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A Theoretical Study of Quantum Molecular Reaction Dynamics and 

of the Effects of Intense Laser Radiation on a Diatomic Molecule 

Peter Sabatino Dardi 

Abstract 

Within the very broad field of molecular dynamics, we have 

concentrated on two simple yet important systems. The systems are 

simple enough so that they are adequately described with a single Born -

Oppenheimer potential energy surface and that the dynamics can be 

calculated accurately. They are important because thev give insight 

into solving more complicated systems. 

First we discuss H + 1*2 reactive scattering. We present an exact 

formalisra for atom - diatom reactive scattering which avoids the problem 

of finding a coordinate system appropriate for both reactants and 

products. This is done by using an over complete basis where expansion 

functions are included which are localized in each arrangement 

channel. The interaction between different arrangements is described 

using an energy independent nonlocal exchange kernel. We present 

computational results for collinear H + Ho reactive scattering which 

agree very well with previous calculations. We also present a coupled 

channel distorted wave Born approximation for atom - diatom reactive 

scattering which we show Is a first order approximation to our exact 

formalism. We present coupled channel DWBA results for three 

dimensional H + H2 reactive scattering. Reaction probabilities and 
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cross sections agree very well with previous exact calculations for 

energies near the threshold to reaction. 

The second system which we study is an isolated HF molecule In an 

intense laser field« Using classical trajectories and quantum dynamics, 

we look at energy absorbed and transition probabilities as a function of 

the laser pulse time and also averaged over the pulse time. 

Calculations are performed for both rotating and nonrotatlng HF. Me 

examine one and two photon absorption about the fundamental frequency, 

multiphoton absorption, and overtone absorption. We find that, in 

general, classical mechanics does not predict the correct time behavior 

or rotational state distributions. For the time averaged properties 

classical mechanics describes very well the multiphoton absorption but 

less well the other cases. We construct Poincare" surfaces of section to 

help understand the classical dynamics for nonrotating HF. 

(sjst^h.^^ 
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I. Introduction 

The field of theoretical molecular dynamics Includes a fairly broad 

range of topics. In general, though, it can be roughly divided into two 

main catagories, molecular' scattering and unimolecular dynamics. * 

Molecular scattering theory Is the study of the collision of an atom and 

a molecule or two molecules in order to learn reaction (nuclear 

rearrangement) rates and magnitudes of internal energy transfer. 

Unimolecular dynamics theory is the study of molecules with large 

amounts of internal energy (which were energetically excited through 

collisions or the absorption of light) to understand how the molecule 

distributes the energy; and if it reacts, either dissociating or 

rearranging, to find the rate of reaction and distribution of energy in 

the products. 

Molecular dynamics both theoretical and experimental is the study 

of elementary processes involving isolated molecular systems. These 

processes are the microscopic view (scattering cross sections and 

unimolecular reaction rates) of the macroscopic world (thermal rate 

constants) of chemistry. The goal is to understand the microscopic 

world better in the hope that this will lead to a better understanding 

of macroscopic phenomena. For gas phase or atmospheric chemistry, where 

everything is basically a series of isolated elementary processes, 

molecular dynamics can yield directly measurable rate constants by 

accounting for the statistical distibution of the relative energy of 

collision partners in a gas (by taking a Boltzmann average). »* Even 

for condensed phases, liquids and solids, where events are not isolated. 



molecular dynamics provides a framework through which to understand the 

more complicated phenomena. 

The methods of studying molecular dynamics are far from 

straightforward* The backbone of molecular dynamics is the Born-

Oppenhelmer approximation which allows for the independent solution of 

the electronic and nuclear motions because of the different timescales 

of their motion. In the Born-Oppenhelmer approximation, the nuclei are 

described as moving under forces of the other nuclei and the forces 

created by the electrons averaged over their very rapid motion. 

Therefore, to begin solving any molecular dynamics problem, first the 

potencial energy corresponding to this force field must be found. This 

alone is extremely difficult and has only been done completely for the 

simplest systems. A great deal of effort has gone into finding good 

approximations based on a small section of the entire potential energy 
8 9 ' surface. * This Is still an open area of research and poses a great 

challenge. 

Another complication is due to the breakdown of the Born-

Oppenheimer approximation.* Because of the coupling between different 

electronic states, the nuclei cannot be assumed to be moving under the 

potential of just one electronic state. They have a probability of 

undergoing a transition from one electronic state to another, i.e., an 

electronically nonadiabatic transition. For most realistic systems 

these effects are important. The phenomena resulting from this 

breakdown are given the names intersystem crossing or radiationless 
12 transitions. Solving the problem exactly including the electronic and 

nuclear motion is far too hard. Several approximate methods have been 



developed for dealing with th.'.s problem, * * which have met with 

some success. The systems that we consider below tiave fairly accurate, 

known potentials and have well separated electronic states implying that 

the Born-Oppenheimer approximation should be valid. 

The actual problem of solving the dynamics of the nuclear motion 

begins after obtaining an adequate potential energy surface or an 

approximation to it. Solving the dynamics rapidly becomes impossibly 

difficult for all buc the simplest of systems without making 

approximations. For molecular scattering the only exact converged 

calculation to date was on H + H- (not counting model systems such as 

collinear H + H,). Looking at unimolecular dynamics, the understanding 
17 18 of something as simple as the photodissoclatlon of formaldehyde * can 

evade complete understanding. 

The numerous approximations that can be made to the nuclear motion 

will not be discussed here since most of them will not be discussed 

further. Two approximations should be mentioned since they will be 

discussed below. The first approximation, which is perhaps the most 
2 19 important in molecular dynamics, is to use classical mechanics ' in 

lieu of quantum mechanics. It is hoped that since nuclei are relatively 

massive that this is a good approximation. This is not strictly true, of 

course, and the correspondence principle Indicates when classical 

mechanics is truely valid. It is not appropriate to give a complete 

account here of the validity of classical mechanics for use in molecular 

dynamic?. Below its validity for one particular application will be 

discussed in detail. The second approximation is the distorted wave 

Born approximation (DUBA). " DWBA Is a first order perturbation theory 
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applied to scattering. The DWBA results approach the exact results as 
the magnitude of the perturbation goes to zero. One can see clearly the 
importance of approximations to the nuclear dynamics since exact 
calculations are essentially impossible for complicated systems. It is 
critical then to have some exact calculations so that approximate i 

methods can be tested against them. 
Here we consider two problems which represent perhaps respectively 

the simplest problem of molecular scattering and of unimolecular 
dynamics. In both cases reasonably accurate potentials are well 
known. The first results that will be presented in chapter II will be 
for the standard test problem, H + H^ scattering. The goal of these 
calculations has been to develop techniques for performing essentially 
exact calculations which are easily generalizable to different 

21 systems. We have performed DWBA calculations which at low energies 
have been the first quantitative confirmation of the 3-dimensional 
results on H + l^. Also, we have performed closely related exact 

11 scattering calculations on the model colllnear H + H2 scattering. The 
methods that we have applied should be straightforward to extend to any 
collinear or 3-dlmensional atom-diatom system where the potential is 
known. It appears very promising that these methods will allow exact 
quantum calculations in 3-dimensions for reacting systems besides H + Hn 
for the first time. 

In chapter III results are presented for absorption of very intense 
Infrared radiation by a diatomic molecule. Exact quantum and 
classical calculations are performed. An isolated diatomic molecule has 
essentially trivial dynamics since there Is only one vibrational degree 
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of freedom. The Interesting aspect of this problem is that we examine 

the coherent absorption2 process Itself in detail. In order to 

understand how molecules are prepared in highly excited states by the 

absorption of very intense light, the actual absorption process must be 

studied since time dependent perturbation theory is not valid for very 

high intensities. Even a simple problem of a diatom in a laser field 

proved interesting. A diatomic molecule is a convenient system to study 

simple multlphoton and overtone processes which are important even in 

the initial excitation of larger systems to high energies. Also, we 

were able to gain some insight into the validity of using classical 

mechanics to study the infrared absorption of small molecules. 



II. Reactive scattering 

A. Introduction 

Until about 20 years ago Transition State Theory • * was the only 

way to obtain numerical estimates of biraolecular reactive rate 
26 constants. Due to developments in scattering theory and numerical 

27 methods , it is now becoming possible to test the statistical 

assumptions of transition state theory and directly calculate state to 

state transition probabilities and rate constants. Even with all of the 

progress in computational technology and a large amount of effort from 
28 "9 many groups ' , it is still very difficult to do molecular reactive 

scattering calculations. Essentially all reactive scattering 

calculations have been for atom - diatom systems. Even within this 
30 narrow category, a vast majority of the calculations have been limited 

to collinear models and then mostly for H + H2 scattering. All of the 

reactions considered in this chapter-will be assumed to have an 

isolated, electronically adlabatic Born - Oppenhelmer potential energy 

surface. 

One of the serious complications in reactive scattering is that the 

natural coordinate system for the reactants in the entrance channel Is 

different from that for the products in the exit channel . It is 

difficult to define a consistent, well behaved set of coordinaces for 

the entire reaction. If a different set of coordinates Is used for 
12 different parts of the reaction, they must eventually be matched . The 

purpose of our work has been to develop methods which avoid many of 
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these complications. This Is done by using an over complete basis which 

includes basis functions localized in each arrangement channel. The 

interaction between the different arrangement channels is accounted for 

using an exchange kernel. These exchange interactions are analogous to 

the treatment of interactions between electrons in Hartree - Fock 

theory . The original Idea was first developed by Miller based on a 

variational method. This method can yield essentially exact results. 

Here, we also make use of a distorted wave Born approximation (DWBA), a 

first order perturbation theory, version of this formalism which was 

first developed by Hubbard, Shi, and Miller 3 4. 

Here we apply this exact scattering method to colllnear H + H2 
2 1 reactive scattering and the DWBA method to three dimensional H + H2 . 

At low energies, i.e., in the threshold region to reaction, one would 

expect DWBA results to be very accurate since reaction should only be a 

small perturbation on the dynamics. Previous DWBA calculations in 

molecular scattering , many were for three dimensional H + H-, 

yielded results which were in error by as much as several orders of 

magnitude. They often yield surprisingly accurate relative cross 

sections, though, which has found use in determining vibratlonel and 

rotational final state distributions for many reactions through Franck -

Condon methods . In all of these previous molecular applications, 

the nonreactlve distorted wavefunctions are determined from a single 

channel elastic scattering calculation with the only difference being 

how well the vibrations and rotations are accounted for adiabatically 

and therefore what elastic potential is used. For example, in much of 

the work of S. H. Suck and coworkers , the asymptotic molecular 



8 

wavefunctions are assumed frozen throughout the collision, and the 

elastic potentials are obtained by averaging the full potential over the 

frozen wavefunctions (DWBA - FM for frozen molecule). Two somewhat more 

accurate treatments have been developed by Tang, Poe, Sun, Choi, and 

coworkers and also by Clary and Connor y . In the first, 

vibrational wavefunctions are allowed to distort adiabatically to the 

presence of the incident atom 4 2~".59-63 ( D W B A _ V A f o r „ibrationally 

adiabatic), and in the second the molecular wavefunction is taken as a 

product of separately determined vibrationally and rotationally 

adiabatic wavefunctions 4 6 - 4 9 , 6 4 (DWBA - RA for rotationally 

adiabatic). Very recently, Sun et. al. have improved on previous DWBA 

results substantially by allowing the molecular wavefunction to be fully 

adiabatic (ATM, adiabatic T matrix theory). Many, though riot all, of 

the above applications are actually approximate forms of DWBA since the 

wavefunctions in tht reactant and product arrangement channels are 

calculated at different levels of approximation. 

The major difficulty with the previous DWBA methods is that they 

failed to calculate the nonreactive wavefunction accurately enough. The 

nonreactive wavefunction in the interaction region cannot be described 

accurately enough using only one diatomic molecular wavefunction even if 

there is only one diatomic state energetically allowed asymptotically. 

Here we solve for the nonreactive wavefunction using coupled channel 

methods which yield essentially exact nonreactive wavefunctions. This 

idea of using coupled channel distorted wavefunctions was developed 
CD 

independently by Emmons and Suck , who presents the formalism for three 

dimensional reactive collisions, and by Hubbard, Shi, and Miller , who 
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present a formalism for collinear atom - diatom collisions with an 

application to collinear H + H2 with excellent results. 

For collinear H + HU there have been many quantum mechanical 

studies done before . Our method based on Miller's variational 

method offers the advantage of being straightforward to extend to other 

more complicated systems. There have been three previous 

applications"15-" based on Miller's variational formalism 2. The first 

by Wo1ken and Karplus for three dimensional H + Ho Included only the 

ground vibrational state in the couple channel expansion for H-, so they 

did not obtain converged results. The other applications by Garrett and 

Miller 2 2 b and Adams and Miller 2 2 c, both for collinear H + H 2, differed 

from our approach in two respects. First they used in their expansion 

for the nonreactive wave function the .ground vibrational state of H, and 

square integrable functions to account for the energetically forbidden, 

i.e., closed, asymptotic vibrational channels. In our approach, we 

expand the wavefunction in both open and closed vibrational states of 

H2. Our approach has the advantage of not requiring modification for 

calculations at higher energies with more than one open channel and of 

not being dependent on the choice of square integrable functions. The 

second difference is that both Garrett and Miller 2 2 b, and Adams and 

Miller^ 0 expand the exchange kernel operator, V (R,R') over a basis 

set. We instead show how V (R,R') can be written in terms of the 

energy independent exchange kernel W e x(R,R') which was first defined by 

Hubbard, Shi, and Miller 3 4 in their DWBA calculation. This has the 

advantage that w
e x(R>R') a°es not have to be recalculated at different 

energies. Also, we evaluate W (R,R') on a grid without contracting it 



onto a basis, so that our results are Independent of any basis 

functions. 

Here, we extend the coupled channel distorted wave, DWBA - CC 

approach of Hubbard, Shi, and Miller to the three dimensional H + Hn 

reaction, making detailed comparisons with accurate quantum results. 

Since we account exactly for the nonreactlve wavefunctlon, we should and 

do obtain excellent aggreement with the exact quantum results for 

energies In the threshold region where reaction probabilities are not 

too large. At energies where the reaction probabilities are less than 

about 0.1, the results converged with respect to the addition of more 

molecular basis functions. At higher energies we found, as Hubbard, 

Shi, and Miller found In the collinear case, that the probabilities 

became unstable with respect to the addition of more basis functions. 

We also introduce a very accurate approximation to DWBA - CC through the 

use of the coupled states approximation, DWBA - CS. This work 

represents the first quantitative comparlsion with the exact quantum 

results of Schatz and Kuppermann for three dimensional B + H, on the 
80 Porter - Karplus potential energy surface. 

We also present results for "exact" calculations for collinear H + 
SO H2 scattering on the Porter - Karplus potential surface with 

comparisons to other quantum mechanical calculations. We perform cur 

calculations over a very large range of energies from the deepest 

tunnelling region to energies with three open asymptotic vibrational 

channels. Over this whole range cf energies we obtained excellent 

agreement with previous calculations. These results are very 

encouraging for a method which is apparently straightforward to extend 
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to other systems. 

B. Theory 

1. Atom - diatom scattering formalism 

Here we develop a scattering formalism based on the variational 
2?a method of Miller specific to atom - diatom scattering at energies 

below the energy required for three separate atoms. In this section the 

discussion will remain very general with no reference to the specific 

coordinate system or dimensionality. Below we will describe the 

specifics for both collinear and 3 - dimensional H + h^. 

a. Expansion of the wavefunctlon and definition of the exchange 

operator 

For A + BC scattering, assuming that the total energy is 

Insufficient for three separated atoms, there are, in general, three 

asymptotic arrangements possible, A + BC, B + AC, and C + AB, although 

some of these may not be energetically allowed at low scattering 

energies. For collinear atom - diatom scattering there are only two 

possible arrangements, but most of the rest of c:r development follows 

with this in mind with other exceptions noted where necessary. Within 

each of these arrangements the diatom asymptotically can be in different 

internal states, n, again with the constraint that there be enough 

energy. In keeping with the common terminology we will refer to 

energetically allowed asymptotic states (including arrangements, diatom 

Internal states, and orbital angular momentum, if appropriate) as open 

channels and energetically forbidden asymptotic states as closed 
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channels. 

W-; first expand the wavefunctlon, 

l * « > - I l * i > l ' 1
 a> + E, l*n'>lf2, a > + E,,l*n" >l f 3, 1 a ^ " ' ' n. n n<n n' n'+n n'' n''+n 

where $„> Is the direct product of the (vibrational and rotational) 

molecular wavefunction for the isolated diatom for arrangement b and of 

the orbital angular momentum state with n representing the combined 
lf b > Index which describes the product uniquely and < a Is the 

corresponding radial wavefunctlon assuming initial state n, in 

arrangement channel a. The exact form of | $|J> will depend on the 

dimensionality and on the particular coordinate system. Note that in 

the colllnear atom - diatom case there are only two arrangements 

possible. This expansion is over complete, but this should cause no 

problems for reasonabl? expansions since asymptotically the basis 

functions are well separated. We will need to account for the 

nonorthogonaj1ty of the j *n> in different arrangement channels. 

The scattering wavefunction satisfies the equation, 

(H - E) I* > = 0, 
n* (11.2) 

where H Is the Hamiltonian operator. Taking eqn. (II.2) we multiply 

from the left by <R |<* | to give, 

<R b|<$ b I H - E I* > = 0, 1 n.' ' a ' f nj (11.3) 

where <* b I is defined below eqn. (II.1) and <R b| is the translational 

V 
coordinate corresponding to the internal state < ^ | which Is included 

so that the function with which we project covers the entire space. By 
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doing this we are projecting out the f inal s t a t e and thus examining the 

coupling into th i s s t a t e . Now combining eqn. ( I I . 1 ) with ( I I . 3 ) g ives , 

£<R b |<* b |H - E U ^ I f 1 > + E <R b |<+ b |H - E U 2 , > | f 2 > 

« *l " - i * V " " S (it.,) 
I < R b | < * b | H - E | ^ „ > | f 3

 a > = 0 
n ' ' f n' '«-n. 

The b th term of eqn. (II.4) accounts for coupling within the same 

arrangement channel, i.e., the elastic and inelastic effects. The other 

two terms account for the rearrangement or reactive part of the 

interaction. We define the exchange operator, 

"f" V ' " (II.5) 
with b * c. 

We will first solve a zero order equation to account for all the 

elastic and inelastic nonreactive effects exactly, 

' V ' " ' n<-na (II.6) 
l°fa > where I __ a is the "exact nonreactive wavefunction. We solve this n+n. 

equation by direct numerical integration. We use this zero order 

wavefunccion as a distorted wavefunction and the exchange oporator 

accounts for the interactions responsible for rearrangement. 

The formal solution for the full wavefunction can be written down 

using the set of coupled Lippman - Schwlnger type equations, 

lfb > - 6 K |°fb > + Z °G b ,,Vb<r, ,|f c > 1 _ a ba' ^_a , ,, nn'1 n' n'1 , a 
n n , i n + n i " •" n * ni (II.7) 

+ * °c b ..v b?. ,|f d >, 
with equivalent expressions for c and d where b * c * d, 6^ is the 
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standard Kroneker delta function and °G^ni is the zero order, 

nonreactlve Greens function which is described in detail in Appendix 

II.A. This set of coupled equations can also be written In matrix form, 

f 1 > « , IV > 
•• ^ = i , a l t a . 

« , l ° f 2 > 
a2 I a 

If 2 > 

V > / 
a2 ' _a' n+n. 

5 , l ° f 3 > 
a 3 ' n+n a 

+ £ 

V ,. o 
nn 1 ' 

0 
\ 

nn'' 

°G 3 , nn 

-12 -13 
n' 'n' n''n' 

"21 "23 V ,, , 0 V ,, , n 1'n' n' 'n' 

31 *32 
n'*n* n"n* 

(II.8) 

f > 
i - a / n <" nl 

If 2 > 

I 3 I f > 

or using vector notation for the arrangement indices, 

If > = |°f _ > + E °G ,, V ,, , If >. t~ a I ~n+n. . ,, »nn" "n"n' >~ a n+n. i n'n'' n+n. (II.9) 

This equation can be solved iteratively for |f_ > to give the 
n+n 

Infinite sum, 

If > - l°f > + Z °G ., V ,, , |°f > l~ a I ~n*n. . .. "nn" "n"n' I ~n+n, n+n, i n'n'1 i ( 1 1 . 1 0 ) 

+ E Q_ , , V , , , , , G , , , n V n , f ,^ > + . . . 
. •< i . i 0 " n n " « n " n ' " » n " ' n u *n u n' i ~n'+n. n ' n " n ' " 'n 

which can be formally summed to y i e l d , 

, - 1 
> ~ a I *^i + n " n n ' ' Emin ' «mm' ' » m ' ' m * n ' * « f * ' 

n+n 
, i 11 11 i "nn' ' "mm , , "mm "m' ' m' n " n ' 
1 n ' n " n " ' m" 

( I I . 1 1 ) V f > 
" n " ' n ' I ~n'+n * 
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where the matrix Inverse is taken over the matrix of the combined index 

of Internal state labels and arrangement Index. From this equation we 

get the transition matrix, 

^n"n" * f t, <£mm ,~ mf, \im" Sm"m''n''n'" V • 'n- " 

b. Relationship between V , and | j n n , operators 

First we take the Hamlltonlan and write it as, 

H - K. + V. + h. , 
- . b. b (11.13) 

hb ' \ * V 

where K. is the translatlonal kinetic energy operator relative to 

arrangement b, k^ Is the isolated diatomic kinetic energy operator, v. 

Is the asymptotic diatomic vibrational potential, V^ is the potential 

energy operator with v b subtracted off plus the orbital angular momentum 

kinetic energy operator. It follows that h^ is the asymptotic diatomic 

Hamiltonlan operator so that, 

* " " " (11.14) 

where eP is the n th diatomic eigenvalue for arrangement b since h. does 

not operate on the orbital angular momentum part of )•„>• Using the 

definition of the exchange operator, eqn. (11.5), along with eqns. 

(11.13) and (11.14), we get, 

lv" b a I V > - S <+" I H - E U a>|°f a >. 
n,n i n+n. n.I ' n ' n*n. n f 1 n f i 

- I <* b I K + V + h - E U a>|°f a >, n. I a a a ' n I n+n. n f i 
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with E a - E - ejj. We know that the nonreac t ive wavefuncflon s a t i s f i e s 

eqn. ( I I . 6 ) which combines with eqns . ( 1 1 . 1 3 ) and ( 1 1 . 1 4 ) to g i v e . 

