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ABSTRACT

The atabilizing influence of dJiamagnetic drift effeuts on ideal and
resistiva interchange modes is investigzted. A resistive-ballconing-mode
equation iz derived using a kinetic theory approach and is applied to a
cylindrical model spheromak equilibrium. It is found that these kinetic
effects can sitmificantiy iwmprove the § limits for collisionless interchange
atability. ¥or the resistive modes, the Adiamagnetic drift terms lead to
growth rates which scale linearly with resistivity and are considerably
reduced in magnitude. Howaver, the resistive interchangs graowth rates

estimated for near-term spheromak parameters remain significant.
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manufacturer, or otherwise does not nccessarily constitute or itaply its endorscment, rocom-
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I. INTRODUCTION

It is ﬂll-knclmnﬁ that the l';tl.bility‘ roq;.llr-nt. for intarchange-type
modes can wtrongly influence the maximm valus of beta (rntit; of plasma
preassure to magnetic pnnuxj-.)‘ achievable in magnetically confined plau;.
The 1d=al MHD prcpsrties of thut:‘ instabhilities for the spheromak (or coquét
torus) configuration have b;on calculated in recent ﬁork by Jardin.'! Here it
was found that for moat cases of interest a oylindrical model sph‘ro-nk
equilibrium provides & good approximation to tha actual toroiﬁll syatex. In
the present paper we will consider the influence of k!.n‘-';'ltv.:‘ and resistive
effects on radially-localired interchange wmodes for this cylindrical
configuration.

The spheromak configuration is a -eiuno for ccufining a plasma 15 a torus
withont external magnetic tield coils 1linking the %urus. The plasma carries
its own poloidal and toroidal currents to generate its internal toroidal and
poloidal magnatic fields. Consequently, thcre is no toroidal field outside
the spheromak and the safety factor g is zero at Q:!l.. edga of the pla‘-l. The
cylindrical model for the spheromak can ba conceptually viawed in the same way
ag for the tokamak. The torus (;:f major and minor radii R and a) is cut at
one toroidal location and stralghtened into a cylinder of radius a and lsngth
21R. A simple model for g 1n a spheromak is ql{z} = q, (1-:2112)- The
reversed-field=-pinch (RFP) is clossly related to the spheromak. It has a much
larger aspect ratioc (R/a) and has external toroidal field coils which reverse
the toroidal field at the edge of the pli-l. A siwple g-profile for the RFP
is gq{r) = q°(1-r2/bz). where b € a so that g changes sign. Nole that dg/dr
for a sphercaak has the opposite sign from 4g/4dr for a tokamak.

Ona might at first suspect that uﬂ.nq & cylindrical mecdsl of the ‘&11

aspect ratic spheromak {R/a ~ 2) would not be appropzuﬁo since toroidal




effects are known to be important for many modes. However, this simple model
proves to be gquite adequate when dealing with interchange type
instabilities. ‘This i3 due to the fuct that since g ¢ 1 in spheromaks, the
average field curvaturs is already unfavorable.2 Hence, in contrast to
tokamaks (ﬁhsre q is maintained above one over moat of the discharge), the
poloidal variation of field curvature associated with toroidal effects will
introduce generally negligihle corrections to interchange mode stability
properties in spheromaks.

In previous investiqations of resistive and diamagnetic drift effects on
interchange instabilities, the general approach has been to use the ideal MHD
eguations together with a modified Ohm's law egquation including the resistive
and Hall terms.2’3 This leads to a fourth-order radial eigenmode equation
governing both resistive interchange and tearing modes. Coppi3 has noted that
to study just the resistive interchanges it is convenient to carry out the
analysis in k-gspace (with k being the radial wave number). The resultant
elgenmode equation is a second order differentlal equation which has the same
structure as the one derived in Sec. II from a kinetic theory approach [Eq.
{2.22)]. Working with this form, we analyze the kinetic stabilization of
ideal interchange modes in Sec. III and illustrate the improved beta limits
relative to the MHD results of Ref, 1, In Sec., IV we go on to calculate the
diamagnetic Arift effects on resistive interchange modes and estimate their

growth rates for representative spheromak parameterg. Finally, the results

from our studies are briefly summarized and discussed in Sec. V.

