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A Theoretical Study of Quantum Molecular Reaction Dynamics and

of the Effects of Intense Laser Radiation on a Diatomic Molecule

Peter Sabatino Dardi

Abstract

Within the very broad field of molecular dynamics, we have
concentrated on two simple yet important systems. The systems are
simple enough so that they are adequately descrihbed with a single Born -~
Oppenheimer potential energy surface and that the dynamics can be
calculated accurately. They are important because they give insight
into solving more complicated systems.

First we discuss H + H, reactive scattering. We present an exact
formalism for atom - diatom reactive scattering which avoids the prablem
of finding a coordinate system appropriate for both ceactants and
products. This 1s done by using an over complate basis where expansion
functions are included which are localized in each arrangement
channel. The interaction between different arrangements is described
using an energy independent nonlocal exchange kernel. We present
computational results for collinear H + H2 reactive scattering which
agree very well with previous calculations. We also present a coupled
channel distorted wave Born approximation for atom - diatom reactive
scattering which we show is a first order approximation to our exact
formalism. We present coupled channel DWBA results for three

dimensional H + Hz reactive scattering. Reaction probabilities and



cross sections agree very well with previous exact calculations for
energies near the threshold to reaction.

The second system which we study is an isolated HF molecule In an
intense laser field. Using classical trajectories and quantum dynamics,
we look at energy absorbed and transition probabilities as a function of
the laser pulse time and also averaged over the pulse time.

Calculations are performed for both rotating and nonrotating HF. We
examine one and two photon absorption about the fundamental frequency,
multiphoton absorption, and overtone absorption. We find that, in
general, classical mechanics does not predict the correct time behavior
or rotational state distributions. For the time averaged properties
classical mechanics describes very well the multiphoton absorption but
less well the other cases. We construct Poincaré surfaces of section to

help understand the classical dynamics for nonrotating HF.
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"However, the man of science has slipped so much that he accepts the
slavery inflicted on him by national states as his inevitable fate. He
even degrades himself to such an extent that he helps cbediently in the
perfection of the means for the general destruction of mankind....

My answer is: while it true that an inherently free and scrupulous
person may be destroyed,  -such an individual can never be enslaved or
used as a blind tool.

If the man of science of our day could find the time and courage to
think honestly and critically over his situation and the tasks before
him and if he would act accordingly, the possibilities for a sensible
and satisfactory solution of the present dangerous international

situation would be considerably improved.”

Albert Einstein, October 1952

"To me the killing of any human being is murder; 1t 1s also murder when
it takes place on a large scale as an instrument of state policy.”

Albert Einstein, 1929



I. Introduction

The field of theoretical molecular dynamics includes a fairly broad
range of topics. In general, though, it can be roughly divided into two
main catagories, molecular scattering1 and unimolecular dynamics.z’3
Molecular scattering theor7 is the study of the collision of an atow and
a molecule or two molecules 1in order to learn reacticn (nuclear
rearrangement) rates and magnitudes of internal energy transfer.
Unimolecular dynamics theory is the study of molecules with large
amounts of internal energy {which were energetically excited through
collisions or the absorption of light) to understand how the molecule
distributes the energy; and if it reacts, either dissociating or
rearranging, to find the rate of reaction and distribution of energy in
the products,

Molecular dynamics both theoretical and experimental is the study
of elementary processes involving isolated molecular systems., These
processes are the microscopic view (scattering cross sections and
unimolecular reaction rates) of the macroscopic world (thermal rate
constants) of chemistry. The goal is to understand the microscopic
world Better in the hope that this will lead to a better understanding
of macroscopic phenomena. For gas phase or atmospheric chemistry, where
everything 1s basically a series of isolated elementary processes,
molecular dyramics can yleld directly measurable rate constants by
accounting for the statistical distibution of the relative energy of
y.4,5

collision partners in a gas (by taking a Boltzmann average Even

for condensed phases, liquids and solids, where events are not isolated,



molecular dynamics provides a framework through which to understand the
more complicated phenomena.

The methods of studying molecular dynamiecs are far from
straightforward. The backbone of molecular dynamics 1s the Born—

6 which allows for the independent solution of

Oppenheimer approximation
the electronic and nuclear motions because of the different timescales
of their motion. 1In the Born-Oppenheimer approximation, the nuclel are
described as moving under forces of the other nuclei and the forces
created by the electrons averaged over their very rapid motion.
Therefore, to begin solving any molecular dynamics problem, first the
potential energy corresponding to this force field must be found. This
alone is extremely difficult and has only been done completely for the

simplest systems.7 A great deal of effort has gone into finding good

approximations based on a small section of the entire potential energy
surface.a'gf This is still an open area of research and poses a great
challenge.

Another complication Is due to the breakdown of the Born-
Oppenheimer approximation.lo Because of the coupling between different
electronic states, the nuclel cannot be assumed to be moving under the
potential of just one electronic state. They have a probability of
undergoing a transition from one electronic state to another, i.e., an
electronically nonadiabatic transition. For most realistic systems
these effects are importanr_.l1 The phenomena resulting from this
breakdown are given the names intersystem crossing or radiationless

12

transitions. Solving the problem exactly including the electronic and

nuclear motion is far too hard. Several approximate methods have been



developed for dealing with th!s problem,l3’14’1s vhich have met with
some success. The systems that we consider below fave fairly accurate,
known potentials and have well separated electronic states Implying that
the Born-Oppenheimer approximation should be valid.

The actual problem of solving the dynamics of the nuclear motion
begins after obtaining an adequate potential energy surface or an
approxfwation to it. Solving the dynamics rapi{dly becomes impossibly
difficult for all hut the simplest of systems without making
approximations. For molecular scattering the only exact;conv=rged
calculation to date was on H + H2 16 (not counting model systems such as
collinear H + “2)° Looking at unimclecular dynamics, the understanding
of something as simple as the photodissociation of formaldehyde”'18 can
evade complete understanding.

The numerous approximations that can be made to the nuclear motion
will not be discussed here since most of them will not be Jiscussed
further. Two approximations should be mentioned since they will be
discussed below. The first approximation, which is perhaps the most
important in molecular dynamics, is to use classical mechanicsz'lg in
lieu of quantum mechanics. It is hoped that since nuclel are relatively
massive that this 1s a geood approximation. This is not strictly true, of
course, and the correspondence principle indicates when classical
mechanics iIs truely valid. It is not appropriate to give a complete
account here of the validity of classical mechanics for use in molecular
dynamics. Below its validity for one particular application wfll be
discussed in detail. The second approximation is the distorted wave

Born approximation (DHBA).20 DWBA is a first order perturbation theory



applied to scattering., The DWBA results approach the exact results as
the magnitude of the perturbation goes to zero. One can see clearly the
importance of approximations to the nuclear dynamics since exact
calculations‘afe essentially impossib}e for complicated systems. It is

4.
critical then to have some exact calculations so that approximate
methods can be tested against them.

Here we Eonsider twvo problems which represent perhaps respectively
the simplest problem of molecular scattering and of unimolecular
dynamics. In both cases reasonably accurate potentials'are well
known. The first results that will be presented in chapter II will be
for the standard test problem, H + Hy scattering. The goal of these
calculations has been to develop techniques for performing essentially
exact calculations which are easily generalizable to different
systems. We have performed DWBA calculations21 which at low energies
have been the first quantitative confirmation of the 3-dimensional
results on H + Hz.lﬁ Also, we have performed closely related exact
scattering calculations22 on the model collinear H + H2 scattering. The
methods that we have applied should be straightforward to exﬁend to any
collinear or 3-dimensional atcm-diatom system where the potential is
known. It appears very promising that these methods will allow exact
quantum calculations in 3~dimensions for reacting systems besides H + Hz
for the first time.

In chapter III resulis are presented for absorption of very intense
infrared radiation by a diatomic molecule.23 Exact quantum and
classical calculations are performed. An isolated diatomic molecule has

essentially trivial dynemics since there Is only one vibrational degree



of freedom. The lnterestiﬁg aspect of this problem is that we examine
the coherent absorptionza process itself in detail. 1In order to
understand how molecules -are prepared in highly excited states by the
absorption of very intense light, the actual absorption process must be
studied since time dependent perturbation theory is not valid for very
high intensities. Even a simple problem of a diatom in a laser field
proved interesting., A diatomic molecule is a convenient system to study
simple multiphoton and overtone processes which are important even in
the initial excitation of larger systems to high energies., Also, we
were able to gain some insight into the validity.of vsing classical

mechanics to study the infrared absorption of small molecules.



I1. Reactive scattering

A. Introduction

Until about 20 years ago Transition State T‘heorya'i'25 was the only

way to obtain numerical estimates of bimolecular reactive rate
constants. Due to devélopments in scattering thecry26 and numerical
method527, it is now becoming possible to test the statistical
assuisptions of transition state theory and directly calculate state to
state transition probabilities and rate constants. Even with all of the
progress in computational technology and a large amount of effort from
many groupszs’ig, it is still very difficult to do molecular reactive
scattering calculations. Essentially all reactive scattering
calculations have been for atom — diatom systems. Even within this
narrow category, a vast majority of the calculations30 have been limited
to collinear models and then mostly for H + H, scattering. All of the

reactions considered in this chapter will be assumed to have an

6

isolated, electronically adiabatic Born - Oppenheimer” potential energy

surface.

One of the serious complications In reactive scattering is that the
natural coordinate system for the reactants in the entrance channel is
different from that for the products in the exit channe13l. It is
difficule to define a consistent, well behaved set of coordinaces for
the entire reaction. 1If a different set of coordinates is used for
different parts of the reaction, they must eventually be matched32. The

purpose of our work has been to develop methods which aveid many of



these complications. This is done by using an over complete basis which
includes basis functions localized in each arrangement channel. The
interaction between rthe different arrangement channels i3 accounted for
using an exchange kernel. These exchange interactions are analogous to
the treatment of interactions between electrons in Hartree - Fock
theoryaa. The original idea was first developed by Hillerzza based on a
variational method. This method can yield essentially exact results.
Here, we also make use of a distorted wave Born approximation (DWBA), a
first orde; perturbation theory, version of this formalism which was
first developed by Hubbard, Shi, and Hilleraa.

Here we apply this exact scattering method to collinear H + Hy
reactive scattering and the DWBA method to three dimensional H + szl.
At low energiles, i.e., in the threshold region to reaction, one would
expect DWBA results to be very accurate since reaction should only be a
small perturbation on the dynamics. Previous DWBA calculations in
molecular scattering35;64, many were for three dimensional H + Hz,
yielded results which were in error by as much as several orders of
magnitude. They often yield surprisingly accurate relative cross
sections, though, which has found use65 in determining vibrationesl and
rotational final state distributions for many reactions through Franck -
Condon methods66-68. In all of these previous molecular applications, '
the nonreactive distorted wavefunctions are determined from a single
channel elastic scattering calculation with the only difference being
how well the vibrations and rotations are accounted for adiabatically
and therefore what elastic potential is used. For example, in much of
51-57

’

the work of S. H. Suck and coworkers the asymptotic molecular



wavefunctions are assumed frozen throughout the collision, and the
elastic potentials are obtained by averaging the full potential over the
frozen wavefunctions (DWBA - FM for frozen molecule). Two somewhat more
accurate treatments have been developed by Tang, Poe, Sun, Choi, and
coworkers?2™0 and also by Clary and Connor? 764, 1n the first,
vibrational wavefunctions are allowed to distort adiabatically to the
presence of the incident atom?2743,59-63 (pypa ~ va for vibrationally
adiabatic), and in the second the molecular wavefunction is taken as a
product of separately determined vibrationally and rotationally
adiabatic wavefunccionshe-ag’eh (DWBA - RA for rotationally

adiabatic). Very recently, Sun 35;_5}:50 have improved on previous DWBA
results substantially by allowing the molecular wavefunction to be fully
adilabatic (ATM, adlabatic T matrix theory). Many, though rot all, of
the above applications are actually approximate forms of DWBA since the
wavefunctions In the reactant and product arrangement channels are
calculated at different levels of approximation.

The major difficulty with the previous DWBA methods is that they
failed to calculate the nonreactive wavefunction accurately enough. The
nonreactive wavefunction in the interaction region cannot be described
accurately enocugh using only one diatomic molecular wavefunctinsn even 1f
there is only one diatomic state enargetically allowed asymptotically.
Here we solve for the nonreactive wavefunction using coupled channel
methods which yield essentially exact nonreactive wavefunctions. This
idea of using coupled channel distorted wavefunctions was developed
independently by Emmons and SuckSB, who presents the formalism for three

34

dimensional reactive collisions, and by Hubbard, Shi, and Miller”", who



present a formalism for collinear atom - diztom collisions with an
application to collinear H + H2 with excellent results.

For collinear H + H2 there have been many quantuw mechanical
studies done before®?-79, Our method based on Miller's22® variational
method offers the advantage of being straightforward to extend to other
more complicated systems. There have been three previous
applicationssz_d based on Miller's variational formalism223, The first
by Wolken and KarpluSZZd for three dimensional H + Hy included only the
ground vibrational state in the couple channel expansion for HZ' so they
did not obtain converged results. The other applications by Garrett and
MillerZZb and Adams and Millerzzc, both for collinear H + HZ' differed
from our approach in two respects. First they used in their expansion
for the nonreactive wave fuanction the .ground vibrational state of Hy and
square integrable functions to account for the energetically forbidden,
i.e., closed, asymptotic vibrational channels. In our approach, we
expand the wavefunction in both open and closed vibr:.tional states of
Hys Our approach has the advantage of not requiring modification for
calculations at higher energies with more than one open channel and of
not being dependent on the choice of square integrable functions. Thre

ZZb, and Adams and

second difference fs that both Garrett and Miller
Mi1ler22C expand the exchange kernel operator, Gex(R,R') over a basis
set. We instead show how Gex(R,R') can be written in terms of the
energy independent exchange kernel W, (R,R') which was first defined by
Hubbard, Shi, and Miller3* fn their DWBA calculation. This has the

advantage that W, (R,R') does not have to be recalculated at different

energies. Also, we evaluate Hex(R,R') on a grid without contracting it



onto a basis, so that our results are independent of any basis
functions.