Z <Ra|<<|>a I K + V - E U a > | ° f a > = 0 , I n „ < a a a I n ' n*n. ' 

Z < R a | < + a U a > ( K -E ) | ° f * > + E < R a | < * 3 |V U a > | ° f a > = 0 I n . l T n a a I n*n. I n J a l ^ n I n+n. n f 1 n f 1 

which can be r e a r r a n g e d to g i v e , 

(K - E ) |°f a > = - n a |°f a >, 
a a I n ^ n „ f „ I n * ^ ( n > 1 6 ) 

since <$ <T> " 4 and we define V , = <d) , IV I d> >. Combining this n I n n ,n n'n n' I al n " 

with eqn. (11.15) gives, 

i v"ba |°f a > = z [<*b | * a x - r v a , |°f a . » + <*b |v U a > | V >] n , n ' n*n. n „ ' n , n n ' ' n ' *n. n ' a 1 n ' n+n. n f i n f n ' 1 f l 

+*> v a , | ° f a > 
n n ' I n ' * n 

z <*" |v U a >l°f a > - z z <4»B U a 

n „ ' a l n I n*n. , n ' i> n f 1 n n r 

Z [ < * b |V U"> - E < * b U a , > V a , ] l ° f a > n . I al n , n , I n ' n ' n I n*n. 

E V b a | ° f a > = I W b a I V >, 
n V ' " ^ i n "f" ' n ^ i ( 1 1 . 1 7 ) 

where we have d e f i n e d the energy independen t exchange o p e r a t o r Vc a , 

w b a = <+b I v" U a> - i <*b U a ,> v a , n .n n , 1 a I n . n I n ' n ' n f f n 1 f ( 1 1 . 1 8 ) 

This operator was first defined by Hubbard, Shi, and Miller for use in 

a collinear multichannel distorted wave calculation. We see in eqn. 
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(11.18) the effect of an overcoraplete basis. If the sum over n' covers 
a complete set of istates we can remove this complete set and see that 
W b a

n Identically vanishes. The over completeness of the basis should 
not cause any problems for the finite bases that we will be considering. 

Next, we consider the exchange operator acting on the zero order 
Greens function matrix, 

E V a b , °G b, - t <+ a |H - EU b,> °G b, , run n*n_, , n_' ' n' n n J n' f 1 n' f i 

= I <+ a k + Vfc - E.|* b
t> °c\ , . n ' b b b 1 n' n'n * n' f 1 

= Z <f k - E K U b , > °G b, . n.l b bl n n n, n 1 f i 

+ Z «(,a |V KU b,> °G b, . 
n' V b' n n ni (11.19) 

Now, we make use of the definition of the Greens function, 

Z <Rb|<<|>b| l + V. - E K |*b,> °G b, = - 6 , I n ' b b b ' n ' n ' n . nn. n ' i l 

<R D | ( IC - E j V + Z V b , I b b nn. , nn ' 1 n ' 

Combining e q n s . ( 1 1 . 1 9 ) and ( 1 1 . 2 0 ) we g e t , 

o„b . „ „b < R b , o G b = _ s _ 

' " " i " " i ( 1 1 . 2 0 ) 

I V a b , ° G b , = Z < * a U b , > [ - 6 , - Z V b , ° G b ) , n £ n ' n ' n J , n ' n ' n ' n , n ' n n n ' n ' f i n f i n i 

.b „ o b 
n , n £ l b I n n n £ 

«? U'D > + Z <*a | V K U \ > °Gb, 
V "l „' V b ' n n "l 
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- S <+3 |+b,> V b, °Gb 

n'n V n " " ""I 

E V a b , °Gb - I W , V , - S a b , 
n' V n'nb „• V n "i Vl (11.21) 

where we have used eqn. (11.18) and defined the overlap matrix, 

s a b =• <*a U b >. 
nf"i nf' "i (11.22) 

Substituting eqns. (11.17) and (11.21) into eqn. (11.10) yields. 

I > - f > + I G ,t(o , + S , 
I ~ a I ~ a *nn * r mm' «mm f n*n n-m n'n"n"' 

z W ,, °G ,, , ) " ! , ,,, W ... , |°f >, 
m,, •«•• -m"m'V'n"' -n"'n- I ~ n, a ( u > 2 3 ) 

n ' " S n>>> n' I ~ . 

where the notation implies that the inverse matrix is taken over the 
combined arrangement and internal state indices then the n'', n' ' ' 
element is taken of the inverted matrix. In this form we have replaced 
the energy dependent exchange operator V , with an energy independent 
operator Unn" while gaining an overlap terra S n n'* Knn' l s J u s t 

dependent on the potential and the expansion basis functions | <(>_>. It 
is this form on which we base our further development. 
c. Determination of the reactance matrix, K, and the scattering 
matrix, S 

Fnr the purpose of determining the wavefunction, we assume that the 
wavefunction is real and, therefore, that asymptotically it fits real 
boundai/ conditions. Below we show how to relate our solution with real 
boundary conditions to the standard scattering boundary conditions and 
thereby obtain the S matrix. The asymptotic form that we assume for the 
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wavefunction is, 

I n+n ' n I n nn 

where 

I b 'n In b n+n nn 

s a E <R|sa> n ' n 
sin[k^Ra - (J + j a) n/2] 

TTI72 

(11.24) 

with 

s <R|ca> 

Kk* 

cos[k R - (J + j ) T/2] n a _a 

H 1 / 2 

and 2u(E - ef) 1/2 

(11.25) 

K for n being an energetically open channel where n n b is the reactance 

matrix, 0K.fn being the zero order, nonreactive, reactance matrix, v is 

the translational velocity, k n is the asymptotic translational wave 

vector for internal state n and arrangement a, and u is the reduced mass 

for translation in the appropriate arrangement channel. J is the total 

angular momentum quantum number and j is the rotational angular 

momentum quantum number in arrangement a. We have picked a 

representation of the angular momentum with J, and j and their 

projections. For collinear scattering both J and j are set to zero in 

this equation. The form for |sn> and |cn> in the asymptotic closed 

channels can be various linear combinations of exponentially growing and 

decaying terms depending on convenience. We will specify our choice 

below when we give more details of our specific calculations. The exact 

asymptotic form of the wavefunction affects the specific form of the 
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Greens function ,see appendix II.A. 
In order to calculate the Greens function we also need the 

irregular solution for the nonreactive wavefunction, see appendix 
II.A. We are free to pick for the irregular wavefunction any solution 
which is linearly independent of the regular solution although its form 
will also affect the form of the Greens function. Here we will assume 
that the irregular nonreactive wavefunction asymptoticly goes as, 

|o a v I v 

' S " V " K > ' (IX.26) 
where |cn> was defined in eqn. (11.25). As we show in appendix II.A, 
with these forms for the regular and irregular nonreactive 
wavafunctions, the asymptotic form for the Greens function becomes, 

V . ~ | | c a X ° f a
+ ,1. 

nn » I „ „•*•! ( I I > 2 7 ) 

Given the asymptotic forms in eqns. (11.24) and (11.27), the asymptotic 
form of the total wavefunction, eqn. (11.23) becomes, 

U > ~ Is > + |c >°K + •§• Z |c ><°f ,,| I ~ a I ~n I ~n ^nn, fl ,,,,,,' ~n =nn' ' I n*n i n'n"n'" 

(i , + S , - Z W ,,°G ,, ,)~J, ,,, W ,,, ,|°f , >, •mm "mm ., •mm ' "m m f n' ' n' ' "n n' I ~n -«-n m " i 

If > ~ Is > + |c >[°K + •§• Z <°f ,,1(6 , '~ a I ~n I ~n "nn. n ,,,,,, ~nn' ' "mm' n*n, i n'n*'n''' (11.28) 

+ S , - Z W ,,°G_,, ,)~f, ,,, W ,,, , |°f , >, "mm ., "mm " m m n n "n n I ~n'n m i 
and it follows chat, 
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°K + !• E <°f , ,1(6 , + S_ , * a H ,,,,.. ~nn''I -mm' •mm' nn n'n''n"' 

for these transitions. If the wavefunction I— b and the reactance 
n+n 

ra 1 ^ 1 1 •i?j} 

Basically, most of the calculatlonal effort goes towards calculating 
this reactance matrix. 

Now, we will outline how the scattering matrix, S, is calculated 
from the reactance matrix, K. Asymptotically, the wavefunctlon only has 
finite density in'open channels therefore the S matrix is only defined 

n+n 
matrix tLn» are considered matrices in the channel numbers, then we need 
to consider only the block of these matrices over the open channels. 
Sot we begin with, 

|f°° > ~ |s°> + |c°> K°° , 
n-*Ti i 

where the o or oo designate that only the open channels, n, are kept in 
the vectors or matrices. Now we take the position representation, eqn. 
(11.24), and replace the sines and cosines by the equivalent complex 
exponentials, 

sin[k R -(J+j ) ~\ cos[k R -(J+j ) ^] 

I i —1/2 r e -e 
I i 2 i 

+ a i-s K°° ] 
2 "nn ' 

- l I S n R { J * , a > | j 
1-1/2 [ ̂  ( 4 . 1 K ™ ) 
I L 2i nn -nn 
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- i + e _ ( J ^ ) ] . { I I . 3 0 ) 

Now rearranging eqn. (11.30) we obtain, 

n'nf |v| |v| 

Z (« ,+iK0°,)<6 ,-iK 0 0,)"} . (11.31) , nn' Bnn' nn' «nn' n'n, n' i 

We compare eqn. (11.31) with Che equation for Che scattering 
O 1 

wavefunctlon In terms of the S matrix , 

• " M a - ^ , 1 ! 1 ' l y a ^ a ' f l 
f~ a(R> -=*-. 7TU2 + - TTUl Snn . ( " - ^ ) 

n < T , l l vl l vl i 

to identify, 

„oo .-1 
f (R) - 2 1 1 [ .(R) (5 ,-iK ,) t ~ ^_a , ~n*n' mm' "mm1 n'n. n-m. n' i (II.33a) 

S » E (6 , + iK 0 0,) (6 , - IK!!,)"! • *nn. , nn' «nn' mm' "mm' n'n. , T T . in' i (II.33h) 
We use eqn. (II.33b) to obtain the S matrix trom the K matrix obtained 
from eqn. (11.29). 
d. The DWBA limit 

In this section we will discuss how to take the first order 
perturbation (DWBA) limit of the scattering formalism developed In 
sections a-c. We will show how this is equivalent to a multichannel 
version of DWBA developed by Hubbard, Shi, and Miller 3 4. DWBA is 
basically first order order perturbation cheory, so we need to keep the 
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perturbation, in this case reaction, only through first order. Starting 

with the T matrix defined in eqn. (II.12), we constuct, 

X n " n ' """"' ' (11.34) 

which is just the first reactive contribution to the infinite sum in 

eqn. (II.ID). Based on the DWBA form of the T matrix in eqn. (11.34), 

the reactance matrix, K, becomes, 

K D W B A , o ? j. < 0 f j w .of > 
"""i ^"i » n"n' ~ n + n " U " " n " -"'•«! ( I I . 3 

where che first term is diagonal in arrangement indices, only a 

nonreactive contribution, and the second terra is purely off diagonal In 

arrangement indices, only a reactive contribution. 

When calculating the S matrix from this DWBA K matrix, we need to 

include the reactive part of the K matrix only through first order to be 

consistant with the approximation to the T matrix. First we write the 

open block of the K matrix separating the reactive and nonreactive 

contributions, 

DWBAno _ °„°° , K,°° 
ftm n Minn a n n ' 

where 

•nn "nn 

C -I s <°f ,,|w ,, ,|°f , >. 
*nn. n ... ~nn''I»n''n'I ~n n. 1 n''n' i 

It should be noted that while we only need the open block of £, the sum 

over n'1 and n* covers both open and closed channels. Then we 

substitute this expression for K into the equation for che S matrix eqn. 

(II.33b), 
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o„oo , .R,,oo . . . , o„oo JR„OO , - 1 
•tin. , n n ' "nn ' "nn ' mm' "ran' "mm' n ' n 

Next , we expand t h i s e q u a t i o n assuming K , I s s m a l l , 
"nn 

.o„oo , .R„oo , , „ ,o„oo . - 1 
"nn. , . , n n ' "nn "nn ' ' mm' "mm n ' n ' 1 

1 n ' n " 

16 , - iZ V 0 , («,, - lY?)"} ,,J~J, , 1 mm* , -mm' k l - k l m ' m " n ' ' n . ' m' 1 

Z ( 6 ,+ i . nn ' °K°°,)(6 ,- l Y ° , ) - f + Z l \ ,(6 ,- i°K°°.)"J «nn' mm' "mm ' n ' n . , »nn ' mm »mm ' n ' n i n ' i 

+ Z (6 , + iY°.)(6 , - lV°,)"J ,,(iV?, o) . . . 0 n n ' *nn ' mm' "mm' n ' n ' ' » n ' ' n u 

n ' n ' ' n u 

, - . o „ o o . - l 
K 1 i ( 1 1 . 3 7 ) 

where in Che l a s t e x p r e s s i o n we keep terms only through f i r s t o r d e r In 

R , . Rea r r ang ing e q n . ( 1 1 . 3 7 ) , we g e t , 

S - Z (« , + i V 0 , ) ( 6 , - i Y ° , ) " | + J [ ( « , - i ° K 0 ° , ) s n n . , nn ' "nn ' mm "mm n ' n . , . , o "n "nn ' I n ' 1 n ' n " n u 

/ * jO.-OO . w . . 0„0O . - 1 
+ ( 6 , + l K , ) 1 ( I 5 , - l K , ) , , , n n ' "nn ' mm "mm' n n 

»"c.no><^ - *•£#• . 

s . i <6 , + i°K°°,)(« , - i V ° , r ! "nn , n n ' "nn ' mm "mm ' n ' n 
i n l ( 1 1 . 3 8 } 

j _ T / * 4 ° i r ° ° \ ~ ' / , , 8 „ < 1 0 . . . . 0 , 0 0 , - 1 + Z ( 0 , - l K , ) , , ( 2 1 K , , o ) ( 5 i , " i Ki J 0 , , n mm "mm' nn «n' n u k l k l n"n . n ' n u 1 

The f i r s t term of the e x p r e s s i o n In e q n . ( 1 1 . 3 8 ) c o n t r i b u t e s only t o the 

n o n r e a c c i v e p a r t of t h e S m a t r i x , i . e . , t he terms i s p u r e l y d i a g o n a l In 
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arrangement index. In the second term, g , Is purely diagonal in 

arrangement index while &_,, 0 I s purely off diagonal. As a result, 

the second term is purely off diagonal and therefore only contributes to 

the reactive part of S. The nonreactive part of S to first order is 

just the contribution from the purely nonreactive scattering 

calculation. Higher order contributions, though, effect both the 

reactive and the nonreactive part of S- We can now explicitly write a 

reactive block of the first order S matrix as, 

(11.39) DWBA„ba _ .... <o„bb .-1 R„ba , , ,o„aa.-l S » i 2i( o , - i K i J , , , K . . n(6, . - 1 K.,) n , mi, ,, n mm' mm' n'n'' n''nu kl Kl n un, i n' 'n u i 

where the DWBA reactive K matrix is given in, the second term of eqn. 

(11.35), and we only allow the channel numbers to vary over the open 

channels. 

Now, we want to show how this derivation is exactly equivalent to a 

standard DWBA treatment with a multichannel nonreactive distorted 

wavefunction. This multichannel DWBA treatment was first developed by 

Hubbard, Shi, and Miller3 for application to collinear H + H,. We 

begin with the standard DWBA expression for the S matrix, 

Sn 3n " <Tr> ^ n "I " " E l°< + > • nf"i * V ' "i (11.40) 

where H is the total Hamiltonian operator, E is the total energy and °<|i 

is the distorted wavefunction with the correct incoming or outgoing 

boundary conditions. In this case we will pick for the distorted 

wavefunction th-3 "exact" multichannel nonreactive wavefunction defined 

in eqn. (11.6). We now expand the distorted wavefunction in terms of 

the | * a> defined below eqa. (II.I), 
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S b a - ( 4 ) E<°f b ~|<+b| H - E U a,>|°f a, + >, 
nf ni » nn' V 1 "' ' n ' n nl (H.41) 

where each expansion only Includes one arrangement since there Is no 

coupling between the arrangements In Che distorted wavefunctlons as seen 

In eqn. (11.6). Using eqn. (11.33a) and a similar expansion for f~, 

If" > = 21 Z If , > (6 , + i K 0 0 , ) " 1 , , I "n„n . l"n'n mm "mm n.n' / T T ._. f n f (11.42) 

we obtain from eqn. (11.4), 

S b a - (4) I (« . - i V 6 , ) " 1 ,, <°fb,, |<*b|H - EUa,> n„n, n ... ... mm' mm' n.n" n"nl nl In' 
f i nn' n " n' " f 

l°fa, ,,,x« , - i V a , r | „ , ' n n mm mm n f''n. / T , , ., •̂  i tII-4 3J 

where n'* and n*'1 only vary over the open channels, but n and n 1 vary 

over open and closed channels. Substituting from eqn. (II.5) this 

equation becomes, 

S b a " ( 4 ) Z (6 . - i°K b b,)-' ,.<0fb,. |vba.|°fa, ,„> n_n, fi , ,, . , , ram mm' n,n n n' nn I n'n f i nn'n"n' M £ 

(6 , ~ i°Kaa,)"!,, . 
mm mm n' * n 

Making use of eqn. (11*17), we obtain, 

s b a - (4) £ (« . - i 0 ^ . ) " 1 ,, <V,, |wba,|0fa, ,,,> 
n.n, ft , ., ... ram mm n,n n"nl nn I n'tt'1' fi n n ' n M n , M f 

(6 , - iY a,)"|„ . mm mm n n, . T T ,.. i (11.44) 

Now, based on the reactive part of eqn. (11.35), eqn. (11.44) becomes, 
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DWBAba fi o bb ,-I R ba 

n.n. ,, ,,, mm' mm' n,n" n''n''' 

(6 , - iVa.)"l., , 
mm' mm n'''n, ' ... ,,.. 

1 \11.45) 
where based on the definition of S, the channel Indices only vary over 
the open channels. Comparing eqn. (11.45) with eqn. (11.39), we see 
that we have shown how this development of a multichannel DWBA formalism 
is, as expected, equivalent to the DWBA limit of the scattering 
formalism developed in sections a-c above. 
2. Coupled channel DWBA for three dimensional H + H 2 reactive 
scattering 

In section Id we developed the general formalism for coupled 
channel DWBA. In this section we will give the specific representation 
of this formalism appropriate for three dimensional atom - diatom 
scattering. We will then show the symmetry decoupling for the symmetric 
H + |U reaction. We also develop an approximate method based on the 
couiplecj-.̂ states approximation. 
a. Three dimensional representation of coupled channel DWBA using body 
fixed coordinates 

Six coordinates are needed to describe the atom - diatom system. 
To define our six coordinates, for each arrangement we pick R^, the 
vector from atom A to the center of mass of the diatom BC, and r', the 
vector between atoms B and C. Next, It is convenient to mass weight the 

82 32 coordinates, so using the Delves ' mass scaling, we define, 

r * c r 1, 
a a a' 
+• + 
R - c R', 
a a a 
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(11.46) 

where, 

c - ("abc/M. ) l " . a be 

M b c is the reduced mass for the motion of atom A relative to the center 

of mass of the diatom BC, and P b c is the reduced mass of the relative 

motion of atom B to atom C, 

M , = m (m. + m )/(m + m, + m ), abc a b c a b c , , 7.. 
U, * m, m / (m, + ra ), bc b c b c 

where ni ,nu , and ra are the masses of atoms A, B, and C respectively. 

The Ĵ  and J z operators, where J is the square of the total 

an&ular raoraentum operator and J is the operator for the projection of 

the total angular momentum on a space fixed z axis, commute with the 

Hamiltonian. We perform a standard partial wave analysis01 of the 

wavefunction where we expand the wavefunction in terms of states with 

fixed J and M, the quantum numbers for the total angular momentum and 

the z axis projection of the total angular momentum, 

If > - I Z c |fJ">. 
' n* JK> M - j J M ' nj (11.48) 

l^ M> 2 
I b is a simultaneous eigenfunction of J , J , and H which Is 
"i 

possible since the operators commute* While it will not be explicitly 

shown, the c J M are determined from the plane wave incoming flux which we 

use implicitly in section 2f when we give expressions for the 

differential and Integral cross sections. 

Now we are ready to express our wavefunctton in terms of a 
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coordinate system. If we define a randomly oriented space fixed 

coordinate system (x,y,z) with the origin at the center of mass of the 

three atom system, the vectors, rfl and R g, defined in eqn. (11.46), 

represent the six coordinates which are needed to describe the system. 

We take the coordinate representation of our wavefunction in terms of 

this coordinate system, 

a a l nj nj a a (11.49) 

Rather than now expanding our wavefunction in ttrms of complete sets of 

eigenfunctions of the orbital and rotational angular momentum operators, 

It Is more convenient to rotate our coordinate system to a body fixed 

coordinate system and to express the wavefunction and the projection of 

the angular raoraentum in terms of this coordinate system following Schatz 
32 and Kuppermann . 

We will rotate the space fixed coordinate system to a body fixed 

coordinate system (X,Y,Z) again with its origin at the center of mass. 

This body fixed coordinate system will have its Z axis oriented along 

th* R a vector. It requires two angles 6 a and $ a, the polar and 

azimuthal angles of the Z axis in the (x,y,z) coordinate system, to 

uniquely describe the rotation of the space fixed coordinate system into 

the body fixed coordinate system. We are assuming that we do not 

reorient the X and Y axes about the Z axis. In the body fixed 

coordinate system the vector R becomes a single component R which is 

the distance of atom A to the center of mass of the diatom BC. 

Therefore, the wavefunction In this body fixed coordinate system is only 

a function of four variables. Performing this rotation, the 
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wavefunctlon from eqn. (II«49) becomes, 

* » + a > - \ ( ^ f r > 1 / 2 < 4 < W ° > ^ S v V ' (11.50) n, u *-J 9TT a n. l a 1 
J"a + 

where b ^Ta'\* Is the body fixed wavefunctlon, DfJn (ij>a, 6a, 0) Is a 
"l a 

Wigner rotation matrix, the factor [(2J+l)/8» ] ' normalizes the Wlgner 

rotation matrix, and !J is the projection quantum number for the total 

angular momentum along the body fixed Z_ axis- In the rotating 

coordinate system the Z component of the orbital angular momentum Is 

zero. So, ft Is also the Z axis projection quantum number for the 

rotational angular momentum of the diatom BC. 