It. THE KINETIC-RESISTIVE-BALLOONING EQUATION
A systematic procedure for calculating the influence of kinetic effects

on collisionless ballouning modes for general geometry has bee. presented 1in
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earlier work.® The present derivation of the rseistiva ballooning mode
equation follows thig prucedure with the importani sxcuption that a model
Xrook opsrator has besen added to account for collisional diasipation.

Ballconing modes are characterized by short perpendiculer and long

parallel wavelengths; k 1 > k-l, so that an elkonal representation for all

perturbed guantities ls appropriate, i.s.,

is (2.1)
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where Vs = IL accounts for the rapld cross-field varictions and f. ;.
and : account for the alow variations along the fie.d line. Here £ is the
perturbed particls Aaistribution function, and $ and X ars the perturbad
electric potential and magnetic vector potential. ‘

In order to satisfy r: . il = 0 averywhere (r: E i/]ﬁl is direction of the
magnetic field), 4 | st very along the £i¢ld line. Specifically, airce

V(n-ﬁl)-n-ﬁtli-(vn)-):lso R : (2.2)

we can vrite

ok
L ~ + * +
= TR = (W) vk . (2.3)

vhere % 1s the distance along the field line. In cylindrical (r, 6, =)

gaometry, the solution to Xg. (2.3) is :
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Heres k= is a constant, 3, and By ars components of the magnetic fiald in the
axial and azimuthal directions, q = rB,/RBg is the safeiy factor, and q* =

dg/dr. Note that the radial cowponent of l+: | varies along the field 1line

bacause of shear (g' # 0).
*

The slowly varying amplitudes i, a, and A are related to each other by
the gyrokinstic equation, the quasineutrality condition, and Amperc’s law. 1In
this paper we will restrict our attention to modes with k lp:l. << 1 and take the
equilibrium distribution function to Dbe Haxwellian, LA With these

assumptions, the gyrokinatic equation including a Xrook collision oparato:r

14476
3]: * * ° = rll a-”
vl-a—z-l(w-kl-vd)h--v[h-n—o Jdvhj-irn[m-m.j
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Duasineutrality and the two relevant components of Ampere's law are

N n002 3+
QZT -Eejdvh.:lo, (2.6)
2" Arn 3" 9
kA== le Ja vhv 3, (2.7)

and

2

- it
6a|--4n:javh—i; . (2.8)
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In these equations, h(E, u, &, R) is the noradiabatic part of the perturbed
distribution function, where the indop-ndont. variables are the i

anergy B = vi/! + UB, the magnetic  wmoment i = vi/!l, and ¥ = sign v,

vy and v, are the parallel and perpendicular components of the pirticle
velocity, and ¥, is ths guiding center drift defined as

. > 1 2" - cd

Va=gn (B +v,"n + W) (2.9) ,

where §§ = eB/mc¢ is the gyro frequency; &, m, n,. and T are spacles chargs,

f mass, density, and tempsraturs; I means summation over species; and ]dsv is

integration over velocity gpace. The mode frequency 1is w = w. + 1y, where ¥

is the growth rate, and vy > 0 for instability. The collision frequency 1is

repregsented by v, and the diamagnetic drift frequency ia defined as

T 2 -
w =55 ki*lnxVan ). {2.10)

{We have ansumed VT = 0 coneistent with the use of a simple form of the Xrock

h oparator whick does not conserve energy.) A, and Gnl are the parallel
componenta of the perturbed vactor potential and the perturbed magnetic

field. ¥inally, the Bessel functionas in Eqs. (2.6) and (2.7) are expandad in o

the amall klpl limit, i.e., Jo=1- (kiviﬁlﬂzj for lons, while J, = 1 for
electrons.