Here, we extend the coupled channel distorted wave, DWBA - CC
approach of Hubbard, Shi, and Miller3* to the three dimensional H + H,
reaction, making detailed comparisons with accurate quantum results.
Since we account exactly for the nonreactive wavefunction, we should and
do obtain excellent aggreement with the exact quantum results for
energies in the threshold region where reaction probabilities are not
too large. At energies where the reaction probabilities are less than
about 0.1, the results converged with respect to the addition of more
molecular basis functions. At higher energies we found, as Hubbard,
Shi, and Hiller34 found in the collinear case, that the probabilities
became unstable with respect to the addition of more basis functions.

We also introduce a very accurate approximation to DWBA - CC through the
use of the coupled states approximation, DWBA - CS. This work
represents the first quantitative comparision with the exact quantum
results of Schatz and Kuppermann16 for three dimensional H + H, on the
Porter - Karpluseo potential energy surface.

We also present results for "exact”™ calculations for collinear H +
H, scattering on the Porter - Karplus80 potential surface with
comparisons to othe£ quantum mechanical calculations. We perform cur
calculations over a very large range of energies from the deepest
tunnelling region to energies with three open asymptotic vibrational
channels. OQver this whole range cf energies we obtained excellent
agreement with previous calculations. These results are very

encouraging for a method which is apparently straightforward to extend

10



to other systems.

B. Theory

1. Atom — diatom scattering formalism

Here we develop a gcattering formalism based on the variational
method of Millerzza specific to atom - diatom scattering at energies
below the energy required for three separate atoms. In this section the
discussion will remain very general with no reference to the specific
coordinate system or dimensionality. Below we will describe the
specifics for both collinear and 3 - dimensional H + Hye
a. Expansion of the wavefunction and definition of the exchange
operator

For A + BC scattering, assuming that the total energy is
insufficient for three separated atoms, there are, in general, three
asymptotic arrangements possible, A + BC, B + AC, and C + AB, although
some of these may not be energetically allowed at low scattering
energles. For collinear atom - diatom scattering there are only two
possible arrangements, but most of the rest of c¢:r development follows
with this in mind with other exceptions noted where necessary, Within
each of these arrangements the diatom asymptotically can be in different
internal states, n, again with the constraint that there be enough
energy. In keeping with the common terminology we will refer to
energetically allowed asymptotic states (including arrangements, diatom
internal states, and orbital angular momentum, if appropriate) as open

channels and energetically forbidden asymptotic states as closed



channels,
W2 first expand the wavefunction,

(11.1)
1.1 2 .2 3 3
]wn?> - : |¢">Ifn«n:> + :' [¢n,>lfn' R :"[¢n..>[fn"+n:>,

where I¢E> is the direct product of the (vibrational and rotational)

+n

molecular wavefunction for the isolated diatom for arrangement b and of
the orbital angular momentum state with n representing the combined
index which describes the product uniquely and If:*na> is the
corresponding radial wavefunction assuming initial siate n, in
arrangement channel a. The exact form of |¢:> will depend on the
dimensionality and on the particular coordinate system. Note that in
the collinear atom - diatom case there are only two arrangements
possible. This expansion is over complete, but this should cause no
ptoblems for reasonables expansions since asymptotically the basis
functions are well separated. We will need to account for the
nonorchogonasity of the [¢ > in different arrangement channels.

The scattering wavefunction satisfies the equation,

(# - E) |¥ 2 =0
n (I1.2)

1
where H is the Hamiltonian operator. Taking eqn. (I1.2) we mditiply

from the left by <R”|<
n

fl to give,
Pl Ju-g v > =0,
f n

1 (I1.3)

where <¢b is defined below eqn. (II.1) and <Rb| is the translational
n

£
coordinate corresponding to the internal state <¢:E| which 1s included

so that the function with which we project covers the entire space. By

12



doing this we are projecting out the final state and thus examining the

coupling into this state., Now combining egn. (IL.1) with (Il.3) gives,
- _—
D R|<e® [0 - Eleb>|e! > 4z @®|<e] Ju - |52 >
n ng e n' Mg n n'+n?
i 1 (IL.4)

Blo,b |o 3 3
(<R |<¢nf|a - E[¢, >|f >=0

N a
n n"*ni

1
The b th term of eqn. (Il.4) accounts for coupling within the same
arrangement channel, il.e., the elastic and inelastic effects. The other
two terms account for the rearrangement or reactive part of the
interaction. We define the exchange operator,

~be

b ~ c
v a<e | H-E ¢,
nfn nf n

(I1.5)
with b # c.

We will first solve a zero order equation to account for all the
elastic and inelastic nonreactive effects exactly,

z <Ra|<¢:f| H-E '°:>'°f:+na> =0,

1 (II.6)

o_.a
f - "
where a> is the "exact" nonreactive wavefunction. We solve this

i
equation by direct numerical integration. We use this zero order
wavefunction as a distorted wavefunction and the exchange operator
accounts for the interactions responsible  for rearrangement.

The formal solution for the full wavefunction can be written down

using the set of coupled Lippman - Schwinger type equations,

fb S = 8 ofb >+ I on , Vbc lfc 5
nen® ba nen? at.onte o0 ‘“n''ot ven?
i 1 ’ ny (11.7)
o.b “bd d
LI Gpat Vnriae[£5
,0 n *ni

with equivalent expressions for ¢ and d where b # ¢ # d, Gba is the



14

standard Kroneker delta function and OGEn' is the zero order,
nonreactive Greens function which is described in detail in Appendix

IT.A. This set of coupled equations can also he written in matrix form,

et > s, ¢t > °%! ., o 0
a al a nn
n"ni n<--ni
(11.8)
[ 5| = 6, [°%% > |+ ¢ 0 °%% ., o
a a2 a o nn
ne n+n n'n
i i
[e2 > s, % > 0 0 °63 |,
nen? a3 nen? nn
i i
~12 o13 1
0 vn"n' vn"n' |f a>,
n+n
A
521 523 2
Vieegr 0 Vit = > .
n+n
i
\
231 532 3
vnl'ni vniln' 0 |f a>
nen
or using vector notation for the arrangement indices,
° o -
> = >+ T %G S £
“‘“f ~nen, ntpte ~on n''n n*n? (I1.9)
This equation can be sclved iteratively for }g a> to give the
n*ni
infinite sum,
£ a) = logn*n >t ognn" =n''n' ‘o~n*n >
neng . i n'n'’ i (I1.10)
o " o » o
+n'n'Fn"'n° an" Yntenroe Qn...nu !nun" in'*nl,) *oee
which can be formally summed to yileld,
o o o o -1
£ = + Z § -f vy
~n*n?) .f.114.|11> atntinrte ann(,mm. n ~mm' ' gmlvmv)nlvnunv
¥ |°f N (I1.11)



where the matrix inverse is taken over the matrix of the comBined index
of internal state labels and arrangement index. From this equation we
get the transition matrix,

- ~

o -1
Innnl = n?" <§mm'-m§' ‘anll Qmurmv)nvvnvvv v,,,nlvrnu'

(IT.12)
b. Relationship between lnn' and WY,,+ operators
First we take the Hamiltonian and write it as,
H = +V_ +h,
- K? E b (II.13)
h, =k +v

where Eb is the translational kinetic energy operator relative to
arrangement b, ib is the 1isolated diatomic kinetic energy operator, ;b
is the asymptotic diatomic vibrational potential, Gb is the potential
energy operator with ;b subtracted off plus the orbital angular momentum
kinetic energy operator. It follows that Gb is the asymptotic diatomic
Hamiltonian operator so that,

I - 0,
(TI.14)
where EE is the n th diatomic eigenvalue for arrangement b since hb does
not operate on the orbital angular momentum part of '¢E>' Using the
definition of the exchange operator, eqn. (II1.5), along with eqmns.

(I1.13) and (II.14}, we get,

"ba j0.a b ° a jo.a
pv ) (e = Ece) | M- E o]0, >,
n f 1 n £ i

b - i - a jo.a
: <¢nE| K, #+V,+h -E j¢n>[ f“*“1>’



b - o a, (0.3
«fce |k -v o -E |e|%%2 >,
n g 2 2 2wl onmy (11.15)
with E, = E - Eﬁ. We know that the noarcactive wavefunction satisfies

eqn., (I1I.6) which combines with eqns. (11.13) and (II.14) to give,

: <Ral<¢:f| ia + Ga - E, |¢:>'°f:‘“1> =0,

ay,.a |.,a ;o o_a aj,,a |g |,a,[|0.a _
T R?<od o - )82 > 4w <R¥|<d [V [ed]%82, > -0
n f i n f i
which can be rearranged to give,

K -ED°E2 _>=-1 v |°% >,
a atl ongmy n gt MYy (II.16)

a a _ ,a |, .8 :
since <¢nf|@:> = Gn n and we define Vn,n = <¢n,lva|¢n>. Combining this

£

with eqn. (II.15) gives,

‘ba |o_a b | a a |o.a b |~ y,a,]0.a
= - +
DI R SO LT CEM Dot I va e > <y v %, >l
n f i n f n i f i
b |5 (.a.]0.a b a jo.a
= I<e |va|¢n>| fren” ~ I I <o |¢:> vnn,[ £rren”
n f i nn f i
~ <t |V |63 - <e® [e2> vE, ) |%2, >
n al"n , n n' n'n a+n
n £ n £ 1
A o SO B L S
£ i n f i (I1.17)
where we have defined the energy independent exchange operator H:?n,
R i T e S RSl P eb S A
f £ n' £ (I1.18)

This operator was first defined by Hubbard, Shi, and Miller34 for use in

a collinear multichannel distorted wave calculation, We see in eqn.



(I1.18) the effect of an overcomplete basis. If the sum over an' covers
a complete set of states we can remove this complete set and see that
"E?n identically vanishes. The over completeness of the basis should
not cause any problems for the finite bases that we will be considering.

Next,'we consider the exchange operator acting on the zere order

Greens function matrix,

. Vab o.b
n

1
5 M

a jo b _ o.b
<¢nfju - E]¢n,> cn,ni,

b o b
- Eb|¢n,> cn,ni,

]
=)

a1 ” N
<¢nf|l<b + vb

a |2 b o.b
=Dy %, - £b|¢n.> G
n £ i

a |5 1,b o.b
* 2' <¢n 'vb'¢n'> Gn'n *
n £ i (11.19)
Now, we make use of the definition of the Greens function,
by, . by o - b_ob _
Z, «® ’<¢n‘ Ky # Vp = By Joq02 Cpupp = - 6nn. '
n i i
QI - 5 %, + b P, e
i n' i i (11.29)
Combining eqns. (II.19) and (I1.20) we get,
z :bn‘ OG:'n =t <¢: i¢:'>[~ 6n'n -z v:'n OG:n !
n' f i n' f i n i
vz | v, L% %P,
' n b 1% n'a
n f i

a D a | b o,.b
=-<@ o>+ <o v fe > %,
vl oy nt nfl bl n n'n,



- _ a (.b b o.b
nFn (¢nf'¢n'> vn'n Gnn1
“ab o/ b o b © ab
z v, % =L w ,%, -5 .
nt "g" n'n? nt " nny ety (I1.21)

where we have used eqn. (II.18) and defined the overlap matrix,

ab a
sn n <¢n

¢: 5.
f1i f i

(I1.22)

Substituting eqns. (II.17) and (II.2]1) into egn. (II.10) yields,

>+ 4 °

a
n*n nen, n'‘n'ta’'!’

h

v
"

hia)

an"(smm‘ * §mm'

-1 o
- I W OG vegr) vigeen E trage ’ £ >,
mtt o momintn n n n'*n: (11.23)

“ .
where the notation implies that the inverse matrix is taken over the

combined arrangement and internal state indices then the n'', n''"'
element is taken of the inverted matrix. In this form we have replaced
the energy dependent exchange operator an, with an energy independent
operator ¥ .+ while gaining an overlap term Shn'-  ¥nn' is just
dependent on the potential and the expansion basis functions |¢>. It
is this form on which we base our further development.
c. Determination of the reactance matrix, K, and the scattering
matrix, S

Fnr the purpose of determining the wavefunction, we assume that the
wavefunction s Feal and, therefore, that asymptotically it fits real
boundar ; conditions. Below we show how to relate our solution with real
baundary conditions to the standard scattering baoundary couditions and

thereby obtain the S matrix., The asymptotic form that we assume for the



wavefunction is,

o.a o, a
fn+n1> - 's:> * 'c:> Knni !

a - l.a a, ,a
£ > ~ s>+ [ Knnb , (1120
i i *
where a
sin[k’R_ = (J + j_) n/2]
s: g <R|s:) = L 2

|v|l/2 ’

cos[k:Ra -+ /2

¢ = <R|c:) =

n - 172 ’
|V| (11.25)
with e and | 2W(E - €} 1/2
vl = [ ks =1,
u |3

a
for n being an energetically open channel where Knn? is the reactance
matrix, k3 = being the zero order, nonreactive, reactance matrix, v is

the translational velocity, k_ is the asymptotic translational wave

n
vector for internal state n and arrangement a, and u is the reduced mass
for translation in the appropriate arrangement channel. J is the total
angular momentum quantum number and 3, 1s the rotational angular
momentum quantum number in arrangement a. We have picked a
representation of the angular momentum with J, and ia and their
projections. For collinear scattering both J and j, are set to zero in
this equation. The form for sn> and Cn> in the asymptotic closed
channels can be various linear combinations of exponentially growing and
decaying terms depending on convenience. We will specify our choice
below when we give more details of our specific calculations. The exact

asymptotic form of the wavefunction affects the specific form of the
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Greens function ,see appendix II.A.

