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ABSTRACT 
The stabilizing influence of diamagnatic drift effects on Ideal and 

resistive interchange nodes is investigated. A resifctive-ballooning-mode 
equation is derived using a kinetic theory approach and ia applied to a 
cylindrical model spheromak equilibrium. It is found that these kinetic 
effects can significantly improve the 6 limits for collislonless interchange 
stability. For the resistive modes, the diamagnetic drift terras lead to 
growth rates which scale linearly with resistivity and are considerably 
reduced in magnitude. However, the resistive Interchange growth rates 
estimated for near-term apheroraak parameters remain significant. 
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I. XMTKODUCTIffil 

It is wall-known that tha stability requirements for interchange-type 

modes can strongly influanoa tha naxinua value of bata (ratio of plasaw 

praaaura to magnatic praaaura) achievable in magnetically confinad plasties. 

The idsal MHD properties of thee*; Instabilities for tha spheroaak (or compact 

torus) configuration have baan oalculatad in racant work by Jar din.1 Mrs it 

was found that for Boat oaaaa of intarast a cylindrical nodal spheroaak 

equilibrium provides a good approximation to tha actual toroidal systeat. In 

the present paper we will consider tha Influence of kinetic and resistive 

effects on radially-localised interchange Modes for thia cylindrical 

configuration. 

The spheroaak configuration is a scheme for crafining a plaeaa in a torus 

without external magnetic field coils linking the V/rus. The plasaa carries 

its own poloidal and toroidal currents to generate its internal toroidal and 

poloidal magnetic fields. Consequently, there is no toroidal field outside 

the spheroaak and the safety factor q ia aero at tha edge of the plaaaa. Tht 

cylindrical nodal for the spheroaak can be conceptually viewed In the save way 

aa for the tokamak. The torus (of aejor and minor radii R and a) is cut at 

one toroidal location and straightened into a cylinder of radius a and length 

2uR. A single model for q in a spheroaak is q(r) - t^ (1-r 2/a 2). The 

reversed-field-pinch (RFP) is closely related to the spheroaak. It has a much 

larger aspect ratio (R/a) and has external toroidal field colls which reverse 

the toroidal field at the edge of the plasma. A simple q-profile for the RFP 

is q(r) « e^d-r 2/!) 2), where b < a so that q changes sign. Note that dg/dr 

for a sphercoak has the opposite sign from dq/dr for a tokaaak. 

One night at first suspect that using a: cylindrical model of the small 

aspect ratio spheroaak W « ~ 2) would not be appropriate since toroidal 
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effects are known to be important for many modes. However, this simple model 

proves to be quite adequate when dealing with interchange type 

instabilities. This is due to the f&ct that since g < 1 In spheromaks,, the 
2 average field curvature is already unfavorable. Hence, in contrast to 

tokamaks (where q is maintained above one over most of the discharge), the 

poloidal variation of field curvature associated with toroidal effects will 

introduce generally negligible corrections to interchange mode stability 

properties in spheromaks. 

In previous investigations of resistive and diamagnetic drift effects on 

interchange instabilities, the general approach has been to use the ideal MHD 

equations together with a modified Ohm's law equation including the resistive 
2 3 and Hall terms. ' This leads to a fourth-order radial eigenmode equation 

3 governing both resistive interchange and tearing modes. Coppi has noted that 

to study just the resistive interchanges it is convenient to carry out the 

analysis in k-space (with k being the radial wave number). The resultant 

eigenmode equation is a second order differential equation which has the sane 

structure as the one derived in Sec. II from a kinetic theory approach [Eq. 

(2.22)]. Working with this form, we analyze the kinetic stabilization of 

ideal interchange modes in Sec. Ill and illustrate the improved beta limits 

relative to the MHD results of Ref. 1. In Sec. IV we go on to calculate the 

diaTnagnetie drift effects on resistive interchange modes and estimate their 

growth rates for representative spheromak parameters. Finally, the results 

from our studies are briefly summarized and discussed in Sec. V. 