Next we expand our body fixed wavefunction in terms of a complete 

set of states representing the vibrational and rotational motion of the 

diatom in body fixed coordinates, 

jn « <* j . ( t > * j a 
* b a ( V R a > = = . L - Y j n < W - ^ V " ' ^ 3 a ( R a > > m s n 
n, v =0 i «|t! Ja a r R n, (II.51) 
i a J a ' a' a a 1 

where v iz the vibrational quantum number and j is the rotational 

quantum number. The sum over j begins at |fta| since & a Is the 

projection of j along Z, so j cannot be smaller than this. 
Y< o (Y.,,'10 Is a spherical harmonic which is the eigenfunction of j Ja"a a a 

and j_. T is the angle between the r and R vectors, and ty Is the 
angle which orients the diatom about the Z axis. The $ . (r ) are the 

va Ja a 

vibrational eigenfunctions of the isolated diatom. 

Based on this development, the position representation of the 

wavefunctlon defined In section 1, I i(ia> I f a .>, is, 
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<KKK>\t" b> • ^ U Z " 4 <V9.-°> *J B <VV n-*-n. 8TT a J a a 

* 4 (r ) Jv j a 
V a a f a a a ( R K 

r R n° a (II.52a) 
a a l 

o TT a a a r 
a 

Jv j Q (II.52b) 

n*nj a nj a a (II.52c) 

where we have assumed thac the wavefunction represents only one partial 

wave. Our collective Index, n , of section 1 becomes, 

» b * v v v ( I I- 5 3 J 

and we will often interchange the collective index for the complete set 

of indices throughout this section. 

b. The Hamiltonian in body fixed coordinates and the solution for the 

nonreactive wavefunction 

The derivation >f the Hamiltonian in body fixed coordinates is 
•so R3 

given in detail by Schatz and Kupperraann and Pack . The 

complications come from the angular momentum terms of the kinetic 

energy. The angular momentum contribution to the kinetic energy in mass weighted, space fixed coordinates is, 
'2 "2 
1 J 

A n g 2uR2 2ur 2 ' (11.54) 
a a 

where 1 Is the orbital angular momentum operator for arrangement a, and 

j is Che diatomic rotational angular momentum operator for arrangement 

a. First, we need to convert from a representation in terras of 1 and 

j to a representation in terras of j and J where J is the total angular 

momentum operator. The V operator can be written in terms of the J and 



32 

j' operators, 

X a - l J " J.I " J + J a " ( J ' J a + J a " J )" 
Next J and j need to be expressed in terms of the body fixed 

32 coordinates. Schatz and Kuppermann give a detailed table of angular 

momentura operators in both space fixerf and body fixed coordinates. The 

result is that the angular momentum contribution to the kinetic energy 

becomes, 
".2 

*BF J a ^ i r ; 2 *2 . : " , r - ;H\ :+ ; - , , 
KAne 2 + 2 l J + J a ~ 2 ; 1aZ JZ " C j a J a + J a J a ) I « 

A n g 2ur 2 2UR2 a aZ Z a a a a (u.55) a a 
where the + and - indicate raising and lowering operators in terms of 

Che body fixed coordinates. The terms with the raising and lowering 

operators, which connect adjacent fl» states, are due to centrifugal 

coupling from our conversion to a rotating body fixed coordinate system. 

The potential energy Is only a function of the relative positions 

of the three atoms determined by the variables r , R , and y ; i.e. the 

potential only depends on the shape and size of the triangle formed by 

the three atoms not on the orientation of the triangle in space. As a 

result, V does not couple different Q . The fact that the only off 

diagonal contribution in ft of the body fixed Hamiltonian is due to the 

centrifugal coupling is the basis for the coupled states approximation 

to be discussed below. 

Now, we are ready to give the body fixed three dimensional 

representation for the coupled equations for the nonreactive 

wavefunctlon given in eqn. (11.6). Starting with eqn. (II.6), we first 

express the body fixed position representation. 
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/ d r 3 d R 3 d r , 3 d R ' 3 I < R " | < * a | r ' 3 R ' 3 > < r ' 3 R ' 3 | H - E | R 3 r 3 > ' a a a a a I n I a a a a ' ' a a 

< R 3 r 3 | * " > | ° f " > - 0 , 
a a ' n ' n * " i ( I I . 5 6 a ) 

uhere the superscript 3 Indicates the entire three dimensional space 

spanned by the vector, and using eqns. (11.52) and (11.53), 

<R"|<* a |r,3R'9 - «(R"-R') (2J±i)l/2- j , J (* ,8 ,(1) 
a ! n I a a a a „ 2 Mii' a a 

r OTT a 

i'a' 
J a 

<r'3R'3|H - E|R3r3> = 6(? -?')«(R - R ' ) | ^ ( / 4 l > + -*• " 4 r ) a a I l a a a a a a l 2u R ,„2 a r , 2 a a 3R . a 3r 
a a 

:2 

2 w 2UR 
a a 

1 on a J a a 

* . ( t ) Jv j £1 v i a o - a a a , „ . a J a f (R ) . 
r R n l a ( I I . 5 6 b ) 

.1 
S u b s t i t u t i n g e q n . ( I I . 5 6 b ) i n t o e q n . ( I I . 5 6 a ) , we ob ta ln ' , -

8TT a J a a 

a 3R a 3r 2 Mr 

£ J"I + K Z" + V ( r . ' R a ' V " £1 »W ( W 0 ) 



• . (r ) Jv j f! w w VaV vyv-°- , 7, Ja a r R a Ja a (11.57) 
2 where dR a indicates integration over only the angles <j> and 8 not over 

the radial distance R . Now, we define the centrifugal coupling matrix, 

<° C >X " <«V"2 6j j..» v''d Ra ^ C ' ( W ° > ' ? + Ja a a a a a a 8 T a 

" 2 W z - < J". J"I + £ V 1 C ( •.. V ° > 

• J a J a , a a a a 

- 6n + i a . U ( J + 0 " O a ( n a + I > 1 [ J . « a + 1 > " W 0 1 

a a 

" Sn - i a . l J » + » " V V 1 ) l l j a ( j a + I > " W 1 ) J " ' a a 

The centrifugal coupling terra Is the only term in the Harailtonian which 

couples different Q states, but it does not couple different diatomic 

vibrational, v , or rotational, j , states. Next, we define the 

potential coupling matrix, 
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P-, a = lii x !AJ v iv ,i, i v'Jl a 

a J a p a J a K a a J a a a Ja K a a J a a r (11.59) 

l V ( R a ' W " va(ra» Yj fl < W ^ « L ! L > Ja a r a 
where v a(r a) - V(R a + «, r a, Y a) which is independent of y . The last 

mp.trix that we need to define Is diagonal and contains the square of the 

wavevector for translational motion, 

< « 2 > V " n < l - ! » j a.v.j.n. U " ( E - E )/n2] , 
a Ja a' a Ja a a Ja (11.60) 
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where e , i s the e igenva lue for the i s o l a t e d d iatomic mot ion , 
a a 

' " T£T 7T ra + 7T + V ra>l Yj a < W *v j < V > 'a 
H a 3r Zur J a a a J a 

a a 

a J a J a a a J a ( 1 1 . 6 1 ) 

Now, we wri te eqn. ( 1 1 . 5 7 ) in matrix form using eqns . ( 1 1 . 5 8 ) - ( 1 1 . 6 0 ) 

where each matrix i s square In the combined i n d i c e s , i . e . , ( v

a j a ^ a ) by 

d2 V ( R ) 
^ - - ( -K 2 + U C + U P ) ° f J ( R ) 

dR 2 ° ( 1 1 . 6 2 ) 
a 

In section lc above we outlined how to pick the asymptotic boundary 

conditions for the open channel part of the wavefunction. Here, we will 

specify our specific boundary conditions for the closed channel part of 

the wavefunction. There .is some freedom In picking the two linearly 

Independent asymptotic solutions since different linear combinations 

will work. While not important In the DWBA limit, the particular linear 

combination will affect the form of the zero order Greens function, see 

appendix II.a. Based on eqn. (11.24), we specify sjl and c*, 
exp(|k a|R a I n< a 

I 1/2 

exp(- k R ) 1 n' a 
| v | 1 / 2 ' (11.63) 

where v was defined under eqn. (11.25) and n is now a closed channel. 

We solve tor the nonreactive wavefunction by numerically 

integrating the coupled equations, eqn. (11.62). To do this we first 

divide the R space Into a grid of points. We start at the small R 
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region and integrate the wavefunction outward evaluating the 

wavefunction at each of the grid pointc. The wavefunction is integrated 

between the successive grid points using Gordon's method . 

Because of numerical problems in the integration, we stabilize the 

integration at each point. We begin the integration by setting the 

wavefunction and its derivative to the unit matrix. Then, we integrate 

the wavefunction outward to the next point. At this point we set the 

wavefunction back to the identity matrix by dividing out the 

wavefunction matrix, r., and we store the r. matrix that we divide 

out. We propagate the identity matrix to the next point and repeat the 

process until we have reached the final point. These matrices that are 

stored are the ratios of the wavefunction at a point p to the 

wavefunction at a point p-1, r - fo-l °^D* *̂" C n e ^-ast point we apply 

the boundary conditions to determine K which only requires the ratio 

mat!ix at the last point. °K is used in eqn. (11.24) to generate the 

normalized wavefunction at the last point, °fw. We multiply the 

wave unction at this final point by the inverse of the ratio matrix at 

that point to generate the normalized wavefunction at the previous point 

and so on, 

°f - R _ 1 °f N-l N N 

°f , - R _ 1 °f p-1 p p 

°f =. R - 1 °f 1 2 2 ' 1 i L (11.64) 

This process of propagating the identity at each point and storing the 
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ratio matrix is much stabler for Integrating the wavefunction which has 

exponential contributions which are Inherently unstable to Integrate. 

c. Explicit form for the DUBA - CC scattering matrix 

In section Id we derived an expression for the DWBA limit of the S 

matrix. Here we will write the explicit expression for three 

dimensional A + BC scattering. In the following section the symmetry 

decoupling for the H + H, reaction Is discussed. 

The expression for the DWBA limit S matrix is given in eqn. 

(11.45), 

n W B A „ b a J = 2 I £ o^b -1 R^a o a a , - ! 
mm * mm • n rt * * ^ , , n * , * mm * mm * n f * ' s 

f 1 n* 'n '* • f 1 

where n and m now represent the collective index (v,j, 12). We discussed 

in the previous section how the zero order K matrices, "K̂ jjji and °Kfai , 

are calculated from the solution for the zero order wavefunction. What 

remains is to give an explicit expression for the evaluation of the 

reactive DWBA K matrix which Is defined in eqn. (11.35). Taking the 

position representation of the reactive part of eqn. (11.35) and using 

eqn. (11.18), we obtain, 

n'' n' '' n , n' ' +n I nn' I n' +n'' ' nn' 

" T 1 < ° ' b . ^ * - l < * b | [ v !•".> " = U 3 0> V a

0 , ] | ° f a , J , , , > n , n ' '+n ' n l L a' n' Q I n " n u n ' J l n'«-n'' ' 

| JdR3 d r ; dR 3 d r 3 £ < R 3 r 3 | R

3 r 3 > ° f " , ? (R. )» b <R?rJ) n ' b b a a . b bl a a n •n b n b b nn' 

[V (R , r ,Y ) * a , ( R 2 r 3 ) - I * a

0 ( R 2 < - 3 ) V a o , ] ° f a , J , , , ( R ) 1 a a' a' a n * a a o n a a n u n ' J n' *n' " a 
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- 4 jdR 3 d*± Z °f , f <RK)t« ( I C O V (R , r , T ) n ' a a , n ' ' *n b n b b a a ' a ' a nn 

.a ,„2 3. v .b,„2 3 , . a ,„2 3.„a , o t a J ( T I - 6 5 ) 
V ( V a > ' \ W b ^ n ^ a W n ' 1 £ n ' * n " < ' n 

where we have made use of <Rj, rbIRa ra- > " * ( R b r b ~ R a r a^* T h e coordinates 

^ b r b a n c * ^"a r a a r e n o t Independent since only 6 coordinates are 

required to specify Che en t i re space. 

If we exp l i c i t l y write the d i f f e r e n t i a l in eqn. (11.65) in terms of 

polar coordinates for our body fixed coordinate system, we obtain, 

f R2 dR / r 2 dr / sin 6 d6 / d* / sin Y dY / d* . 
' a a' a a ' a a ' a ' a a ' a , , , ,,^ 

The coordinates R , r , and Y a specify the size and shape of the 

triangle formed by the three atoms while 8 $a, and ifa specify the 

orientation of the triangle. Since the potential V a depends only on the 

coordinates R_, r_, and Y , the integral over the 9„, $_, and ill 

coordinates can be done analytically. Let us consider the part of the 

integral over the 8 a, $^, and i|>a coordinates, 

/ sin 6 d9 d* d* (^if) D^L (* ,6 0) Y. „ (Y h»* h) a a a a 8 n 2 M!^ a a j ^ b b 

DMfl ( W 0 ) Y j 0 ( V*a> " P j „ n K

( C ° S V P j 0 < " " V ^ a a a b b a a 8T 

/ sm e a de a d * a d + a D^ (* b ,8 • ) D ^ ( + a , e a , * a ) , n ' 6 ? 

b a 

where P,jj(cosY) is the associated Legendre polynomial which is related 

to Che spherical harmonics by, 
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P j R(cosT) - ( 2 n ) 1 / 2 exp(-lQi|i) Y j n<Y,*), 

and we have used a relationship for the rotation matrices that follows 

from their definition. By converting the rotation matrix in the b 

coordinates to one in the a coordinates and using ortogonality of the 

rotation matrices, the intergral In eqn. (11.67) can be done 

analytically, 
(11.68) 

(T?> /Sl" '• "'a *** "*« "M* ̂  VViin <V V V = 4 G (Aba>« 8i b a b a 
I T . •' * * 

where d^ JJ (1) > Dj j (0,A,0) and Ab Is the angle between the R. and Rg 

vectors . 

We also will, for convenience, change the integration in terms of 

R„, r_, and Y„ to an integration in terms of R„, R. , and A v„. the 
3 3 3 3 D . Del 
transformation between these coordinates is, 

2 2 1/2 r • (IL + cos a R - 2 cos a. cos i IL R ) / cos a . a D oa a na ba b a Da 

cos T a - (R a cos o ^ - Rfe cos i b a>/(r a sin o ^ ) , 

where 
cos <^a - - i » b m a / [ (m a + m c) (mb + mQ)\} , 

with OL between n/2 and n. Using th i s transformation, we obta in , 

2 ? 1 7 ? (11.70) 
/R dR r dr sin T dy * sin o, !K dR RT dR. sin A. dA. . J a a a a a a oa ' a a D b ba ba 

Using the a n a l y t i c i n t e g r a t i o n g i v e n i n e q n s . ( 1 1 . 6 8 ) and the 

t r a n s f o r m a t i o n g i v e n in e q n s . ( 1 1 . 6 9 ) and ( I I . 7 0 ) , we can now w r i t e 

K K b a from e q n . ( 1 1 . 6 5 ) a s , 
n " n ' " 
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* # . „ • • • - <W> a i n ' \ * n„E. £ Ra d R a £ Rb d R b ( n - 7 1 ) 

Ocb •! , „ v J / „ D \ o ,a J ^ . ( V ^ ^ ^ / ^ . - ' V • 

with 

C < W • £ S I" ^a dAba <<« <Aba> P J A

( c o s V , y j „ , 
b a D b (11.72.) 

*v j ( r b > / r b l 1 V < R a ' r a » T a ) " W P j . n - ( c o s V b J b a a 

r n u J a a r 
a a 

where the transformation for the b channel variables to R a, R, , i. is 

analogous to that above in eqn. (11.69) for the a channel, 

d. Symmetry decoupling 

For a collision of an atom with a horaonuclear diatomic molecule, 

there is no coupling in the nonreactive wavefunction between the even 

and odd rotational states. Thus, one can solve the nonreactive coupled 

equations separately for the even rotational states and the odd 

rotational states. This uncoupling does not hold for the full 

wavefunction though. So, after solving for the even and odd nonreactive 

wavefunctlon, the DWBA calculation is performed with the even - even, 

odd - odd, even - odd pairs of wavefunctlons. Because of the reduced 

dimensionality of the three separate calculations, this represents a 

considerable savings in computational effort. 

Parity decoupling is another important property which results In a 

considerable savings in computer effort. The parity operator P inverts 

all of the coordinates through the center of mass, 
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P »<r .8 ) - *(-r ,-R ) , 
a a a a (11.73) 

where f Is che wavefunctlon. For a trlatomlc system Che parley operator 

commutes with the Hamlltonian, so we can construct simultaneous 

elgenfunctlons of H and P. This Is somewhat complicated since the 

wavefunction In eqn. (11.50) Is not an elgenfunction of the parity 

operator except for J - 0. We will only outline here how the parity 

elgenfunctlons are constructed. More details are given by Schatz and 
12 KuppermannJ . 

Parity elgenfunctlons are constructed by taking a linear 

combination of our previous solutions from eqn. (II.5fj), 

JM 

such t h a t 

4 < v v =-k ^va,sa> ± <-D J *«(-?..-*.)}. (11.74) 

P 4 ( V V = ± ( - 1 ) J 4 ( ? a ' V -
This is equivalent to talcing linear combinations of the ft and -SI 

radial solutions with the identical expansion functions as in eqns. 

(II.50) and (11.51) . In the coupled equations for these parity 

elgenfuncclons, the centrifugal coupling matrix, eqn. (11.58), needs to 

be replaced by, 

^ > J n a n " " C 6 j j . , w v-< 6n a . U < J + » - ™l + J , < V 1 ? I / „ , 
a a a a a a a a (11.75) 

" ba s n . m ' ! J ( J + 1 ) - ° a < V I > i r W l > " V Q . + 1 ) 1 



with 

1 . a >i or a <-i; 
a a ^ , n - 0 ; a 

0 , a - - i ; 
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(11.76) 

and , 

1 , a >1 or a <-l; a a 
c^- Jl , Ba-lj (11.77) 

0 , « a<l. 

Then we can proceed as above to generate nonreactive parity eigenstates 

following our description above in section 2b. Notice from eqns. 

(11.75) - (11.77) that there is no coupling between states with [2 > 0 

and ft < 0, so these two sets can be solved independently. 

The solution for the parity representation " matrix is equivalent 
J to that in eqn. (11.71) except that the d„ „ (A) in eqn. (11.72) is 

-J b a 

replaced by do JJ ( A) • 

b a b a 

-Fi Ka + <-» 3 dn -n >• V ° - «**> ° r V 3 - V ° ! 

b a b a 

dnK« " < n • V 0-" 0' 
b a b a 

4a -<-"*' <L.a • %<°< V 0 ' b a b a 

n , n. <o, n » or a <o, a. so . 
" b (11.78) 
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Note that the matrix element for the parity conserving K matrix is zero 

if one of the ft's Is nonnegatlve and the other I) is positive. Thus the 

uncoupling In the nonreactive parity elgenstate wavefunctlon also 

carries over to the calculation of the K matrix unlike the even - odd 

uncoupling discussed above. Finally, linear combinations of the parity 

conserving S matrix elements are used to constuct body fixed helicity 

scattering matrices, 

i ( s b l A

 + s b J b b ) , o a > o , 
1 v j a v j a a D 

a a a a J a a 

i ,- J v

bJbKI _ 3 J v b - K I 
L , v j In I v j -In I 

„ba J a al a' a a I al 
7 ( I i l l - 1 ,„ i >' " a a b < 0 ' 

S 
1 i 1 _ J v

h J | A 
71s „ • " a ' 0 ' "b *° ° r ° b - ° . "a * ° -

_Jv. j . a 
s b b b , « a - « b = o . 
v j a a B (11.79) 

a a u 

e. Coupled states approximation 

The coupled states or j conserving approximation is based on the 

body fixed Hamiltonian being nearly diagonal in n, see eqns. (11.57) and 

(11.58). Several authors" have shown that accurate reactive 

scattering cross sections can be obtained from the j conserving 

approximation while saving a large amount of computational efforL. Its 

success seems to rely more on the dominance of the n = 0 states than to 

the decoupling of different 3 states, n » 0 states dominate In systems 

with coLllnear minimum energy paths, since only n » 0 states are nonzero 

along the colllnear path, which leads to much larger reactive 

contributions for IV " " • 0 than other transitions. Our application 
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of the coupled states approximation uses a basis with only 12, = n « 0 

following Schatz°. This gives basis sets which grow linearly rather 

than quadratically with the value for total J. The transition 

probabilities which we obtain with this basis are assumed to equal the 

values of the degeneracy averaged transition probabilities defined 

below. It would probably be more accurate to calculate transition 

probabilities for other fixed ft's assuming no coupling between different 

ft's as some previous calculations have been done * . This would give 

a full set of transition probabilities to degeneracy average but would 

be much more time consuming. 

f. Calculation '• differential and integral cross sections 

Here we outline the derivation of the formulas for the differential 

and integral cross sections in terms of the body fixed S matrix 

elements. More details can be found in ref. 32. Here we will ignore 

the antisymetrization for the identical nuclei of the diatom. We will 

use an axis for projecting the angular momentum that points toward the 

incoming or outgoing atom for the reactants and products respectively 

rather than using the initial or final wave vectors as is done in ref. 

32. 