In order to calculate the Greens function we also need the
irregular solution for the nonreactive wavefunction, see appendix
II.A. We are free to pick for the irregular wavefunction any solution
which is linearly independent of the regular solution although its form
will also affect the form of the Greens function. Here we will assume

that the irregular nonreactive wavefunction asymptoticly goes as,

o a
g2 >~ e >,
ey n (11.26)

where cn> was defined in eqn. (II.25). As we show in appendix II.A,
with these forms for the regular and irregular nonreactive

wavefunctions, the asymptotic form for the Greens function becomes,

0.a 2 a_ 0.4
G2, ~ % e L
nn h n n+n (I1.27)
Given the asymptotic forms in eqns. (II.24) and (II.27), the asymptotic

form of the total wavefunction, eqn. (II.23) becomes,

[+] 2 [¢]
R L B S VLA T M
n«-ni i n'n''n
o -1 o
('d'mm' + $,mm| "m'z' !_mm" gm"m')n“n"' En|'lnl, fﬂ|+ni>x
2 o
£ 0> ~|s>+ e’k +3 1 <CE s
’“? e+ s g Kogrgrigeer  mRt T (11.28)
o ~1 o
+ imml _mi:‘ ‘,J,mmvv (am|vm|)n|1n||r En"'n' I Eﬂ.ni>’

and it follows that,



o 2 o
= + = I <f [ +
En"ﬂf )snna ’ n'n''n''’ ~nn"|(-mm' Emm'
i
-1 o
-iw ”0 (X} W e Wi ' £ 2
att ~mm q\n m'‘n''n “n n ~n'ng (11.29)

Basically, most of the calculational effort goes towards calculating
this reactance matrix.

Now, we will cutline how the scattering matrix, S, is calculated
from the reactance matrix, K. Asymptotically, the wavefunction only has
finite density 1n;open channels therefore the S matrix is only defined
for these transitions. If the wavefunction £h¢nb> and the reactance

matrix Kan' are considered matrices in the channel numbers, then we need

to consider only the block of these matrices over the open channels.

So, we begin with,

£7° >~ s> + e ko,
~  a ~ "n’ Snn
n*ni i

where the o or oo designate that only the open channels, n, are kept in
the vectors or matrices. Now we take the position representation, eqn.
(II.24), and replace the sines and cosines by the equivalent complex
exponentials,

stalk R_-(3+i,) 71  coslk R -(3+) 7]

{?0 (R) = <R|f°° > ~ + EOO ,
n<-n1 ntn? Ivll/z lvll/z nni
1l R ~(J+ ) 21 -1k R_~(J+j ) =]
[v|"1/2 [e"“a_“az—e_”‘a 1) 2
~ v

21

T e n
R -4 ) 51 =1l R (343 ) 7]
e + e

2 =nn

. m
-i[EnRa—(J+Ja) EJ

~ -1/2 -e oo
‘v, [ 21 (Gnni-ignn )
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1l R ~(3+1) 7]
e

! oo
' * 21 (snn1+15nni)]' (I1.30)

Now rearranging eqmn., (II.3)) we obtain,

| P
_ s -e-i[EnRa-(J+Ja) 5] ei[gnaa-(a+ja) 3]
L 21f RIS -1 +) ~ +
o e an' " 1na n'n: ]v’llz 'V,IIZ

00 ;00 —1
:. (5nn’+isnn')(5nn' IEnn')n'ni - (I5.3D
We compare eqn. (1I1.31) with the equation for the scattering

wavefunction in terms of the § matrixal,

_— - T - 5 x
. _e-ilgnha (J+3 ) 51 eilgnka (J+1) 3

£ (R) ~ + S R (I1.32)
nen? v] /2 o]z Ty
to identify,
+* oo -1
£ Ry =24 L £ _(R) (8 ,-1K ) ,
n*nf at mms o Smmon Ty (II.33a)
-1
2L (5, + k%) (s, - 1k°DT, .
inni ' nn “an mm “mm n ni (II.33b)

We use eqn. (I1I.33b) to obtain the S matrix trom the K matrix obtained
from eqn. (11.29).
d. The DWBA limit

In this section we will discuss how to take the first order
perturbation (DWBA) limit of the scattering formalism developed in
sections a-c. We will show how this 1s equivalent to a multichannel
version of DWBA developed by Hubbard, Shi, and Miller34. DWBA is

basically first order order perturbation theory, so we need to keep the
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perturbation, in this case reaction, only through first.order. Starting

with the T matrix defined in eqn. (II.12), we constuct,

igwsa .y
Te ot antint *
n non (11.34)

which is just the first reactive contribution to the infinite sum in
eqn. (II.10). Based on the DWBA form of the T matrix in equ. (I1.34),

the reactance matrix, K, becomes,

(DWBA _ o
n

2
- —_
i 5nni L n

n' frenr [ iy (11.35)
where the first term is diagonal in arrangement indices, only a
nonreactive contribution, and the second term is purely off diagonal in
arrangement indices, only a ?ﬁactive contribution.

When calculating the § Batrlx from this DhBA K matrix, we need to
include the reactive part of the K matrix only through first order to be
consistant with the approximation to the T matrix. First we write the

open block of the K matrix separating the reactive and nonreactive

contributions,

DWBA oo - oKoo + RKOO ,

"nni "l'll'l1 "I’ll'l1

where RE:O - 2 r <°f Iw |0f S

n, [ n''al ~nn''l=n""'n' ~-n'ni *
It should be noted that while we only need the open block of Rg, the sum
over n'' and n' covers both open and closed channels. Then we

"substitute this expression for K into the equation for the S matrix eqn.

(I1.33b),
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R oo 0,00 R 00 =1
=I(8 o+ %22, + %% s, - 1%%% - 1% .
inni n' nn nn mm ~mm “mm n' ni (11-36)

Next, we expand this equation assuming RE:g, is small,

0,00 R, 00 o,00 .-1
§'nni ) nfn" (Gnn' +1 l"(-nn'+ 1 lsnn')('smm‘ 1 5mm')n'n"

‘00 a,00,-1 -1
[Epe — 1E R]-<'mm' g = 1D mmrIarn,
L
i

0,00 0,00 0,00 .=
:,(Gnn'+ { gnn' mm'- t | ) n * :,iREnn'(Gmm' 1 Kom )

0,00 0,00 oo
* n'fv'no (Gnn' + 1 'snn')(6 -1 lsmm )n n"(ikgn"
-1-
(s 10 00) 0 »
k1™ Sty (11.37)

where in the last expression we keep terms only through first order in

RE:ﬁ, . Rearranging eqn. (II.37), we get,

San, " I (84 %20, 0¢8, - 1° °°.) * I - 1%00))
i n 1 n'n"'n
+ 08, + 100108 L - 1700, );}n
AR08 - 178,
'S'““i ) :' e 1°1§:z,)(5m, - io“;:: );3“1 (11.38)
+n'Fn0 e = 17500, ;i"(ZiR 08y - ioK:T oy

The first term of the expression in eqn. (1I.38) contributes only to the

nonreactive part of the S matrix, l.e., the terms is purely diagonal in



arrangement index. In the second term, 05;:, is purely diagonal 1in

oo
arrangement index while R&ﬂ,,nu is purely off diagonal. As a result,
the second term is purely off diagonal and therefore only contributes to
the reactive part of S. The nonreactive part of S to first order is
just the contribution from the purely nonreactive scattering
calculation. Higher order contributions, though, effect both the
reactive and the nonreactive part of S. We can now explicitly write a

reactive block of the first order S matrix as,

(11.39)

DWBA ba {° bb R ba o aa -1
Snni = nF'na 21(smm' mm')n n' n"no(skl ! Kkl nn

where the DWBA reactive K matrix is given in, the second term of eyqn.
(I1.35), and we only allow the channel numbers to vary over the open
channels.

Now, we want to show how this derivation {s exactly equivalent to a
standard DWBA treatment with a multichannel nonreactive distorted
wavefunction. This multichahnel DWBA treatment was first developed by
Hubbard, Shi, and HillerSa for application to collinear H + Hy. We

begin with the standard DWBA expression for the § matrix,

o.,a +

ba (Z%) <°¢ Tfr-e P,

ey

(11.40)
where ﬁ is the total Hamiltonian operator, E is the total energy and Oy
is the distorted wavefunction with the correct incoming or outgoing
boundary conditions. In this case we will pick for the distorted
wavefunction tha "exact" multichannel nonreactive wavefunction defined

in eqn. (I1.6). We now expand the distorted wavefunction in terms of

the |43> deftned below eqa. (II.1),
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|03+

n.n

SR IR S LT T Pt
£1 nn' £

>y
"y (I1.41)

where each expansion only includes one arrangement since there 1s no
coupling between the arrangements in the distorted wavefunctions as seen

in eqn. (I1.6). Using eqn. (II.33a) and a similar expansion for f ,

- -1
£ o>=2a1 £, (8, + i) .
|~nfn o' "m'n mm mm nfn (11.42)

we obtain from eqn. (II.4),

Ll L SR RIS S L SUPIR Sf LOUN PES4 [ P
PeDy h an'n'tntrr O n n
o.a 0,aa -1
£, '”>(G y - 17K 1) ey s
n'n mm mm'“n’ o, (11.43)

where n'' and n''* only vary over the open channels, but n and n' vary
over open and closed channels. Substituting from eqn. (IL.5) this

equation becomes,

ba 41 1% bb <° b >ba jo_a
snfni " )‘l) nni: rigves S ') fl'!"nlvnn' fn'n"'>
O aa
(‘smmv - |) .vv .
"y
Making use of eqn. (II.17), we obtain,
s:an n (ﬁﬁ) £ (dmm' - ioKz;');ln" <°f:"nlw::' of:'n"‘>
£ an'n*'n’""’ 13
[¢}
(‘smmr -1 K l) [ERT
R (I1.44)

Now, based on the reactive part of eqn. (II.35), eqn. (IIL.44) becomes,



DHBA ba {° bb R ba
nfn1 =u nanl.' (dmm' mm')n n Karegere
o_aa
(smmv -1 K ')n"'n »
i {1I.45)

where based on the definition of S, the channel indices only vary over
the open channels. Comparing eqn. (II.45) with eqn. (II.39), we see
that we have shown how this development of a multichannel DWBA formalism
is, as expected, equivalent to the DWBA limit of the scattering

formalism developed in sections a-c above.

2. Coupled channel DWBA for three dimensional H + H2 reactive
scattering

In section )d we developed the general formalism for coupled
channel DWBA. In this section we will give the specific representation
of this formalism appropriate for three dimensional atom - diatom
scattering. We will then show the symmetry decoupling for the symmetric
H + uz reacn\on. We also develop an approximate method based on the
~ourpled,staces approximation.
a,’ Three dlmensipnal representation of coupled channel DWBA using body
fixed coordinates

Six coordinates are needed to describe the atom - diatom system.
To define our six coordinates, for each arrangement we pick E;, the
vector from atom A to the center of mass of the diatom BC, and F;, the
vector between atoms B and C. Next, 1t is convenient to mass weight the

82,32

coordinates, so using the Delves mass scaling, we define,

> -1 +
r =c¢ r',
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(IT.46)

where,

- (¥ 1/4
c, ( abc/ubc) .

M is the reduced mass for the motion of atom A relative to the center

abe
of mass of the diatom BC, and Mp. 1s the reduced mass of the relative

motion of atom B to atom C,

[N =m, (mb + mc)/(ma + m + mc),

abe (II.47)

¥be = MpPe / (mb * mc)’
whete Wy, Wy, and m. are the masses of atoms A, B, and C tespectively.
The J% and J, operators, where 3% is the square of the total

angular momentum operator and J, 1s the operator for the projection of
the total angular momentum on a space fixed z axis, commute with the
Hamiltonian. We perform a standard partial wave analysis81 of the
wavefunction where we expand the wavefunction in terms of states with
fixed J and M, the quantum numbers for the total angular momentum and

the z axis projection of the total angular momentum,

= J
[¥ = T 1 oy vl
n, J=0 M=-J ny (I1.48)
M
'vib> is a simultaneous eigenfunction of JZ, . and H which is
i
possible since the operators commute. While it will not be explicitly

shown, the cjy are determined from the plane wave incoming flux which we
use implicitly in section 2f when we give expressions for the
differential and integral cross sections.

Now we are teady to express our wavefunction in terms of a



coordinate system. If we define a randomly oriented space fixed
coordinate system (x,y,z) with the origin at the center of mass of the
three atom system, the vectors, Fa and Ea, defined in eqn. (11.46),
represent the six coordinates which are needed to describe the system.
We take the coordinate representation of our wavefunction in terms of
this coordinate system,

&R - N .

n g (11.49)

Rather than now expanding our wavefunction in terms of complete sets of
eigenfunctions of the orbital and rotational angular momentum operators,
it 1s more convenient to rotate our coordinate system to a body fixed
coordinate system ;nd to express the wavefunction and the projection of
the angular momentum in terms of this coordinate system following Schatz
and Kuppermannaz.

We will rotate the space fixed coordinate system to a body fixed
coordinate system (X,Y,Z) again with its origin at the center of mass.
This body fixed coordinate system will have its Z axis oriented along
th R, vector. It requires two angles Ba and ¢_,, the polar and
azimuthal angles of the Z axis in the (x,y,z) coordinate system, to
uniquely describe the rotation of the space fixed coordinate system into
the body fixed coordinate system. We are assuming that we do not
reorient the X and Y axes about the Z axis. In the body fixed
coordinate system the vector Ea becomes a single component Ra which is
the distance of atom A to the center of mass of the diatom BC.

Therefure, the wavefunction in this body fixed coordinate system is only

a function of four variables. Performing this rotation, the
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wavefunction from eqn. (I1.49) becomes,

J Ja
| P 2J+1 (1/2 J a -+
(r ,R)= E (——9) Do (¢ ,0 ,0) ¥ “(r ,R),
b a’a Q g 8"2 Hﬂa a’ a nb a’a (11.50)
a 1
J8
v A7 R) J
where b a'"a’ is the body fixed wavefunction, Dyq (¢a, Ga, 0) is a
i a

Wigner rotation matrix, the factor [(2J+1)/81r2]l/2 normalfzes the Wigner
rotation matrix, and Da 1is the projection quantum number for the total
angular momentum along the body fixed Z, axis. 1In the rotating
coordinate system the Z, component of the orbital angular momentum is
zero. So, Ra is also the Z, axis projection quantum number for the
rotational angular momentum of the diatom BC.

