-

fonf - 31053 - Kev--

UCRL- 960 8 0 Rrgy Py

PREPRINT
: o UCRL--96080-Rev, 2
he a0 DE89 001814

ication
Layering Central Authent
On Existing Distributed System Terminal Services

D. M. Nessett

1989 Symposium on Security and Privacy

Oakland California
May 1-3, 1989

October 25, 1988

This is a preprint of a paper intended for publication il! a j{)urml or pro.ceedings'. :ut\l:e
changes may be made before publication, this prepnnt‘ is made avallal.ale. wit ' the
understanding that it will not be cited or reproduced without the permission of the

author.

DISCLAIMER
/

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



LAYERING CENTRAL AUTHENTICATION ON EXISTING

DISTRIBUTED SYSTEM TERMINAL SERVICES
D. M. Nessett

Lawrence Livermore National Laboratory
Livermore, CA 94550

Abstract - Provision of terminal service in a distributed
system requires mechanisms to logon and logoff as well as to
move textual data between the terminal and remote host.
Logon occurs in most distributed systems subsequent to the
establishment of a terminal session by means of host specific
logon procedures. However, in a distributed system of any
size, this approach leads to security and password manage-
ment problems. When the distributed system is centrally
administered, these problems can be rectified through the use
of a central authentication service that presents a common
logon interface to the user for all distributed system hosts.

Normally, central authentication is provided by either
initially designing it into a distributed system or supporting it
through the modification of distributed system and host
operating system software. As an alternative strategy, central
authentication can be layered onto existing terminal services.
This approach suggests itself when a large installed base of
computer systems that do not support central authentication
already exists. Work to assess the feasibility of this approach
was carried out. The results demonstrate that layering can
be used in certain circumstances to provide central authenti-
cation services, although, as a result, the concomitant
maintanence costs may increase. It was also determined what
terminal service features are necessary so that central
authentication is easfly layered on existing terminal services.
Recommendations are made concerning how to structure
terminal services in a distributed system to support an
integrated central authentication service.

1. INTRODUCTION

Terminal access to hosts in a distributed system requires
the provision of three basic services: 1) a user must be
able to logon to and logoff from distributed system hosts,
2) the distributed system must move textual data between
the terminal and the host, and 3) this data must be trans-
lated between the format understood by the terminal and
that understood by the host. The structure of these services
and of their supporting mechanisms is called the terminal
service architecture of the distributed system.

Some terminal service architectures include two
protocols, one called the logon protocol and the other the
virtual terminal protocol [10]. The logon protocol ~
allows the establishment of properly authenticated and
authorized terminal sessions, while the virtual terminal

“Work performed under the auspices of the U.S. Depart-
ment of Energy, Office of Safeguards and Security, by the
Lawrence Livermore National Laboratory under contract
number W-7405-ENG-48.”

protocol provides all remaining terminal services. How-
ever, in many cases a terminal service architecture
provides only a virtual terminal protocol, relying on
mechanisms within each host to support logon.

Terminal service architectures that rely soley on host
mechanisms to achieve logon have the following inade-
quacies:

 As the number of hosts with which a user interacts
increases, the number of different passwords that he
must remember also increases. Past experience
shows that such situations encourage users to
compromise security by writing down or otherwise
physically recording these passwords on unpro-
tected media (e.g., write them on a slip of paper
taped to the side of their desk or place them in the
memory of smart terminals so that they can be
transmitted by pressing a function key), or by using
passwords that are easily guessed.

« Each distributed system host is required to maintain
its own protected password database. When a
distributed system is constituted of different types
of hosts, each presents a different password
management interface to the user (e.g., the number
and type of characters that can be used in a pass-
word, the maximum lifetime of the password,
whether the user or the system chooses new
passwords). Dealing with multiple password
management interfaces in a distributed system can
lead to confusion about what passwords are
legitimate, when they should be changed, and so
forth.

« If it ever becomes necessary to revoke a user’s
access privileges to the distributed system, all hosts
must be instructed to invalidate that user’s identifier
and password in their password database. This is
both time consuming and operationally complex.

These problems can be met in a number of ways. One
approach is to handle them administratively by assigning a
single password to a user and then disseminating it to each
host. However, this method has disadvantages:

» Updating a password requires changing it on more
than one host. This, in turn, requires the use of a
distributed replicated data base management
mechanism that supports reliable data base update
to ensure password data base consistency. Support
of such an update mechanism requires a significant
investment in software design, implementation and
maintanence.



* Storing the same password in more than one place
raises the risk of password compromise [9]. This is
especially significant if some systems are more
secure than others.

= Not all hosts allow the same set of passwords to be
used. Choosing a password from a common subset
can lead to security problems if the number of
passwords in the subset is small. Small sets allow
password search activity by an intruder to succeed
with an unacceptably high probability.

« Some systems do not support the concept of a
disseminated password. They are designed to
choose passwords themselves and distribute them to
the user.

« It is still necessary to contact all hosts to revoke a
user’s access privileges to the distributed system.