II. THE KIHETIC-RESISTIVE-BALLOONING EQUATION 

A systematic procedure for calculating the influence of kinetic effects 

on collisionless ballooning modes for general geometry has bee.i presented in 
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earlier work- The present derivation of the raaiativa ballooning "Ode 

equation follows this procedure tilth the iaportanc exception that a aodel 

Krook operator haa been added to account for colllalonal dissipation. 

Ballooning nodes are characterised by abort perpendicular and long 

parallel wavelengths, k, »•>-., ao that an elkonal representation for all 

perturbed quantities la appropriate, I.e., 

(iMi) * <2.1) 

where Vs - k. accounts for the rapid cross-field variations and t, •, 
* 

and h account for the alow variatlona along tha fie'.d line. Hare f ia the 

perturbed particle distribution function, and t a n 4 X are the perturbed 

electric potential and magnetic vector potential* 

In order to aatiafy n • k. • 0 avarywhare {n 3 i/\&\ is direction of the 

magnetic field), k, must very along the field line. Specifically, since 

7 (n • k x) - n • Vk^ + (Vn) • k^ = 0 , (2.2) 

we can write 

it. n • 7 k^- -(Vn) • k x (2.3) 

where * la the distance along tha field line. In cylindrical (r, 6, m) 

geometry, the solution to Xq. (2.3) is 
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B_ _. » a k V - V - r f t e - r 9 + > ) <>•*> 
Hera k e is a constant, B s and B f l ar« components of the lugnatlc flald in the 

axial and ariauthal directions, q = rB£/RBg Is the safety factor, and q* » 
»• dq/dr. Note that the radial component of k, varies along the field line 

because of shear (q* i* 0). 

The slowly varying amplitudes f, $, and A are related to each other by 

the gyroklnetlc equation, the quaslneutrallty condition, and Ampere's law. In 

this paper we will restrict our attention to modes with k^p. « 1 and take the 

equilibrium distribution function to be Maxwellian, F^. With these 

assumptions, the gyrokinetic equation Including a Krook collision operator 

is 4" 6 

v, H - Kui - k x • Vj)h - -v^h - ̂  J d3vhj - iF^u - «J 
o 

* 2 " ? v. eA. av. 6B, 

Quasineutrality and the two relevant components of Ampere's law are 

2 
n e j . 

« Z - H — - I e J d vhj , (2-6) 

and 

k,2A. - — I e Jd3vhv,J , (2.7) 
l i e • o 

2 
» " "V. 

5B„ - -4w S / d vh -55- . (2.8) 
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In these equations, h(I, U, a, 1) is the nor.adiabutic part of the perturbed 
distribution function, where the independent variables are the 

2 2 
anargy B • 'i/2 + uB, the magnetic iaoment V - r,/2B, and </ • sign (v.). 
v. and v. are the parallel and perpendicular components of the particle 
velocity, and v& is th* guiding center drift defined as 

•g n >t {|î B + v, 2n • VR) (2.9) 

where i> = eB/nc is the gyro frequency? e, m, n Q, and T are species charge, 
mass, density, and temperature; E means summation over species; and /d3v is 
integration over velocity space. The aode frequency I m » i^ + iy, where Y 
is the growth rate, and Y > 0 for instability. The collision frequency is 
represented by v, and the dianuignetlc drift frequency la defined as 

W* * el *0.'!-n x '*" no) ' {2.10) 

{He have ansvmed VT - 0 consistent with the use of a sinple form of the Krook 
operator uhich does not conserve energy.) A. and '3B, are the parallel 
components ot the perturbed vector potential and the perturbed magnetic 
field. finally, the Bessel functions in Eqe. (2.6) and (2.7) are expanJad in 
the small k ^ limit, i.e., J Q « 1 - lxJy,^/«a2J for ions, while J 0 - 1 for 
electrons-

He derive the resistive ballooning equation in the regima where ions are 
fluidlike and colllalonless while electrons are adiabatic and collisional. 
The frequency ordering for this regime is 
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v l K< Vfei <<C V ^ " " " « < < Vte ** ve * 

Here vfc Is the theraal speed and subscripts 1 and a denote Ions and 

electrons. Drift waves are ordered out of the problem by setting I. • O to 

lowest order. This iaplies V. • ~ (ut/c) A. and (v./c)(«A./Tj » e+/T for 

electrons while the opposite inequality holds for ions. 