Next we expand our body fixed wavefunction in terms of a complete

set of states representing the vibrational and rotational motion of the

diatom in body fixed coordinates,

o « « ¢ . (r) Jv jinm
>
L CIN TN Yog (rae) Yata ® o 7 %),
n v a0 j -'ﬂ Ja¥a r R n (II.51)
i a a a a a i

where vy, is the vibrational gquantum number and i, 1s the rotational
quantum number. The sum over ia begins at |Qa| since Qa is the
projection of ja along Z, so j, cannot be smaller than this.

Y5 a (Y,,¥,) is a spherical harmonic which is the eigenfunction of j2
a‘a

L d
and j7. Ya is the angle between the ;a and Ra vectors, and wa is the
angle which orients the diatom about the Z axis. The b, 3 (ra) are the
ala
vibrational eigenfunctions of the isolated diatom.

Based on this development, the position representation of the

wavefuncrion defined in section 1, |¢:>'fa b>' is,
n+n
i
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>+ poa |ca
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vaJa a £ ba a a(Ra),
r R n (11.52a)
aa i
%, (r)
a 2J+1,1/2 J v i ‘Ta
(¢ ,0 ,Y ,¢ ,r ) = (=) D, (¢_,8 ,0)Y, (v ,¥ ) "a"a »
n "a’ a’'a’’a’a 8“2 Hﬂa a’ a’ Jana a’’a )
a Jvajaﬂa (I1.52b)
f (R)) = ¢ (R_)/R
nen? 2 n? a’lva ) (I1.52¢)

i i

where we have assumed that the wavefunction represents only one partial
wave. Our collective index, nb, of section | becomes,

A N (11.53)
and we will often interchange the collective index for the complete set
of indices throughout this section.

b, The Hamiltonian in body fixed coordinates and.the solution for the
nonreactive wavefunction
The derivation f the Hamiltonian In body fixed coordinates is

32 and Pack83. The

given in detail by Schatz and Kuppermann
complications come from the angular momentum terms of the kinetic

energy. The angular momentum con:ribution to the kinetic energy in mass

weighted, space fixed coordinates fis,

) 2
. 1 3
a a
K, =—2—+ "2
Ang 2uR§ 2ur§ (11.54)

where 1a is the orbital angular momentum operator for arrangement a, and
ja is the diatomic rotational angular momentum operator for arrangement

a. Firsc, we need to convert from a representation in terms of 1, and

J, to a representation in terms of ja and J where J is the total angular

momentum operator. The 1, operator can be written in terms of the J and
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a

ja operators,

5 - A2 ~2 g .z s

e N T I e I T LR 2
Next 3 and ja need to be expressed in terms of the body fixed
coordinates. Schatz and Kuppermann32 glve a detailed table of angular
momentum operators in both space fixer and body fixed coordinates. The

result is that the angular momentum contribution to the kinetic energy

becomes,
52 -
~BF a 1 gy g A A N
=— + (3% + 3, -2§ ,J, -GG, 3 +3, 31,
Ang ZHri ZURE a azZ"Z a“a “a’a (11.55)

where the + and - indicate raising and lowering operators in terms of
the body fixed coordinates. The terms with the raising and lowering
operators, which connect adjacent ﬂz states, are due to centrifugal
coupling from our conversion to a rotating body fixed coordinate system.

The potential energy is only a function of the relative positions
of the three atoms determined by the variables L Ra’ and Yai i.e. the
potential only depends on the shape and size of the triangle formed by
the three atoms not on the orientation of the triangle in space. As a
result, V does not couple different Qa' The fact that the only off
diagonai contribution in f, of the body fixed Hamiltonian is due to the
centrifugal coupling is the basis for the coupled states approximation
to be discussed below.

Now, we are ready to give the body fixed three dimensional
representatfon for the coupled equations for the nonreactive
wavefunction given in eqn. (I1.6). Starting with eqn. (IL.6), we first

express the body fixed position representation,
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a al nloneny (II.56a)

where the superscript 3 indicates the entire three dimensional space

spanned by the vector, and using eqns. (II.52) and (II.53),

aryr (< [e3r3 < aryr-ry) RIELVZ p) (o L6 0)
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Zwi zmi a “az"Z a “a a e a’a’’a

wled| e Dyg (8,26,:0) ¥, g (1,,9)
a

a a

$ . (x) Jv j.Q

vi, a ofn a“a a(Ra).
r R i (I1.56b)
aa 2
Substituting eqn. (I1.56b) into eqn. (II.56a), we obtain,-
()
2 2J+1
fd SdR; )DMQ,(¢ 8..,0) "J n,(v .w) vala @
Ta
32
2 2 iy PO
] 1 @ 1 2 -2 2 :
{ 2u (R 2 Ra + T, 2 ra) A [J + J —ZJaZJZ
aRa a ara 2ur

A I J
3g 9, * 3, 3D # V(e LR LY )) - E} DM96(¢3.93.Q)



b (c) Jv i Q
¥, g () Yala ® % HARwR) a0,
ja 2 2 r R ala*a (1I1.57)

aa

2

where dry

indicates integration over only the angles ¢, and ea not over

the radial distance Ra. Now, we define the centrifugal coupling matrix,

jov P - 'y
c\“a a -2 2 2J+1 J 2 2
(u )QaQ; = (HRa) Gjaj;,vavéfdka ¢ Bﬂz) DMQ;(¢a’ea’0)[J *+ ja

- - - -~ N

L P
-2 Jagtz - G ata* i, Ja)] DMQa(¢a’ea’0)

2 \
e 55 5t {6Q g U+ - 200 + 5. (5 +D)]
a-a a a aa

T S s1g IOHD — 8,34 D113,G5,41) - 2, (3,+D)
(11.58)
- Gna_ln;[J(J+l) -2 @ -1 G D - 8@ -D].

The centrifugal coupling term i{s the only term in the Hamiltonian which
couples different ﬂa statas, but it does not couple different diatomic
vibrational, vas OT rotational, ja, states. Next, we define the

potential coupling matrix,

n ¢ .o (r)
2 3 v'j' "a
@ 2 ==, Jard v, o (v v ) Vala
VadarVala }‘12 nana jana' a 4 r, (11.59)
s, 5 (ra)
V(R ,r 7)) - v, (r )] Yj q (Ygo¥) _aa s
a a ra

where va(ra) = V(Ra S, T, Ya) which is independent of Yy- The last
matrix that we need to define is diagonal and contains the square of the

wavevector for translational motion,

vajana 2
() a6 Q_,vrirar [2u(E - &, j MWL,

vaja a' a’a a a~a (II.60)
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where ¢, 3 is the eigenvalue for the isolated diatomic motion,
ata

2
2 2 3
I ] a
{- ~Ser o+ +v (r)] Y (v_,¥) ¢ (r )/ r
Zura Bri a Zur:1 a a jaﬂa a2 vaja a a
=€ Y (Y ,¥) ¢ (r )/ r_.
R P A a (11.61)

Now, we write eqn. (I1.57) 1in matrix form using eqns. (I1.58) - (II.60)
where each matrix 1s square in the combined indices, 1i.e., (vajaﬂa) by

(véj;n;), accounting for the delta functions as needed,

2 0.J
4" °f (Ra)

2
a

= -k 40+ 0P Oty
(I1.62)

dR
In section lc above we outlined how to pick the asymptotic boundary
conditions for the open channel part of the wavefunction. Here, we will
specify our specific boundary conditions for the closed channel part of
the wavefunction. There .1s some freedom in picking the two linearly
independent asymptotic solutions since different linear combinations
will work. While not important in the DWBA limit, the particular linear
combination will affect the form of the zero order Greens function, see
appendix II.a. Based on eqn. (I11.24), we specify sz and cﬁ,
- exp(lk:‘Ra
n 'v|1/2 ’
e exp(-lk:‘Ra)
n vz’ (I1.63)
where Ivl was defined under eqn. (II.25) and n is now a closed channel.
We solve for the nonreactive wavefunction by numerically
integrating the coupled equations, eqn. (II.62). To do this we first

divide the R space into a grid of points. We start at the small R



region and integrate the wayefunction outward evaluating the
wavefunction at each of the grid pointce. The wavefunction 1s integrated
between the successive grid points using Gordon's me:hodah.

Because of numerical problems in the integration, we stabilize the
integration at each point: We begin the integration by setting the
wavefunction and its deri;étive to the unit matrix. Then, we integrate
the wavefunction outward to the next point. At this point we set the
wavefunction back to the identity matrix by dividing out the
wavefunction matrix, L2 and we store the ry matrix that we divide
o;t. We propagate the identity matrix to the next point and repeat the
process until we have reached the final point. These matrices that are
stored are the ratlios of the wavefunction at a point p.co the
wavefunction at a point p-1, - OFELI ofp. At the last point we apply
the boundary conditions to determine YK which only requires the ratio
mat! ix at the last point. 9K is used in eqn. (II.24) to generate the
norxalized wavefunction at the last point, ofN. We multiply the
wave unction at this final point by the inverse of the ratio matrix at

that point to generate the normalized wavefunction at the previous point

and so on,

(11.64).

This process of propagating the identity at each point and storing the



ratio matrix 1s much stabler for integrating the wavefunction which has
exponential contributions which are inherently unstable to integrate.
c¢. Explicit form for the DWBA - CC scattering matrix

In section ld we derived an expression for the DWBA limit of the S
matrix. Here we will write the explicit expression for three
dimensicnal A + BC scattering. Ih the following section the symmetry
decoupling for the H + H2 reaction Is discussed.

The expression for the DWBA limit S matrix is given in eqn.

(11.45),
DWBA ba J o, bb — ba ogaa -1
Snn = 21 I € ot} iKmm nnvaK L vll(6 1 v) n'"''n
fi n'|nlll i

where n and m now représent the collective index (v,j,R). We discussed
in the previous section how the zero order K matrices, Kgb' and K;;.,
are calculated from the solution for the zero order wavefunction. What
remains 1s to give an explicit expression for the evaluation of the
reacrive DWBA K matrix which is defined in eqn. (II.35). Taking the
position representation of the reactive part of eqmn. (Il.35) and using

eqn, (II.18), we obtain,

ba 2 o b J b oa J
%(nllnlll ='y'; t‘ < fn"mlw 2 fiv‘_nnr>

nn

2 0 bJ o.a J

< <t [<e®[[v v_| e, > I [e20> v3o . 1]%3, i

nn

2 3.3 33,33 0.bJ b, 23

¥ de dr dr dr nt <Rerp[RIEDOE L (RO G(R Ty

a .23 a .2 3, .a o.a J
[V (R ur )80, (ROED) - :o¢n°(Rara)vnnn’ Erenrrr(RY)
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2 3 g3 g OfbJ
'Wﬁ“ad%,j. n”ﬂﬁ%n¢(%r)V(R,r,Y)
(I1.65)
(R = I TR Va0 ) *E s

where we have made use of <R rb|R3 3y - G(R - Rgrg). The coordinates

3 3 are not independent since only 6 coordinates are

<Rgrg and <Ryr
required to specify the entire space.

If we explicitly write the differential in eqn. (II.65) in terms of
polar coordinates for our body fixed coordinate system, we obtain,

2 2
i R dRaf r, dr, [ sin Badﬂa / d¢a [ sta Ya dv, / dwa * (I1.66)

The coordinates R

ar Ta» and Ya specify the size and shape of the

triangle formed by the three atoms while Ga, ¢a’ and wa specify the
orlentation of the triangle. Since the potential V, depends only on the
coordinates R;, T,, and Ya» the integral over the Ga, ¢4, and wa
coordinates can be done analytically. Let us consider the part of the

integral over the 8,, ¢,, and ¥, coordinates,

a

2J+1

['sin o, d8 de dy, (S P, (Far®ar®) Yy g (pr%y)

“b

%0 ¥ g (14 = #) g (cosm) By g (cost) A

J
Do, (d
Mna a a a b'b a 8

J ] (11.67)
[ sin 0o d8_d¢ dy oMnb(¢b,eb,wb) DMﬂa(¢a'ea’wa)‘

where Pjg(cosY) is the associated Legendre polynomial which {s related

to the spherical harmenics by,



1/2

Pjn(C°SY) = (2m exp(-1Qy} an(v,w),

and we have used a relationship for the rotation matrices that follows
from their definition. By converting the rotation matrix in the b
coordinates to one in the a coordinates and using ortogonality of the

rotation matrices, the intergral in eqn. (II.67) can be done

analytically,
(11.68)
2J+1 J J o
2 [sin & do_do dy P, (#o7%+ ¥ 0n (9ar%ar¥a) 99,2 (%ba"

>

.J - J . - >
where dnbna(A) Dnbna(O,A,O) and Aba is the angle between the Ry, and R,
vectors.
We also will, for convenience, change the integration in terms of
R, r,, and Y, to an integration in terms of Ra, Rb,.and Aba' the

transformation between these coordinates is,

r, = (Ri + cos @ Rﬁ - 2 cos @, cos Aba Rb Ra)l/Z/ cos @,

cos Y, = (Ra cos o - Ry cos Aba)/(ra sin aba), (11.69)

where cos . {m m /(@ +m) (m +a )]}1/2
aba b a a c b c ?

with %a between /2 and %, Using this transformation, we obtain,

(I1.70)

2 -3 2 2
dr, sin vy, dy +sin o faa dR Ry dR, sin 4, da .