In order to obtain cross sections, we need Co relate our solution 

to a space fixed scattering amplitude, F. The differential cross 

section, which is the ratio of the outgoing radial flux per unit solid 

angle to the incoming plane wave flux, is given by, 
b 

a°a ( 6 ) . V . ,Fba i2 
v a ' n "' (11.80) 
n 

where v is the velocity In rhe physical, non-mass weighted coordinates, 
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Hk 
abc 

, k" - k"/c , ' n n a (11.81) 
32 where c a and u,. are defined in eqn. (11.47). SchaCz and Kuppenaann 

go into great detail relating the wavefunctions for a space fixed 
hellclty formulation to the body fixed wavefunctions. The resulting 
relationship for the scattering amplitude in terms of our body fixed S 
matrix is, 

ba _ r n i 
n'n *• b ' 

where 

n_-;l/2 e 
b 
n' 

„ba J 

^ • a j -j.,+1 - , h a T (11.82) 
— — i a " I (2J+1) di (8 ) T™ J , 
2ka J-0 V b b n n 

6 , - Sb? J 

n'n n'n 

and 6. Is the scattering angle which is measured relative to the body 
fixed axis in the reactant channel and n is the combined index, vjft. 
Using eqns. (11.80) and (11.82), the formula for the differential cross 
section is, 

#„«»K> " «K V | z (2J+i> 4^eb) rn

bfn

J|2 

n'n b JO a "b (11.83) 
Integral cross sections are found oy integrating eqn. (11.83) over 9^ 
i..id it. Because of the orthogonality of the d functions, the formula 
for the integral cross section is quite simple, 

Qn'n " <»"£> "Z ( 2 J + 1 > l Tn'„T • " " ".1-0 ' " " ' (11.84) 
We also present transition probabilities which are just squares of the S 
matrix elements, 

ba J -ba J.2 
n'n I (11.85) 
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Degeneracy averaged values are defined as sums over final ft. and 
averages over Initial BJ, 

*£,.. v, " (2J + 1 ) " 1 I I F^.j. 0. v , n 
v J >V3 an: v J » V J"» (n.86) 

with |n.j < min(j,J) and | SJ'j < min( j * ,J). There are similar 
expressions for degeneracy averaged differential and integral cross 
sections. 

3. Details of the formalism for the collinear exact studies on H + Hn 
a. Coordinate representation for collinear H + Hn scattering 

Two coordinates are needed to describe a collinear A + BC system. 
For each arrangement we pick for our coordinates R a, the distance of 
atom A to the center of mass of BC, and r , the distance of atom B to 
atom C. Based on these coordinates, the position representation of our 

wavefunction becomes, 

1 1 •> ? (11.87) 
* b(R,r) = <rR|f b> - I # r ) f 1 (R > + Z ^,{r ) f\ (R ) 
n n, n n+n. n n «-n. 

where •* is the asymptotic n th vibrational eigenfunction for 
arrangement a. Note that each term of the expansion for the 
wavefunction has the appropriate coordinates for the particular 

arrangement. For collinear A + BC there are only two asymptotic 
arrangements possible, A + BC and AB + C- The two sets of coordinates 
(rjRj) and d^R-j) a r e n o C independent. They are related by, 

m 
r - R - (-^-) r , c a rav,'1n a 
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m. (in +m.+m ) b a b e 

R . (_JL_) R + ° a ° ° r , 
c "-ra +m. ' a (m +ra. Hm,+m ) a ' 

a b a b D c 
(11.88). 

where atom a or atom c Is the asymptotic free atom for that 
arrangement. Therefore, we may pick any pair of the four coordinates to 

be the Independent variables. Later we will find It convenient to pick 
R. and R, as the Independent variables. 

The position representation of the colllnear Haralltonlan Is, 
uZ ,2 

H(r ,R ) - <R ,r ,|H|R r > - <R ,r ,IR r > [-^ -• 
a a a' a'> ' a a a' a'> a a 2 M , ,„2 abc 3R a « 2 3 2 - -B-_L. + V ( R , ) ] t 

2 V 3r2 a' a (11.89) 
a 

where U v and u^c are defined In eqn. (11.47). The position 
representation of the various parts of the Hamiltonian defined in eqn. 
(11.13) are, 

abc 3R a 

V (R ,r ) - V(R ,r ) - v(r ) , a a a a a a 

2 2 
3 2 V 3r2 a (11.90) 

where v(r a) - V(R-+"c,r0) and <|>a(r0) is an eigenfunctlon of h(r„) with 
a <& ci II a a 

eigenvalue e a. 
b. Solving for the nonreactive wavefunction 

The coordinate representation of the coupled equations for the 
nonreactive wavefunction, eqn. (II.6), is, 

/dr' dR* dr dR <R*'|<if>a |r*R'> <r'R'|n - Elr R > ' a a a a a ' n f' a a a a 1 ' a a 
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<r R U">l 0f* > - 0. 
• .1 a I n ^ ( I I > g l ) 

Making use of eqn. (11.89), eqn. (11.91) becomes, 

n f abc 3R be or a a 

n a nl, I a ( I I > g 2 ) 

or making use of the fact that <K r

a) i s an elgenfunctlon of h ( r a ) given 

in eqn. (11.90) and of the def in i t ion of v | j i n in eqn. (11.16), we have, 

[-dSL - 4 - Ea] °f a (R ) + I V 3 ° f 3 ( R > - 0 . 
2 Wabc dR 2 n "f^l a n "f" n*"l a (11.93) 

a 

with Ej* = E - e a . We numerically integrate the coupled equations In 

eqn. (11.93) to obtain °f, by dividing the R axis Into an evenly spaced 

grid and integrating the wavefunction from point to point. In order to 

calculate the Greens function matrix, we need both the regular and 

Irregular nonreactive wavefunctions. The regular solution goes to zero 

at the origin while the Irregular solution exponentially grows as it 

approaches the origin. Also, because of the way we pick our asymptotic 

boundary conditions, the closed channel part of the nonreactive regular 

wavefunction grows exponentially as It approaches the asymptotic region 

while the irregular wavefunction exponentially decays in the asymptotic 

region. For stability the regular solution is integrated outward 

starting near the origin, and Che irregular solution is integrated 

inward starting in the asymptotic region. 

Our integration method is based on the renomallzed Wumerov 
ao oq 

algorithm ' . Before giving the details of this integration 
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procedure, it is convenient to first write eqn. (11.93) In matrix form 

for the vibrational state indices, 

dR (11.94) 

where 2y . 

and I is the identity matrix. A three term recurrance relation provides 

the basis for Numerov integration , 

<l " U °L - <U + 10T ,) °f , + (I " T ) °f = 0, 

with 
°t = °f(r ), «*n « n 

In " <TJ> * r n } -
where h is the spacing between the grid points and r R is the value of R 

at the n th grid point. We define a matrix F, 

F - I - T . 
"" " "" (11.96) 

Substituting eqn. (11.96) into eqn. (11.95), we obtain, 

F °f - (121 - 10F .) °f , + F _ °f , = 0. 
-n -n » "n-1 «n-l »n-2 "n-2 . . 

If we multiply eqn. (11.97) from the right by °£p_t and rearrange, the 

resulting equation is, 

R - (121 - 10F , - F , R , ) _ 1 F , 
-n-1 -n-2 -n-1 -n ( I I > 9 g ) 
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"n . "ii-1 "n 

Eqn. (11.98) is Che algorithm we use to propagate the regular 
solution outward from the origin. At each grid point we calculate and 
store Che ratio matrix, J^. As In the case for the three dimensional 
DWBA calculation described in section 2b, where we also calculate a 
ratio matrix using a different algorithm, this integration can be quite 
stable if enough grid points are used. With the boundary conditions and 
the ratio matrix in the asymptotic region, the °|J matrix can be 
calculated. We can then calculate the normalized wavefunction from eqn. 
(11.24) at this final point, N. By multiplying with the ratio matrix at 
this point, we get the wavefunction at the previous point and so on 
Utitll we have generated the normalized wavefunction at all of the grid 
points, 

°f " R °f 
-N-l Sfl "N ' 

(11.100) 
°f - R °f 

' I -2 -2 * 
As we show below, we only need the Inverse of the ratio matrices of the 
irregular solution to calculate the Greens function matrix rather than 
the normalized wavefunction. Rearranging eqn. (11.98), we obtain, 

R 1 T 1 - (121 - 10F , - F R 1 - 1 ) - 1 F . , 
-n-1 * -n-l -n -n ~n-2 (n.101) 

where the I indicates the irregular solution. The algorithm in eqn'. 
(11.101) Is used for the Integration of the irregular solution inward 
from the asymptotic region. The initial ratio matrix gj^ is obtained 
from the boundary conditions which we discuss below. 

To calculate the Greens function matrix we also need the log 



derivative matrix at each of the grid points. The log derivative matrix 

is defined as, 

y/r ) - £'<r ) f _ 1(r ), 

* n n n (11.102) 

where £'(r ) Is the derivative of f with respect to R evaluated at r . 

We calculate tha log derivative matrix for the regular and Irregular 

wavefunctions as we propagate the ratio matrices. Making use of 

quantities which are already calculated, the log derivative matrix Is 
o 

calculated from 
„88 

(II.103) 
S(r ) = h~'(A R - A .R"1,) F , 

where y(r ) is the log derivative matrix and , 

A - I - 0.5 F . 
ttn * "n 

In section lc we derived the asymptotic form for the open channel 

part of the nonreactlve wavefunction which Is given in eqns. (11.24) -

(11.26). Here, we specify that for the closed channels, 

k aR n a 

|2vl 1 / 2 

-k R n a 

|2vl 1 / 2 
(II. 104) 

where eqns. (11.24) and (11.26) still hold and kj* and v are defined 

under eqn. (11.25). We were free to pick various linear combinations of 

these two linearly Independent asymptotic wavefunctlons, but this 

particular choice yields a convenient form for the Greens function 
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matrix as we show in appendix II.A. 

c. Calculation of the S matrix 

The form of the S matrix In terns of the reactance matrix, K, is 

given in eqn. (II.33b), 

I - (I + 1K°°) (1 - i K 0 0 ) " 1 , 

where these are matrices in the combined indices of the arrangement and 

diatomic vibrational state, and the oo lable on the K matrix indicates 

that the indices only range over the asymptotically open channels. It 

remains to explicitly specify how the K matrix is calculated. We begin 

by taking the position representation of eqn. (11.29), 

K = °K + | JdR ,,dR 0 £ <°f ,, ,,|R ,,> ana,n. ana n. h ' a'' a" , ., n ana''n' I a'1 

i i i I n n n -
a'a"a° 

< R a" l ( 6 brab 'm ' + S bmb 1 m'" 1 . o 2 : o "bmbV " V r n V m - ' a ' - n ' ' a ° n ° l R a 0 > 

bra 

<R'ol w 0 0 . . I°f t . >. 
a°l a ° n ° a ' n ' l a ' n ' a ^ (II .105) 

where a's am. b's are arrangement indices and n and m are indices for 

vibrational expansion functions. We have discussed in sec. 3b how to 

calculate °K. While we will not indicate it with our notation, it 

should be remembered that °K, °f, and °G are diagonal In arrangement 

Index and W and S are off diagonal in arrangement index. Let us first 

consider more explicitly the final terra of eqn. (11.105) making use of 

the definition of the W kernal In eqn. (11.18), 

<R'I W 0 0 • ,\°i , , > - <R'ol<*a |[V U a'>|°f a! , > I aunua'n'l a'n'a n aul n.I' al Tn I a'n'a n 
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- 1 u a : > v

a : i°f » , 
. I n ' n'n I ana .n . n' i i 

/dR a o d r a o dR a , d r a , < R a o | < ^ V a o r a o > < R a o r a o | [ V a , | R a , r a . > 

<R , r , U a ' > - Z |R , r , X R , r , U a | > Va', ] | ° f a ! > a' a I n , ' a ' a' a' a ' I n' n'n ' n n . n' 1 

/dr o «(Rlo " R a 0 ) ^ <r o) (V , ( R a . , r , ) * 3 ( r ) 

- I •".(r , ) V*. ] "f , (R , ) 
n a n n a n a . n , a 

n ' I I 

= K - I T T * n V a o(R a o ,R a . ) ! {v a . (R a . ,R a o)< ' [ r a , (R a o ,R a . ) ) 
a ' E 

I + , [ r ,<R O.R , ) I V , } f , (R , ) , 
n < V 1 a' a " ' a' n ' n ' a ' n a ^ a ' ( l l . m 6 ) 

where 
3 r a 0 n^ (mao-> mb+ m a . ) 

3 r a , " <m a 0 + rab)(rab+ma,) 

which fo l lows from eqn. ( 1 1 . 8 8 ) . Now we d e f i n e a W matrix by, 

W , „ a ' n ' ( R ' R , ) " < l r a ( R . R , ) ] [ v a . ( R . R ' ) •* ! [ V ( R . R - ) ) 

" * * a 0 [ r . ( R , R ' ) ] V a

0 , ] . 

n° " a n n ( 7 . . 1 0 7 ) 

Next, we consider the position representation of the inverse operator. 

We construct a grid for Rflti and Ra<> with indices, 1** and i°, 

respectively. Then we can consider the position representation as an t, 

1' element of a raatri< repress ntation in R space. By considering the 

summation In eqn. (Xl.lO) from which the inverse operator Is defined it 
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can be shown that, 

< R a " l ( V b ' m ' + W i n ' , - bo*„ " h b V O °b»«Vii ' ) a"n"a 0 i i» l*a« > 

(11.108) 

" ( 6bmjb'm'r + V l b ' t n ' j ' ~ oYRblWb™b°n>0 O c b » . 0 b v l R b ' > ) a " n " i ' " 

b m a 0 n 0 l 0 

where the marrix Inverse of the right hand side of eqn. (11.108) is over 

the combined index, bmj, where b is the arrangement index, m is the 

vibrational state expansion function, and j is the Index for the R 

grid. Looking at the overlap matrix in the second term of eqn. 

(11.108), it can be written more explicitly using its definition In eqn. 

(11.22) as, 
s. . . , , . , - <R j j<* b u b ;>| R

b ;> 
bnijb'm j T b 1 m1 m' ' j ' 

= fdR. d r . dR' d r ' . , <R^ | < * b | R . r . ><R. r, IR, , r . , > ' b b b ' b ' b> ml b b b b l b ' b ' 

< R b ' r b - l * ™ - > l R l - > 

K £<'b> * m ' ( r b ' ) < R b- l R b '> 

Sbmjb'm-j- " TS^7 • - l ' b ( R b - R b ' ) J • I ' l V ' W ' 1 ' (11.109) 

where 3r / 3R Is given below eqn. (11.106). Lastly, needing a more 

explicit form for the last term in eqn. (11.108), we obtain, 

. . , 3r . 

<><ikmh°mo °G h o m o h . m .K.> = /d R „ , ^ - £ W K m h Q m 0 ( R h , R l i , ) 
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°G bo r ao b. m.CR b.,R j

b:> ' c n . n o ) 

following similar steps as those In eqn. (11.106) where 3r b/3R b, Is 

given below eqn. (11.106). The Greens function matrix element, 

°G bo r ao b, m,(R b.,R b.') - <R b.|°G bo no b. m.|R b:> , 

will be discussed more below. 

The variables, R, • Jeflned in eqn. (11.110) and R g, defined in eqn. 

(11.106) will also be placed on the same grid as discussed above. The 

four lntergrals In eqns. (11.105), (11.106), and (11.110) are all over 

variables defined on a grid. We will perform these Integrals using the 

trapazoidal rule which seems adequate although other quadrature methods 

could be used. We can rewrite eqn. (II.105) in explicit form, 

Z 
2 

i ' i " i 

K = °K + •§• n ' n " n ° °f , , , , , , , ( 5 V . . , , . , + S, . , , . , ana n ana n ft , , , o ana' n ' ' ! 1 ' bmjb'm'j* brajb'm'j ' 
1 1 1 1 3 3 3 

o -1 o ( I I . H I ) 
" K o Y o V j b 0 r a ° j 0 G b ° m 0 j ° b ' m ' j ' ) a " n

, ' l " V n ° i 0 f a ' n ' l ' a ( n . -

We have found that the grid to do these Integrals need not be as fine as 

the grid for the integration of the nonreacttve wavefunctlon. We 

therefore have two grid sizes with an integer factor relating them. 

Also, W is localized In the interaction region, so these Integrals need 

not extend out to the asymptotic regon. We cut off the integrations at-

a point where' there appears to be no further contribution to the 

integral. We give the details about the grid sizes with the results 

below. 

All that remains to be specified about the calculation is the 

computation of the Greens function matrix. The derivation of the 

http://cn.no
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equation for Che calculation of the Greens function matrix Is given in 

appendix II.A. The result from eqn (II.A.20) is that the distorted wave 

Greens function matrix can be found from, 

°2<VV> - ~ f 6n+i 5 n + 2 - £n. I°r<rn.) T 1 ^ . ) 
n 

- S ( V > 5 <V ) ] • rn < V 
and 

n 

- V<r,.> V^'n.)]"1 • V > rn-
" " " " (11.112) 

where °g is the Irregular nonreactive wavefunction. We have discussed 

the calculation of the ratio matrices, &_, f° r t n e regular nonreactive 

wavefi.r.ctlon in eqn. (11.98) and the inverse of the ratio matrices, 

gjj , for the irregular nonreactive wavefunction in eqn. (II.10.1). The 

quantity In square brackets in eqn. (11.112) is the difference between 

the log derivative matrices for the regular and irregular solutions 

which we show how to calculate in eqn. (11.103). We could also have 

calculated the distorted wave Greens function matrix from the normalized 

regular and irregular nonreactive wavefunctions rather than from the 

ratio matrices and the log derivative matrices. The formula for 

calculating the Greens function matrix in eqn. (11.112) without the 

nonmalized wavefunctions is numerically much better behaved. 

C. Results and Discussion 



1. Multichannel DWBA for three dimensional H + Hj 

a. Transition Probabilities 

In this section we present the degeneracy averaged reactive 

transition probabilities for the H + Hj (v,j) + Hj <v',j') + H reaction 

on the Porter - Karplus potential energy surface, and below we give 

the cross section results. Exact quantum calculations are available 

for comparison which makes this a convenient test problem. First we 

present the transition probabilities for total angular momentum. J = 0 

to show how well the results converge with respect to basis functions at 

different energies. Then we present the transition probabilities as a 

function of J. 

Using coupled channel DWBA, it was found for collinear H + H, 

that accurate converged results were obtained when the reaction 

probabilities were sufficiently small (<0.1). Our results here are very 

reminiscent of the collinear results. Table II.1 contains our results 

with J • 0 for the reactive transition probabilities v=0 , j=0 + v'O, 

j'=<>; v*rf), j'-l and v*), j«l • v ' O , j'-l. The results for E < 0.6 eV 

converge with 18 basis functions (the specific basis used is explained 

in the table). For larger energies the results shjw the same growing 

oscillations as the collinear results. This can be seen in Fig. II.1 

where P is plotted as a function of basis functions for E = 0.65 00 -"00 
eV. The DWBA results are expected to break down at higher energies 

where reaction probabilities become larger since the perturbation 

assumptions are no longer valid. It is not clear, though, that the 

growing instability Is purely a result of this breakdown in the 
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perturbation theory. The fact that, as we see In the next section, for 

collinear H + H^ the full, Che nonperturbatlve solution converges at 

higher energies supports the argument that it Is a breakdown of the 

perturbation approximation. It also seems possible that there is some 

nonconvergence in the nonreactive wavefunction thac is causing Che large 

oscillations. 

The "exact" quantum results are also shown in Table II.1 for 

comparison. The transition probabilities from v O , j=0 • v'M3 summed 

over final rotational levels are shown in Fig. II.2. These transition 

probabilities also show good agreement and similar trends at high 

energies. Other transition probabilities, not shown, have abouc 

equivalent agreement. In Fig. II.3 the transition probabilities 

multiplied by (2J+1) ac 0.5 eV as a function of J along with the exact 

quantum and coupled states distorted wave results. The DWBA resulcs are 

converged to within several percent with the given basis. Both the 

DWBA-CC and DWBA-CS results agree well with the exact quantum results. 

The DWBA transition probabilities, though, decay less quickly as J 

becomes larger. In Fig. II.4, transition probabilities within the 

coupled states approximation at E » 0.4 and 0.6 eV are plotted as a 

function of J. The DWBA-CS results at these energies also agree well 

with the "exact" quantum results although they seem to deviate slightly 

more near the peak maximum. Again the DWBA results decay slightly more 

slowly with increasing J. 

It is interesting to note that the DWBA transition probabilities as 

a function of J agree better with the "exact" results at 0.5 eV than 0.4 

or 0.6 eV. We would expect the agreement to be worse at 0.6 eV since 
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Che perturbacion assumption could be beginning to break down. It is 

more difficult Co understand the discrepancy between che DWBA-CS and che 

"exact" quantum results at 0.4 eV except that possibly the "exact" 

quantum results are not fully converged. We have altually used a larger 

basis.'at this energy than In the "exact" quantum results. If we use a 

smaller basis in our calculation the agreement Improves. It is 

difficult though Co really compare basis sets in the two different 

methods, 

b. Cross sections 

In Fig. II.5 the differential cross sections are plotted as a 

function of scattering angle for a total energy of 0.5 eV. The solid 

line indicates the exacC quantum results. Tie DWBA-CC and DWBA-CS 

results are plotted using the indicates dots. One can see that the DWB'A 

results agree very well with the "exact" quantum results. In Fig. II.6, 

the differential cross sections are shown as a function of scaccering 

angle for Cotal energies 0.4 and 0.6 eV. The solid line indicates che 

"exact" quantum results, and the dots are the DWBA-CS -esults. The DWBA 

results at these energies are also In quite good agreement with Che 

"exact" quantum results. At E - 0.6 eV the DWBA-CS differencial cross 

section seems to die off a little too slowly at small angles and Co peak 

somewhat coo high ac 180°. IC should be noced ChaC we obcain 

quancicative agreement in the differential cross section without any 

normalization to the "exact" resulcs. 

In Table II.2 some integral cross secclons are given for cocal 

energies of 0.4, 0.5, and 0.6 eV. The integral cross section resulcs 

show good agreemenc between the "exact" quantum and DWBA resulcs. 
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Almost all of the DWBA Integral cross sections are higher than the 

corresponding "exact" quantum results which may again indicate some lack 

of convergence in the "exact" quantum results with respect to basis 

sets. 

For comparison, we will give relative computer times for the DWBA 

and the exact calculations. Host of the computer time in the DWBA 

calculation is Involved in performing the Integrals in eqns. (11.71) and 

(11.72). We have not put much effort into optimizing these integrations 

so that we avoid regions where there is little contribution CO the 

Integral. With 16 basis functions, described In Table II. 1, and J = 0, 

DWBA-CC required 19 minutes of computer time on a Harris H800 computer 

to evaluate the entire probability matrix. The "exact" quantum 

calcolation with the same basis required 21 minut.es , but the exact 

quantum program Is highly optimized to be as efficient as possible. The 

DWBA-CS calculations is identical for J = 0 with the DWBA-CC 

calculation, but for an entire cross section calculation It requires 

about 1/5 the time needed for DWBA-CC at 0.5 eV. 

^__'.l£xact" collinear H + H, reactive scattering 

Here we present rtactive scattering transition probabilities for 

collinear H + H2 with the Porter - Karplus potential energy surface. 