To calculate the electron response we first introduce the small paraaetar 

E -((u/kjV J ~ [k ,vfc /v J « 1, and expand the distribution function h - h 0 + 

sh1 -f e 2h 2 + . . . . Eq. (2.S) to lowest ordor in e yields 

h - -2 J d3vh - -2 n , . (2.11) o n ' o n e1 o o 

It la necessary to go to higher order to determine n e 1. The first and second 

order equations are 

3h « F » v. *A, 
*i W 1 - "vihi - r / ^ • " . l - ' V J T T <2'12' 

v l I I - " i ^ - k l ' v d > o - " ^ h 2 - r ' d V h

2 J " * F > • "•) 

mv 2 6B 

fiJ"*-^^ ' <2'»> T 2 T B 

These two first-order differential equations can be contained into a single 

second-order differential equation after operating on Eq. (2.12) with 

Jd v v. and on Eq. (2.13) with Jd3v. The resultant single equation becomes 
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k 2 »n . 4w n e 2 

1+inc k,/4*l<«Htt)# J T o 

* » 0 ( ' * - % K - - ^ + -71JJ 12.14) 

where 

D V e e n - 2 n e o 

\ - lsn- J Ji' W * *JJ 

and 

F 

o 

In Eq. (2.14), we have made use of the fact that the ion contribution to 

the parallel current is negligible so that Eq. (2.7) becomes 

A, - - ̂ - j |e| Jd 3vv, h 1 o . (2.16) 
c k l 

Now consider the ion response, which to lowest order is 

J. dl 1 

In order to take velocity assents of h^ easily, we aseuaa Uj, < u> and 

expand 
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In addition to the no*ent given by Eq. (2.15), quaslnautrallty and JWpere's 
law make uee of 

f * 2 k, "v., m.v, to.. + <iL. 1̂ 3 r, 1 dl 1 1 di Bl .„ ... Id v F — — — - n . (2.18) 

Further simplification results from noting that fiB./B - Be4>/T,, and assuming 
0 « 1. After some tedious but straightforward algebra, Eqs. (2.6) and (2.8) 

2 2 
yield to first order in B, Ujj/W, and k^ S>. 

SB, n . T < ^ - ^ , 
» el , to , |. ,2 a i *i, e| $ II el , to 

T B n '•ut-ui^ •"• 1 „ _ 2 l4>-u. ' e o *e H.JJ *e 

- r-llu - or, luv, + (UL. - (i). l(u_ - to HI 
(<*-<», )w l *1 de v *i **•"• ae n e J 1 J 

(2.19) 

Combining this result with Eq. (2.14) produces the kinetic-resistive-
ballocning equation 

2 

k [ , 2 » \ , — : - ^ J + - r ^ i 2 -«- - %> 
i+inc k ± /4n(u)-<o# ) v 

2M n 2 

T, id * p J e1 

(2.20) 

with 
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V. 
> B 2 
A 4mn M ' % *l *• 3. o i 1 % " % % " X im*L " V ' »•"> 

and 

n T, 
S - o 1 

1 B2/gi. 

Up to this point, no assumptions about the Magnetic geometry have been made. 

In the limit where n , w» i r and u*e are all zero, while u, la retained. Eq> 

(2.20) reduces to the ideal ballooning node equation. 

In cylindrical geometry, ^j.^) 1" 3i**n by *S« (2-4), and Kq. (2-20) 

reduces to the kinetic-resistlve-intarchange aquation, which in dlir.«nsionlass 

form is 

(2.22) 