/&% ar_ r
a a a
Using the analytic integration given in eqas. (I1.68) and the

transformation given in eqns. (II.69) and (II.70), we can now write

RKba

n"'ntte

from eqn., (II1.65) as,
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R, ba i ~3 @ =
K>3, e = () sin t [ R_dR_ [ R dR
n''n [ %a an! 0 a "a’0 b b (11.71)
b
i n'{*n(kb) ann (Rb R ) 'm"’(R s
with
J m J
W (R ,R )= [ sin d {d (4, ) P, , (cos v,.)
nt (RysRy o s %a 2,8 %a’ Fj 2 b (11729
¢Vbjb(rb)/rb[[v(Ra,ra,Ya) - v ()] Pyrgi(cos 1)
¢, ' r) ¢ g.0(r.)
v e - Z -;LU Pyogoteos v,) ‘ala 2 w3, ]},
l'a n 4a a ra

where the transformation for the b channel variables to Ris Ry 8y, is
analogous to that above in eqn. (II.69) for the a channel.
d. Symmetry decoupling

For a collision of an atom with a homonuclear diatomic molecule,
there is no coupling in the nonreactive wavefunction between the even
and odd rotational states. Thus, one can solve the nonreactive coupled
equations separately for the even rotational states and the odd
rotational states. This uncoupling does not hold for the full
wavefunction though. So, after solving for the even and odd nonreactive
wavefunctién, the DWBA calculation is performed with the even - even,
odd - odd, even - odd pairs of wavefunctions. Because of the reduced
dimensionality of the three separate calculations, this repraeseats a
considerable savings in computational effort.

Parity decoupling is another important property which results in a
considerable savings in computer effort. The parity operatur P inverts

all of the coordinates through the center of mass,



" > > > >
PYE_,R) = ¥(-_,-R) ,
aa & s (11.73)

where ¥ i{s the wavefunction. For a triatomic system the parity operator
comnutes with the Hamiltonian, so we can construct simultaneous
eigenfunctions of H and P. This is somewhat complicated since the
wavefunction in eqn., (II.50) is not an eigenfunction of the parity
operator except for J = 0. We will only outline here how the parity
eigenfunctions are constructed. More details are given by Schatz and
KuppermannJZ.

Parity e!genfunctions are constructed by taking a linear

combination of our previous solutions from eqn. (II.5%),

~

!

¥f Ry = = YNGRy e (0T YT R
JM* a’ a 7z a’ a na a (I1.74)
such that
ol R J >
PYSr R = & (-1)7 ¥R (Y R ).

This 1is equivalent to taking linear combinations of the ﬂa and -Qa
radial solutions with the identical expansion functions as in eqns,
(Y1.50) and (II-51)32. In the coupled equations for these parity
eigenfunctions, the centrifugal coupling matrix, eqn. (II.58), needs to

be replaced by,

-2
a Gj ity v'{

v
=c.,”a a 2 :
@Yl = R s 8 qi[JQI+1) = 205 + 3, (5 _+1))

aa a”a’ a a a'a

(‘11.75)

- b, Gnafm;““”) = 8 (R )13, (3, +1) = 2.(8_+1)]
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-c, Gna-ma'““*” - 2,0 DI, - 2@ -D],
wich
1, ﬁa>l or ﬂa<-l;
b, = 2, 8,03 (11.76)
o, ﬂas =13
and '
1, ﬂg)l or na<-1;
e, = 2, ﬂa=1; (11.77)
0, 2 =0.

Then we can proceud as above to generate nonreactive parity elgenstates
following our description above in section 2b. Notice from eqns.
(I1.75) - (II.77) that there is no coupling between states with 2, 20
and 2, <0, so these two sets can be solved independently.

The solution for the parity representation R matrix is equivalent
to that in eqj. (1I.71) except that the d;bna(A) in eqn. (11.72) is
replaced by dﬂbna(A)'

Q

J a J
do g * D T dg g G20, 805
b a b "a
1 J ﬂa J
7 (dg o + -1 43 _q ), ﬂb>0, Qa#) or =0, 9850;
b a b "a
~=J J
dag = dpq » %90,
ba b
Q
J a ,J
dg o - 1) Pdp g . 8,0, RO,
b a b Ta
o, 9b<0l Qal) or 93(0, ﬂbi) .

(11.78)
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Note that the matrix element for the parity conserving K matrix is zero
if one of the Q's is nonnegative and the other § i8 positive. Thus the
uncoupling In the nonreactive parity eigenstate wavefunction also
carries over to the calculatfon of the K matrix unlike the even ~ odd
uncoupling discussed above. Finally, linear combinations of the parity
conserving S matrix elements are used to constuct body fixed helicity

scattering matrices,

v i _Jv i -0
zl(s bbnb+s b7b by a9, >0,
v i % v i g
a-a a aa a
TSN LA TR R Y
7 G -3 ), a8’ <o,
Sba J = vaJaIQal vaJa-lnaI
n.n s
f1 7% §_JVbeﬂb . R =0,8 #0o0r ﬂb'= 0,8 %0,
v j a a
a“a a
_Jv. §. 8
s vbh R =8 =o.
vajaﬂa (11.79)

e. Coupled states approximation
The coupled states or jz conserving approximation is based on the
body fixed Hamiltonian being nearly diagonal in 2, see eqns, (II1.57) and

85-87 have shown that accurate reactive

(11.58). Several authors
scattering cross sections can be obtained from the j, conserving
approximation while saving a large amount of computational efforlL. Its
success seems to rely more on the dominance of the 2 = 0 states than to
the decoupling of different 2 states. 0 = (0 states dominate in systems
with collinear minimum energy paths, since only Q = 0 states are nonzero

along the collinear path, which leads to much larger reactive

contributions for Qb - ﬂa = 0 than other transitions. Our application
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of the coupled states approximation uses a basis with only 9 = ﬂa =0
following Schatza7. This gives basis sets which grow linearly rather
than quadratically with the value for total J, The transition
probabilities which we obtain with this basis are assumed to equal the
values of the degeneracy averaged transition probabilities defined
below. It would probably be more accurate to calculate transition
probabilities for other fixed Q's assuming no coupling between different
Q's as some previous calculations have been done85’86. This would give
a full set of transition probabilities to degeneracy average but would
be much more time coasuming.
f. Calculation ° differential and integral cross sections

Here we outline the derivation of the formulas for the differential
and integral cross secti~ns in terms of the body fixed S matrix
elements. More detalls can be found in ref, 32. Here we will ignore
the antisymetrization for the identical nuclei of the diatom. We will
use an axis for projecting the angular momentum that points toward the
incoming or outgoing ctom for the reactants and products respectively
rather than using the initial or final wave vectors as is done in ref.
32.

In order to obtain cross sections, we need to relate our solution
to a space fixed scactering amplitude, F. The differential cross
section, which is the ratio of the outgoing radial flux per unit solid

angle to the incoming plane wave flux, is given by,

v
ba n' ba |2
Grn(® = =5 [F0 1% (11.80)
n

where v is the velocity in the physical, non-mass weighted coordinates,



a
vi = nkn , ii - k:/ca ,
Yobe (11.81)

where c, and i, . are defined in eqn. (II.47). Schatz and Kuppermann32

go into great detall relating the wavefunctions for a space fixed
helicity formulation to the body fixed wavefunctions. The resulting
relationship for the scattering amplitude in terms of our body tixed S

matrix is,

a i ¢ .
v a'a j -j . +1 = (11.82)
PP - (e —— T 5 e d o (%) ™7,
n v, 2K J=0
n n
where Tba 3. s - Sba J
n'n n'n n'n

and Ob is the scattering angle which is measured relative to the body
fixed axis in the reactant channel and n is the combined index, vjf.
Using eqns, (11.80) and (11.82), the formula for the differential cross

section {is,

(G ) Tba Jj2 .

38 = wid B! | I o(20%D) d
J=0 Qb (11.83)
Integral cross sections are fourd oy integrating eqn. (II1.83) over 0y

aad ¢b' Because of the orthogonality of the dJ functions, the formula

for the integral cross section is quite simple,

a
Q2 = () T (211 122 |2 .
=0

(1I1.84)
We also present transition probabilities which are just squares of the S

matrix elements,

b? J 2 , ba J‘Z
ne P (11.85)
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Degeneracy averaged values are defined as sums over final ﬂj and
averages over initial ﬂj,
-1 J
(2J+l) é ‘:7' Pvljlﬂl 'vjn’

h ]
with lﬂjl < min(],J) and ]n'l < min(j',J). There are similar
h]

w
- L L]
Vi1l (1I.86)

expressions for degeneracy averaged differential and integral cross

sections.

3. Details of the formalism for the collinear exact studies on H + H,
a. Coordinate representation for collinear H + H2 scattering

Two coordinates are needed to describe a collinear A + BC system.
For each arrangement we pick for our coordinates R,, the distance of
atom A to the center of mass of BC, and r,, the distance of ztom B to

atom C. Based on these coordinates, the position representation of our

wavefunction becomes,

. . 2 (11.87)
¥ (Ryr) = <R[ > = L ¢ (r)) £ Y
n1 ni n n+ n *n

where Qﬁ is the asymptotic n th vibrational eigenfunction for

2
b(Rl) + E' ¢n.(r2) f
ni n

arrangement a. Note that each term of the expansion for the
wavefunction has the appropriate coordinates for the particular
arrangement. For collinear A + BC there are only two asymptotic
arrangements possible, A + BC and AB + C. The two sets of coordinates

(rlR}) and (rZR,) are not independent. They are related by,

m
r-Ra—(,c)r,

C mbrmc a
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R = "a ] R+ mb(mambmc) -
1’
¢ Myt 2 (ma+mb)(mb+mc) a (I1.88),

where atom a or atom ¢ i3 the asymptotic free atom for that

arfangemenc. Therefore, we may pick any pair of the four coordinates to
be the independent variables. Lacer we will find it convenient to pick
R; and Ry as the independent variables.

The position representation of the collinear Hamiltonian is,

- - 2
-k )
H(rWR) = <Rt JH|R r > = <R, r [R x> (55 5
abce BRa
2 2
B 3
- — + V(R T )])
e ar? a’a (11.89)
where W, . and Iy, are defined in eqn. (1I1.47). The position

representation of the various parts of the Hamiltonian defined in eqn.

{11.13) are,

2 2

. -+ 3
K(R ) = -5

a 2uabc Bki

va(Ra,ra) = V(Ra,ra) - v(ra),

2 .2
-M 3
h(r_ ) = 5—— —= + v(r ),
al 2w, ac? a (11.9%0)

where v(ra) = V(Ra+¢,ra) and ¢:(ra) is an eigenfunction of h(ra} with
eigenvalue €3,
b. Solving for the nonreactive wavefunction

The coordinate representation of the coupled equations for the

nonreactive wavefunction, eqn. (1I.6), is,

far® ar! dr_ dr_ <R!'[<$2 [r!R!> <r'R'|H - Efr R >
a a a a a nfaa a a a a



a o_.a
<r R [2>[°£2 > = 0.
aa’m ' nemy (11.91)

Making use of eqn. (11.89), eqn. (I1.91) becomes,

K2 % &
Yabe ERZ zubc ar

2 2

— t V(Ra.ra) - E]
a

a
Jar, T ¢ (r) I3
n °f

a

¢ (r

n a

)y %2, (r)) =0,
nmy (11.92)

or making use of the fact that ¢(r,) is an eigenfunction of h(r,) given

in eqn. (I1.90) and of the definition of Vﬁ.n in eqn. (II.16), we have,

2 2
-H [ a, o_a a o_a
[ — - E7] °f (R)+ZLvV £ (R} =0,
¥abe ar? ntomgtmy et o nen nem,tha (11.93)
a

with Eg = E - €. We numerically integrate the coupled equations in
eqn. (II.93) to obtain °f, by dividing the R, axis into an evenly spaced
grid and integrating the wavefunction from point to point. In order to
calculate the Greens function matrix, we need both the regular and
irregular nonreactive wavefunctions. The regular solution goes to zero
at the origin while the irregular solution exponentially grows as it
approaches the origin. Also, because of the way we pick our asymptotic
boundary conditions, the closed chanpel part of the nonreactive regular
wavefunction grows exponentially as it approaches the asymptotic region
while the irregular wavefunction exponentially decays in the asymptoiic
region. For stability the regular solution is integrated outward
starting near the orfgin, and the irregular solution is integrated
inward starting in the asymptotic region.

Our integratloq‘method is based on the renomalized Jumerov
88,89

algorithm Before giving the details of this integration
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procedure, it 1s convenient to ffrst write eqn. (II.93) in matrix form

for the vibrational state indices,

2
(-5 °wr = gr °un),
dR (I1.94)
where 2u
be
UR) = ¢ :2 ) (% - gY,

and [ is the identity matrix. A three term recurrance relation provides

the basis for Numerov 1ntegracion88,

(L-T)°% =-¢L+0T )% , +(-T_
L) 6 L In-1) Loy a2 (11.95)

with o o
£, = £(z),

and

h2
I, = O Ur),

where h is the spacing between the grid points and r, is the value of R

at the n th grid point. We define a matrix F,

o (11.96)

Substituting eqn, (II.96) into eqn. (II.95), we obtain,

o o -]
F £ - (2L - 10E ) "€ +F £f _, =0.
~n ;-1 ;-1 n-2 *n-2 (11.97)

If we multiply eqn. (11.97) from the right by oﬁgll and rearrange, the

resulting equation is,

R = (120 - I0E | -E , R ) E_
n -1 n-2 =n-| n (11.98)

where



Eqn. (I1.98) is the algorithm we use to propagate the regular
solution outward from the origin. At each grid point we calculate and
store the ratio matrix, B« As in the case for the three dimensional
DWBA calculation described in section 2b, where we also calculate a
ratio matrix using a different algorithm, this integration can be quite
stable 1f enough grid points are used. With the boundary conditions and
the ra:io.matrix in the asymptotic region, the 0& matrix can be
calculated. We can then calculate the normalized wavefunction frum eqn.
(II.24) at this final point, N. By multiplying with the ratio matrix at
this point, we get the wavefunction at the previous poini and so on

uitil we have generated the normalized wavefunction at all of the grid

points,
o [+]
f'N-l EN £N ’
. (I1.100)
o ° o
El Bz 22 ¢

As we show below, we only need the inverse of the ratio matrices of the
irregular solution to calculate the Greens function matrix rather than

the normalized wavefunction. Rearranging eqn. (I1.98), we obtain,

I -1 I-1,-1
R, =(12L - 10F _, -E R ) E o,
*n-1 =1 n ~n -2 (11.101)

where the I indicates the {rregular solution. The algorithm in eqn.
(II.101) is used for the integration of the irregular solution inward
from the asymptotic region. The {initial ratio matrix gﬁl is obtained
from the boundary conditions which we discuss below.