Another scheme is to trust hosts to vouch for a user’s
identity during logon. This approach is taken by the
rlogin mechanism supported in UNIX BSD 4.2 and 4.3
[13]. Its disadvantages are:

« If one host is compromised, it potentially compro-
mises all hosts that trust it. Once these hosts are
compromised, they, in turn, potentially compromise
all hosts that trust them. Unless the transitive
closure of the trust relation is carefully controlled
(which is unlikely from a practical point of view),
compromise of one host compromises them all.
More succinctly stated, such mechanisms violate
the principle of mutual suspicion which is a
fundamental criterion of distributed system security
[14, 12].

« If one host can masquerade as another by using its
internetwork or other host-level address (e.g.,
ethernet address), it can gain access to and poten-
tially compromise other hosts in the distributed
system. Thus, one workstation in the hands of an
intruder can compromise a distributed system by
masquerading as other hosts and then taking
advantage of the transitive closure of the trust
relation.

» Again, it is necessary to contact all hosts to revoke
a user’s access privileges to the distributed system.

Since neither of these approaches is satisfactory when
the security of a distributed system is important, the
provision of secure logon requires an alternative approach.
One technique is to provide centralized facilities in the
distributed system that are responsible for password
management and to support access to these facilities
through a logon protocol.

How a logon protocol operates depends on whether the
distributed system is administered by one or many
administrations. Distributed systems managed by multiple
administrations are the most important case to consider
when distributed system mechanisms are designed.
However, with respect to terminal service provision, such
distributed systems can be decomposed into parts admini-
stered by single administrations. If logon within these

parts is secure, logon between them can be made secure by
means of gateways and an interfacing logon protocol (see
section 6). The work reported here describes how logon
within distributed systems managed by a single admini-
stration can be made secure by means of a central
authentication service. It was conducted as part of an
effort investigating secure logon in distributed systems
managed by multiple administrations.

In addition to password management and system
administration issues, other security requirements affect
distributed system logon services. For example, in a
classified environment a terminal session may be estab-
lished at one of many different security-levels. Determin-
ing whether a user is authorized to logon to a particular
host at the level requested is an important decision during
logon in these environments. A central authentication
service must adequately support such decisions.

While some distributed systems are designed from
inception to support central authentication [14, 15], most
are not. Certain distributed systems have been enhanced
to support central authentication by modifying their
terminal service architecture [1, 2, 3]. Among other
things, this requires modifying the host software that
supports distributed system logon. Such an approach is
acceptible if host software is designed, implemented and
maintained by the customer. However, when vendor
supplied host software must be modified and maintained,
this procedure can be expensive and is therefore unattrac-
tive.

It is also possible to enhance an existing terminal
service architecture by layering central authentication onto
existing terminal services, thereby eliminating costly
changes to host operating system software. If successful,
layering eliminates many design and maintenance prob-
lems that can occur when vendor supplied software is
modified by customers. This approach is especially
attractive if a large installed base of computer systems that
do not support central authentication already exists. While
the ideal solution might be to replace these systems with
ones providing native central authentication support;
economic, politcial and logistical realities make this
approach infeasible in many cases. Layering is a practical
alternative that can enhance the distributed system’s
security profile at a reasonable cost.

A system development effort exploring the layering
approach was carried out. The results of this effort
indicate that layering is possible under the constraints and
conditions described in section 4. More importantly, it
was determined when layering central authentication on
top of existing services is possible and when central
authentication is best achieved by modifying the terminal
service architecture. From the experience gained during
the system development effort, recommendations are
made concerning how terminal service architectures
should be designed so that central authentication can be
effectively achieved.



The next section describes central authentication,
discusses its advantages and disadvantages, and gives a
brief history of its use. Section 3 describes the layering
approach and section 4 discusses the results. From the
results, recommendations are made in section 5 about
terminal service architecture design. Section 6 briefly
describes how central authentication can be used to
support secure logon in distributed systems managed by
multiple administrations.

2. CENTRAL AUTHENTICATION
Central authentication coalesces the password data

bases of distributed system hosts in a system called an
authenticator (Fig. 1). The role of the authenticator is to

Authenticator

Fig. 1 - Central authentication terminal service elements

determine whether a user identifier and password provided
in a logon request are matched properly, a process called
authentication. If a successful match occurs, both the
logon request and the user are said to have been authenti-
cated. If the user identifier and password are not matched
properly, an authentication failure occurs. Central
authentication also requires an authorization function that
determines whether a particular user is allowed to logon to
a particular host. Authorization decisions occur either in
the authenticator or in the host.

Movement of information necessary for authentication
and authorization is the responsibility of a logon protocol.
In addition to the authenticator, a logon protocol support-
ing central authentication involves two other participants -
the terminal and remote host.

A terminal interacts with the hest to which it is con-
nected by means of a terminal process that assembles/
disassembles packets, interprets signals from the terminal
such as break or attention key depression and handles any
synchronization requirements such as matching a half-
duplex terminal to full-duplex communications. The
terminal process also carries out one side of the virtual
terminal protocol. The remote host participates in the
logon and virtual terminal protocols through the combined

activity of a number of entities. In this paper these entities
are refered to generically as the remote host’s command
language interpreter (CLI).