We derlve the resistive ballooning equation in the regims where ions are
fluidlike and collisionless while electrons ars adiabatic and collisional.

The frequency ordori.iig for this regime is
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Hare v, is the thermal speed and subscripts i1 and e dJdenote ione and
alactrons. Drift waves ares ordered out of the prohles by setting !l = 0 to
lovest order. This implies k, § ~ (Wc) A, and (vt/c)(ngll'rj > ed/T for
elactrons whils the opposite inequality holds for ions.

To calcuvlate the electron response we first introduce the small parametar

€ ~[<u/k|vtej ~ [k lvt‘/v'j <¢ 1, and expand the distribution function h= h, +

thy + ezhz + + » » +« Eg. (2.5} to loweat ordor in ¢ yields

a Fm 3 A !‘
ho -"—o ] a vho --’Zn‘1 . (2.11)

It 1s necessary to go to higher ordar to determine Ngq* The firat and second

order equations are

31:0 - Em 3~ v a£|
"Il'a'z—""’{h1 -"; [dvh1J+1Fm(w-m.)-c—T (2.12)
3 . . F .
1 > = 3
vy ST - 1w -k - vtho - -v[hz -;—Efdvhz] -1 Fﬁ[m- w,)

mv_l.2 ;|

X [—e: + 7 ‘B—l} « (2.13)

These two first-ordar diffarantial equations can be coambined into a single
second-order differertial eguation after opsrating on EBq. (2.12) with

jd’v v, and on Eq. (2.13) with Ja®v. The resultant single equation becomes
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o
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and
3 Fu > he
Uy =0y + @ = ]dv;;{kl 'vdj . (2.15)

In BEg. {2.14), we have made use of the fact that the ion contribution to

the parallel current is negligible so that Bg. {2.7) becomes

- 411 3 -
Ay == le] Ja%v v, h,, - {2.16)
ckl

Now consider the ion response, which to lowest order is

R 2
- w=-w, m, v, 9B,
hy = l———)l3, |;“+ N (2-17)
ok T, 1 1

In order to take velocity coments of ﬁ.l easily, wa assume g < ® and

expand

iy

da
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In addition to the moment given by Bq. (2.15), quasineutrality and Ampere's

law make use of

ai__ Bl {(2.18)

Further simplification results from noting that BB./B ~ Be¢/ri, and assuning

After some tedious but straightforwszrd algsbra, Egs. (2.6} and {2.8)

yleld to first order in B, uhi/uu and klzplz

B ¢ 1.

~

Jlete, Py Per w2 e
T B n W3 1 2 ‘wew
e o *e Y *e
11
1
- ——(w_m.e)m[[w - m*ijmde + [m‘i - u.e)(une - wKeJ}J .

(2.19)

Combining this result with Eg. (2.14) produces the kinetic-reaistive-

ballocning equation

2

k on
q L el 1
77 L 7. 2 AL |t Lk wte - u)
THine"k /4ﬂ(m-m.e) A
zuisziz
+ T, By m'pJne1-0

(2.20)

with
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Up to this point, no assumptions about the magnatic geometry have been made.
In the limit whexe n , CNY) and Wye are all zero, while u.P is retalned, Eg.
(2.20) reduces to the ideal balloaning mode aquation.’