To calculate the Greens function matrix we also need the log
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derivative matrix at each of the grid points. The log derivative matrix
is defined as,

gr ) = £ ) £,

oo (11.102)
where ﬁ‘(rn) is the derivative of f with respect to R evaluated at T
We calculate the log derivative matrix for the regular and irregular
wavefunctions as we propagate the ratio mat~ices. Making use of
quantities which are already calculated, the log der.vative mactrix is

calculated fromss,

-1 -1
2 = b B - A Bt Eas
n Sne1Bn 7 dn-1Ba-1) En (11.103)

where y(rn) is the log derivative matrix and ,
-

Ay = L-05E .

In section lc we derived the asymptotic form for the open channel
part of the nonreactive wavefunction which 1s given in eqns. (I1.24) -

(I1.26). Here, we specify that for the closed channels,

k2R
na
e

s A S —0t
n |2v[l/2
a
a R,
e e (11.104)

c ’

n |2v|1/2
where eqns, (II,24) and (I1.26) still hold and k: and v are defined
under eqn. (II.25). We were free to pick various linear combinations of
these two linearly independent asymptotic wavefunctions, but this

particular choice yields a convenient form for the Greens function
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matrix as we show in appendix II.A.
c. Calculation of the S matrix
The form of the S matrix in terms of the reactance matrix, K, 1is

given in eqn. (ITI.33b),

oo)-l’

g L+ ™) (- K

where these are matrices in the combined indices of the arrangement and
diatomic vibrational state, and the oo lable on the K matrix indicates
that the indices only range over the asymptotically open channels. It
remains to explicitly specify how the K matrix is calculated. We begin

by taking the position representation of eqn. (11.29),

(<] 2 o
= + =
Kanaini ana n, h ]dRa"dRaD n'nF'no < fana"n"|Ra">
a'a''al
<] -1
+ -
<Ra"|(6bmb'm' Sbmb'm' b°£° Hbmbomo Gb°m°b'm')a"n"a°nu Ra°>
[}
<R'Uw00v1ftv ’
a“l"a’n"a'n a'n'a n, (11.105)

where a's anc b's are arrangement indices and n and m are indices for
vibrational expansion functions. We have discussed in sec. 3b how to
calculate °K. While we will not indicate it with our notation, it
should be remembered that °K, °f, and %G are diagonal 1in arrangement
ifndex and W and S are off diagonal in arrangement index. Let us first
consider more explicitly the final term of eqn. (11.105) making use of

the definition of the W kernal in eqn. (IL.18),

a'
a'nt
an aini

0 - '
' o - N a a <]
<R'[W_ 00,00 f3'“"’1“1> <Rao|<¢nf|[va|¢r| >|% >
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a' a' a' o.a'
<Ra'ra‘ltpn > - :. 'Ra'ra'><Ra'ra'|¢n'> vn'n] fn'ni>

0 "
Jar o &(R%g - R, 0) ¢:f<rau) (V0 (R, r ) 63(r, )
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n' i

araD aﬂ a'
Jar |, 5= ¢ Dr 0(R 0ROV, (R (R 04, (1 (R 0,R )]
a' 3

a' a' o
=L ¢,0r (R gk DIV, } ¢, (R_,),
N n a a a nn a naini a (11.106)

where
arao _ b <ma°+ mb+ ma')
a:a, (mao+ mb)(mb+ ma,)
which follows from eqn., (11.88). Now we define a W matrix by,

W arne (R = $2e (RED IV, (R 62, (r,, (R,R")]

ana'n
a' a'’
=L 6 olr J(R,RD] Vg ] .
nf (1..107)
Next, we consider the position representation of the iuverse operator,
We construct a grid for R,+¢ and Rye with indices, 1'' and i°,
respectively. Then we can consider the position representation as an f{,
{' element of a matrix repres: atation in R space., By considering the

summation in eqn. (II.10) from which the inverse operator is defined it



can be shown that,

1 ° -1 19
<Ra' I(sbm,b'm' + Sbmb'mf, bo:o "bmbomo Gbomob’m')a"n"aono Ra°>
(11.108)
(s +5 -t °¢ [rd )5y
bujb'm'j’ bmib'm'3* " o0 b bmbom® “bO%afb'm' b arprrarr

0,040
where the marrix inverse of the right hand side of eqn. (II.]08) is over
the combined index, bmj, where b is the arrangement index, m is the
vibrational state expansion function, and j is the index for the R

grid. Looking at the overlap matrix in the second term of eqn.
(I1.108), it can be written more explicitly using its definition in eqn.

(11.22) as,

o endleabl b s (D
Shojbrargr " Fplnl 4 [R70>

1 L} j b
Jar, dr, dR'y, drty <RUJCOC[R E KR r Ry

b

b' ;. b'
<Rb,rb,[¢m.>|Rj,>

b bl jl
Jdry e (r )y o), (ry ) <Ry, |Ry.D

3
J 'l b! j J"
5 torsy T ¢[r (RY,R v)l ¢, {r (R ,R Dl
bmjb'm’j BRb m b b (11.109)
where Brh/BRb' is given below eqn. (II.I106). Lastly, needing a more

explicit form for the last term in eqn. (I1.108), we obtain,

3 ) 3! oy, t
<R ¥hap 000 "Gy g0y rge [Rye> = JdRy, K, b O 0¢Rp Ry )
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OGbumob'm'(Rb"Ri:) ’
(IT.110)

following similar steps as those in eqn. (II.106) where ary /3Ry, is

given below eqn. (I1.106). The Greens function matrix element,
[+ j’ ) j'
Gbomnb'm'(Rb"Rb') - <Rb'| Gbomob-m.le.> 3

will be discussed more below.

The variables, R, Jefined in eqn. (II.110) and R,, defined in eqn.
(I1.106) will also be placed on the same grid as discussed above. The
four intergrals in eqns. (1I.105), (11.106), and (I1.110) are all over
variables defined on a grid. We will perform these integrals using the
trapazoidal rule which seems adequate although other quadrature methods

could be used. We can rewrite eqn. (II.I05) in explicit form,

z
= O 2 401 00
ana n, anaini+ [ :,:,,:0 fana"n"i" (6bmjb'm'j'+ Sbmjb'm'j'
i'i"lo
o -1 (IL.111)
= bOEO-OHbmJbomnjo GbomOjob'mljl)allnlli'l waOnOiO fa'n'i'a n.*
nJ aln0g a'n's’ 1

We have found that the grid to do these integrals need not be as fine as
the grid for the integration of the nonreactive wavefunction. We
therefore have two grid sizes with an integer factor relating them.
Also, W is localized in the interaction region, so these integrals need
not extend out to the asymptotic regon. We cut off the integrations ar
a point where there appears to be no further contribution to the
integral., We give the details about the grid sizes with the results
below.

All that remains to be specified about the calculation is the

computation of the Greens function matrix. The derivation of the
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equation for the calculation of the Greens function matrix is given 1in
appendix II.A. The result from eqn (II.A.20) is that the distorted wave

Greens function matrix can be found from,

. ~2 Oy -1
Dt(rn'rn') B _;§ Roet Bne2 o0 By g (rn‘) OE (rn')
o, o -1 -1
- g'r ) g (e ] T, e Ky
and
e e ) = el Th gl T 1% 0 e )
R
- %ge ) % e 017 L >,

(I1.112)
where %g is the irregular nonreactive wavefunction. We have discussed
the calculation of the ratio matrices, Bn» for the regular nonreactive
wavefurction in eqn. (IL.98) and the inverse of the ratio matrices,
gﬁ_l, for the irregular nonreactive wavefunction in eqn. (II.101). The
quantity in square brackets in eqn. (II.112) is the difference between
the log derivative matrices for the regular and irregular solutions
which we show how to calculate in eqn. (II.I03). We could also have
calculated the distorted wave Greens function matrix from the normalized
regular and irregular nonreactive wavefunctions rather than from the
ratio matrices and the log derivative matrices. The formula for
calculating the Greens function matrix fn eqn. (II.112) without the

nonmalized wavefunctions is numerically much better behaved.

C. Results and Discussion
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1. Multichannel DWBA for three dimensional H + Hy

a. T:ansit;on Probabilities

. In this section we present the degeneracy averaged reactive
transition probabilities for the H + H, (v,3) + Hy {(v',}') + H reaction
8 potential energy surface, and below we give

16

on the Porter - KQFplus
the cross section results, Exact quantum calculations are available,
for comparison which makes this a convenient test problem. First we

present the transition probabilities for total angular momentum, J = 0

to show how well the results converge with respect to basis functions at

different energies. Then we present the transition probabilities as a

function of J.

Using coupled channel DWBA, {t was found for collinear H + H234
that accurate converged results were obtained when the reaction
probabilitiés were sufficiently small (<0.1). Our results here are very
reminis.ent of the collinear results. Table II.l contains our results
with J = 0 for the reactive transition probabilities va), j=0 + v'=),
j'=0; v'=0, j'a]l and v=), j=] + v'=), j'=l. The results for E < 0.6 eV
converge with 18 basis functions (the specific basis used is explained
in the table). For larger energies the results show the same growing
oscillations as the collinear results. This can be seen in Fig. 1I.1
where PJdl)O is plotted as a function of basis functions for E = 0.65
eV. The DWBA results are expected to break down at higher energies
where reaction probabilities become larger since the perturbation

assumptions are no longer valid. It is not clear, though, that the

growing instability is purely a result of this hreakdown in the
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perturbation theory. The fact that, as we see in the next section, for
collinear H + Hy the full, the nonperturbative solution converges at
higher energies supports the argument that it is a breakdown of the
perturbation approximation. It also seems possible that there is some
nonconvergence in the nonreactive wavefunction that is causing the large
oscillations.

The “"exact” quantum results are also shown in Table II.1 for
comparisou. The transition probabilities from v=0, j=0 + v'=0 summed
over final rotational levels are shown in Fig. II.2. These transition
probabilities also show good agreement and similar trends at high
energies. Other transition probabilities, not shown, have about
equivalent agreement, In Fig, II.3 the transition probabilities
multiplied by (2J+1) ;t 0.5 eV as a function of J along with the exact
quantum and coupled states distorted wave results. The DWBA results are
converged to within several percent with the given basis. Both the
DWBA-CC and DWBA~CS results agree well with the exact quantum results.
The DWBA transition probabilities, though, decay less quickly as J
becomes larger. In Fig. II.4, transition probabilities within the
coupled states approximation at E = 0.4 and 0.6 eV are plotted as a
function of J. The DWBA-CS results at these energles also agree well
with the "exact" quantum results although they seem to deviate slightly
more near the peak maximum. Again the DWBA results decay slightly more
slowly with increasing J.

It is interesting to note that the DWBA transition probabilities as
a function af J agree better with the "exact™ results at (0.5 eV than 0.4

or 0.6 eV. We would expect the agreement to be worse at Q.6 eV since
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the perturbation assumPtion could be beginning to break down. It is
more dlffiéul: to undeéscand the discrepancy between the DWBA-CS and the
"exact” guantum results at 0.4 eV except that possibly the “"exact”
quantum results are not fully converged. We have a iually used allarger
basid- at this energy than in the "exact” quantum regﬁlts. If we use a
smaller basis in our calculation the agreement improves. It is
difficult though to really compare basis sets in the two different
methods.
b. Cross sections

In Fig. II.5 ché differential cross sections are plotted as a
function of scattering angle for a total energy of 0.5 eV. The snlid
line indicates che?exact quantum results. “he DWBA-CC and DWBA-CS
résults are plotted using the indicates dots. One can see that the DWBA
results agree very well with the “"exact™ quantum results. In Fig. IL.6,
the differential cross sections are shown as a function of scattering
angle for total energies 0.4 and 0.6 eV. The solid line indicates the
“"exact” quantum results, and the dots are the DQBA-CS -esults. The DWBA
results at these energies are also in quite good agreement with the
“"exact” quantum results. At E = 0.6 eV the DWBA-CS differential cross
section seems to die off a little too slowly at small angles and to peak
somewhat too high at 180°. It should be noted that we obtain
quantitative agreement in the differential cross section without any
normalization to the "exact” results.

In Table I1.2 some integral cross sections are given for total
energles of 0.4, 0.5, and 0.6 eV. The integral cross section results

show good agreement between the "exact"” quantum and DWBA results.



Almost all of the DWBA integral cross sections are higher than the
corresponding “"exact” quantum results which may again indicate some lack
of convergence in the "exact” quantum results with respect to basis
sets.

For comparison, we will give relative computer times for the DWBA
and the exact calculattons. Most of the computer time in the DWBA
calculation 1s involved in performing the integrals in egns. (II.71) and
(11.72). We have not put much effort into optimizing these integrations
su that we avold regions where there is little contribution to the
integral. With 16 basis functions, described in Table II.1l, and J =0,
DWBA-CC required 19 minutes of computer time on a Harris H800 computer
to evaluate the entire probability matrix. The “exact” quantum
calcelation with the same basis required 21 minutes , but the exact
quantum program {s highly optimized to be as efficient as possible. The
DWBA-CS calculations is identical for J = 0 with the DWBA-CC
calculation, but for an entire cross section calculation it requires

about 1/5 the time needed for DWBA~CC at 0.5 eV,

2. "Exaet" collinear H + H, reactive scattering
_——
Here we present rcactive scattering transicion probabilities for
collinear H + Hy with the Porter - Karplus80 potential energy surface.
The asymptotic form for the vibrational potential energy is a Morse
function, so we therefore use Morse elgenstates for our expansion of the
vibrational motion. We performcalculations over a large range of

energies from the deepest tunneling region to energles with 3 open

. Cchannels. We also present a comparison of our results with previous
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“"exact” results on this same system.

We perform caiculations with up to 6 vibrational states in our
expansion. Table I1.3 shows convergence with respect to basis set
size. Unlike the DHBA<case described in the previous section, the
results here converge”with respect to basis size quite well with' 6 basis
functions even at higher energies. The convergence at the very iowest
energies and at l.6466 eV is not as good as at the other energies. This
is still being investigated. At no energies, though, do we observe the
oscillations that we found for the DWBA calculations.