The asymptotic form for the vibrational potential energy is a Morse 

function, so we therefore use Morse eigenstates for our expansion of the 

vibrational motion. We perform'calculations over a large range of 

energies from the deepest tunneling region to energies with 3 open 

channels. We also present a comparison of our results with previous 

http://minut.es
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"exact" results on this same system. 

We perform calculations with up to 6 vibrational states in our 

expansion. Table II.3 shows convergence with respect to basis set 

size. Unlike the DUBA case described in the previous section, the 

results here converge with respect to basis size quite well with'6 basis 

functions even at higher energies. The convergence at the very lowest 

energies and at I.6A66 eV is not as good as at the other energies. This 

is still being investigated. At no energies, though, do we observe the 

oscillations that we found for the DWBA calculations. 

We integrate the nonreactive wavefunction from 1.0 Bohr to 10.0 

Bohr using about 500 grid points. The convergence of the integration 

for the nonreactive wavefunction can be checked from, the symmetry of the 

nonreactive Greens function matrix. For the integration to obtain the S 

matrix in eqn. (11.111}, we find that because of the limited range of 

the exchange interaction, only the innermost 40 % of the region 

contributes significantly to the integrals, and the rest of the region 

can be ignored. Within this region we have used from 4 0 - 6 0 grid 

points. In table II.4 we present results to show the convergence with 

respect to this grid size. We see that for convergence to 1 - 2 % thac 

about 50 grid points are sufficient. 

In table II.5 we present a comparison of our results with previous 

"exact" quantum calculations. Throughout the entire energy range, our 

results show excellent agreement with the previous calculations usually 

within a few percent. We see that this method performs well with more 

than one open channel, and describes the resonance region correctly. 
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D. Conclusions 

We have presented a formalism for performing "exact" scattering 

calculations and coupled channel distorted wave Born approximation 

calculations for reactive atom - diatom systems. Calculations are 
V. 

presented for "exact" colllnear H + H~ reactive scattering and for three 

dimensional H + H, reactive scattering using multichannel DWBA. We have 

shown that accurate reactive probabilities and cross sections are 

obtained using this multichannel DWBA method for three dimensional H + 

H 2. For total energies up to C.6 eV, the DWBA transition probabilities, 

differential cross sections, and integral cross sections agree 

quantitatively with the exact quantum results. We also introduce an 

approximate method for obtaining the nonreactive wavefunctlon using the 

coupled states approximation which saves considerable computational 

effort with very good results. Above 0.6 eV, where the reaction 

probabilities become larger than about 0.1, the DWBA results do not 

converge with respect to the addition of vibrational basis functions. 

The convergence problem here is analogous to the equivalent problem 

observed by Hubbard, Shi, Miller using coupled channel DWBA for 

colllnear H + H,. For our "exact" colllnear H + K^ calculations we 

obtain excellent agreement with previous calculations over a very large 

range of energies. Over most of the energy range we obtain convergence 

with 6 vibrational expansion functions. 

The reactive scattering formalism which we present is 

straightforward to extend to any atom - diatom scattering problem but 

numerical limitations need to be Investigated further. Based on an over 
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complete basis, this method avoids all of the problems of finding an 

appropriate coordinate system for the rearranging atoms. Our accurate 

results for colllnear H + H 2 are encouraging. Using a OWBA version of 

this formalism, we have obtained for the first time quantitative 

agreement with the three dimensional H + H, results of Schatz and 

Kupperraann at low energies. These methods appear very promising for 

obtaining quantitative reactive scattering results for atom - diatom 

systems other than H + Ho. 
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Appendix II.A. Nonreactlve coupled channel Greens function for 

colllnear H + H, scattering 

1. Form of the coupled channel Greens function matrix 

Here we present a derivation of the nonreactlve Greens function 

matrix specific for our calculation on collinear H + Hn reactive 

scattering. A more general discussion of coupled channel Greens 

functions can be found in reference 90. The nonreactive coupled channel 

Greens function matrix satisfies the following equation, 

2 2 
z u dRz (ii.A.O 

where these are matrices Indexed by the asymptotic vibrational expansion 

functions and ^( R) is defined under eqn. (11.16). The Greens function 

matrix is everywhere finite. The nonreactlve Greens function, like the 

nonreactive wavefunctions, are solved for each arrangement separately. 

Later, when put In a matrix in the combined index of arrangement and 

expansion functions, the nonreactive Greens function matrix will be 

diagonal in arrangement index. 

The nonreactlve regular, °f, and irregular, °g, wavefunctions are 

solutions of the following coupled equations, 

K 2 A2 °£<R> 
U^-T' + V-(R) - E-] < o = ° ' 

V dR Z °g(R) (II.A.2) 

with the asymptotic boundary conditions from eqns. (11.24) and (11.26), 

°f(R) ~ f/R) + c(R) \ , 

and 
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°§(R> ~ £(R). 
(II.A.3) 

where a a n c l ft a r e defined in eqns. (11.25) and (11.104). 
For R' * R, it follows from eqn. (II.A.1) that "Q is a solution of 

the homogeneous equation, 
2 2 

' i ^ - ^ +* ( R > " § ] °2 ( R- R ,> - ° -
i v dR 

For °G to remain everywhere finite, it follows from the boundary 
conditions that, 

°R,(R,R') =* °f(R) A(R'), R < R' , 

and 
°G(R,R') - °g(R> 2<R'>- R > R' . 

(II.A.4) 
where 4(R') and B(R') will be determined by matching the solutions at 
R = R'. °Q is continuous at R - R" so that, 

°f(R') A(R') - ^ ( R 1 ) B(R') , 

or 
B(R') - V (R') ° £ ( R , ) ° A< R')-

(U.A.5) 
Next, we integrate eqn. (II.A.1) from an e on either side of R' to 

obtain, 
R' + e U 2 H 2 

lim J dR H (,=j-:-~) + V(R) - E] °G,(R,R') = -I . e + 0 R'-e M dR (II.A.6) 
The terms involving 1£(R) and g go to zero as E goes to zero since °Q and 

Y, are continuous in R, but since the derivatives of °G are not 
continuous at R • R', the term Involving the second derivative of °Q 
does not go to zero. So, eqn. (II.A.6) becomes, 
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R + £ « 2 A2

 n 

l i m / =h^j V . " - > - - i . 
e *0 R-e dR* 

A<*.R'> , °°g(R,R') , 2M 
l i m„ ' dR iR-R'+e " dR IR-R'-E1 " u2 " " 

Making use of eqns. (II.A.4) and (II.A.5), this becomes, 

[V(R') V ' U ' ) °f(R') - °f'(R')J A(R') = ̂  I , 
ti 

A(R') = ̂  [°§'(R') Y 1 ^ ' ) °f(R') - V(R')f' 
r (II.A.7) 

where a primed function Indicates the derivative with respect to R 

evaluated at the indicated value. Combining eqns. (II.A.4), (II.A.5), 
and (II.A.7), the expression for °5 becomes, 

(II.A.8a) 
°G(R,R') = ̂ ° f ( R ) [°f'(R') - Y ^ ' ) V'tR 1) °f(R')l"', R < R\ 

IT 
(II.A.8b) 

°C,(R,R') - ^ ^ ' ( R ) l-°S(R') +°f'(R') Y ' C ' ' °5(R')]~'. R> R'-

Starting with eqn. ( I I .A .8a ) , we define, 

U(R') - [°f'(R') - V<R'> Y ^ R ' J ° f ( R ' ) ] - 1 -

Differentiating U twice, it can be shown that, 

(II.A.9) 

(II.A.10) 
U"(R') - U(R') °s"(R') Y'< R'>. 

where we have made use of the fact Chat, 

V'(R') °f"!(R') - Y'C R') Y ^ R ' ) " ̂  tg " V(R')], 

which follows directly from the coupled equations, (II.A.2). It follows 



67 

from eqn. ( I I . A . 10) t h a t , 

U_1(R') ^ ' (R') - V < R ' > V 1 ' * ' ) ~-H IS " SCR')], 

0 r K 2 A1 t 

' l <-57 ^ + ^ ( R ' > " 51 U, < R ' > " ° -
i v dR z (II.A.ll) 

So, U (R 1) is a solution of the coupled equations, and therefore it must 

be a linear combination of the regular and irregular solutions, 
U!(R') - °f(R') c + °g(R') c , 

(II.A.12) 

where £. and g ? are constant matrices. To determine £. a r ,d fi?* w e 

compare the asymptotic forms of eqns. (II.A.9) and (II.A.12). Making 

use of eqns. (II.A.3), (11.25), and (11.104), one can show that, 

c, =» 0 and c„ » — I , •1 "2 U -

so that, 

ttV>-S0s<"'>. 
Combining eqn. (II.A.13) with eqn. (II.A.8a), we obtain, 

°G(R,R') <-^°f(R) °§ t(R ,) > R < R' . 

" (II.A.14) 

Following a similar development for cqn. (II.A.8b), it can be shown 

that, 

" { ( W J - T V " ) " ^ * ' ) > R>R'. 
* (II.A.15) 

2. Computational aspects 

Eqn, (II.A. 14) and (II.A.15) provide a simple form for calculating 

(II.A.13) 
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the nonreactive Greens function matrix from the normalized reguiar and 

irregular nonreactive wavefunctions. Unfortunately, though, the 

calculation of the Greens function matrix from the normalized 

wavefunctions is not numerically very stable. Now, we develop an 

alternative formula for calculating the Greens function matrix. 

We begin by rearranging eqns. (II.A.8a) and (II.A.8b) to obtain, 

°G,(R,R'> = ^ ° f ( R ) 0f1(R')[0|'<R,> °f1(a,>-°«,<K,> W ) ! " 1 . 
R < R', (II.A.16a) 

h 
R > R', (II.A.16b) 

The last factor of both equations above involves the inverse of the 

difference of the log derivative matrices for the regular and irregular 

solutions. We have given an algorithm for the calculation of the log 

derivative matrices in eqn. (11.103) which uses the ratio of the 

wavefunction at neighboring points. 

Next, we express °£(R) °£ _ 1(R') and °s(R) 0g - 1(R') in terms ot 

ratio matrices. As is discussed in sec. 3b, the R coordinate is put on 

a grid, and the ratio matrix is calculated at each of the grid points. 

To avoid confusion between a point on the grid and the ratio matrices, 

points on the grid will he indicated with r n rather than Rr|. Using eqn. 

(11.100) we can show that, 

°f(r ) « R • • • R„ °f„ , • n »n+l »N "N 

a n d , i t i 
0,-1. . ot-l -1 -1 

" (II.A.17) 

where £„ * s che normalized wavefunctlon ac the last point, N, on the 
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grid and ^ is a ratio matrix at point n defined under eqn. (11.98). 

There is an equation equivalent to (II.A.17) for the Irregular 

solution. It follows directly for r n < r n, that, 

°f(r ) 0f _ 1(r_,) - R R ••• R , . - n -n+1 -n+2 -n (n.A.18) 

Making use of the equation corresponding to (II.A.17) for the irregular 

solution, with r n > r n t It can be shown that, 

.Cr„) , ( V ) = S n R ^ ... S n, H. ( I I ^ I 9 > 

Combining eqns. (II.A.18) and (II.A.19) with eqn. (II.A.16), the 

equations for the Greens function matrix becomes, 

°G(r ,r ,) - ̂ ± R , R . ••• R , [°f'(r ,) °f _ 1(r ,) s n' n' ^2 "n+1 "n+2 "n* » n' » n' 

O . / \ 0 — 1 / \J~1 y 

- S'Cr,,,) 6 < V ) ] ' r n < r n " 

°G(r ,r ,) ==HRl ~l R 1 T 1 ••• R 1 " } [ V ( r ,') T h r ,) 

" n n (II.A.20) 

Since the log derivative matrices can be expressed in terms of the ratio 

matrices, the Greens function matrix can be calculated from eqn, 

(II.A.20) without using the normalized wavefunction by using instead the 

ratio matrices for the regular and irregular nonreactive 

wavefunctions. In section 3b we discuss the calculation of ratio 

matrices. Eqn. (II.A.20) is the formula used for the calculation of the 

nonreactive Greens function matrix. 
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III. Classical and quantum mechanical studies of HF in an intense laser 

field. 

A. Introduction 

Since the advent of high power lasers there has been great interest 
9 I in the use of lasers in chemistry. The uses have ranged from 
92 sophisticated forms of spectroscopy to the control of molecular 

dynamics. Experiments involving raultlphoton absorption , overtone 

absorption"-3, and radlationless transitions from excited states have 

allowed the study of new phenomena in molecular dynamics. Also, laser 
97 pulses on a picosecond timescale are allowing very fast processes to 

be observed. Resultingly, theoretical efforts 3 0 have turned toward 

understanding highly vibrationally excited molecules which exibit 

fundamentally different behavior than the harmonic oscillator (normal 

mode) view of ground state or very low vibrationally excited 

molecules. High densities of states in even small vibrationally excited 

molecules present a formidable but very important problem. 

Here we examine a diatomic molecule subjected to a picosecond (ps) 

pulse of a very intense laser radiation, A diatomic molecule has the 

advantage of a simple and accurate potential energy function and a small 

number of states. This allows essenrially exact quantum and classical 

calculations to be done. The dynamics of an isolated diatomic molecule 

Is, of coarse, trivial, but here we dynamically account for the 

absorption of the coherent laser radiation. The disadvantage of 

studying a diatomic molecule is that the low density of states will have 
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a fundamentally different behavior than polyatomlcs at high vibrational 

energies. The advantage of being able to do exact calculations, though, 

allows for a good test of the validity of classical mechanics applied to 

these problems. Assuming that their validity can be established, 

classical trajectory techniques offer a way of possibly avoiding the 

problem of the unwieldy densities of states in polyatomic problems. 

This should be a rather severe test of classical mechanics since there 

are so few quantum states involved. Also, based on what can be learned 

from a diatomic molecule, understanding can be gained about the 

absorption processes in the lower parts of the vibrational manifold of 

small and moderate size molecules where ther are also well separated 

states. 

Much of the interest in this field, especially towards the 

application of classical mechanics, was generated by the work of Walker 
99 and Preston who performed quantum and classical calculations for a 

model nonrotatlng HF molecule. Their results, using laser intensities 
2 12 

>l()TW/cm (1TW " 10 W) indicated good agreement between classical and 

quantum predictions of energy averaged over laser pulse times, except 

near multiphoton resonances. Since then there have been many exact 

classical 9 9" 1 0 4 and quantum mechanical 9 9' 1 0 2 c > 1 0 5 ~ 1 0 7 studies of 

oscillators in intense laser fields. Quantum mechanical studies have 

made use of Floquet analysis ' • ' to simplify the computation. 

Wyatt et. al. have recently even made progress in studying 

dissociation of an oscillator In a laser using quantum mechanics. Davis 

and Wyatt 1 0 1, Stein and Noid 1 0 2 c, and Gray 1 0 0 have made significant 

progress In understanding the classical behavior of nonrotating HF in an 
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intense laser field through the use of Poincare' surface of section 

plots. There have been some studies of model polyatomic systems'" ' 

but much remains to be done to get a good understanding of these 

systems. 

Here we present quantum and classical results for HF In an intense 

lat-er field. The quantum and classical equations of motion are solved 

by direct numerical integration. For one and two photon absorption near 

the fundamental frequency we include results for both rotating and, for 

comparison, nonrotatlng HF initially in its ground state at laser 

intensities of 1.0 and 2.5 TH/cm . Calculations are also performed on 

overtone (v=0 + v-2) absorption for rotating and nonrotating HF and 

multlphoton absorption for nonrotating'HF following a classical study by 

Christoffel and Bowman for nonrotating HF, at the same laser 

intensity, 43.68 TW/cra . For all the calculations, energy absorption 

and transition probabilities are calculated as a function of laser pulse 

time and as an average over pulse time. It Is found that classical 

me-hanics does not correctly describe the time behavior of the system in 

most cases. Furthermore, classical rotational state distributions are 

completely incorrect for all the cases where rotating HF is studied. 

For one photon (v»0 * v»l) absot^ion classical mechanics does give 

the correct magnitude of pulse averaged energy absorption. In addition, 

classical mechanics correctly indicates the presence of increased two 

photon absorption for frequencies lower than the one photon resonance, 
OQ 

although, In agreement with Walker and Preston's nonrotating results, 

specific resonances are not resolved and only a small amount of two 

photon absorption is seen. For the frequencies near the fundnmental, 
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the effect of Che laser phase ii studied and found to have only a snail 

effect on the quantum results and little or no effecc on Che classical 

results. 

For che overtone absorption we find an even greater discrepancy 

between the classical and quantum results than the discrepancy found 

near Che fundamencal frequency. AC overCone frequencies the classical 

and quantum maxima of the pulse time averaged energy absorbed as a 

function of laser frequency are shifted by 200 cm relative Co each 

other. Very good agreement between Che quantum and classical results is 

observed for Che raulciphocon resulcs. To sCudy mulciphoCon absorption, 

we fix Che laser frequency aC v = 3922 cm and vary Che initial 

vibracional scace from 0 - 1 0 , analogous Co ChrisCoffel and Bowman 

To gee a beccer undersCanding of Che overCone and mulciphocon classical 

results for nonrotacing HF we construct Poincare' surfaces of section. 

B. Mechods 

1. General informacion 

The calculacions are performed for roCating and nonrocating HF. 

The molecular HamilConlan Is 

2 j 2 
H — + T (Pa + |-J+v(r). (III.l) 

2u 2ur sir/e 

where r, 8, $, p r, pg, p. are spherical cuordinaces and cheir conjugate 

momenta, and u is c'u- reduced mass. For the nonrotating case the term 

with the angular momentum is excluded. The Born-Oppenheimer po' ntial 
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Is given by a Morse function V » D{l-exp[-a(r-r )]} , with values for 

the parameters23 in atonic units of D • 0.22509, a - 1.1741, and c = 

1.7329 a.u. 

The laser field Is treated classically through a dipole 

interaction. This Is valid in the limit of high photon density which is 

certainly true here. For very low intensities the photon field should 

be quantized"0 and classically the formalism developed by Miller 1 1 1 

should be used. The full Hamiltonian with an oscillating electric field 

of frequency <i), z polarization and phase 6 is , 

H = H - d(r) cos9 E sin(ujt+«), 

° ° (III.2) 

where E is the field strength [in Gaussian units it is related to the 

intensity by E Q = (8TI/C) ' , where c is the speed of light] and d(r) is 

the molecular dipole function. The cos6 factor is omitted for the 

nonrotating case. A linear and quadratic form of the dipole funciotn 

are used, d(r) = d 0 + dj(r-r e), d Q - 0.716 and dj = 0.310 a.u. (ID = 

0.39343 a.u.) for one and two photon absorption about the fundamental 

frequency corresponding to Ref. 105c, d Q = 0.7362 and d, » 0.29769 a.u. 

for overtone and multlphoton absorption corresponding to Ref. 104; d(r) 

- d Q + djr + d 2r 2,with 1 0 4 d Q * -0.410 10, d j = 1.0494 1, d 2 = -0.21551 

a.u. Laser intensities of 1.0, 2.5, and 43.68 TW/cm2 were used which 

correspond to field strengths of 0.005338, 0.008440, and 0.03528 a.u., 

respectively (lv/cm - 1.9447 x [0~ J 0 a.u.). The laser field is 

instantaneously turned on and turned off. 

All numerical integrations were back integrated to reproduce all 

the initial variables to, at least, four significant figures to assure 
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numerical accuracy. It should be noted that for the quantum 

calculations, conservation of probability was not a valid criteria for 

good integration. There was, at least, one case where we obtained 

qualitatively incorrect results even though probability was conserved to 

six significant figures* 

There is an approximation In using this potential since the 

electric field would perturb it a nontrivlal amount. It would be more 

correct to use dressed molecular potentials . Since we do not attempt 

to make our calculations quantitatively comparable to experiment, we 

avoid this extra complication. 

To aid with the lnterpritation of the results, Table III. 1 gives 

the relevant E°* levels for HF, calculated with the rotating Morse 
1 1 T oscillator formula . 

2. Classical mechanics 

The classical solution is found through the direct integration of 

Hamilton's equations of motion for the Hamiltonian given in 

Eq.(111.2). In the absence of external fields there are three conserved 

quantities which are the vibrational action H v, 

Nv " " 8 + h ' * Pr d r> 
Che rotational angular momentum J, 

UU+MJ1'2 - , * + J V V ' 2 

s i n 9 

and the z projection of the angular momentum M « p.. 



76 

With the interaction present, the vibrational action N and 

rotational angular momentum J are no longer conserved. However, with 

the present choice of polarization, M is still conserved since H has no 

$ dependence. The complete classical solution involves specification of 

the appropriate initial conditions and solution of Hamilton's equations: 

3H 1 , 2 ^ 2, . 2 3V 
ur 

+ -r- cos6 E sin(<nt+<5), or o 

3H 2 2 3 
P e - - I f • fjvr sin 6 - d ( r ) s in6 E Q s i nOt+S) , ( I I I . 3 ) 

3H . 
r = ¥ r = P r / M , 

5 3H . 2 

e = ^ 9 = P e / , J r • 

Approximate analytic orbits have been obtained 1" for a rotating 

Morse oscillator with no external field, and these are used Co determine 

diatomic initial conditions (see Appendix III.A for details). This 

approximation is excellent for Che vibracion - roc^ on levels of 

importance here. The laser ^Mse 6 is averaged over in most cases for 

one and two photon absorption about the fundamental frequency (i.e. each 

trajectory has 6 chosen randomly between 0 and 2n), although it will be 

shown to be unimportant. It is set to zero for the overtone and 

multlphoton calculations. 

For the rotating HF calculations, 1000 trajectories with random 

initial conditions (see Appendix III.A) were run for each frequency. 

Monte Carlo errors in the quantities of interest were between 10% and 
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15%. For the nonrotating HF calculations, 50 trajectories were run for 

each frequency. In this case, It Is more efficient to increment the 

vibrational angle variable in a stepwise fashion between 0 and 2ir than 

to pick it randomly. The classical equations of motion were Integrated 

with a standard predictor - corrector algorithm to either 0.9 or 1.5 

ps. Integration of the classical equations of motion beyond 1.5 ps. is 

extremely difficult due to the accumulation of arror. The integration 

of oscillatory nonlinear differential equations over long time periods 

Is still a current problem in numerical analysis . 

The energy absorbed as a function of pulse length is defined by 

<E(t)>rt = i I Hn lp*(0), Pg(0),r 1(0),9 i(0),6 1
>t] - E. 