Once a request has been authenticated, it must be
determined whether the identified user is authorized to use
the remote host. This decision can be made either by the
authenticator or by the individual CLIs. Providing the
authorization function in the authenticator permits
centralized control of user access to distributed system
resources. If CLIs perform authorization, resource access
control is distributed to those who manage each CLI
authorization data base. Whether authorization should be
centralized or distributed depends on the management
philosophy of the distributed system administration. If
management responsibilities for distributed system
elements are distributed, it is likely that authorization
should be performed in the CLIs. If management respon-
sibilities are centralized, then authorization by the authen-
ticator is probably more suitable. For the remainder of
section 2 it is assumed that authorization is performed by
the CLIs. An example of authenticator-based authoriza-
tion is given when the layering approach is described.

Central authentication can be achieved in a number of
different ways. Central authentication design issues
include the logon protocol architecture and how it is
impacted by the virtual terminal protocol architecture,
how source address guarentees are made in the distributed
system, and how recovery from password compromise is
accomplished. If the distributed system supports security-
level labeling, it must be determined how to restrict logon
by users to the range of levels they are authorized to use.
Password management is another important area. User
identifiers must be added to the authenticator data base
along with their associated passwords, it must be possible
for users or an administrator to change passwords, and an
administrator must be able to revoke the right of users to
logon to distributed system hosts. These services may
require an auxiliary protocol for password management or
they may be provided by the logon protocol. In addition,
mechanisms to protect password and terminal session data
may affect the logon protocol architecture as well as
terminal process, authenticator and CLI structure.

2.1 Around-the-Horn Logon Protocols

A logon protocol can be organized in one of two ways.
An around-the-horn logon protocol requires the authenti-
cator to forward an authorization request to the CLI after
successful authentication (Fig. 2). The CLI determines
whether the user identified in the request is authorized to
use the host’s resources and if so establishes a terminal
session with the terminal process. If the user is not so
authorized, an authorization failure message is returned to
the terminal process. Use of an around-the-horn logon
protocol assumes that: 1) the virtual terminal protocol and
its implementation allow the CLI to establish terminal
sessions, and 2) the terminal process can properly dis-



Remote Host

Request Accepted or
Rejected (4)

erminal Session
stablishment Request (3)

Authonzation Failure

ogon Request (1)

Authorization Request (2)
Authentication Failk oquest

Fig. 2 - Around-the-homn logon protocol.

criminate between authentic and bogus replies to a logon
request (to prevent an intruder from masquerading as a
CLI). These points are elaborated below.

2.2 Remote Procedure Call' (RPC) Logon Protocols

A remote procedure call (RPC) logon protocol
requires the authenticator to return authorization informa-
tion to the terminal process after the successful authentica-
tion of a logon request (Fig. 3). The terminal process then

Remote Host

Terminal Session

(\ Establishment Request (3
crming < Request Accepted

or Rejected (4)

CLI

m -
.-

Authentication
Failure

Fig. 3 - RPC logon protocol

contacts the CLI, providing this information as proof of
authentication.

The exact nature of the authorization information
depends on the relationship of trust between the terminal
process and the CLI. If the terminal process is trusted by
all CLIs in the distributed system to guarentee that

t The use of the phrase remote procedure call to describe
this type of logon protocol may be controversial, It is
used in the spirit which originally gave rise to the termi-
nology. The terminal process makes a (remote) procedure
call to the authenticator to obtain authentication service. It
then makes a (remote) procedure call to the host to
establish the terminal session.

authentication has taken place (for example, when
terminal processes are implemented on trusted tamper-
proof terminal multiplexors), the authorization informa-
tion might consist of the user identifier and an indication
that the user has been properly authenticated [2]. The
terminal process sends this indication to the CLI in a
terminal session connection request. The CLI accepts the
request if the user is authorized to use the host’s resources;
otherwise, it is rejected. Secure operation requires the CLI
to ensure that the requests it receives come from a trusted
terminal process and not from some intruder. This can be
accomplished either by the provision of a trusted commu-
nications subsystem that guarentees source addresses or by
means of message authentication based on encryption
techniques [8].

If CLIs don’t trust terminal processes to guarentee that
authentication has taken place, more substantial authoriza-
tion information must be provided by the authenticator.
For example, in the layering approach described below the
authenticator returns a secondary user identifier and
password that allows the terminal process to logon to the
host identified in the logon request. The secondary user
identifier and password are presented to the CLI aftera
terminal session has been established (Fig. 4).

Secondary Logon Request (3)

(sent over previously R ost
established terminal
session)

CLI

Secondary Logon|
Reply (4)

Authorization
Information (2)
(secondary user-id
and password)

SH)

Authentication
Failure

Fig. 4 - RPC logon protocol utilizing secondary user-id and
password

2.3 A Comparison of Around-The-Horn and RPC
Logon Protocols

One advantage that an RPC logon protocol enjoys over
an around-the-horn logon protocol is that under its rules of
operation the terminal process, rather than the CLI,
establishes the terminal session. This is the only mode of
operation supported by most virtual terminal protocols or
at least by their implementations. The terminal process
still must be able to discriminate between authentic and
bogus replies to its logon request; although, since these
replies always come from the authenticator, reply valida-
tion can be accomplished by guaranteeing that the source
address of the logon reply message is correct.



On the other hand, an RPC logon protocol employing
reusable authorization information such as secondary user
identifiers and passwords has the disadvantage that such
information passes through the terminal process. If a
terminal process is compromised, certain complications
arise in restoring secure operations after compromise
detection.