In cylindrical geowstry, X (%) 18 given by £q. (2.4), and Eq. (2.20)

reduces to the kinetic-rasistive-intarchange aqunti:on, which in dirmensionlass

form is

2 an wl wew,, )
3 1 4+ x a1 2 *d
Ix L1+11 (14) /{w=w ) Ox i+ la + =5 2 * D}“e‘l 0.
R e 'I’ll

(2.22)

Here, x is the distance along the field line normalized to the shear length

8"l x =8l a=ta/alag ?), xiekd (1axh),  wZe  @ieh s

(n2/R2), and n = m/q. The poloidal and torcidal mode numbers are m and n, R
ia the major radius, the characteristic Altv;n und resistive freguencies are
Y, = &7, and Y, -(m:zféx]kg. The variable D is known as Suydam’s psramecer.
Ideal MHD interchange modes are unwtable Lf D > 1/4 with D » -[Bm:/szrn") x

{dp/dr) and p = n, (Tg + 'rl). Bauation (2.22) is of the form

-.g-;{ux)%hnm v=o0.

{

[2

et mms gm e
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Substituting ¢ = a1/2 ¢ aliminatas the first derivative term, yielding

2
3—; + Qix,0) $m= 0O (2.23)
Ix

2 2
D . 2 14ie 1+x ") (1=3x")
Silt + ge(1 + %)) - {1 p(1=3x

Qlx,w) = {E +
14 ti+x2) 2 ey 2

)

m(u)-m'i

The elgenfrequency « must ba chosen to satisfy the boundary conditiens ¢ * O

We have used a shooting code to solve numerically Eq. (2.23) and

These

asg x * t .
to study the dependence of & on the parametera D, Yar YRr Ways and wy,.

results are discussed in the next two sectlons.

III. KINETIC FEFFECTS ON IDEAL INTERCHANGE MODES
In the abgence of collisions Q@ becomes real and Eg. (2.23)-can be written

in a form reminiscent of the Schrodinger equation of quantum mec‘nan:l.cs,e i.e.,

2
-a—§ + (B-wx)) ¢=0 (3.1)
x
(w-0,,)?
Ew
)
a
2
w
1 D 1+
vix) = - Al
(14x2)2 e 4712\

An instability exists only if the energy E is negative. In the MHD limit

Uyy = D, negative enercy requires a potential well deep enough {D large
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enough) ao that & bound state exists. Asymptotic analysis of ®q. (3.1}
between the turning points «.f tha wall, D/E > w2 » 1/D » 1, leads to the
requirement that D < 1/4 for stability {(Suydam's criterion).

when !4, ie not zero, suydam’s critsrion is relaxed. The u\,iz term in V
is positive and pushes the energy upward toward stabllity oo that the well
must be even deeper before the mode is unatable. Tha growtbh rate Yz - - Yﬁ E
can he expressed as

R WL W5H (3.2)

where Y., is the growth rate found by nolviag Ez. (3.1) in the MHD limit
Wey = O. Rulsrud®¢ 10 gouna an asymptotic approximation for Yyuyn (D) which is
plotted in Fig. 1. O resulis with the numerical shooting code are in good
agreemen: with the analytic solutlon. A typlcal numerical solution of Eq.
(2.22) in the colliaionlasas limit is plotted in Fig. 2. As D falla, the mode
becomes more extended along the field line.

The stability criterion is now |uwgl/2 > Ypp (D). Because vy,
exponentially falls very rapidly as D approaches 1/4, sven tmall values of Way
allow significant relaxation of Suydam's criterion. Since w,, = dp/dr = D, it

is convenient to divide the stability criterion by D to get

b 2.1/2 Y, (D)
c [q“+fir/R."] > MHD . (3.3)

T, 1T+ T /T, DY,

P

.| @

“’pi - (Q'rrneez/mi)v 2 ia the ion plasma frequency.
Equation {3.3) is a local stability criterion and gives the maximum
allowable D alL evecy point in the minor radius r. A simple axample will

illustrate the significant relaxation of Suydam’s critericn. We consider here
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the parameters expected for the 5-1 spheromak: n, - 1014 em3, Rm45cm, a =
25 em, T, = Ty, and parametrize g by gqi{r) = (a/R} i1-r2/A2). From Eq. (3.3}
and Fig. 1 we find that the plasma is rtable against all interchange modes
with n 2 1 a8 long as D < 0.375 everywhera. Ne’r tha edge of the plasma,
where the density 1s lower, the critical valiue for D is even larger than
0.375. The 8 limits implied by Eq. (3.3) are thersfore at least 50% higher
than the limit given by Suydam's criterion.