C L N 1=1 ° f B 1 (III.U) 

where N is the number of trajectories and Ej is the initial molecular 

energy. The final vibrational action N v after a pulse of length t is 

also calculated with the rotating Morse oscillator approximation . 

Appendix III.A shows that this is an excellent approximation for the 
2 

states of Interest here. J is calculated directly from J(J+M) = pg + 
2 2 p^/sin 9. (Note: p* " 0 in the present study since J = 0 Initially.) 

With h - 1, N v and J are boxed according to the nearest integers v,j 

such that v-1/2 < N v < v+1/2 and j —1/2 < J < j + 1/2, which is the usual 

quaslclasslcal quantization procedure. The transition probability into 

a particular v,j state, as a function of pu.'.se length is 

V , J V , J (III,5) 

where N„ ,(t) Is the number of trajectories with final actions In the 

v,j box. Of coarse, a single trajectory integrated out to some large 
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pulse length T contributes to all Intermediate pulse time results. 

Also, pulse averaged energy absorbed and transition probabilities are 

defined as 

E C L ( M ) " ? ^ < E ( t ) > C L d t > 

-CL 1 ,T CL ( I I I , 6 > 

By between 0.9 and 1.5 ps., the pulse averaged energy absorption Eq. 

(III.6) appears to be converging, but has not fully converged. However, 

reasonable estimates of the converged E (iu) can be obtained, since 

<E(t)>£, has either reasonably leveled off or oscillates with a small 

amplitude. Thus, either the leveled off value or the average of the 

oscillations In <E(t)>.,T Is taken to be E„T (oi) . The error in the 

averaged quantilties is expected to be less than 10%. 

3. Quantum Mechanics 

Although Floquet * analysis has been used as an efficient anH 

stable way to obtain long time quantum solutions for oscillators in a 

laser field, the time scale of interest here is short enough (< 20 ps) 

that direct integration of the coupled quantum equations is possible. 

The total wavefunction Is expanded as 

* (r.e.t.O - E c (t) y , _(r.8,»). 
v.j V l J ' r a % ' J , m (III.7) 

with 

Vj,., ( r' 9'« " R v ( r > Yj,m ( 9'*> / r-
The YJ m are spherical harmonics and II are Morse eigenfunctlons . 

Strictly speaking, R should also depend on j, but in the present 
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problem, with only small values of j being Important, such rotational 

corrections should be small. As in classical mechanics, the z component 

of the angular momentum (mn) is conserved. Since the present study 

Involves j « 0 initially, m is zero throughout. In all subsequent 

equations ra Is understood to be zero. If the molecule had j * 0 

Initially, it would be necessary to average over transition 

probabilities for all integer values of m such that -j < ra < j. 

Inserting Eq. (III.7) into the time dependent Schrodinger equation 

results in the coupled equations 

lnc .(t) = E° . c . + E D , . , . c _ . . E sin(<ut+6), 

v.J ».j v,j v > j v j ,vj v ,j o ( I I I - 8 ) 

where the E° j are eigenvalues of H Q are matrix elements 

r (j+O 2 il/2 .. _ . 
r
 l(2j + 0 (2j+3)J ' J = J + 1 

Vj'.vj = " 4 V d ( r ) R v d r * t 1 o r 

jl 11/2 
L ( 2 j - i ) ( 2 j + n - J = j - 1 

(HI.9) 

It will be shovm later, as with the classical results, that the laser 

phase 6 does not appreciably aflect the results. For efficiency, the 

majority of the quantum calculations are made with a fixed 6 of IT/2. 

The coefficients C . of Eq. (III.8) must be complex. Thus, wrlcing v, J 
Cv j " Xv j + i Y v 1' o n e obtains the coupled real equations 

-nV . - E° . X . + I D . . . . X , , . E sln(u)t+«), v,J v,j v,j v , . v j ,vj v ,j o 

/hX . - E . Y . + Z D . . . , Y , , . E sin(ut+6). v,J v,j v,j v . , v j ,vj v ,j o 

The quantum equations of motion were Integrated with the same 

(HI. in) 
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predictor-corrector algorithm used in the classical calculations. For 

the one and two photon resonances near the fundamental frequency, an 

adequate basis for HF with the intensities and time scales of interest 

consisted of the first five v and first five j states, i.e. a 25 term 

expansion. The nonrotating quantum solutions were obtained in an 

analogous fashion, using the first five vibrational states in the 

wavefunction expansion. About the overtone frequency, basis sets for 

rotating HF consisted of either seven vibrational states each with seven 

rotational states or, further from resonance, five vibrational states 

each with five rotational states. For nonrotating HF, ten states were 

used in the overtone calculations, and as many as all 24 vibrational 

states were used in the multiphoton calculations at v = 3922 cm . 

The transition probabilities are found from the coefficients of the 

basis functions 

P v > > ' lCv,j(°|2- (III.11) 

The energy absorbed is defined as 

<E(t)> = = P<f' .(t) E° . - E° 
Q M v.j V , J V' J * (III.12) 

where E° Is the energy of the initial state. The pulse averaged energy 

absorbed and transition probability are given by 

W"> - H T < E ( C ) > Q M d C ' 
^ > > - T ' o ^ j " > " • ( I I U 1 3 ) 

The quantum solutions were integrated from 1 to 10 ps depending on 
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frequency range and how near resonance, which is long enough to converge 

the time averaged quantities to 10%. Note that it was sometimes 

necessary to average over small oscillations which had not damped 

completely out yet that were apparent in E n M as a function of pulse 

length T to obtain the best estimate. Interestingly, because the 

quantum equations are linear, it is possible to integrate 50 coupled 

quantum equations to times exceeding 20 ps, which is much longer than it 

is practicl: to integrate only four nonlinear classical equations. 

4. Poincare* surfaces of section 

Ac least three, essentially equivalent, formalisms have been used 

to define the Poincare- surfaces of section for time dependent oscillator 

problems. The methods of Stine and Noid'^e a n d Gray are exactly 

equivalent, and the method of Davis and Wyatt* identically reduces to 

the other two methods in the limit of strong fields which is certainly 

the limit studied here. We will follow the formalism of Gray'^ . 

First, we define a mapping of a phase space point Ip(t),x(t)] to a point 

lp( t+1/v) ,x(t + l/v) where v is the laser frequency and 1/v is a period of 

the laser. (Note that the notation has been changed from above with 

(p ,r) replaced by (p,x) to be conslstant with the more ususal one-

dimensional notation.) Beginning at a point in phase space, the surface 

of section is generated by repeatedly mapping the point until either a 

closed curve is generated or a chaotic trajectory is found. 

The surface of section plots are constucted for nonrotating HF 

using action-angle variables (n,q) so that the unperturbed Hamiltonian 

is only a function of the action. This is convenient since it is easy 

to see changes in the molecular energy, and it makes the resolution of 
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the structure in the high energy region of phase space equivalent to 
chat at low energy. Also, the Integration In Che chaotic region of 
phase space seems somewhat stabler. The transformation to action-angle 
variables is known for a Morse oscillator . The unperturbed 
Himiltonian becomes 

Ho(n) = („+*).,- ( n + f ) 2 - ^ , 
° l ° i A D (III.14) 

2 1/2 where in • (2da /u) . The equations of motion of Che unperturbed o 
oscillator are n - 0 and q = <u(n), where Che oscillator frequency is 

3H j, 2 
3 n 2 ° (III.15) 

This corresponds Co a line in phase space with n = constant and q = tut. 
The old variables, expressed in terms of the action-angle variables are 

x(n,q) = a"1 ln([D + (DH ) 1 / 2 cosq]/(D - » o)(. 

p(n,q) * uu(n) -^j-

=• l ie f 1 u(n)-(DH ) s inq / [D + (DH ) cosq] 

The t o t a l Harailtonian i n terms of the new var iab les i s 

H ( n , q , c ) = H (n ) - e x ( n , q ) c o s ( S J t ) . 

The e q u a t i o n s of motion a r e 

n - - e cos (« t ) ' (DH o ) s inq / (a (D + (DH ) ' ' 2 c o s q ] | 
2 

r. r„ ^ 11 ° i f i e cos(nt) 
q - l - 0 - '-" + 2> 2 D J [ 1 a 

( I I I . 1 6 ) 

( I I I . 1 7 ) 

cosq [ ( t i l . 1 8 ) 

21(0.1 ) l / 2

 + H cosql < ° " V ' 
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It should be noted that . .J phase convention for the action-angle 

variables, here, follows that of Ref. 100. 

C. Results and discussion 

1. One and two photon absorption about the fundamental frequency 

a. Energy absorption spectra 

the quantum and classical pulse time averaged energy absorption 

spectra are plotted in Fig. III.1(a) for nonrotatlng HF and Fig TII.l(b) 
2 for rotating HF, with laser intensity 1.0 TW/cm . The plot for 

99 nonrotating HF is similar to plots of Walker and Preston for higher 
2 2 

Intensities (> 10 TW/cm ). At 1.0 TW/cm , though, the quantum structure 

is more resolved. The major features are a narrow two photon resonance 

at ~ M 3879 cm (the v-0 to v»2 absorption), and a broad one photon 

resonance at 3966 cm (the vO to v-1 absorption). The classical 

spectrum shows just one very broad peak with a maximum at about v - 3940 

cm - 1. While the classical spectrum does not have any of the quantum 

structure, examination of the classical state distribution does show the 

presence of a small amoant of two photon absorption, as the frequency Is 

lowered. Details of this will iv» given later. 

For rotating HF, the spectra [Fig. 111.1(b)] are qualitatively 

similar to the nonrotatlng case. There are three peaks in the quantum 

spectrum: one broad peak near v- 4006 cm [the (v,j)=(0 ,0)+( 1,1) one 

photon resonance] with a full width at half maximum (FWHM) of ~ 50 cm - 1, 

and two narrow peaks near v • 3937 cm [the (0 ,0)*(2,2) two photon 

resonance) and 3879 cm Ithe (0,0)*(2,0) two photon resonance], each 
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with a FWHH of < 10 cm". The classical specrum has one very broad peak 

which peaks near the (0,0) + (1,0) resonance at v - 3966 cm - 1. Overall, 

the classical solution for rotating HF gives a general idea of the 

absorption. As in the nonrotatlng case, the classical result predicts 

increased t<M photon absorption for frequencies red shifted from'the one 

photon resonance, as will be seen below in Sec. C.l.b. 

In Fig. III.2, the rotating HF average energy absorption for I =• 

2.5 TW/cm2 is shown. Qualitatively, the quantum peaks become broader 

and overlap more than the 1.0 TW/cm case. There appears to be a small 

power shifting of the resonance peaks, toward higher frequencies, but it 

has not been resolved (see Ref. 105c for a discussion of power 

shifting). Classically, the absorption also broadens relative to 1.0 

TW/cm and the peak maximum appears to shift to lower freuencies, 

indicating more multiphoton absorption, 

b. Transition probabilities 

Tn this section, the approximate time averaged transitinn 

probabilities into various states are examined qualitatively to help 

show the relative amounts of one and two photon absorption. Looking ac 

the classical results, it is clear that classical mechanics does not 

give the correct rotational state distribution. Classically, there are 

large probabilities for ending in the (0,1) and (1,0) states, which 

correspond to high order processes In quantum mechanics. These 

transitions are not observed to any large extent In the quantum 

results. To get a meaningful comparison, only the probabilities for 

ending in a particular vibrational level will be considered, i.e., a sum 

Is taken over rotational states within a vibrational level. 
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Table 111*2 shows the quantum and claslcal time averaged 

probabilities at various frequencies for rotating and nonrotating HF, 

with I - 1.0 TW/cn . Each pe-ifc of the quantum solution can be seen to 

be either a one or a two photon absorption, with both processes observed 

appreciably only where peaks overlap. At high intensities the peaks 

will broaden and overlap more, but each peak will still correspond to a 

particular absorption. The classical results do Indicate the presence 

of some two photon absorption as the frequency is decreased. But 

classically, there is a very gradual change, which results in the very 

broad single peak in the spectrum (Fig. 1II.1), rather t'.ian the abrupt 

changes in the quantum results. 

To show t;ome intensity effects, average probabilities for rotating 

HF at 2.5 TW/cm are given in Table III.3. For this larger intensity, 

both classically and quantum mechanically, the excited states become 

more populated, 

c. Time behavior 

The previous two sections were concerned with average quantities. 

In this section, the energy absorption and transition probabilities as a 

function of time are examined. The quantum mechanical laser phase used 

in this section was fixed at n/2. The effect of laser phase is examined 

in the next section. 

In Fig. III.3, a comparison of classical and quantum energy 

absorption as a function of time is given for nonrotating HF at v = 3966 

era-1 (the one photon vK) to v-1 resonance). The quantum results show 

oscillations with a period of about 0.75 ps with no sign of damping out 

to 1.5 ps. At this frequency and intensity (1.0 TW/cm ) the solution is 
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well approximated by a two level system (I.e., the Rabl model ). In 

contrast, the classical result oscillates with a frequency of about 0.4 

ps and a smaller amplitude. Also, It appears as though the oscillations 

may be damping. 

Fig. III.4 shows the classical and quantum time dependent energy 

adsorption for rotating HF with v - 4006 cm [one photon (0,0) * (1,1) 

resonance]. The results are similar to those In Fig. III.3 for 

nonrotatlng HF. In this case, though, the classical result appears to 

level off even faster. The behavior of the quantum solution is again 

well approximation by the two level Rabl model. The quantum solution 

has been followed for up to 20 ps with no clear sign of damping. 

The quantum result for rhe two photon resonance at 3937 cm [(0,0) 

* (2,2) resonance] Is considerably different (Fig. III.5). The 

complicated nature of the oscillations may be contrasred with the Rabi 

oscillations of Fig III.4. From Fig. III.5, it can be seen that the two 

photon absorption is a long time process. The corresponding classical 

result (Fig. III.6) also seems to show some aspects of the slower growth 

in absorption, although the solution is reasonably level by 0.9 ps. 

In Figs. III.7, 8, and 9, plots are shown for some transition 
2 probabilities as a function of time, again for 1=1.0 TW/cra . Here, the 

classical solution is actually broken up into rotational levels, so that 

the discrepancy with quantum mechanics can be seen. The quantum 

solutions for p~. and P.Q are not shown since they are very small 

(£ 10 )• Qualitatively, the probabilities show the same behavior as 

the energy absorption as a function of time, i.e., the classical 

solutions tend to level off more and the quantum solutions appear 
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periodic. Note that In reality there are high frequency, small 

amplitude oscillations that are superimposed on Che quantum 

probabilities. These oscilatlons have not been resolved on our graphs 

and thus give rise to some roughness, particularly near peak maxima. 

The classical probabilities for rotating HF at v - 3937 cm - 1 are 

shown in Fig. III.8. It can be seen that the v - 2 states gets 

significantly populated, but the v - 1 state is also significantly 

populated. The quantum probabilities near the two photon resonance at v 

= 3937 cm - 1 are shown in Fig T.II.9. The resonance probability P22(t) 

displays a long period which essentially matches the period of <E(t)>„„ 

in Fig. III.5. Another reasonably significant probability is PII, which 

is not shown. P,j(t) displays a higher frequency oscillation and can 

reach a maximum of ~ 0.13. The other two photon resonance at v = 3879 

cm is not plotted here. Qualitatively, the classical results for this 

frequency show much less excitation than for 3937 cm . There is a 

small amount of v - 1 excitation and no v = 2 excitation. Essentially 

no rotational excitation is seen in the classical results for this 

frequency. The quantum results for 3879 cm show somewhat less 

excitation into the (1,1) state than foe 3937 cm" , and again the 

resonant probability P20 displays a long period, 

d. Laser phase effect 

Based on the classical and quantum equations of motion [Eqs. 

(III.3) and (III.8)] without additional approximations, one would expect 

the solution to be dependent on the choice of laser phase 6. Without 

allowing for the details of how the field Is turned on, complete study 

should involve averaging over the laser phase to obtain the most 
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meaningful results . 

The laser phase dependence, however, disappears from the quantum 

equations in the rotating wave approximation ' , as shown In Appendix 

II.B for the two state model. However, for sufficiently large field 

strengths or de-tuning of w from resonance, the rotating wave 

approximation will break down • Thus, for example, Moloney and 
l 1 O 

Meath have shown the laser phase dependence of probabilities as a 

function of time for a two state model. They found increasing phase 

effects for larger field strengths and at multiphoton resonances. 

The situation is not quite as clear in the classical analysis. 

However, if only the relative difference hetween laser phases is 

important, then it would be sufficient to average only over the 

vibrational phase, without averaging over the laser phase, i.e., the 

laser phase would not matter. The conditions for this to be true 

probably include w be close to resonance. 

To assess the effects of laser phase 6 on the present problem, 

consider first nonrotating HF, For an intensity of 1.0 TW/cm2 and 

frequencies of 3966 and 3879 cm" , the classical solutions were obtained 

for fixed 6 of 0 and TT/2. 500 trajectories were run for each solution 

to insure no statistical error. Over the entire 1,5 ps range, <E(t)>«L 

for the two phases agreed to between two and four significant figures. 

The quasiclassical probabilities also were in excellent agreement. 

Similarly, the nonrotating quantum results for the same conditions 

showed little phase dependence. 

We also examined rotating HF at 1.0 TW/cm2 for the possibility of 

phase effects. Within the Monte Carlo error (£ 15%), no clear phase 
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effect can be distinguished in the classical results. However, slight 

discrepancies in the time dependent quantum solutions may be seen, since 

no statistical error is present* Table 111*4 lists some relevant 

probabilities and the energy absorption both as a function of time for 5 

- 0 and TT/2, at v * 4006 cm*" . Other phases phases between 0 and it were 

also examined, but the largest differences were found between 6 = 0 and 

<5 = -n/2- Despite V being almost exactly on resonance, slight 

differences may be noted, particularly in the probabilities. These 

diferences become larger near peak maxima and can be as much as 45!. 

However, such differences are comparable in amplitude to the high 

frequency oscillations that are superimposed on the Rabi oscillations, 

and do not appreciably affect the overall behavior. Notice that 

<E(t)>,,„ is not affected much by these differences, indicating that the 

differences of the other probabilities, which are smaller and not 

listed, tend to compensate. Table III.5 presents similar results for v 

- 3937 cm" . Although this is a two photon resonance, the discrepancies 

due to laser phases are comparable to the v » 4006 cm results. Thus, 

for intensities ~ 1.0 TW/cm , and the present frequency range, the 

effects of laser phase Is small and can be neglected for most practical 

purposes. 

2. Multiphoton absorption 

Here we examine the absorption of nonrotating HF when the laser 

frequency is fixed at "v = 3922 cm"1 (44 cm lower than the v=0 + v=l 

resonance frequency), and the initial vibrational state is varied. This 

is an interesting problem from the point of view of a quantum and 

classical comparison since, as will be shown in a later section, the 
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region of classical phase space examined includes a 1:1 resonance, a 1:2 

resonance, and a region of overlapping higher order resonances with 

chaotic trajectories. 

Figure 111.10 shows a quantum and classical comparison of pulse 

time averaged energy absorbed for initial states 0 - 1 0 . The agreement 

throughout this region is extremely good except for v - 9, 10 where the 

discrepancy may be partly due to the lack of continuum states in the 

wave function expansion. In light of our results in section C.l at 1.0 

TW/cnr laser Intensity which showed moderate agreement for Initial state 

v - 0 at this frequency, this agreement is a little surprising. The 

behavior of che time averaged energy absorbed (i.e., the sharp dip 

followed by the slow rise to zero then Che sharp increase) can be 

explained qualitatively for both the quantum and classical results. The 

classical results are due to a classical 1:1 resonance at lower actions 

and a region of overlapping resonances at higher actions. This will be 

discussed in detail in section C.4 where the surface of section Is 

shown. The dominating features of the quantum results are overlapping 

resonances which result in many states becoming populated. The loss of 

energy for Initial vibrational states 2, 3, and 4 results from being 

more In resonance with stimulated emission than absorption. At 

intermediate initial states (5, 6, 7, 8), all states are further off 

resonance, so there are less transitions out of the initial state. At 

high Initial states (9, 10) overtone transitions begin to become 

significant. This domination of overlapping resonances is in contrast 

with the two state resonances of sections C.l and C.3. For comparison, 

Interesting model calculations have been carried out by Lberly et. 
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al. showing the time evolution of the populations of groups of states 

which are off resonance by varying amounts. 

Table III.6 shows the time averaged transition probabilities which 

correspond to the averaged energies plotted in Fig. III.10. Again the 

agreement between the quantum and classical results is fairly good. For 

initial vibrational states 0 - 4 , the agreement is essentially exact. 

At intermediate initial states where absorption and desorption are 

approximately equal, there are fewer transitions from the initial state 

in the quantum results. For initial states 9, 10 there is greater 

discrepancy which may be due, as stated above, to the lack of continuum 

states in the wave function expansion. 

3. Overtone spectra 

a. Time averaged energy absorbed 

For both rotating and nonrotatlng HF the classical and quantum time 

averaged energy absorbed are plotted vs laser frequency in Figs. III.11 

and III.12. For nonrotating HF both a linear and quadratic dipole 

function are used. In all the cases, the distinguishing characteristics 

between the quantum and classical results are (1) a shift of the 

classical peak by 100-200 cm toward higher frequencies, and (2) the 

classical peaks are lower and broader than the corresponding quantum 

peaks. The quantum peaks, within the resolution of our graphs, are near 

where they are expected from the v="0 * v-2 resonance frequency. There 

probably are small, unresolved power shifts in the peaks which are 

not significant for our considerations here. The classical spectra, 

with the linear dipole function, peak at nearly twice the v^} + v»l 

absorption frequency. With the nonlinear dipole function the classical 
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spectrum peaks closer to the quantum result, but is still shifted by 

over 100 cm . It should be noted that both the quantum and classical 

results show greater absorption with a nonlinear dlpole function. The 

quantum peak becomes about twice as broad, and the classical peak 

becomes 50X higher and somewhat broader. The maximum of all the quantum 

peaks approximately equals the expected value from the two state Rabl 

model2 , as we found for the vH) * v»I resonance and two photon 

absorption In Sec. III.A. 