When a security compromise is detected, around-the-
hom logon protocols allow the recovery of secure opera-
tions by changing all primary passwords that passed
through the compromised terminal process. RPC logon
protocols that rely on reusable authorization information
require more elaborate and costly recovery procedures.
Since the authorization information returned to the
terminal process can be reused, an intruder can retain and
use it after the primary passwords have been changed. In
this case, compromise recovery requires changing all
primary passwords and all reusable authorization informa-
tion that passed through the compromised terminal
process. This is a much more expensive and elaborate
procedure than changing the authenticator’s password data
base since all involved CLIs must be contacted. Design-
ing an RPC logon protocol without universally trusted
terminal processes that doesn’t have this disadvantage
requires that authorization information be valid for a
single terminal session. This is not easily achieved.

Note that while a compromise remains undetected,
neither type of logon protocol offers security advantages
over the other. In both schemes primary user identifier
and password data pass through the terminal process. This
data allows an intruder who has compromised the terminal
process to masquerade as the identified user.

2.4 Advantages and Disadvantages of Central Authen-
tication

Some advantages associated with central authentication
have already been pointed out. It requires the user to
remember no more than one password and it presents him
with a single password management interface. In addi-
tion, central authentication allows an administrator quickly
to revoke access to distributed system hosts by a particular
user. If authorization is performed by the authenticator,
even more refined control is possible. An administrator
can specify and quickly change the set of hosts accessible
by a user and in a classified environment can control the
security-levels at which a user is allowed to operate on
those hosts,

There are also disadvantages of central authentication.
If more than one administrative authority controls the
distributed system, each must trust the one that controls
the authenticator. In an atmosphere of mutual suspicion,
this may not be possible. In that case an authentication
approach is necessary that allows each administrative
authority to trust only those other authorities it chooses
and only to the degree it desires [11].

Secondly, the authenticator becomes a central point of
failure in the logon process. Trying to eliminate this
disadvantage by using multiple authenticators that are
geographically distant from each other introduces prob-
lems of distributed authenticator data base management,
selecting an authenticator to which to send logon requests
and maintaining convergent authenticator software.
However, it is possible to implement the authenticator on
closely coupled redundant processors and to use redundant
communications channels to ensure that down time is
acceptably small.

Thirdly, central authentication requires the participation
of the terminal processes and CLIs in the distributed
system logon protocol. If these entities were not designed
with such participation in mind, retrofitting them may
require significant modification to their internal structure
as well as to the structure of the existing terminal service
architecture.

It has already been mentioned that an around-the-horn
logon protocol requires the CLI to establish a terminal
session. If the virtual terminal protocol does not support
terminal session establishment by a CLI, either it must be
modified to do so (which requires modification of all of its
implementations, a costly procedure), an out-of-band
signal must be given to the terminal process so that it can
establish the terminal session (which requires modifica-
tions to the terminal process and CLI) or an RPC logon
protocol must be used, introducing the disadvantages
described above. :

Modifying existing terminal process and CLI programs
may be undesirable because of the costs associated with
the design, implementation, promulgation and mainte-
nance of these changes. This is especially true in distrib-
uted systems with hosts from many different manufactur-
ers, many of which may not be willing to provide central
authentication support, forcing customer modifications to
manufacturer software. Layering central authentication on
top of an existing terminal service architecture also
requires design, implementation and maintenance efforts
that are costly. The advantages and disadvantages of
layering are discussed in Section 4.

2.5 History of Central Authentication

To the author’s best knowledge, the first distributed
system using central authentication is the Lawrence
Livermore National Laboratory Octopus network [2, 3]. It
uses an RPC logon protocol with reliance on trusted
terminal multiplexors. An around-the-horn logon protocol
was developed for the ICN network when central authenti-
cation was established at the Los Alamos National
Laboratory. A central authentication service using
multiple authenticators that controls terminal access from
dial-up lines to the ARPANET is described in [1]. Hosts
also may use this service to authenticate their own logon
requests.



The LINCS distributed operating system being imple-
mented at Lawrence Livermore National Laboratory uses
an around-the-hom logon protocol in concert with
capability-based resource access control to establish a
terminal session with a CLI [14, 15]. A LINCS CLI can
maintain many different contexts for the same user as well

“as contexts for different users and there may be many
CLIs running on a single host.

While technically not a central authentication scheme as
defined in this paper, Israel and Lindon describe a context
establishment mechanism for the Xerox internetwork with
features similar to central authentication [7]. Their
approach is unique in that logon does not connect a
terminal to a host, but rather brings a user context to a
personal workstation. User passwords are stored in a
distributed data base system called the Clearinghouse,
and logon requests are directed to it from a workstation.
Upon authentication by the Clearinghouse, one of two
things happen. If the user context is stored on the work-
station at which the user is located, the user is allowed to
access it. If the context is not on that workstation, it is
retrieved either from the internetwork file system or some
other workstation and moved to the workstation at which
the user sits.

3. THE LAYERING APPROACH
3.1 Objectives

A prototype system was developed to explore the
layering approach to central authentication. A major goal
of building this system was to identify factors that are
important when enhancing a terminal service architecture
to support central authentication; to determine whether
this approach is satisfactory; and if not, to identify what
changes to a terminal service architecture are necessary to
achieve an acceptable central authentication service.
DECNET was chosen as the target distributed system
architecture and VMS as the host operating system over
which the layering software was placed.