Here, x is the distance along th* field line normalised to the shear length 

a"1, JC - BH, a - <q,/q)lB8Bz/B2J, k 2 - k 2 (1 + x 2>, I:2 - (»2/r2> + 

(n /R ), and n - m/g. Bie poloidal and toroidal node numbers axe m and n, R 
•» 

ia the major radius, the characteristic Alfven and resistive frequencies are 

Y. - ST. and 1 «(TW /4itjk . The variable D is known as guy da-*** parameter. 
A £. it O 

Ideal HUD interchange nodes ace unstable if D > 1/4 with D » -[ewBo/s rB ) * 

(dp/dr) and p » n (T + T.). Zquation (2.22) is of the form 

~ >(x) H J + B(x) * - O . 
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Substituting iji • A~ ' 2 $ alialnatas the first derivative tarn/ yielding 

^-4 + Blx.u) $ - o (2.23) 
3x2 

fi(x,w, - l E +-2-JL1 + let, + x 2)J - t * i e < 1 y t 2 > ( t - 3 " a » . 
1+JC (i«rrti+ie(i-Hc )] 

• • 

U)( IH-lO.j ) 
• • 

* 

E «B 
T R 

The elgenfrequency <o must ba chosen to satisfy the boundary conditions $ * 0 

as x * ± ". We have used a shooting code to solve numerically Eq. (2.23) and 

to study the dependence of u on the parameters D, Y A, YR» ®*tt °nd tû  . These 

results are discussed in the next two sections. 

III. KINETIC EFFECTS ON IDEAL INTERCHANGE MODES 

In the absence of collisions 0. becomes real and Eq. (2-13). can be written 

in a form reminiscent of the Schrodinger equation of quantjm mechanics, i.e., 

•2-| + [E - V<X)J * - 0 (3.1) 

Co-o^) 2 

E -

\ 

(1+X 2) 2 1+K* 4 ^ 

An instability exists only if the energy E is negative. In the MHD limit 

<i>#, - 0, negative enerny requires a potential well deep enough <D large 
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enough) ao that L bound atata exists. Asymptotic analysis of Eq. (3.1) 
between the. turning points <f the wall, D/B » x 2 » 1/D > 1, leads to tha 
requirement that D < 1/4 for stability (Suydan1* criterion). 

When 'J*t is not zero, suydam'a criterion is relaxed. The u ^ tsrm in V 
la positive and pushes the energy upward toward stability ao that the well 
must be even deeper before tha mode is unstable. Thft growth rata y 2 - - Y^ E 
can be expressed as 

S - im> , D> ~ i w n {3'2) 

where Y M H D is the growth rata found by (solving Eq. (3.1) in the MUD limit 
u)*^ - o. Kulsrud'' •" found an asymptotic approximation for Y^HD ^D' which is 
plotted in Fig. 1. f-ir results with the numerical shooting codo are in good 
agreement with the analytic solution. A typical numerical solution of Bq. 
(2.22) in the colliaionleas limit is plotted in Fig. 2. As D falls, the mode 
becomes more extended along tha field line. 

The stability criterion is now 1^1/2 > YMJJQ (D). Because Y ^ Q 
exponentially falls vary rapidly aa D approachea 1/4, even snail values of u^^ 
allow significant relaxation of Suydam'fl criterion. Since iî j « dp/dr « D,' it 
is convenient to divide the stability criterion by D to get 

n 1 dq. j __c IqStr/R;'] , / 2 YMHD t P ) 

4 dr r (u . 1 + T /T. D Y. ' ' ' 
pi*. e l A 

upi " i^^e^/m^)^^ is the ion plasma frequency. 
Equation (3.3) is a local stability criterion and gives the maximum 

allowable D at every point in the minor radius r. A simple axample will 
illustrate the significant relaxation of Suydaa's criterion. He consider here 
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the parameters expected for the S-1 apheroMk: nft • 10'* on"3, R - 45 cm, a -

25 cm, T a - Tj_, and parametrize q by q(r) » (a/R) £1-r 2/* 2). From Eq. (3.3) 

and Fig. 1 we find that the plasma is stable against all interchange modes 

With li > 1 as long as D < 0.375 everywhere. Ne-.r thvi edge of the plasma, 

where the density is lower, the critical value for D is even larger than 

0.375. The B limits Implied by Eq. (3.3) are therefore at least 50% higher 

than the limit given by Suydam's criterion. 