These results are interesting considering that we found better 

agreement between the quantum and classical results for v^3 * v=l 

absorption (section C.l) and the multlphoton results at » • 3922 cm 

(section C.2). One would expect best agreement between quantum and 

classical results for averaged quantities since quantum effects tend to 

be averaged over. Even so, It is clear that in at least some 

clrcumscances, it would be misleading to look exclusively at the 

classical results even for an averaged quantity as the time averaged 

energy absorbed without accounting for possible discrepancies with the 

quantum mechanical results. More discussion of this will follow in the 

summary, 

b. Time averaged transition probabilities 

Table III.7 shows the approximate time averaged vibrational 

transition probabilities with a linear dipole function (rotating and 

nonrotating HF) and a quadratic dipole function (nonrotatlng HF). For 

rotating HF, the transition probabilities In Table III.7 are summed over 

rotational states. One can see quite dramatically that the 

quaslclasslcal results do not describe the transition probabilities of 



S3 

the v-0 + v«2 overtone absorption correctly. For both rotating and 

nonrotatlng HF the classical calculations with the linear dlpole 

function show no excitation above the v - 1 level. But for all the 

quantum results there is basically a coherent two state excitation (Rabl 

oscillation) between the v - 0 and v « 2 levels. Even with a 

nonlinear dipole function for nonrotating HF, while there Is some 

quasiclasslcal absorption into the v * 2 state, most of the absorption 

is still into the v » 1 state. 

c. Energy absorbed as a function of time 

It is Important to consider molecular properties as a function of 

pulse time since these should be important for comparison with 

experiment. In Figs. III.13 and III.14 the time evolution of the 

energy absorbed is shown for nonrotating HF with a linear dipole 

function, figures III.15 and III.16 show the time evolution of the 

energy absorbed for rotating HF. The quantum tesults show the 

characteristic sine squared shape of a Rabl oscillation. The classical 

results have a much smaller oscillation with a larger frequency which 

appears to be possibly damping out at longer times, more quickly for 

rotating HF. These results are closely analogous to the results in 

section C.l obtained about the fundamental frequency. The results for 

nonrotaitng HF with a quadratic dlpole function are not shown since they 

are qualitatively the same as those with a linear dipole. The only 

significant differences are a shorter period of the oscillations of 

slightly more than a factor o"" 2 for the quantum results and slightly 

less than a factor of two for the classical results, 

d. Transition probabilities as a function of time 
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The time evolution of the transition probabilities for rotating HF 

are displayed in Figs. III.17 and III.18. The equivalent graphs for 

nonrotatlng HF are not shown since they give essentially no new 

Information. The Interest for rotating HF comes from the rotational 

excitation of the vM), j-1; v-2, j<0; and v-2, j-2 states in the quantum 

results. This is quite surprising considering that these states are far 

off resonance. The classical results which have a few small 

oscillations that appear to damp out are again quite reminiscent of the 

results near the fundamental frequency (section C.l). Classically, the 

v-1, jO state becomes most populated with some excitation into the v=0, 

j=l and v-1, j-1 states. 

A simple numerical experiment shows that the apparent quantum 

rotational excitation is just that. For example, if a numerical 

calculation is carried out with only the v=0 , j O and v=0, j = l states in 

the expansion, there Is absorption with the correct frequency and 

magnitude that would be expected from the high frequency oscillations of 

Fig. III.17. The dynamics displayed in Fig. III.17 can be described as 

a high frequency oscillation between different rotational states within 

a vibrational manifold superimposed on a low frequency near resident 

oscillation between the v - 0 and v - 2 levels. These can be thought of 

Independently because of the differences in time scales and the near 

equivalence of the matrix elements for vibrational transitions of the 

different rotational states. In Fig. III.19 the quantum tranitlon 

probabilities summed over all rotational levels for rotating HF are 

plotted as a function of pulse time. It shows an amazingly smooth 

oscillation. 
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The oscillation between the different vibrational levels, as shown 

in Fig. III.19, can be described quite well by a Rabi two stace 

model 2 4. Assuming the frequency Is on resonance, the Rabi model would 

predict a period of 1.85 ps for the \H),jK)*v-2,j-l transition and 

v"0,j«l + v-2,JK) transition, and 2.07 ps for the v»0,j-l + v-2,j-2 

transition. The transition probability into the v - 2 level never 

reaches unity which can be due to a breakdown of the two state model, or 

a dteakdown of the Rabi model which assumes the rotating wave 

approximation ' . The same Is not true of the rotational 

transitions. For the v»0,jO * v^),j-l transition, the Rabi model 

predicts a maximum absorption of about half of the observed value and an 

oscillation frequency of about a factor of 7 too large. This is not 

surprising since one of the assumptions In the rotating wave 

approximation is that the transition is near the resonance. Since the 

rotational transitions are nowhere near resonance, the rotating wave 

approximation, and therefore the Rabi model, should not be valid. 

4. Poincare" surfaces of section 

In this section we use surfaces of section to understand the nature 

of the classical solution for nonrotating HF with a linear dipole 

function. First we examine the surfaces of section for the overtone 

absorption of section C.3, followed by the multlphoton results of 

section C.l. Many excellent reviews of nonlinear classical mechanics 
QQ, 10] 107 

exist, ' » so much of Che background is omitted for brevity. 

a. Overtone absorption 

In Fig. 1X1*20 we show two surfaces of section for overtone 

absorption, the first at the quantum resonance frequency v - 7757.8 cm 
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and the second at the frequency of maximum classical energy absorption \i 

• 7980 cm - 1. At both frequencies the solutions are all regular in the 

region of phase space examined up to a time of 100 periods of the laser 

field, about 0.43 ps. It should be restated that the surface of section 

Is generated by the mapping discussed in section B.A and is not an 

actual trajectory. For illustration, there is one actual trajectory for 

two periods of the laser field, in Fig. 111.20(a) shown as a dashed 

line. With more oscillations of the field the trajectory will touch all 

of the points on the ellipse. Both surfaces of section display a large, 

isolated 1:2 classical resonance. The fixed points of the mapping are 

clearly marked, and the separatrix connects the unstable fixed points. 

The stable fixed points result from a strictly periodic trajectory where 

the molecule oscillates one period per two oscillations of the field. 

It is easy to infer the magnitude of the time averaged energy 

absorbed from these plots. Following the usual quasiclassical 

procedure, initial conditions are chosen using a fixed action and a 

range of angles between 0 and 2n. One can see from Fig. 111.20(a) that 

if a trajectory is started with zero initial action and any angle, the 

trajectory averaged over time will gain or lose little energy since 

after every laser period, the action remains near zero. In Fig. III.21, 

the time averaged energy absorbed is plotted as a function of initial 

actions for "v • 7757.8 cm" . This shows that starting near the bottom 

of the resonance stucture, energy is gained on the average; but staring 

near the top of the resonance structure, energy is lost. At v = 7980 

cm the resonance structure is pushed to lower actions than at v = 

7757.8 cm . This explains why there is classical absorption at v = 
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7980 cm . The narrowness of the resonance explains why there Is no 

quasiclassical absorption Into the v - 2 states. (The top of the 

resonance has an action of less than 1.2.) The semlclasslcal nature of 

the classically forbidden overtone transition In this case may be 

interpreted in a fashion analogous to that which leads to certain local 

mode energy splittings 1 2 3 as discused by Gray . 

b. Mulciphoton absorption 

The surface of section for V - 3922 cm"1 in Fig. III.22 displays a 

more Interesting behavior. At low actions there is a dominating, 

isolated 1:1 resonance. From the plot one can see that there is strong 

absorption from the N v » 0 initial state, and that the absorption 

populates states as high as N - 4. The classical dynamics at other low 

of intermediate levels can be comparably understood. The more 

interesting region of the phase space occurs at actions greater than 

N v * 8. The first interesting feature of this region is a 2:3 secondary 

resonance. Clearly visible about this resonance is a chain of tertiary 

islands. These islands can be understood from the viewpoint of 

classical secular perturbation theory as described in Ref. . An even 

finer structure of higher order islands is on a scale too fine to see. 

The size of these higher order resonances depends on the magnitude of 

the perturbation (in this case the field strength). A manifastation of 

this complicated structure, even if the higher order resonances cannot 

be directly observed, is the growth of a stochastic layer around the 

separatrix of the secondary resonance which is separated from the 

regular regions by KAM structures . The random points near the 

hyperbolic fixed points of the 2:3 resonance were generated by a 
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trajectory which began approximately on the separatrlx. This Is 

evidence for a stochastic layer around the separatrlx. 

At actions above the 2:3 resonance, the secondary resonance 

structures become large enough that they begin to overlap. Overlapping 
I? 1 resonances can be related to the growth of global chaos"• . Noid and 

Stine1 have speculated on the role of overlapping resonances In the 

dissociation of a diatomic molecule with two lasers. This growth of 

global chaos can be seen surrounding regions where there are parts of 

resonance structures corresponding to 5:7 and 3:5 secondary 

resonances. Immersed in this chaotic region, parts of the primary 1:2 

resonance are clearly visible. In the chaotic region the points of the 

surface of section are generated by two dissociating trajectories and 

one nondissociating trajectory. The surface of section of the 

trajectories in the chaotic region seem to follow the vague tori of 

Shirts and Relnhardt . The points generated by a chaotic trajectory 

appears to be constrained to a particular resonance structure for 

several Intersections of the mapping. Then the mapping carries the 

trajectory near the Intersection of two resonances where it can move to 

the other resonance. The dissociating trajectories became associated 

with the 1:2 primary resonance where they were carried to large 

actions. It appears that there could be another unresolved resonance 

structure which is affecting the motion of the nondissociating 

trajectory. 

We also performed a few calculations with the exponential form of 

the dipole used by Davis and Wyatt1 , and obtained similar interesting 

behavior and dissociation at higher actions. 
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D. Summary and Conclusions 

We have performed quantum and classical calculations for one and 

two photon absorption about the fundamental (v-0 + v-1) frequency on 

rotating and nonrotatlng HF, for overtone (v»0 * v-2) absorption on 

rotating and nonrotating HF , and for multiphoton absorption at a fixed 

frequency near the (v=-0 + v*l) fundamental with different initial states 

on nonrotaing HF. Fcr the one and two photon calculations, it is found 

that classical mechanics does not pridict the correct rotational state 

distributions. Also, the time behavior of the classical solution is 

qualitatively different from the quantum one. Classical mechanics does 

give the correct magnitude of pulse time averaged quantities, but does 

not give the detailed resonance peaks for two photon absorption. 

Classical mechanics does correctly indicate more two photon absorption 

as the frequency is red shifted from the one photon resonance, but it 

predicts far too little such absorption. The quantum results as a 

function of pulse time have oscillations characteristic of two state 

resonances. The classical results as a function of pulse time have 

small, high frequency oscillations which appear to possibly damp out. 

For these transitions the laser phase has been shown to be essentially 

unimportant for the intensities examined, although it could conceivably 

be important for much higher intensities. 

At the overtone frequencies we have found a shift of about 200 cm 

between quantum and classical absorption maxima for both rotating and 

nonrotating HF. Also, the maxima and widths of the peaks are 

qualitatively different. Inclusion of a quadratic term in the dipole 
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function increases both quantum and classical overtone absorption 

significantly indicating that a reasonable fit to the dipole will be 

needed to get quantitatively accurate results. All of the quantum 

overtone results can be analyzed in terms of two state resonances. The 

quaslclass.ical vibrational transition probabilities do not show 

significant absorption into the v = 2 level as the quantum results do. 

Classically, absorption is into the v =« 1 state. As for the one and two 

photon absorption near the fundamental frequency, we found that the 

rotational state distribution for the classical results were 

qualitatively different from that for the quantum results. 

Interestingly, though, we find that pure rotational excitation was 

signifiacnt for the quantum results even though rotational absorptions 

are far from resonance. The time dependent behavior at overtone 

frequencies is quantitatively the same as that near the fundamental 

frequency. 

In contrast to the generally poor quantum and classical agreement 

near the overtone frequency, there was very good agreement for the 

multiphoton absorption of nonrotating HF at a frequency v = 3922 cm 

with different initial states for the time averaged transition 

probabilities. The quantum and classical agreement is best for low 

Initial states and becomes somewhat worse for higher Initial states. 

The quantum results in the case are characterized by overlapping 

resonances with the corresponding population of many states. 

To better understand the classical results, we constructed surfaces 

of section corresponding to the overtone and multiphoton results. At 

the overtone frequency, the surfaces of section are dominated by an 
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isolated 1:2 resonances. We show how this resonance shifts at a 

different frequency, and how this explains the observed results. The 

surface of section at "v - 3922 cm also explains that set of results. 

In this case the phase space is characterized by an Isolated 1:1 

resonance, a 2:3 secondary resonance with a chaotic layer around its 

separatrix, a region of chaos, and within this region of chaos, 5:7 and 

3:5 secondary resonances and a 1:2 primary resonance which the secondary 

resonances surround. As expected, dissociating trajectories are found 

to be associated with the region of overlapping resonances. 

From our results, one can see that erroneous conclusions can be 

reached if purely classical calculations are done. Our multiphoton 

results, though, show that there is still hope that classical 

calculations may be of some use in studying these problems. Not too 

surprisingly, the classical and quantum results differ most when there 

are essentially two state quantum resonances. It would be very useful 

if some relationship could be found between the nature of the classical 

phase space and the agreement with quantum mechanics. We have found one 

example where a chaotic region of classical phase space corresponds to 

overlapping quantum resonances, and reasonably good agreement between 

Che classical and quantum mechanical results. Gray has also 

performed some interesting miclassical calculations on nonrotating HF 

and additional semiclasslcal calculations would give more insight into 

this problem. 

It is difficult to extend these conclusions to polyatomic 

systems altough hopefully a good framework has been established for 

working on these systems. It is possible that future work will clearlfy 
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the general nature of the agreement between classical mechanics and 

quantum mechanics not only for molecules In a laser field but for any 

excited molecular system. 
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Appendix III.A: Initial and final conditions for a diatomic molecule in 

the rotating Morse oscillator approximation 

To classically determine probabilities, it Is necessary to average 

over initial conditions* For an isolated diatomic molecule, one can 

change variables to action-angle variables' (N V,Q V), (J,Q,), and 

(M.Q^) s u c n that N - J - M - 0 , with N y being the vibrational action, 

J the rotational action or angular momentum, and M being the projection 

of the angular momentum onto the z axis. These variables allow a 

connection with quantum mechanics to be easily made* The probability P 

of some event may be obtained by averaging over the Initial angle 

vabiables q v, Q,, Q M for fixed N v, J, and M, 

P - C2*)-3 Jg' d Q v j f d Q j / f dQ M x N J M C V Q J ( q M>, 
v (A.l; 

where K " 1 If the event occurs and 0 if it does not occur for the given 

initial conditions. Usually, the angular momentum is randomly oriented 

in space, so an average may be taken over M, 

P - /J dM P//J dM - 77 JJ dM P. 
-J -J -J (A.2) 

To do the Monte Carlo integration 1 2 7' t h e variables of integration 
are changed to K, with 0 < £^ < 1, such that 

25, - 1 - M/J - X, 

2™« 2
 = % ' 

2H - Qj. 
3 J (A.3) 

2^„ " V 
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1 N 

P - l i m i E v U ) . 
N— N 1 V M 

Equat ion (A.2) then becomes 

N 

(A.4) 

That is, one averages x over N random evaluations of 5 (each component 

of £ is taken to be a pseudorandom number for a given evaluation). 

Approximate relations between the action-angle variables and 

ordinary molecular coordinates have been given by Porter, Raff, and 

Miller 1 1 3 for a rotating Morse oscillator. The orbits given by them 

for 9 and $ are not strictly correct. The corrected orbits are 

r(t) = r - - ln{(-2a)[b + /b z - 4ac sin(ai„t + Q,,)]}, e a N N ' 
8(t) = arccosj/1 - A 2 cos(d) t + Q + slgn(p ) JA > ], 

*(t) = Q M + sign(P.) arccos ( X c o t [ 6 ( t ) 1 ) , 

" /l - X z (A.5) 

uheie the formulas for a, b, c, (ti, u> , and A may be found in Ref. 113 

and are not repeated here. The errors in the angular orbits arose from 

omission of a sign(pr) and sign(pg) factor in the generators W r and Wg, 

respectively [Eqs. (8a) and (8b) of Ref. 113). Another slight error is 

in Eqs. (30b) and (30c) of Ref. 113. Here, the factor r 2 should be 
2 replaced by the expansion for r given in their Eq. III.3. 

Thus, to generate the initial conditions for a diatomic we first 

pick \, Q , Q,, and Q„ randomly according to Eqs. (A.3). Then, since 

the calculations are to be made In spherical coordinates, r, 8, and i> 

are calculated from Eqs. (A.5). p r, and pg may be obtained by either 

conservation of energy and angular momentum, or by differentiation of 

Eqs. (30) of Ref. 113. This procedure is completely equivalent to the 

more standard approach of randomly orienting the molecule and its 
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angular momentum vector, and picking only r and p f from the action-angle 

variable formulas. Thus, the present approach offers no technical 

advantage over the ordinary approach for most applications, including 

the present one, except when the rotational variables play an important 

role, as in some semlclasslcal applications. 

The vibrational action N v is calculated at a time t from the 

approximate formula of Ref. 113, 

2 ' 2 /=£ (A.6) 

and only depends on the molecular energy and angular momentum state 

J(J+H) = (pfl + p,/sln 26). N was calculated numerically 0 9 v 

as a check on Eq. (A.6) and, for all N and J with J£10, N v from Eq. 

(A.6) is accurate to three significant figures. Thus, essentially no 

error is introduced by the use of Eq. (A.6) for N In the present study. 
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Appendix I I I . B : Effect of l a s e r phase on the two s t a t e model 

For a~two s t a t e model with s t a t e s l a b e l e d A and B Eqs. CII I . 8 ) 

become (h • 1) 

1 C A " CA EA + C B D A B E o S l n ( U t + 5 ) + C A D A A E o S l n ( U t + 5 ) ' 

1 C B " C B E B + ^D^sinCut+S) + C^^slnCt+S). 

If one now replaces C. and C« by S* and S« such that 

C A - S A exp(-iEAt). 

C B = S B «xp(-iEBt), 

one obta ins ( E A B = E A - Eg) 

( B . l ) 

(B .2 ) 

* A " 2 i S B D A B E o ^ l - i ( E A B + w ) t I e X P ( " i 5 ) 

- e x p l - K E ^ - u O t ! e x p ( l S ) } 

+ S A E o D M (exp[-i(ut+6)] - exp[l(<nt+5) ] (, 

*B " I t SA DAB Eo l^PUCE^-Otl exp(-i«) 

- exp[i(E A B + u)t] exp(i6)} 

+ S B E Q D B B (expl-i<ut+«)] - exp(i((ut+«)l}. 

The rotating wave approximation Involves omitting the highly 

oscillatory terms Involving exp[±i(E,_ + w)t] and exp(±iui). Thus, 

(B.3) 
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S"A " " 2 S B D A B E o ^ P I - K B M " ->t] e«p(i«). 
{&.£* ) 

h m 2 S A D A B E o e X P [ i < E A B " U ) t J e"P<- i 5>-
Within this approximation, it can easily be shown that the effect 

of the laser phase 6 is not Important. To see this, the substitution 
S„ = Sg exp(16) is made, so that Eq. (B.4) becomes 

S*A " " I SB DAB Eo e x<> [- 1 ( EAB " U ) t i > 

^ • r S A D A B E o e X P [ I ( E A B - U ) t 1 ' 
(B.5) 

i.e., S. and S-' may be obtained by solving Eq. (B.5) and the 
probabilities P A - | s A | 2 and P B - | s B | 2 « |sj| 2 have no phase 
dependance. Alternatively, Eq. (B.4) can be expressed as a second order 
equation in which the radiation phase does not appear. 

One should note carefully that the rotating wave approximation is 
valid only i f 1 1 9 b (i) a - E A B and (11) a » D A B E Q , D M E Q , D B B E 0 . The 
second condition is often not stated, but is necessary if the 
oscillatory terms are to be unimportant. Consider, e.g., HF in a 
1.0 TW/cm2 laser near the one photon resonance at 4006 cm with a state 
A - (0,0) and B - (1,1). Condition (1) is satisfied and, with E Q = 
0.00534 a.u., D ^ =0.022 a.u., D ^ - D B B - 0 , condition [ii] is 0.0 182 
» 0.0001, which ts reasonably satisfied. 
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Table II.1. Transition probabilities for J - 0. 

sb Total energy (eV)° 16 18 22 EC C 

0.30 ?«„•«„ 1.66(-lA)e 1.50(-14) 
2.76C-15) 
5.I2C-16) 

0.35 P „ M n 5.82C-10) 5.22C-10) 
4.87(-10) 
4.55(-10) 

0.40 P„n*nn 2.74(- 7) 2.63(- 7) 
3.3K- 7) 
A.I7C- 7) 

0.45 P„„ + n„ 1.92(- 5) 1.8K- 5) 
2.58(- 5) 
3.68(- 5) 

0.50 Pnn+nn 4.41(- 4) 4.54(- 4) 
7.14(- 4) 
1.06(- 4) 

0.55 P„n-nn 4.99(- 3) 4.83(- 3) 
8.1K- 3) 
1.30(- 2) 

0.60 P„n-nn 2.96(- 2) 3.01(- 2) 2.49(- 2) 
4.19(- 2) 
7.13(- 2) 

0.65 Pnn+nn 7.50(- 2) 7.49(- 2) 5.52(- 2) 4.34(- 2) 
1.02(- 1) 8.02(- 2) 
1.83C- 1) 1.50(- 1) 

"The particular basis sets used were 16 states: 4,4,4,4; 18 states; 
5,5,4,4; 22 states: 5,5,4,4,4 where each number is the number of 
rotational states within a paritcular vibrational level. Each 
successive number represents the next vibrational level. For example, 
5,5,4,4 means four vibrational levels; v = 0,1 have five rotational 
states, v » 2,3 have four rotational states. The even - odd decoupling 
of rotational states is used, so if four rotational levels are 
specified, the states are all of either even or odd symmetry as 
described in section B.2.d. This notation is used throughout the paper. 
The zero of energy is the bottom of the reactant diatom potential well. 

cFrom Ref. 16. 
The probabilities given represent examples of each of the combinations 
of even - odd symmetry decoupled results. 
eThe number in parenthesis is the power of ten that the preceding number 
should be multiplied by. 