A collateral objective was to design the central authenti-
cation service to allow terminal sessions to be established
at one of a number of different security-levels. As with a
large number of other protocol families and operating
systems (e.g., SNA, XNS, APPLETALK, VM, MVS,
UNIX, DOS, the Macintosh OS), neither DECNET nor
VMS support security-level labeling. This necessitated
layering the labeling service on top of existing VMS and
DECNET services. As explained in section 4.2, a number
of difficulties were encountered in the pursuit of this
objective,

3.2 The Virtual Terminal Protocol
The DECNET terminal service architecture supports

two virtual terminal protocols, LAT and CTERM. The
LAT protocol provides communications between terminal

servers (i.e., terminal multiplexers) and DECNET hosts
over an ethemet. Since LAT does not support store-and-
forward services through DECNET nodes, whereas
CTERM does, it was decided to layer the central authenti-
cation service over CTERM.

CTERM is based on a remote system-call service
paradigm similar in philosophy to remote procedure call.
The advantage of the remote system-call approach is that
programs see the same terminal interface whether termi-
nals are local or remote. Programs need not be concerned
with the location of the terminal to which they are
communicating.

The disadvantage of this approach is the restrictive
homogeneity required for it to work. Since system-calls
are passed between the remote and terminal hosts, both
systems must have the same or very similar operating
system interfaces, at least with respect to terminal serv-
ices. Such an environment is unlikely to exist unless all
systems are from the same manufacturer or from manufac-
turers making compatible equipment. While a subset of
the CTERM protocol is implemented on an operating
system of significantly different architecture than VMS
[6], this required greatly restricting the protocol services
available to processes.

3.3 Layering Central Authentication Over DECNET

Layering central authentication over DECNET requires
authenticator, terminal process and logon protocol
support. In keeping with the layering approach, provision
of these services is accomplished without modification to
the host operating system.

3.3.1 Security-Level Labeling. The logon protocol
software allows a terminal session to be established at one
of several possible security-levels. The authenticator
parses the requested terminal session security-level from
the logon-line, using it in a number of tests to determine
whether to establish a terminal session (see section 3.3.2).
Since, as mentioned above, neither VMS nor DECNET
supports the labeling of resources with a security-level, an
additional mechanism is required to communicate secu-
rity-level information between the terminal process and
the authenticator.

Similarly, the CTERM protocol does not support
security-level labeling. Thus, no security-level is commu-
nicated between the terminal process and the remote host
when a terminal session is established. Operational
constraints are necessary to ensure that terminal session
data is properly protected. They are discussed in section
42,

3.3.2 The Authenticator. The authenticator allows a fine
granularity of control over logon requests. To provide
centralized control of network resources, the authenticator
supports both authentication and authorization functions.
Upon receipt of a logon request, the authenticator:



» determines whether the user identifier and password
given in the logon-line are properly matched,

* determines whether the host is allowed to partici-
pate in terminal sessions at the security-level
specified in the logon-line (i.e., the security-level
being requested for the terminal session),

* determines whether the terminal is allowed to
participate in terminal sessions at the requested
security-level, and

= determines whether the user is authorized to run on
the identified host at the requested security-level.

If these tests succeed, the authenticator retrieves a
secondary user identifier and password valid on the
remote host. This is communicated to the terminal
process in the manner described below.

3.3.3 The Logon Protocol. Since the CTERM protocol
allows only terminal processes, not hosts to initiate
terminal sessions, an RPC logon protocol was employed.
The following sequence of events occur during logon:

e The CTERM program is executed by the terminal
process. This can occur either by requiring the user
to execute the program from the command language
interpreter, or by using the automatic logon and
captured account features of VMS to bind a
particular terminal to the program execution.

» The terminal process prompts the user for a
machine identifier, user identifier, security-level
and password. These are sent to the authenticator
in a logon request. If the logon request is valid, the
authenticator returns a secondary user identifier and
password to the terminal process. If the logon
request is invalid, an error message is returned to
the terminal process which is displayed to the user.

« If the logon request is valid, the terminal process
uses the secondary user identifier and password to
establish a terminal session with the target machine.

4. RESULTS

Layering central authentication over existing terminal
services turned out to be more complicated and time
consuming than originally expected. The prototype
required approximately two man-years to complete, most
of the effort going into the CTERM protocol implementa-
tion. While the layering objective was successfully
accomplished, upgrading the layering software and then
placing it into production will result in a significant
maintenance cost, especially tracking changes to the
CTERM protocol. Thus, the penalty for retrofitting an
existing operating system and protocol family with central
authentication is increased maintanence costs. However,
the layering approach limits these costs to software written
and maintained by the customer. Vendor supplied
software is not modified and thus does not require
customer maintenance. If the vendor chooses not to
support central authentication in its products, this may be
the only way to achieve acceptibly secure distributed

terminal services.

The authenticator required the least implementation
effort even though it was written from scratch. Imple-
menting the terminal process turned out to be very time
consuming because of the complexity inherent in the
CTERM protocol, while the logon protocol was fairly easy
to implement.

4.1 The Logon Protocol

During the logon protocol design, a decision was
required whether to use the around-the-hom or RPC
technique. An around-the-hom logon protocol was
considered, but rejected for the following reasons:

« CTERM'’s asymmetry (allowing only terminal
processes to open a terminal session) makes it
difficult to implement an around-the-horn logon
protocol (see section 2.4).