The improvement in 0 made possible by û  effects is Illustrated by Fig. 3 

which is adapted frore Ref. 1. Here we plot pg versus q̂ ,, where q is assmed 

of the form q(r) •» q Q (1 - r 2/a 2), and $ 6 is defined by 

J o dr r p 

*B " £ * *2 *> ' 
The Bg limit infilled by Suydam's condition 13 given by the broken curve. If 

diamagnetic drift effects allow D to be 0.375, then the 6 9 limit is given by 

the higher solid curve. Also plotted In Fig. 3 is the 8g limit found by 

Jardin1 for stability against flnite-n modes with a conducting wall at the 

edge of the plasma. An Important area for future research would be to assess 

the Influence of u» effects on L ase mode3. Specifically, it would be 

interesting to determine whether the 3 limits for stability against finlte-n 

modes would improve as significantly as they do for high-n interchange modes. 

IV. KINETIC EFFECTS ON RESISTIVE INTERCHANGE MODES 

Although magnetic shear can stabilize the ideal (collisionless) 

interchange modes, it cannot provide stability for resistive interchange 

modes. . Resistivity allows field lines to slip through one another and leads 

to instability whenever D > 0. 
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An illustrative solution of th* full resistive interchange aquation, Eg.. 

(2.23), ia plotted in Fig. 4. The paraiiatar values taken are Y A - 3.5 x 10* 

aec - 1, Y R - 7.1 * 10 3 scoT1, %,m - -w»A - 8.5 x 10 4 aac"1, and D - 0.0755. 

The growth rata m a found to ba 5.7 * 10* *ac - 1 while tha real part of tha 

frequency waa much anallar, (i>e - 7.6 x 10J a^c - 1. These values ere typical 

for an tn-10 mode localized naar r-*/2 in a spharoaak plasma with parameters 

given in Una 1 of Table I. tor smaller value* of raaiativity, tha eigenaode 

becomes mora axtandad along th* fiald Una. 

The growth rate dapenda on five independent variables, This dapendenee 

is conceptually simplified by considering Eq. (2.23) as an eigenvalue problem 

for B, while D and e are treated a« independent parameters, wa nvmrically 

solved Eq. (2.23) to find E for many different valuea of r and e (Figs. 5 and 

G). In the limit of snail | E| and D (i.e., small resistivity and small 

pressure gradient), the numerical results are simply summarised by E - - ie 

D , which leads to the dispersion relation 

u[u - lu.jlto - ",eJ - iT H Y*D2 • (4.1) 

This cubic equation has one unstable root. There ara other modes with growth 

rates not given by Eg- (4.1). However, this appears to be the moat unstable 

mode. 

The solution of Eq. (4. t) is plottad in Fig. 7 as a function of k 0 (U* 

**o' ^R * ko 2» w*e " ~ u»i*' I n t n e li"it î» << u, we recover the well-known 

resistive MHD growth rata 

? • • • • • ^ • c-> 
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In the opposite limit ui» >> ui, the growth rate is greatly reduced and scales 

linearly with Y R 

|2 \ i ° 2 -. ^'«./*iJ2 

. \ i n " " I JT V . , „ ,A ,2 ' <*'3> 
u 4 J L i (.Rflq/dr J 

Notice that the true growth rate Y is always less than Y^p and Y k l n , and that 

\ l n is independent of k Q. in a hot plasma Y k i n is usually the appropriate 

approximation for y, and a convenient numerical formula is given by 

Y < \ i n " I — T r V = 5 J l T ^ v J " V 2 l R £ r * 10 3 . e c - 1 . , 4 . 4 , 
10 cm 

Table I compares order-of-magnltude grr/wth rates for various plasma 

parameters. In evaluating Eqs. (4.1) — (4.3) we have set r - a/2, tip/dr » 

p/a, dg/dr - q/a, n • 1/q, and m - i. Hie growth rates for higher m modes 

will be larger than Y(m » 1) and smaller than Y. . « For parameters 

appropriate to apheromaks in the near future, the grout. rates cf the 

resistive interchange modes appear to be significant < The 1%. corrections can 

be important for high mode numbers. Parameters achieved in the reverse field 

pinch ZT-40M are used in the second line of Table I. ' The predicted linear 

growth rates are significant compared to the lifetime of the plasma, 

indicating that some nonlinear mechanism is probably preventing tlie growth of 

the these modes above a certain amplitude. The last line is for a conceptual 

spheromak D^P reactor and indicates that the cq» effects can significantly 

reduce the growth rate in a hot plasma even for relatively small mode numbers. 