The improvement in 8 made posaible by u, effects is illustrated by Fig. 3

which is adapted from Raf, 1. Here we plot Be varsus q,, where g 1g agsumed

of the Form qlr) = g, (1 = r2/a2), and Bgp i defined by

J; ar rzp

By

- —————————,
J: ar r° Bg/Bﬂ
The By limit imilied by Suydam's condition is given by the broken curve. If
diamagnetic drift effects allow D to be 0.373, then the B; limit is given by
the hisher solid curve. Also plotted in Fig. 3 is the B8y limit found by
Jarain! for stabllity against finite-n modes with a conducting wall at the
edge of the plasma. An important area for future raesearch would be to assess
the 1nfluance of uw, effects on . ase modes. Specifically, it would be
interasting to determine whether the § limits for stability against finite-n

modes would improve as significantly as they do for high=n interchange modes.

IV. KINETIC EFFECTS ON RESISTIVE INTERCHANGE MODES
Although magnetic shear can stabilize the 1deal (collisionless)

interchange modes, it cannot provide stability for resistive interchange
modes. . Resistivity allowe field lines to slip through one another and leads

to instabllity whenever D > O.
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An 1llustrative solution of the full resistive interchange equation, Rg.
(2.23), is plotted in Fig. 4. The paraneter values taken are Yo ™ 3.5 x 108

sec™!, g = 701 % 10° sed™, wy, = -wey = 8.5 x 10% sec”', ana D = 0.0758.

The growth rate was found to be 5.7 x 104 aoc"‘ whiles the real part of the

frequency was much smaller, W, = 7.6 % 102 s2c"'.  Thase values arve typical
for an m=10 mode localized near y=a/2 in a spharomak plassa with parasatars
given in 1line 1 of Tabla I. For ssaller values of resistivity, the eigenmode

becomes more extended along the field line.

The growth rate depends on five independent variables. This dspendance
is conceptualily simplified by coanridering Eg. (2.23) as an eigenvalue problem
for B, while D and € are treated as 1independent paramsters. We numerically
solved Eq. (2.23) to find E for many diffsrent values of ™ and ¢ (Figs. 5 and
6). In the limit of small |e| and D (i.e., small resistivity and small
pressure gradient), the numerical results are aimply svemarized by X = - ie

D2' vwhich leads to the dispsrsion ralation
w(w - m,.l][m - w“) - iv Y:nz . (4.1)

This cubic equation has one unstable root. There aze other modes with growth

rates not given by Eq- (4.1). However, this appears to ba the most unstable

mode.

The olution of Eq- {4.1) is plotted in Fig. 7 as a function of k, (U,

“koe Tp = koz. Ugy = = Uyy}s In the limit w, << &, we recover the wall-known

resistive MHD growth rate . -

2.,1/3 . ’
- lrg o7 o | R &)

]
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‘Iin thes opposite limit w, >> w, the growth rate is greatly reduced ana scales

linearly with R

2 2 2
. o 1: D ) :2 S 4{1+m./rij
2

™ ® (pagrar)? ) (8-3)

Wotice that the true growth rate Y is always less than Yvup and Ykin+ 4nd that
Yyin 18 independent of ko' In & hot plasma Tein ig usually the appropriste

approximation for Y, &nd a convenient numerical formula is given by

T
- e e \=3/2, dqy¢-2 3 ~1 ‘
Y < Yean me cm_.3.)[1 oy (Rg2)" 107 sec . 14.4)