» Implementing a separate virtual terminal protocol
for DECNET that provides the necessary features
for an around-the-hom logon protocol would be a
major undertaking. In addition to the costs associ-
ated with implementing a new virtual terminal
protocol, layering it on top of the VMS operating
system would be difficult.

 An around-the-horn logon protocol requires
communications between the authenticator and the
CLI as well as between the authenticator and the
terminal process. An RPC logon protocol only
requires communications between the authenticator
and terminal process. Thus, an RPC logon protocol
normally is simpler and quicker to implement than
an around-the-horn logon protocol.

However, because of the way CTERM works, the RPC
logon protocol has a number of disadvantages:

« Secondary user identifier and password data sent to
complete the logon process must pass through a
terminal process that is vulnerable to intruder
access (especially if the terminal process runs on a
workstation). Thus, it can be retained and used at a
later date, creating the compromise recovery
problems described section 2.3.

* To ensure logon control is maintained by the
authenticator, secondary password data must be
changed whenever a user’s access rights to a host
change. This requires a supplementary protocol by
which the authenticator requests secondary pass-
word data update by a remote host. The require-
ment for such a protocol somewhat offsets the RPC
logon protocol advantage of not requiring commu-
nications between the authenticator and hosts for
logon purposes.

» To accomplish logon, the terminal process must
maintain logon-phase state information indicating
whether the user identifier or password has been
sent and whether logon has completed successfully.
To determine changes in the logon-phase, the



program must examine character strings embedded
in the terminal session data sent by the remote host
that indicate the success or failure of the logon
process. If such strings change over versions of
VMS, modifications to the program will be neces-
sary to ensure correct operation.
The experience of adding a logon protocol to DECNET
leads to the recommendations for terminal service archi-
tecture design given in section 5.

4.2 Terminal Session Security-Level Labeling

Since VMS does not support security-level labeling,
each host can handle information at only one security-
level. All resources managed by a host are implicitly
labeled at this level. In addition, since DECNET network-
level messages do not carry a security-level, intermediate
hosts are unaware of the security-level associated with the
data they store-and-forward. These two characteritics
create a number of problems related to the support of
labeled terminal sessions.

When a logon request is received by the authenticator,
the security-level in the request is compared with the level
of the remote host (which is kept in an internal authentica-
tor table) to ensure their equality. This guarentees that
terminal sessions to that host always operate at its level.
However, the terminal process also runs on a host that can
process information at only one level. This implies that
the authenticator must ensure that the terminal and remote
host operate at the same security-level.

Strict adherence to the single-level host requirement
leads to severe operational inconvenience. In particular,
terminal sessions established from a particular terminal
can run at exactly one level and therefore must only
connect the terminal to hosts running at that level. If a
user needs to access hosts of different security-levels, the
use of separate terminals connected to different terminal
hosts is necessary, one terminal for each level. Obviously,
this is greatly inconvenient, especially if a user works
from his office.

A number of solutions to this problem are possible.
Security-level labeling could be added to VMS and
DECNET. This approach is cost prohibitive for VMS and
DECNET customers.

Terminals could be connected to user activated line
switches that physically connect/disconnect them to/from
different terminal hosts. When a user wishes to operate at
a particular security-level, he selects the appropriate
terminal line that connects his terminal to a host running at
that level. While this approach allows a user to contact
hosts at different security-levels by means of a single
terminal, it requires that offices or other areas containing
terminals are wired with multiple terminal lines. This is
both costly and contrary to modern trends that minimize
physical plant wiring. Furthermore, for each security-
level that a user might use, a separate terminal line from a
host operating at that level must be brought to the termi-

nal. This may not be physically possible, independent of
wiring costs.

Another approach is to use certain hosts as trusted
terminal muitiplexors (fig. 5). Since VMS, like most

Security-Level B
ity-Leve! Host
Host |
Host Host .
/\ Security-Level C
HOSt\ Host Host
Host ‘
Authenticato:
Trustpd Terminal
Multiplexors

42 4

Multiplexors

Fig. 5 - Using trusted terminal multiplexors to support
security-level labeling

commercially available operating systems, has a number
of security vulnerabilities, no programs written by users
other than trusted system programmers should be allowed
to run on the multiplexors. This requires that all logon
requests to the multiplexors (other than from a directly
connected operator console) be denied. All terminals
supporting the establishment of terminal sessions at more
than one level must be connected to one of these trusted
terminal multiplexors. To ensure that primary password
data does not travel through vulnerable hosts, each trusted
terminal multiplexor must be directly connected to the
authenticator. In addition, the CTERM program must be
trusted to separate terminal session data so that informa-
tion at different security-levels is not mixed and DECNET
must be trusted to separate transport-level connections.

The trusted terminal multiplexor approach also can be
used to overcome the lack of security-level labeling in the
DECNET network-level protocol. Hosts operating at a
particular level can be segregated into sub-networks by
connecting them only to other hosts operating at that level
or to one or more multiplexors. In this way data traveling
through general purpose hosts is always at the same
security-level. Data traveling through the multiplexors is
of multiple levels, but they only run the CTERM program
which is assumed to properly segregate terminal session
data.