We Integrate the nonreactive wavefunction from l.0 Bohr to I0.0
Bohr using about 500 grid points. The convergence of the integration
for the nonreactive wavefunction can be checked from, the symmetry of the
nonreactive Greens function matrix. For the integration to obtain the S
matrix in eqn. (1[.1112, we find that because of the limited range of
the exchange interaction, only the innermost 40 X of the region
contributes significantly to the integrals, and the rest of the region
can be ignored. Within this region we have used from 40 - 60 grid
points. 1In table II.4 we present results to show the convergence with
respect to this grid size. We see that for convergence to | - 2 % tha:
about 50 grid points are sufficient.

In table II.5 we present a comparison of our rasults with previous
"exact” quantum calculations. Throughout the entire energy range, our
results show excellent agreement with the previous calculations usually
within a few porcent. We see that this method performs well with more

than one open channel, and describes the resonance reglon correctly.
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D. Conclusions

We have presented a formalism for performing "exact" scattering
calculations and coupled channel distorted" wave Born approximation
calculations for reactive atom — diatom systems. Calculations are

v
presented for “exact” collinear H +7ﬁ2 reactive scattering and for three
dimensional H + Hz reactive scattering using multichannel DWBA. We have
shown that accurate reactive probabilities and cross sections are
obtained using this multichannel DWBA method for three dimensional H +
Hye For total energies up to G.é eV, the DWBA transition probabilities,
differential cross sectlons, and integral cross sections agree
quantitatively with the exact quantum results. We also introduce an
approximate method for obtaining the nonreactive wavefunction using the
coupled states approximation which saves considerable computational
effort with very good results. Above 0.6 eV, where the reaction
probabilities become larger than about 0.1, the DWBA results do not

converge with respect to the addition of vibrational basis functioms.

The convergence problem here 1s analogous to the equivalent problem

34

observed by Hubbard, Shi, Miller”"-using coupled chahnél DWBA for
collinear H + H,. For our “exact” collinear H + H, calculations we
obtain excellent agreement with previous calculations over a very large
range of energies. Over most of the energy range we obtain convergence
with 6 vibrational expansion functions.

The reactive scattering formalism which we present is

straightforward to extend to any atom - diatom scattering problem but

numerical limitations need to be investigated further. Based on an over
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complete basis, this mathod avoids all of the problems of finding an
appropriate coordinate system for the rearranging atoms. Our accurate
results for collinear H + H, are encouraging, Using a DWBA version of
this formalism, we have obtained for the first time quancitative
agreement with the three dimensional H + H, results of Schatz and
Kuppemann16 at low energies. These methods appear very promising for

obtaining quantitative reactive scattering results for atom - diatom

systems other than H + Hye
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Appendix II.A. Nonreactive coupled channel Greens function for

collinear H + Hy scattering

1. Form of the coupled channel Greens functinn matrix

Here we present a derivation of the nonreactive Greens function
matrix specific for our calculation on collinear H + H, reactive
scattering. A more general discussion of coupled channel Greens
functions can be found in reference 9). The nonreactive coupled cﬁannel

Greens function matrix satisfies the following equation,

-Mz d2 o
(1 (=5~ *+ R - E] "G(R,R') = - &R - R'),
dr (II.A.1)
where these are matrices indexed by the asymptotic vibrational expansion
functioas and Y(R) is defined under eqn. (II.16). The Greens function
matrix is everywhere finite., The nonreactive Greens function, like the
nonreactive wavefunctions, are solved for each arrangement separately.
Later, when put in a matrix in the combined index of arrangement and
expansion functions, the nonreactive Greens function matrix will be
diagonal in arrangement index.

The nonreactive regular, °f, and irregular, °g, wavefunctions are

solutions of the following coupled equations,

, 2 dz) ® -5l | °£(R)
L ey - g -0,
LT °g(R) (11.4.2)

with the asymptotic boundary conditions from eqns. (I1.24) and (11.26),
PE(R) ~ g(R) + g(R) K,

and



%g(R) ~ ¢(R),
(11.A.3)

where § and ¢ are defined in eqns. (II.25) and (II.104).
For R' # R, it follows from eqn. (II1.A.l) that °G is a solution of

the homogeneous equation,
42 d2 o
[L (= —=) + Y(R) - E] "g(R,R') = O.
Y P - "

For °C to remain everywhere finite, it follows from the boundary

conditions that,
°G(R,R") = £(R) A(R'), R < R'

and ° o
G(R,R") = "g(R) B(R'), R> R' ,

(II.A.4)

where &(R') and B(R') will be determined by matching the solutions at

R = R's °@ is continuous at R = R' so that,

°£(R') A(R") = °g(R") B(R") ,

or o =1 o (<]
B(R') = g "(R') "f£(R') "A(R').
(II.A.5)
Next, we integrate eqn. (I1.A.l) from an € on either side of R' to
obtain,
R'+e 2 2
lim [ dr (1 (-%; —55) + YR - El °G(R,R") = - .
e +0 R'-€ dR (11.A.6)

The terms involving Y(R) and f go to zero as € goes to zero since °G and
Y, are continuous in R, but since the derivatives of %G are not

continuous at R = R', the term involving the second derivative of °g

does not go to zero. So, aqne (I1.A.6) becomes,
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R+e 2 2
lm [ _Lu_"dz °G(R,R") = - L,
€ +0 R-e dR’

d°g(R,R") a°G(R,R") | 2u
Mo [—g— |orie = —— |oopi_d == L -
e +0 dr R=R'+€ dR R=R'-€ ”2

Making use of eqns. (II.A.4) and (II.A.5), this becomes,
(°g'(r") g 1R °H(R) - P (RN ar) = R,
h

or 1

ar) = 22 °grrn %gTHRY Cgrt) - gD
# (1I.A.7)
where a primed function indicates the derivative with respect to R

evaluated at the Indicated value. Combining eqns. (II.A.4), (II.A.5),

and (II.A.7), the expression for OG becomes,

(It.4.8a)
°gr,R = ZE %) 1% R - %5 () g IR PRI, R <R,
#
(I1.A.8b)

°GR,R) = % (r) [<°g(rY) + °gT(rY) °gTM(r) g1, R > ReL

h

Starting with eqn. (II.A.8a), we define,

WRY = [PEN(RY) - g (R °g7HrY) °frny )7L
(II.A.9)

Differentiating || twice, it can be shown that,
un(Rv) - u(R-) ogll(Rl) OE-l(R')»
(II.A.10)
where we have made use of the fact that,

Of-lv(Rl) Og-l(R.) . OE”(R') Og—l(R,) = '_'2% [E - !(R')],
®

which follows directly from.the coupled equations, (II.A.2). It follows
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from egqn. (I1.A.10) that,

R Rt = %Rt %g7HRn - % [E - YR,

or _HZ d2 ] t
(L (57— + YR - E] L (R") = 0.
LTI L (T1.A.11)

So, ur(R') is a solution of the coupled equations, and therefore it must

be a linear combination of the regular and irregular solutions,

g'(R") = °E(rRY) g+ %R g,
(II.A.12})

where 8 and §p are constant matrices. To determine 8] and R, we
compare the asymptotic forms of egns. (IL.A.9) and (IL.A.12). Making

use of eqns. (II.A.3), (1I.25), and (I1.104), one can show that,

so that,
t
g (R") -—E"g(k').
(I1.A.13)
Combining eqn. (IL.A.13) with eqn. (I1.A.8a), we ohtain,
o 4 20 ot o t
G(R,R') = —¢ £(R) "g (R'), RCR' .
(IT.A.14)
Following a similar development for cqn. (IL1.A.8b), it can be shown

that,

°GR.R"N = =X %g(r) %'y, R> R
(I1.A.15)
2. Computatlonal aspects

Eqn. (1L.A.14) and {(II.A.15) provide a simple form for calculating
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the nonreactive Greens function matrix from the normalized regufﬁf and
irregular nonreactive wavefunctions. Unfortunately, though, the
calculation of the Greens function matrix from the normalized
wavefunctions is not numerically very stable. Now, we develop an
alternative formula for calculating the Greens function matrix.

We begpin by rearranging eqns. (II.A.8a) and (II.A.8b) to obtain,
°gr,R") = 22 og(r) Ot PR g R0 (=) 0TI r) T,

" R < R', (II.A.l6a)

1

°e~lrn)-%g (r") g Ir")17Y,

°g(r,RY) = 22 Ogr) O Rr)%E (RN
h

R > R', (IL.A.l16Db)

The last factor of both equations above involves the inverse of the
difference of the log derivative matrices for the regular and irregular
solutions. We have given an algorithm for the calculation of the log
derivative matrices in eqn. (II.103) which uses the ratio of the
wavefunction at neighboring points.

Next, we express °f£(R) °f~I(R’) and %g(R) °g~l(R’) in terms o!
ratio matrices, As is discussed in sec. 3b, the R coordinate is put on
a grid, and the ratio matrix is calculated at each of the grid points.
To avo«d confusion between a point on the grid and the ratio matrices,
points on the grid will he indicated with L rather than R . Using egn.

(IT.100) we can show that,

o] [+
) = Ry By Ao
and
o.-1 o.~1 =1 e ol
£ = "hy By Burerr

(IL.A.L7)

where DCN is the normalized wavefunctioen at the last point, N, on the
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grid and &n is a ratio matrix at point n defined under eqn. (I1.98).
There 1s an equation equivalent to (II.A.17) for the irregular

solution. It follows directly for r, < L that,

o o1
f(r ) °f (r_,) =R R ce* R, .
n o n+l Sn+2 =n (11.A.18)

Making use of the equation corresponding to (II.A.17) for the irregular

solution, with Ty > Tt {t can be shown that,

o o ~1 I-1_.I -1 I -1
glr ) g (r ) =R} By By -
" " " n-l n+l (I1I.A.19)

Combining eqns. (I1.A.18) and (I1I.A.19) with eqn. (II.A.16), the

equations for the Greens function matrix becomes,

og(rn'rn') B :i§ Boe1 Baea °°° Boe [OE'(rn') og_l(rn,)
- °g'(rn,) 0g-l(rn.)]_l, T < T
ey - T e ) O o e
~ o5'(:'",) 0g_l(rn,)]—l, T T

(II.A.20)
Since the log derivative matrices can be expressed in terms of the ratio
matrices, the Greens function matrix can be calculated from eqn.
(I1.A.20) without using the normalized wavefunction by using fnstead the
ratio matrices for the regular and irregular nonreactive

wavefunctions. 1In section 3b we discuss the calculation of ratio
matrices. Eqn, (I1.A.29) is the formula used for the calculation of the

nonreactive Greens function matrix,



[II. Classiral and quantum mechanical studies of HF in an intense laser

field.

A. Introduction

Since the advent of high power lasers there has been great interest

in the use of lasers in chemistry.9l The uses have ranged from

92 to the control of molecular

94

sophisticated forms of spectroscopy
dynamics.93 Experiments involving multiphoton absorption’”, overtone
absorp:iongs, and radiationless transitions from excited sta:e596 have
allowed the study of new phenomena in molecular dynamics. Also, laser

97 are allowing very fast processes to

pulses on a plcosecond timescale
be observed. Resultingly, theoretical effort598 have turned toward
understanding highly vibrationally excited molecules which exibit
tundamentally different behavior than the harmonic oscillator {(normal
mode} view of ground state or very low vibrationally excited

molecules. High densities of states in even small vibrationally excited
molecules present a formidable but very important problem.

Here we examine a diatomic molecule subjected to a picosecond (ps)
pulse of a very intense laser radiation. A diatomic molecule has the
advantage of a simple and accurate potential energy function and a small
number of states., This allows essenrially exact quantum and classical
calculations to be done, The dynamics of an isolated diatomic molecule
is, of coarse, trivial, but here we dynamically account for the
absorption of the coherent laser radiation. The disadvantage of

studying a diatomic molecule is that the low density of states will have
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a fundamentally different behavior than polyatomics at high vibrational
energies. The advantage of being able to do exact calculations, though,
allows for a good test of the validity of classical mechanics applied o
these problems. Assuming that their validity can be established,
classical trajectory techniques offer a way of possibly avoiding the
problem of the unwieldy densities of states in polyatomic problems.

This should be a rather severe test of classical mechanics since there
are so few quantum states involved. Also, based on what can be learned
from a diatomic molecule, understanding can be gained about the
absorption processes in the lower parts of the vibrational manifold of
small and moderate size molecules where ther are also well separated
states.

Much of the interest in this field, especially towards the
application of classical mechanics, was generated by the work of Walker
and Preston99 who performed quantum and classical calculations for a
model nonrotating HF molecule. Thelr results, using laser intensities
>K)Tw/cm2 (ITW = 1012 W) indicated good agreement between classical and
quantum predictions of energy averaged over laser pulse times, except
near multiphoton resonances. Since then there have been many exact

99-104 99,102c, 105~107

classical and quantum mechanical studies of

oscillators in intense laser fields. Quantum mechanical studies have

105,108, 109 to simplify the computation.

made use of Floquet analysis
Wyatt et. al.]o5 have recently even made progress in studying
dissociation of an oscillator in a laser using quantum mechanics. Davis

and Wyare!?!, stein and N01d'02¢, and cray!®® have made significant

progress in understanding the classical behavior of nonrotating HF in an



intense laser field through the use of Poincaré surface of section
plots. There have been some studies of model polyatomic systemleZd'l03
but much remains to be donme to get a good understanding of these
systems.

Here we present quantum and classical results for HF in an intense
larer field. The quantum and classical equations of motion are solved
by direct numerical integration. For one and two photon absorption near
the fundamental frequency we include results for both rotating and, for
comparison, nonrotating HF initially in its ground state at laser
intensities of 1.0 and 2.5 TH/cmz. Calculations are also performed on
overtone {(v=0 + v=2) absorption for rotating and nonrotating HF and
mulctiphoton absorption for nonrotating HF following a classical study by
Chriscoffel and BoumanloA for nonrotating HF, at the same laser
intensity, 43.68 Tw/cmz. For all the calculations, energy absorption
and transition probabilities are calculated as a function of laser pulse
time and as an average over pulse time. It Is found that classical
me-hanics does not correctly describe the time behavior of the system in
most cases. Furthermore, classical rotational state discributions are
completely incorrect for all the cases where trotating HF is studied.