Table I compares order~of-magnitude growth rates for various plasma
parameters. In evaluating Eqs. (4.1) — (4.3) we have get r = /2, dp/dr =
p/a, d&/dr = g/a, n = 1/q; and m = 1. The gqrowth ratea for higher m modes
will be larger than Y(m = 1) and smaller than Tkin' For parameters
appropriate to ppheromaks in the near future, the grouvt rates of the
raesistive interchange modes appear to be significan*. The w, corrections can
be important for high mode numbers. Parameters achieved in the reverse field
pinch 2T-40M are used in the second line of Table LM The predicted linear
growth rates are significant compared to the 1lifetime of the plasma,
indicating that some nonlinear mechanism is probably preventing the growth of
the these modes above a certain amplitude. The last line is for a conceptual
spheromak D=T reactor '* and indicates that the u, effects car siynificantly
raduce the growth rate in a hot plasma even for relatively small mode numbers.

The kinetic-resistive=-interchange eguation, derived in the ordering
<L w << kﬂvte << Vayr always predicts instability when the pressure

kivey
gradient and resistivity are non-zero. Finn =t __a_l.2 arrive at the same
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prediction of inntabil:[{y using the fluid equations in the limit [ = 0, where
I' is the ratio of .specific heats. Rowever, for realistic T (~ 1), they fina
that the azsoclated coupling to the acouatic branch, along with w, effects in
the generalized Ohm's Law, can lead to atability (v < 0) Ffor sufficiantly
amall resistivity. Such effects could alsc be analyzed with the iiinetic

approach by relaxing the kl'u_ << « assumption.

V. CORCLUBIONS

In the present papsr it huas been demonstrated that by employing a
ballooning-type representation for the perturbations of interest, the drifte
kinetic formalism leads to tha same basic eigenmode equation governing
localized interchange modes as that cbtained by conventional MHD procedures
with a modified Ohm’s law. For the cylindrical model spheromak equilibriuwm.
solutions to this oguation indicate tkat in the ideal /collisionless) limit,
the usual Suydam constraint, D < 1/4, can be substantially relaxad when u,
effects are taken into account. Specifically, fo repressntative paraseters,
tre critical By for ideal interchange stability can bs enhanced by 53s. The
effects of the diamagnetic drifts on finite-n mode remailns to be worked ocut.

It is well<known that resistivity can destabilies interchangs modes in
the D < 1/4 regine. Here it is found that the kinetic effects can
substant’ally reduce the magnitude of these growth rates and produce a
transition in scaling from 13 to n.  Purther rofinement of the kinetic
approach to include coupling to sound waves may completely stabilize ,I';he
resistive interchanga modes at high anough tmcrntv.lrca.z Neverthsless,
growth rates calculated from paramsters typlcal of the S=-1 spheromak !.m!mlto
that resistive interchange modes can remain significant. This points t—; the
need for a nonlinear analysis estimating t&.lg saturation apd the n-lot;lltcd

enhancad transport in order to llll!l tho isportance of these resistive

i

ingtabilities. : o L B

B s 1 T o
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TABLE t

B
(X gauss)
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FIGURE CAPTIONS

FIG. 1. Comparison cf numerical and analytic calculations of the growth rate

B T ———— () 8

given by ideal MHD.

FIG. 2. The eigenmode ¢ and the potential -0 = V-E for an ideal MHD

- interchange mode,

FIG. 3. BB limits for stability. The h.oken curve is Suydam's criterion.

The solid curve assumes that ¢ effects relaxes Suydam'scondition to
D ¢ 0.375. fThe dashed curve is for finite-n modes with a conducting

shell at the plasma edge (taken from Ref. 1 }.

FIG. 4. The eigenmode ® and the potentlal -0 for a reaistive Xinetic

interchange mode.

FIG. 5. Numerical results showing the relationship between E and E for fixed

D.

FIG. 6. Humerical resalta showing the relationship between E/€E and D for

small |€].

FIG. 7. Scaling of the growth rate with k, illustrating the MHD limit and the

kinetic limit.
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