While the trusted terminal multiplexor approach is
viable, it is only partially satisfactory for the following
reasons:

= Secure operation involves trusting the CTERM
program. While written to separate terminal
sessions, critical review of its structure is necessary
to develop confidence that it achieves this objec-
tive.

 Secure operation also involves trusting VMS not to
mix data from separate DECNET transport-level
connections. While this is probably a safe assump-
tion, a detailed analysis of the relevant parts of
VMS and DECNET implementations is necessary
to develop confidence that this is true.

 The trusted terminal multiplexor approach imposes
network topology constraints that may not be
possible or may be very costly or inconvenient in
some operational environments. Requiring the
connection to trusted terminal multiplexors of all
terminals that support multiple levels may impose
costly plant wiring or equipment upgrades of the
network. Segregating hosts into sub-networks
operating at a single security-level can be costly
due to the increased network connectivity required
(nearby hosts may not be allowed to store-and-
forward traffic through each other), the increased
failure sensitivity of the star-like network topology,
and the separation of host functions (i.e., multi-
plexor hosts and general purpose hosts) that may
underutilize distributed system resources.

Distributed system and operating system designers must
become aware that security-level labeling is an important
design issue. Retrofitting operating systems and distrib-
uted system protocols to support security-level labeling is
non-trivial. Supporting applications that require security-
level labeling with operating systems and protocols
lacking this service leads to clumsy and inconvenient
operational constraints such as those described above.
Designers who wish to allow their systems to operate in an
environment in which security-level labeling is important
should include this security service in their initial designs.

5. RECOMMENDATIONS

5.1 Requirements for Layering Central Authentication
on an Existing Terminal Service Architecture

This effort identified general characteristics of a
terminal service architecture that are necessary for central
authentication layering to be successful. Specifically:

o It must be possible to implement the virtual
terminal protocol or at least the terminal session
establishment phase of the protocol in a user
process. If terminal session establishment is carried
out solely by operating system code, protocol
implementation changes necessary to contact the
authenticator cannot be made without modifying

the underlying operating system. Such changes
violate the layering objective.

« If primary/secondary user identifiers and passwords
are used, host password management interfaces
must allow externally controlled password update.
If the remote host updates passwords, the authenti-
cator cannot maintain the proper mapping between
primary and secondary data, since notification of
password update returns to the host to which the
terminal is attached rather than to the authenticator.
Allowing the terminal’s host to forward the new
password to the authenticator would introduce a
denial of service hazard whereby a compromised
host could completely change the authenticator’s
password data base (i.e., by sending a bogus update
message for each user in the distributed system).

* For general central authentication service, the
virtual terminal protocol cannot be tied to a
particular network-level mechanism. This type of
limitation is present in the LAT protocol.

5.2 Recommended Terminal Service Architecture
Features for Embedding Central Authentication

While the feasibility of layering central authentication
on an existing terminal service architecture was demon-
strated, the results indicate that central authentication is
more efficiently, conveniently and maintainably supported
when it is an embedded service. To support such service,
the architecture should possess certain features. In
particular:

 The use of an RPC logon protocol is preferable
when the virtual terminal protocol does not support
terminal session establishment from the host/CLI
side. Since RPC logon protocols based on reusable
authorization information are susceptible to
compromise control problems and since RPC logon
protocols that rely on trusted terminal multiplexors
are impractical in many environments, virtual
terminal protocols should support host/CLI side
terminal session establishment. This allows the use
of an around-the-hom logon protocol which has
superior password compromise recovery properties.
However, use of an around-the-horn logon protocol
requires a mechanism whereby terminal processes
can discriminate between valid and bogus responses
to their logon requests. For example, the LINCS
stream number mechanism [5] provides the
necessary service to accomplish this.

« If an around-the-horn logon protocol is used, some
mechanism must guarantee that authorization
requests come from the authenticator. If the
underlying connectivity of the distributed system is
properly protected, source address guarantees are
possible. If such protection is not available,
message authentication based on encryption
techniques [8] can be employed.



« The provision of a central authentication service is
more convenient if CLIs are explicitly designed for
such operation. CLIs that are expected to operate in
environments that support central authentication, as
well as in environments that do not, should be
designed to separate their implementation into a
module that handles logon and one that performs
other services. Clean separation of the logon and
command language interpretation functions allows
different styles of logon to be supported by replac-
ing the logon module. Module replacement by
customers should be possible so that they can
employ authenticator and logon protocols suitable
to their needs.

« If a distributed system is to operate in an environ-
ment in which security-levels are required, its
protocols and host operating systems should
support security-level labeling. Layering a labeling
service on top of existing distributed system
services is difficult and leads to unsatisfactory
operational requirements such as the use of trusted
terminal multiplexors.

In addition to these requirements, those designing
terminal service protocols should consider combining
logon and virtual terminal protocols. Logon is viewed
most effectively as the secure establishment of a terminal
session; while logoff is best viewed as terminal session
closing. Separating terminal session opening activity from
other terminal session support services by means of a
logon protocol obfuscates and complicates terminal
service provision. New research and standards activity is
required to develop and promulgate second-generation
terminal service protocols that provide logon as well as
virtual terminal services.