P d 

lOO+OO 
P 0 0 * 0 1 
P 01+01 

3.07C-
5 . 5 3 ( -

15) 
•16) 

1 .66(-
3 . 0 7 ( -
5 . 5 3 ( -

•14)' 
15) 

•16) 

poo»oo 
pOO+01 
P 0 1*0 1 

5 .46C-
5 . 1 5 ( -

10) 
10) 

5 . 8 2 ( -
5 . 4 6 ( -
5 . 1 5 ( -

10) 
•10) 
•10) 

poo*oo 
P 00+01 
P 0 1 * 0 1 

3 . 3 9 ( -
3 . 3 3 ( -

7) 
7) 

2 . 7 4 ( -
3.39C-
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7) 
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P 00+00 
P 00+01 
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1 .05 ( -

4) 
4) 
3) 

P 00+00 
P 0 0 * 0 1 
P 01+01 

8 . 2 6 ( -
1 . 3 6 ( -

3) 
2) 

4 . 9 9 ( -
8 . 2 4 ( -
1 . 3 6 ( -

3) 
3) 
2) 

P 00+00 
P 0 0 * 0 1 
P 0 1 * 0 1 

5 . 3 0 < -
9 . 2 9 ( -

2) 
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2 . 9 6 ( -
5 . 2 6 ( -
9 . 2 8 ( -

2) 
2) 
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poo+oo 
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2) 
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7 . 4 9 ( -
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2 .59C-
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1) 



Table 11.2. Integral cross sections at several energies. 

E = 0.4 eV E = 0 .5 eV E - 0 .6 eV 
DWBA - CS EQ b DWBA - CC DWBA - CS EQ b DWBA - CS w£_ 

^ 0 0 + 0 1 0.878(-6) 0.667(-6) 0.139<-2) 0.137(-2) 0.124(-2) 0.958C-1) 0.780(-l) 

^00+02 0.l60(-6) O.I14(-6) 0.644(-3) 0.532(-3) 0.473(-3) 0.496C-1) 0.437(-l) 

^00+03 0.108(-8) 0.137C-8) 0.899(-4) 0.484(-4) 0.553(-4) 0.962(-2) 0.983C-2) 

«00 0.352(-5) 0.252C-5) 0.594(-2) 0.570<-2) 0.50 K-2) 0.420 0.352 

%1 0.162(-5) 0.120 (-5) 0.35O<-2) 0.312(-2) 0.306(-2) 0.255 0.228 

Q02 0.239(-6) 0.I86C-6) 0.113(-2> 0.844(-3) 0.806(-3) 0.872C-1) 0.843(-l) 

<J03 0.246(-8) 0.333C-8) 0.149<-3) 0.717C-4) 0.908(-4) 0.140C-1) 0.166(-1) 

aCross sections are summed over final angular momentum projection quantum numbers and averaged over Initial 
angular momentum projection quantum numbers. The number In parenthesis is the power of ten that the 
preceding number should be multiplied by. 
The exact quantum results are from Kef. 16. 
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Table III.3. Convergence of collinear exact H + H- reactive scattering 
transition probabilities, \H) *v'<0, with respect to basis size.3 

Total 
Ene rgy Number of channels 

(eV) 1 2 3 4 5 6 

0.3128 4.10(-9) 8.30C-9) 9.65C-9) 9.84(-9) 1.32C-8) 1.45C-8) 
0.3628 1.46(-5) 3.3K-5) 3.86(-5) 4.0 l (-5) 4 .8K-5) 4.67(-5) 
0.4028 7.23(-4) 1.9K-3) 2.26C-3) 2.36(-3) 2.62C-3) 2 .6K-3) 
0.4334 6.55C-3) 2.02C-2) 2.43(-2) 2.52(-2) 2.73C-2) 2.69C-2) 
0.4546 2.26(-2) 7.73C-2) 9.28(-2) 9.0 <-2) 1.02(-1) l .O l ( - l ) 
0.4826 8.56(-2) 3 .02(- l ) 3.50<-l) 3 .68(- l ) 3 .70(- l ) 3 .70(- l ) 
0 .5000 1.64(-1) 5.22C-1) 5.78C-1) 5.97C-1) 6 . 0 K - I ) 6.0K-1) 
0.6000 8.34(- l ) 9.97C-1) 9.97C-1) 1.00 1.00 1.00 
0.7000 9.9K-1) 9.93C-1) 9.92C-D 9 .9K-1) 9 .9K-1) 9 .90(- l ) 
0.8000 b 9.96(- l ) 9 .68(- l ) 9.47<-l) 9 .50(- l ) 9 . 5 K - I ) 9 .49(- l ) 
0.8706 9.78C-1) 8 .56(- l ) 2.72C-1) 1.78(-1) 1.92C-1) 1.66C-1) 
0.8976 9 .72(- l ) 4.95C-1) 6.28C-1) 6.78C-1) 6.56C-1) 6.70(- l ) 
1.2026 8.27C-1) 3.52C-1) 2 .08( - l ) 2 .33(- l ) 2 .07(- l ) 2 .28(- l ) 
1.3966c 7.07C-1) 1 .73(-0 1.42(-1) 1.36(-1) d 1.32C-1) 
1.6466 5.44(- l ) 3.37C-2) 8,08(-2) 7.86(-2) d 7.39C-2) 

The number In parenthesis is the power of ten that the preceding number 
should be multiplied by. 
The second channel has become open. 

cThe thi'-d channel has become open. 
dThere were some numerical problems with these calculations which are 
still being investigated. 



119 

Table II.4. Convergence of colllnear exact H + H, reactive scattering 

transition probabilities, IPO + v'H), with respect to the number of grid 

points for the Integration to obtain the S matrix.3 

Total 

Energy Number of Grid Points 

(eV) 4J 45 5J 56 61 

0.4546 1.09(-1) 1.02C-1) l.Ol(-l) l.Ol(-l) 

0.6000 9.99(-l) 9.99(-l) 9.99C-1) 1.00 

0.8706 1.6K-1) 1.62(-1) 1.64(-1) 1.66(-1) 1.67<-1) 

1.3966 1.34C-1) 1.33C-1) 1.32(-1) 1.32C-1) 

All these calculations have 6 channels in the basis. The number in 

parenthesis is the power of ten that the preceding number should be 

multiplied by. 
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Table II.5. Comparison of our exact quantum scattering reaction 
probabilities, v»0 + v'Mi with previous calculations.3 

Total Our Previous 

Energy Calculation Calculati 1 3ns 

(eV) 

Calculation 

0.3128 1.45(-8) 1.07(-8)e 

0.3628 4.67C-5) 4.37(-5) e 

0.4028 2.61C-3) 2.46(-3) e 

0.4334 2.69(-2) 2.65(-2) f 2.7 (-2)2 

0.4546 l.Ol(-l) 1.01(-l) f 

0.4826 3.70(-l) 3. t , . (- l) h 3.72(-l) 1 3.66(-l> j 3.7K-- l ) f 

0 .5000 6.0K-1) 6.01(-l) k 

0.6000 1.00 9.99(-l) k 

0.7000 9.90C-1) 9.91(-l) k 

0.8000c 9.49(-l) 9.50(-l) k 

0.8706 1.66(-1) 1.83(-l) h 1.60(-l) i 1.89(-1)J 

0.8976 6.70(-l) 6.62(-l) h 6.68(-l) 1 6.69(-l) j 6.66(-- I ) 1 

1.2026 2.28(-l) 2.29(-l) h 2.34(-l) 1 2.00(-O J 2.28(-- I ) 1 

1.3966d 1.32(-1) 1.31(-l) h 1.49(-1)1 

1.6466 7.39C-2) 8.0 (-2) h 6.94(-2) £ 

The number in parenthesis is the power of ten that the preceding number 
should be multiplied by. 
All calculations have 6 states in the basis and are converged to 1 - 27. 

in the grid size. 
cThe second channel becomes open. 
The third channel becomes open, 

eHubbard, Shi, Miller 3 4 list these results (which agree within 1 - 2% of 
their DWBA results) but do not reference them. 
Reference 79. gReference 72. Reference 73. 
'Reference 77. ^Reference 69. k"> 
Reference 74. 

Reference 71. 
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Table III.l. Relevant energy levels for HF, according to 
the rotating Horse oscillator approximation. 

E° 
yj 

_v j a.u, cm̂  

0 0 .0093309 2048 

1 0 .0095187 2089 

2 0 .0098911 2171 

0 0 .027400 1 60 14 

1 0 .0275819 6054-

2 0 .0 279454 6133 

0 0 .0446793 9806 

1 0 .0448551 9845 

2 0 .0452065 9922 
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Table III.2. Approximate time averaged probabilities for vibrational 
transitions of HF In a 1.0 TW/cm2 laser. _ 

Nonrotatlng Rotating 

v(cm ) Po Pl P2 Po Pl P 2 
3850 0.88(QM) 

1.00(CL) 
0.08 
0.00 

0.04 
0.00 

0.99 0.01 0.00 

3879 0.47 0.08 0.45 0.53 0.0 3 0.44 
0.88 0.12 o.no 0.99 0.0 1 0.00 

3900 0.83 0.11 0.06 0.96 0.0 3 0.0 1 
0.73 0.19 0.08 0.94 0.04 0.02 

3937 0.69 0.28 0.03 0.47 0.07 0.46 
0.69 0.24 0.06 0.67 0.27 0.06 

3966 0.51 0.47 0.02 0.87 0.12 0.0 1 
0.63 0.36 0.01 0.58 0.40 0.02 

4006 0.69 0.30 0.01 0.50 0.49 0.01 
0.68 0.32 0.00 0.66 0.34 0.00 

4085 0.93 0.07 0.00 0.95 0.05 0.00 
0.90 0.10 0.00 0.88 0.12 0.00 
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Table III.3. Approximate time averaged vibrational 
transition probabilities for rotating HF In a 2.5 
TW/cm2 laser.3 

v(cm _ 1) 

3879 

3900 

3937 

3966 

4006 

4085 

0.5KQM) 0 . 0 7 0 . 4 2 

0.88CCL) 0 .0 7 0 .05 

0 .90 0 . 0 5 0 .05 

0 .67 0 . 1 7 0 . 1 6 

0 . 4 8 0 .10 0 . 4 2 

0 .50 0 . 3 1 0 . 1 9 

0 .77 0 . 1 8 0 .05 

0 . 5 2 0 . 3 9 0 . 0 9 

0 . 5 2 0 . 4 5 0 . 0 3 

0 . 6 1 0 . 3 7 0 . 0 2 

0 . 8 9 0 . 1 1 0 .00 

0 . 7 8 0 .20 0 .00 

^he classical results shown for \i = 3879 and 3937 
cm"1 were actually run at 3870 and 3927 cm - 1, 
respectively. The probabilities will not vary much 
since the classical peak Is broad. It was displayed 
In the table this way to avoid confusion since the 
overall trends are still clear. 
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Table III.4. Quantum mechanical transition probabilities and energy 
absorbed as a function of pulse time for laser phases of 0 and ir/2 at 
V - 4006 cm - 1 and I - 1.0 TW/cm2. 

p00 pll <E(t) Q M(a. u.) 
t(ps) S - 0 6=n/2 6 = 0 6=TT/2 6 * 0 <5=¥/2 

0.0 1.00 1.00 0.00 0.00 0 .0000 0 .0000 

0 . 4 0.30 0.32 0.63 0.66 0 .0 125 0 .0 126 

0 . 8 0.13 0.14 0.81 0.83 0.0 156 0.0 158 

1.2 0.94 0.95 0.05 0.05 0 .00 10 0.0009 

1.6 0.51 0.53 0.44 0.45 0.0084 0.0086 

2.0 0.03 0.0 3 0.92 0.92 0.0 177 0.0 179 

2.4 0.81 0.81 0.17 0.17 0.0034 0.00 33 

2 . 8 0.73 0.73 0.24 0.24 0.0047 0.0048 

3.2 0.01 0.01 0.95 0.94 0.0 180 0.0182 

3.6 0.62 0.62 0.36 0.36 0.00 68 0.00 69 

4.0 0.88 0.90 0.09 0.09 0.00 18 0.00 17 

4.4 0.08 0.09 0.87 0.88 0.0167 0.0 169 



125 

Table III.5. Quantum mechanical transition probabilities and energy 
absorbed as a function of pulse tines for laser phases of 0 and ir/2 at 
u =• 3937 cm - 1 and T. - 1.0 TW/cm2. 

p 00 P 2 2 < E ( Q > Q M ( a . u . ) 

t ( p s ) 5 - 0 6=ir/2 6 - 0 6-TT/2 <5 - 0 <5=TT/2 

0 .0 1.00 1.00 0 .00 0 .00 0 .0000 0.0000 

0 .4 0 . 9 3 0 . 9 3 0 .05 0 . 0 5 0 . 0 0 2 1 0 .0019 

0 . 8 0 . 7 8 0 .80 0 . 1 9 0 . 1 9 0 .0072 0 .00 71 

1.2 0 . 5 7 0 . 5 8 0 . 3 7 0 . 3 8 0 .0142 0 .0 144 

1.6 0 . 3 6 0 . 3 7 0 . 5 7 0 . 5 7 0 .0 218 0 .0219 

2.0 0 . 1 8 0 . 1 8 0 . 7 1 0 .74 0 .0 282 &.0 284 

2.A 0 .05 0 . 0 5 0 . 8 3 0 . 8 1 0 .0 320 0 .0 324 

2 . 8 0 .00 0 .00 0 . 8 3 0 . 8 6 0 . 0 333 0 .0 338 

3.2 0 .0 3 0 .0 3 0 .80 O.HO 0 .0 322 0.0 324 

3.6 0 .14 0 . 1 3 0 . 6 9 0 . 7 1 0 . 0 2 8 3 0 .0287 

4.0 0 . 2 7 0 . 2 9 0 . 5 6 0 . 5 7 0 . 0 2 3 1 0 .0233 

4.4 0 . 4 7 0 . 4 7 0 .40 0 .40 0 .0 169 0 .0 170 
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Table III.6. Classical and quantum time averaged vibrational 
probabilities at " v 3922 cm - 1 (in percent). 

I n i t i a l 0 1 2 3 4 5 6 7 8 9 10 

F i n a l 0 42(CL) 21 16 16 
39(QM) 22 19 16 

1 22 36 24 12 
21 

2 16 
18 

3 17 
17 

4 4 
3 

10 

11 

12 

13 

14 

15 

16 

17 

Dl s soc lace (CL) 

39 21 14 4 
25 31 16 11 
21 31 19 10 2 
12 16 28 17 13 
14 17 24 22 7 1 
6 12 17 31 21 9 
4 11 21 34 22 4 

2 11 21 37 22 6 
2 7 22 44 20 3 

8 23 40 24 5 
4 22 52 13 3 

6 24 39 23 6 
3 19 55 16 3 2 

5 22 39 26 6 
2 18 

8 
3 

1 

60 
28 
16 
6 
2 

1 

14 
33 
59 
17 
11 
4 
5 
2 
2 
1 
I 

2 

1 

7 

3 
19 
7 

23 
30 
10 
8 
5 

10 
4 
6 
4 

21 
2 
3 
1 
2 
1 
7 

24 
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Table 111.7. Classical and quantum time averaged 
vibrational transition probabilities in the overtone 
frequency range (In percent). 

v ( c m - 1 ) F o P l P 2 

N o n r o t a t i ns HF 

l i n e a r d i po le 

(QM) 7200 81 0 19 

7757.8 50 0 50 

7800 82 0 18 

(CD 7900 90 10 n 

7990 76 24 0 

8080 91 9 0 

n o n l i n e a r d i p o l e 

(QM) 7680 82 0 18 

7757.8 51 0 49 

7840 80 0 20 

(CL) 7750 90 8 2 

7900 66" . 25 9 

8100 78 22 0 

R o t a t i n g HF 

l i n e a r d i p o l e 

<QM) 7780 73 0 27 

7800 52 0 48 

7820 81 0 19 

(CL) 7950 85 15 0 

7987.5 69 31 0 

8050 88 12 0 
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18 
Interna 

26 34 
Basis Functions 

42 

Fig. II.1. Transition probability from v « 0, j - 0 to v" - 0, j' - 0 
as a '.unction of vibration-rotation basis set at E - 0.65 eV, J = 0. 
The symbols on the plot indicate the number of vibrational states; (•) 
four vibrational states, (o) five, (*) six, (A) seven, and (•) eight. 
This clearly shows the convergence problem at higher energies as the 
number of vibrational states is increased. 
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Fig. II.2. Transition probabilities v - O . J - 0 * V - 0 summed over 
final rotational states with J - 0 as a function of total energy. The 
solid line indicates the exact quantum results, and the dots are the 
DWBA results. The DWBA results are calculated using 18 vibraional -
rotational states, 5,5,4,4. See Table II.1 for more explanation of basis 
sets. 
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OWBA-CS 

Fig. II.3. The transition probabilities multiplied by (2J+1) as a 
function of J for total energy E - 0.5 eV. The solid line Indicates the 
exact quantum results. The DWBA-CC and DWBA-CS results are plotted 
using the indicated dots. For these results a basis of 4,4,3,3 (this 
notalton is explained under Table II.1) is used with all of the allowed 
prolection quantum number Q states. Accounting for even and odd 
decoupling, a maximum of 114 states was used. 
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0.175-

Flg. II.4. The transition probabilities multiplied by (2J+1) as a 
function of J for tocal energies E • 0.4 eV and E « 0.6 eV. The solid 
lines Indicate the exact quantum results, and the DUBA-CS results are 
shoun as dots. As indicated, the E - 0.4 eV results are multiplied by 
104 before being plotted. For the DWBA results 14 basis functions, 
4,4,3,3 are used. See Table II.1 for an explanation of basis sets. 
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0.10 

0 . 0 8 -

£ 0.06 
o 

SI 

•£ 0.04 

0.02 

• OWBA-CS 
A DWBA-CC 

Fig. 11.5. Differential cross sections as a function of scattering 
angle 6 R - 180 - 0 at total energy E - 0.5 eV. The solid line is the 
exact quantum results. The DWBA-CC and DMBA-CS results are plotted 
using the indicated dots. See Fig. 11.3 for a description of the basis. 
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Fig. II.6. Differertlal cross sections as a function of scattering 
angle 6_ - 1BI1 - 8 for total energies O.A and 0.6 eV. The solid lines 
indicate the exact quantum results, and the dots are the DWBA-CS 
results. As Indicated, the E » 0.4 results are multiplied by 5 * 10 
before being plotted. See Fig. 4 for a description of the basis. 
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Fig. III.1(a). Classical and quantum mechanical time averaged energy 
absorption for nonrotating HF in a 1.0 TVI/cnr laser. 
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Fig. III.1(b). Classical and quantum mechanical time averaged energy 
absorption for rotating HF In a 1.0 TW/cm2 laser. 
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Fig. III.2. Claasclal and quantum mechanical time averaged energy 
absorption for rotating HF In a 2.5 TW/cm2 laser. 
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Fig. I I I . 3 . Time dependent energy absorption for no/irotating HF with 
v - 3966cm"1 and I - 1.0 TW/cm2. 
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Fig. III.t>. Time dependent energy absorption for rotating HF with 
v - 4006cm"1 and I - 1.0 TO/cm2. 
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0.04 

Fig. III.5. Quantum mechanical time dependent energy absorption for 
rotating HF with v - 3937 cm"1 and I - 1.0 TW/cm2. Note that the 
jaggedness here and In Figs. III.7 and III.9 are due to poor resolution 
of the high frequency oscillations. 
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Fig. IH.fc. Classical time dependent energy absorption for rotating HF 
with v « 3937 cm"1 and I « ] .0 TW/cm2. 



14 J 

1.0 
0.8 

00 
0.4 
0.2 
0 

0.4 

•""HS5 — 1 - | 1 1 1 

\ i s Quantum 
. V\ . 
" v_V^~-^ Classical -

N V 
- \ »• -
' V s 

V 

, - - i _ - - - : 

Fig. III.7. Classlca.t am' quantum mechanical probabilities P . for HF 
with v « 4006 c m - 1 and I - 1.0 TU/cm 2. 
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Fig. III.8 Classical probabilities P . for HF with V - 3937 cm and I 
- 1.(1 TW/cra2. 
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F i g . I I I . 9 . Quantum mechanical p r o b a b i l i t i e s P Q Q and P 2 2 for HF with 

v - 3937 c m - 1 and I - 1.0 TW/cra2. 
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Fig. III.10. Quantum and classical time averaged energy absorbed as a 
function of initial vibrational state for nonrotating HF at 

3922 cm -1 
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Fig. III.11(a). Quantum and classical time averaged energy absorbed as 
a function of frequency for nonrotating HF in the overtone frequency 
range with a linear dipole. 
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Fig. 111.11(b). Quantum and classical time averaged energy absorbed as 
a function of frequency for nonrotatlng HF in the overtone frequency 
range with a quadratic dipole (note the different frequency scale from 
Fig. (a)). 
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Fig. III.12. Quantum and classical time averaged energy absorbed as a 
function of frequency for rotating HF in the overtone frequency range. 
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Fig. 111.13. Quantum energy absorbed as 
nonrotacing HF at v - 7757.8 cm" . 

a function of pulse time for 
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0.020 

Fig. III.14. Classical energy absorbed as a function of pulse time for 
nonrotatlng HF at v » 7990 cm - 1. 
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0.04 

Fig. III.15. Quantum energy absorbed as a function of puLse time for 
rotating HF at V - 7800 cm - 1. 
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Fig. III. 16. Classical energy absorbed as a function of pulse time for 
rotating HF at v - 7987.5 cm - 1. 
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Fig. III.17. Quantum transition probabilities as a function of pulse 
time for rotating HF at v - 7800 cm - 1. 
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Fig. I I I . 1 8 . Classical t rans i t ion p robab i l i t i e s as a function of pulse 
time for rotat ing HF at v » 7987.5 cm" . 
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Fig. 111.19. Quantum tansition probabilities summed over rotational 
states as a function of pulse time for rotating HF at v « 7800 cm 
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N„ 

Fig. 111.20(a). PolncarS surface of section at v - 7757.8 era for 
nonrotatlng HF, (o) denote elliptic fixed points and (•) denote 
hyperbolic fixed points; the dashed line is an actual trajectory. 
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Fig. 111.20(b). Polncarl surface of section at \i - 7980 cm for 
nonrotatlng HF, (°) denote elliptic fixed points and (•) denote 
hyperbolic fixed points. 
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Fig. III.21. Classical time averaged energy absorbed as a function of 
the initial action for nonrotatlng HF at u • 7757.8 cm - . 



14 

158 

Fig. III.22. Poincare" surface of section for nonrotacing HF at « - 3922 
cm ; (o) denote ellptlc fixed points and (•) denote hyperbolic fixed 
points. The dashed lines indicate separatrices. 
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