, central authentication is used. 
Logon between administrative domains is possible by 
using inter-authentication-domain (IAD) gateways and 
an IAD logon protocol in the way now described.

Inter-authentication-domain logon uses the central 
authentication services of three administrative domains: 1) 
the administrative domain in which the terminal is located 
(the terminal AD), 2) the administrative domain in which 
the user’s password is stored (the authenticator AD), and

3) the administrative domain in which the remote host is 
located (the host AD). These administrative domains 
need not be distinct. For example, the terminal AD and 
host AD may be identical.

Logon between administrative domains utilizes an 
around-the-hom logon protocol and proceeds as follows. 
The logon protocol of the terminal AD is used to forward 
a logon request from a terminal to its LAD gateway. The 
LAD gateway determines the location of the authenticator 
AD from information embedded in the user identifier 
given in the logon line. The gateway then forwards an 
IAD logon request to the authenticator AD. The IAD 
gateway of the authenticator AD receives the logon 
request and uses its logon protocol to authenticate the 
request. The gateway then determines the host AD from 
information embedded in the host identifier given in the 
logon line. The gateway forwards an IAD authorization 
request to the host AD. The IAD gateway of the host AD 
uses its logon protocol to logon to the remote host. It then 
returns an LAD logon response to the terminal AD 
gateway. The terminal session established by the logon 
protocol begins at the terminal, continues through the 
terminal AD and host AD gateways, and ends at the 
remote host A full specification of the IAD logon 
protocol is contained in [11].

7. ACKNOWLEDGMENT

The author would like to express his gratitide to Brian 
Cabral, John Fletcher, Tony Genovese, Alex Phillips and 
Dave Wiltzius for their helpful comments and aid in 
carrying out the central authentication layering effort. 
Special thanks is given to John Fletcher for his help in 
understanding the central authentication problem. Thanks 
is given also to Dick Watson whose useful comments 
greatly improved the paper’s organization.

8. REFERENCES

[1] B. Anderson. G. Ruth, P. Ditmars, S. Eisner and J. 
Delsignore, “TAC Access Control System Proto­
cols,” BBN Tech Memo CC-0045, BBN Communi­
cations Corp., Cambridge, MA, Aug., 1985.

[2] J. G. Fletcher, “Combination checker software,” 
Lawrence Livermore National Laboratory internal 
working document, Aug., 1972.

[3] J. G. Fletcher, “How the netwoik works,” Lawrence 
Livermore National Laboratory Report UCID- 
30072, Oct., 1972.

[4] J. G. Fletcher, “LINCS interactive terminal proto­
cols,” Lawrence Livermore National Laboratory 
internal working document, 11 July, 1983.

[5] John G. Fletcher, “Stream numbers,” Lawrence 
Livermore National Laboratory internal working 
document, August 9,1985.

10



[6] John Forecast, James L. Jackson and Jeffrey A. 
Schriesheim, “The DECNET-ULTRIX software,” 
Digital Technical Journal, No. 3, Sept 1986, pp. 
100-107.

[7] J. E. Israel and T. A. Lindon, “Authentication in 
office systems,” ACM Trans, on Office Systems, 
Vol. 1, No. 3, July, 1983, pp. 193-210.

[8] R. R. Jueneman, S. M. Matyas and C. H. Meyer, 
“Message authentication,” IEEE Communications 
Magazine, Sept., 1985, pp. 29-40.

[9] S. T. Kent, “Security in computer networks,” 
Chapter 7 in Protocols and Techniques for Data 
Communication Networks, ed., F. F. Kuo, Prentice- 
Hall, NJ., 1981.

[10] F. Magnee, A. Endrizzi, and J. Day, “A survey of 
terminal protocols,” Computer Networks, Vol. 3, 
No. 5, Nov., 1979, pp. 299-314.

[11] D. M. Nessett, “The inter-authentication-domain 
(IAD) logon protocol (preliminary specification and 
implementation guide), Lawrence Livermore 
National Laboratory Report UCID-30207 (Rev. 1), 
Nov. 12,1985.

[12] D. M. Nessett, “Factors affecting distributed system 
security, Proc. 1986 IEEE Symposium on Security 
and Privacy, Oakland, CA, April, 1986, pp. 204- 
222, also appears in IEEE Trans, on Software 
Engineering, Feb., 1987, pp. 233-248.

[13] J. S. Quarterman, A. Silberschatz, and J. L. Peter­
son, “4.2 BSD and 4.3 BSD as examples of the 
UNIX system,” ACM Computing Surveys, Vol. 17, 
No. 4, Dec. 1985, pp. 379-418.

[14] R. W. Watson and J. G. Fletcher, “An architecture 
for support of network operating systems services,” 
Computer Networks, Vol. 4, No. 1, Feb., 1980, pp. 
33-49.

[15] R. W. Watson, “Requirements and overview of the 
LINCS distributed operating system architecture,” 
Proc. 13th CRAY Users Group Meeting, Paris, 
France, April 25-27,1984. Also available as 
Lawrence Livermore National Laboratory Report 
UCRL-90906.

11