6. FUTURE DIRECTIONS

This paper describes and analyses one approach to the
secure logon problem in distributed systems managed by a
single authority. However, the work described here was
conducted as part of an investigation into logon support in
multiply administered distributed systems. A brief
description of the relationship between the two problems
is now given.

Solving terminal service security and password manage-
ment problems in a multiply administered distributed
system is possible by partitioning it into singly admini-
stered parts called administrative domains {14]. Within
an administrative domain, central authentication is used.
Logon between administrative domains is possible by
using inter-authentication-domain (IAD) gateways and
an IAD logon protocol in the way now described.

Inter-authentication-domain logon uses the central
authentication services of three administrative domains: 1)
the administrative domain in which the terminal is located
(the terminal AD), 2) the administrative domain in which
the user’s password is stored (the authenticator AD), and

3) the administrative domain in which the remote host is
located (the host AD). These administrative domains
need not be distinct. For example, the terminal AD and
host AD may be identical.

Logon between administrative domains utilizes an
around-the-hom logon protocol and proceeds as follows.
The logon protocol of the terminal AD is used to forward
a logon request from a terminal to its IAD gateway. The
IAD gateway determines the location of the authenticator
AD from information embedded in the user identifier
given in the logon line. The gateway then forwards an
IAD logon request to the authenticator AD. The IAD
gateway of the authenticator AD receives the logon
request and uses its logon protocol to authenticate the
request. The gateway then determines the host AD from
information embedded in the host identifier given in the
logon line. The gateway forwards an IAD authorization
request to the host AD. The IAD gateway of the host AD
uses its logon protocol to logon to the remote host. It then
returns an IAD logon response to the terminal AD
gateway. The terminal session established by the logon
protocol begins at the terminal, continues through the
terminal AD and host AD gateways, and ends at the
remote host. A full specification of the IAD logon
protocol is contained in [11].

7. ACKNOWLEDGMENT

The author would like to express his gratitide to Brian
Cabral, John Fletcher, Tony Genovese, Alex Phillips and
Dave Wiltzius for their helpful comments and aid in
carrying out the central authentication layering effort.
Special thanks is given to John Fletcher for his help in
understanding the central authentication problem. Thanks
is given also to Dick Watson whose useful comments
greatly improved the paper’s organization.

8. REFERENCES

{1] B. Anderson. G. Ruth, P. Ditmars, S. Eisner and J.
Delsignore, “TAC Access Control System Proto-
cols,” BBN Tech Memo CC-0045, BBN Communi-
cations Corp., Cambridge, MA, Aug., 1985.

[2] 1. G. Fletcher, “Combination checker software,”
Lawrence Livermore National Laboratory internal
working document, Aug., 1972.

[3] J. G. Fletcher, “How the network works,” Lawrence

' Livermore National Laboratory Report UCID-
30072, Oct., 1972.

[4] J. G. Fletcher, “LINCS interactive terminal proto-
cols,” Lawrence Livermore National Laboratory
internal working document, 11 July, 1983.

{5] John G. Fletcher, “Stream numbers,” Lawrence
Livermore National Laboratory internal working
document, August 9, 1985.

10



[6] John Forecast, James L. Jackson and Jeffrey A.
Schriesheim, “The DECNET-ULTRIX software,”
Digital Technical Journal, No. 3, Sept. 1986, pp.
100-107.

[7]1 J.E.Israel and T. A. Lindon, “Authentication in
office systems,” ACM Trans. on Office Systems,
Vol. 1, No. 3, July, 1983, pp. 193-210.

[8] R.R.Jueneman, S. M. Matyas and C. H. Meyer,
“Message authentication,” IEEE Communications
Magazine, Sept., 1985, pp. 2940.

[91 S.T.Kent, “Security in computer networks,”
Chapter 7 in Protocols and Techniques for Data
Communication Networks, ed., F. F. Kuo, Prentice-
Hall, N.J., 1981.

[10]F. Magnee, A. Endrizzi, and J. Day, “A survey of
terminal protocols,” Computer Networks, Vol. 3,
No. §, Nov., 1979, pp. 299-314.

[11]D. M. Nessett, “The inter-authentication-domain
(IAD) logon protocol (preliminary specification and
implementation guide), Lawrence Livermore
National Laboratory Report UCID-30207 (Rev. 1),
Nov. 12, 1985.

[12]1 D. M. Nessett, “Factors affecting distributed system
security, Proc. 1986 IEEE Symposium on Security
and Privacy, Oakland, CA, April, 1986, pp. 204-
222, also appears in IEEE Trans. on Software
Engineering, Feb., 1987, pp. 233-248.

[13]J. S. Quarterman, A. Silberschatz, and J. L. Peter-
son, “4.2 BSD and 4.3 BSD as examples of the
UNIX system,” ACM Computing Surveys, Vol. 17,
No. 4, Dec. 1985, pp. 379-418.

[14] R. W. Watson and J. G. Fletcher, “An architecture
for support of network operating systems services,”
Computer Networks, Vol. 4, No. 1, Feb., 1980, pp.
33-49,

[15]1R. W. Watson, “Requirements and overview of the
LINCS distributed operating system architecture,”
Proc. 13th CRAY Users Group Meeting, Paris,
France, April 25-27, 1984. Also available as
Lawrence Livermore National Laboratory Report
UCRL-90906.

11