The kinetic-resistive-interchange equation, derived in the ordering 

k.v. . << w << kjv. « v e ±, always predicts instability when the pressure 

gradient and resistivity are non-zero. Finn _et £!• arrive at the same 
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prediction of instability using the fluid equation* in the limit P - o, where 
r la the ratio of specific heats. However, for realistic T <~ 1), they find 
that the associated coupling to the acouatic branch, along with u* effects in 
the generalized Otm's Law, can lead to stability t\ < 0) for sufficiently 
anall resistivity. Such affects could also be analysed with the kinetic 

t 
approach by relaxing the k|» t£ << * assumption. 

I V. CONCLUSIONS 
I 
I In the present paper It has been deaonatrated that by employing a 
S ballooning-type representation for the perturbations of interest, the drift-
;: kinetic formalism leads to the sane basic elgenmode equation governing 

localized interchange modes as that obtained by conventional MHD procedures 
; with a Eodified Ohm'a law. For the cylindrical modal spheronak equilibrium,. 
i, 

solutions to this equation indicate that in the Ideal tcollislonless) limit, 
the usualL Suydan constraint, D < 1/4, can be substantially relaxed when u» 

I effects are taken into account. Specifically, fes rapreaentatlve parameters, 
f 
\ the critical 6 e for ideal interchange stability can be enhanced by 50%, The 

effects of the diamagnetic drifts on finlte-n mode remains to be worked out. 
It is well-known that resistivity can destabilise interchange nodes in 

the D < 1/4 reglae. Bar* It la found that the kinetic effects can 
substant'ally reduce the magnitude of these growth rates and produce a 

r, transition in scaling from V ' 3 to n. Further refinement of the kinetic 
approach to include coupling to aound waves may completely stabilise the 
resistive interchange modes at high enough temperatures.2 nevertheless, 
growth rates calculated from parameters typical of the S-1 apheromak Indicate 
that resistive interchange modes can remain significant, this points to the 
need for a nonlinear analysis estimating their saturation and the associated 
enhanced transport in order to assess the' importance of these resistive 
instabilities. . '• 

" r 
<4i 
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TABLE 1 

q * R T- V B «~" Wr 1' rkl 
J> (K ̂ un) (••c"1} (sac_1) (»ac 1) (cm) (en) (av) (em 

0.25 25 50 150 1.0 * 1 0 U 8.0 1.6 * 10 4 1.7 x 10* 7.1 x 10 4 

0.09 20 114 :?00 1.5 x 1o 1 3 2.5 7.1 x 10 3 2.8 x 10* 7.2 x 10 3 

0.25 200 400 15000 1.7 x 1(|1* 50.0 1.6 x to 2 9.0 x 1Q2 1.6 x 10 2 

\> 
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FIGURE CAPTIONS 

PIG. 1. Comparison cf numerical and analytic calculations of the growth rate 

given by ideal MHD. 

FIG. 2. The eigenmode • and the potential -Q - V-E for an ideal MHD 

interchange mode. 

FIG. 3. Pg limits for stability. The broken curve is Suydam's criterion. 

The solid curve assumes that w # effeeta relaxes Suydam's condition to 

D < 0.375. The dashed curve is for finite-n modes with a conducting 

shell at the plasma edge (taken from Ref. 1 ). 

FIG. 4. The eigenmode <fr and the potential -Q for a resistive kinetic 

interchange mode. 

FIG. 5. Numerical results showing the relationship between E and E f o r fixed 

D. 

FIG. 6. Numerical results showing the relationship between E/E and D for 

small |s|. 

FIG. 7. Scaling of the growth rate with k illustrating the MHD limit and the 

kinetic limit. 
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