For one photon (v=0 + v~l) absor,.ion classical mechanics does give
the correct magnitude of pulse averaged energy absorption. In addition,
classical mechanics correctly indicates the presence of increased two
photon absorption for frequencies lower than the one photon resomnance,
although, in agceement with Walker and Preston’s99 nonrctating results,
specific resonances are not resolved aund only a small amount of two

photon absorption is seen. For the frequencies near the fundamental,
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the effect of the laser phase is studied and found to have only a small
effect on the quantum results and little or no effect on the classical
results.

For the overtone absorption we find an even greater discrepancy
between the classical and quantum results than the discrepancy found
near the fundamental frequency. At overtone frequencies the classical
and quantum maxima of the pulse time averaged energy absorbed as a

H

function of laser frequency are shifted by 200 cm ' relative to each

other. Very good agreement between the quantum and classical results is
observed for the multiphoton results. To study multiphoton absorption,

1

we fix the laser frequency at vV = 3922 cm ' and vary the initial

vibrational state from 0 - 10, analogous to Christoffel and Bowmanloa.
To get a better understanding of the overtone and multiphoton classical

results for nonrotating HF we construct Poincaré surfaces of section.
B. Mechods

1. General finformation

The calculations are performed for rocacing and nonrotating HF.
The molecular Hamiltonian is
2
Pr ! 2

H = + (p5 +
°  u  2u?  ? 0 sia%e

) + v(r), (111.1)

where t, 6, ¢, p., Pg, P, are spherical cuordinates and their conjugate
momenta, and MW is the reduced mass. For the nonrotating case the term

with the angular momentum is excluded. The Born-Oppenheimer po* ‘ntial



is given by a Morse function V = D{l~exp[—a(r-re)]]2, with values for
the parameter523 in atomic units of D = 0.22509, a = l.1741, and g =
1.7329 a.u.

The laser field 1s treated classically through a dipole
interaction. This is valid in the limit of high photon density which is
certainly true here, For very low intensities the photon field should
be quantized‘lo and classically the fo.malism developed by Millerll!
should be used. The full Hamiltonian with an oscillating electric field
of frequency w, z polarization and phase 6 is ,

H = Ho - d(r) cos® Eo sin(uwt+d),

(111.2)
where Eo is the field strength [in Gaussian units it is related to the
“intensity by E, = (BWI/C)I/Z, where ¢ is the speed of light] and d{(r) is
the molecular dipole function. The cos® factor is omitted for the
nonrotating case. A linear and quadratic form cof the dipole funciotn
are used, d(r) = dO + dl(r—re), do = 0.716 and d1 = 0,310 a,u. {(ID =
0.39343 a.u,) for one and two photon absorption about the fundamental
frequency corresponding to Ref. 105¢, do = 0.7362 and dl = 0429769 a.u.
for overtone and multiphoton absorption corresponding to Ref. 104; d{(r)
= dg + d;r + dyr?,wieh®® a4« 041010, d) = 104941, d, = ©0.21551
a.u, Laser intensities of 1.0, 2.5, and 43.68 TW/cm? were used which
corréspond to field strengths of 0.005338, 0.008440, and 0.03528 a,u.,
respectively (Iv/em = [,9447 x 0~10 a.u.). The laser field {is
instantaneously turned on and turned off.

All numerical integrations were back integrated to reproduce all

the initial variables to, at least, four significant figures to assure
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numerical accuracy. It should be noted that for the quantum
calculations, conservation of probability was not a valid criteria for
good integration. There was, at least, one case where we obtained
qualitatively incorrect results even though probability was conserved to
six significant figures.

There is an approximation in using this potential since the
electric field would perturb ip a nontrivial amount. It would be more
112

correct to use dressed molecular potentials Since we do not attempt

to make our calculations quantitatively comparable cq experiment, we
avoid this extra complication.

To aid with the interpritation of the results, Table I1l.l gives
the relevant Egj levels for HF, calculated with che rotating Morse
oscillator formu1a113.

2. Classical mechanics

The classical solution is found through the direct integration of

Hamilton's equations of motion for the Hamiltonian given in

Eq.(111.2). 1In the abseance of external fields there are three conserved

quantities which are the vibrational action W,
1
NV--§+ F‘ﬁprdl‘,

the rotational angular momentum J,

a2 . 2 Pe

and the z projection of the angular momentum M = Pge
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With the interaction present, the vibrational action N, and
rotational angular momentum J are no longer conserved. However, with
the present choice of polarization, M is still conserved since H has no
¢ dependence. The complete classical solution involves specification of

the appropriate initial conditions and solution of Hamilton's equations:

. M _ 1 2 2 2 v
Pra--a—t-'—?(pe+P¢/31n 9)"'-3-?

+ d cos® Eo siﬁ(mt+5),

ar
i 2 2 3
ﬁe =-=5= p¢/ur sin 8 - d(r)sin® Eo sin(wt+6), (111.3)
. _ OH
= apr = pr/u,
s M 2
8= 3Pe = pe/ur .

Approximate analytic orbits have been obtained113 for a rotating
Morse oscillator with no external field, and these are used to determine
dlatomic Iinitial conditions (see Appendix I11.A for details). This
approximation is excellent for the vibration - rots ‘on levels of
importance here. The laser p“1se 6 Is averaged over in most cases for
one and two photon absorption about the fundamental frequency (i.e. each
trajectory has ¢ chosen randomly between O and 2%), although it will be
shown to be unimportant. 1t is set to zero for the overtone and
multiphoton calculations.

For the rotating HF calculations, 1000 trajectories with random
initial conditions (see Appendix I1I.A) were run for each frequency.

Monte Carlo errors in the quantities of interest were between 10% and
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15%. For the noarotating HF calculations, 50 trajectories were run for
each frequency. In this case, it is more efficient to increment the
vibrational angle variable in a stepwise fashion between 0 and 27 than
to pick it randomly. The classical equations of motion were integrated
with a standard pradictor - corrector algorithmlla to either N.9 or 1.5
ps. Integratisn of the classical equations of motion beyond 1.5 ps. is
extremely difficult due to the accumulation of zrror, The integration
of oscillatory nonlinear differential equations over long time periods
is still a current problem in numerical analysislls.

The energy absorbed as a function of pulse length is defined by

1 1 1 1 1
H [p_(0), py(0),r'€0),87(0),6 ,t} - E
p ° 0 F 8 t (1I1.4)

o2

1
<E(t)>CL =% .

where N is the number of trajectorles and E; is the initial molecular
energy. The final vibrational action N, after a pulse of length t is
also calculated with the rotating Morse oscillator approximationllb.
Appendix LI1.A shows that this Is an excellent approximation for the
states of interest here. J is calculated directly from J(J+{) = pg +
p;/sinzﬂ. (Note: Py = 0 in the present study since J =0 initially.)

With f = I, N, and J are boxed according to the nearest integers v,j

v
such that v-1/2 € N, € v+1/2 and j-1/2 <€ J € j+1/2, which is the usual
quasiclassical quantization procedure. The transition probability into
a particular v,j state, as a function of pulse length is
O BNV
»J ’ (111.5)

where Ny, j(:) is the number of trajectorfes with final actions in the
t}

v,j box. Of coarse, a single trajectory integrated out to some large
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puise length T contributes to all intermediate pulse time results.
Also, pulse averaged energy absorbed and transition probabilities are

defined as
= 1 (T
ECL(m) =T L, <E(c)>CL dt,

(I11.6)
=CL 1 (T CL
Pv’j(m) =7 fo Pv,j(“) dt.

By between 0.9 and 1.5 ps., the pulse averaged energy sbsorption Eq.
(II1.6) appears to be converging, but has not fully converged. However,

reasonable estimates of the converged E (w) can be obtained, since

CL
<E(t)>(, has either reasonably leveled off or oscillates with a small
amplitude. Thus, either the leveled off value or the average of the
oscillations in <E(t)>. 1is taken to be ECL(m) . The error in the

averaged quantiities Is expected to be less than 10%.

3. Quantum Mechanics

Although FloqueclOS’109 analysis has been used as an efficient and
stable way to obtain long time quantum solutions for oscillators in a
laser field, the time scale of interest here is short enough (< 20 ps)
that direct integration of the coupled quantum equations 1s possible.

The total wavefunction is expanded as

Ym(r,9,¢,t) - I cv,j,m(t) xv,j,m(r'e'¢)'

v, (I11.7)
with
&I,j,m(r'e'¢) = RV(r) Yj,m(e'”/r'
The Yj m are spherical harmonics and R, are Morse eigenfunccionslls.
,

Strictly speaking, R, should also depend am j, but in the present
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problem, with only small values of j being important, such rotational
corrections should be small. As in classical mechanics, the z component
of the angular momentum (mf) is conserved. Since the present study
involves j = 0 initially, m is zero throughout. 1In all subsequent
equations m is understood to be zero. If the molecule had j #0
initially, it would be necessary to average over transition
probabilities for all integer values of m such that -j € m < j.
Inserting Eq. (IIL.7) into the time dependent Schrédinger equation

results in the coupled equations

(s]
1hcv'j(t) =E + I D ... .c . .. Eo sin{wt+§),

[ A s
Val Vad o,y VTNV YT (111.8)

where the Ee ] are eigenvalues of “o are matrix elements .
»’

2
G+DZ 172 L
fermeray IR IR AR

Dv'j‘.vj T &) By~ dtr) R, dr x { 2 booor
[t - i = il
(23-1) (23+1) ’
(I11.9)

It will be shown later, as with the classical results, that the laser
phase 6§ does not appreclably afiect the results. For efficiency, the
majority of the quantum calculations are made with a fixed § of n/2,
The cnefficlents Cv'j of Eq. (III.8) must be complex. Thus, wriiing

Cv’j = Xv,j + 1Yv,j' one obtains the coupled real equations

5 o]
-hY . =E . X .+ I D.. . X . .. E sin(wc+s),
MYy5 Vel TVa3 T ya g VTITVE YT 3T o )

N ° (ITI.10)
hX . =E .Y .+ I D. E_ sin(wt+68),
/ Vsl Vil Vil v, v o ¢ )

Y -
v

3%vi 3

The quantum equat{ons of motion were integrated with the same



predictor-corrector algorithm used in che classical calculations. For
the one and two photon resonances near the fundamental frequency, an
adequate basis for HF with the intensities and time scales of interest
consisted of the first five v and first five j states, i.e. a 25 term
expansion. The nonrotating quantum solutions were obtained In an
analogous fashion, using the first five vibrational states in the
wavefunction expansion., About the overtone frequency, basis sets for
rotating HF consisted of either seven vibrational states each with seven
rotational states or, further from resonance, five vibrational states
each with five totatjpnal states. For nonrotating HF, ten states were
used In the overtone calculations, and as many as all 24 vibrational
states were used in the multipheoton calculations at U = 3922 cm_l.

The transition probabilities are found from the coefficients of the
basis functions

2
P (o) = e, L]
(TII.11)

The energy absorbed is defined as

. M ] o
G = ¢ P o) £, - E°,
My v va) (IIL.12)

where E? {s the energy of the initial state. The pulse averaged energy

absorbed and transition probability are given by

1 (T
Equ(®) =T [0 <E(t)>QM de

QM RO fT QM (t) dt. (111.13)

The quantum solutions were integrated from 1 to 10 ps depending on



frequency range and how near resonance, which i{s long enough to converge
the time averaged quantities to 10%. Note that it was sometimes
necessary to average over small oscillations which had not damped
completely out yet that were apparent in EQM as a function of pulse
length T to obtain the best estiwmate. Interestingly, because the
quantum equations are linear, it is poscsible to integrate 50 coupled
quantum equations to times exceeding 20 ps, which fs much longer than {t
is practicl.: to integrate only four nonlinear classical equations.
4, Poincaré surfaces of section

At least three, essentially equivalent, formalisms have been used
to define the Poincaré surfaces of section for time dependent oscillator
problems. The mr-hods of Stine and NotdlP2e 5p4 Gray100 are exactly
equivalent, and the method of Davis and Hyattwl identically reduces to
the other two methods in the limit of strong fields which {s certainly
the limit studied here. We will follow the formalism of Grayloo.
First, we define a mapping of a phase space point [p(t),x(t)] to a point
|p{t+l/Vv),x(t+1/Vv) where Vv is the laser frequency and l/v is a period of
the laser. (Note that the notation has been changed from above with
(pr,r) replaced by (p,x) to be consistant with the more ususal one-
dimensional notatfon.) Beginning at a point in phase space, the surface
of section is generated by repeatedly mapping the point until ejither a
closed curve i{s generated or a chaotic trajectory is found.

The surface of section plots are constucted for nonrotating HF
using actlon-angle variables (n,q) so that the unperturbed Hamiltonian

is only a function of the action. This is convenient since it i{s easy

to see changes in the molecular energy, and it makes the resolution of
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the structure in the high energy region of phase space equivalent to
that at low energy. Also, the integration in the chaotic region of
phase space seems somewhat stabler. The transformation to action-angle

variables is known for a Morse oscillatorll7. The unperturbed

Hamiltonian becomes

2
2 w
)3} A o
H(a) = (n+23)u - (n+35) « )
° 270 204D (ITI.14)

where w, = (2de:2/u)”2 . The equations of motion of the unperturbed
oscillator are n = 0 and & = w(n), where the oscillator frequency is

3H° h 2
wn) = g—=uw - (n +-i) w /2D.

° (I11.15)

Th:s corresponds to a line in phase space with n = constant and q = wt.

The old variables, expressed in terms of the action-angle variables are

x(n,q) = o' 1a{(0 + (o8 )% cosql/0 - u )},

(I11.16)
p(n,q) = uw(n) %:—

1 i/2 1/2

= ua w(n) *(DH_) s1aq/(D + (DH ) cosq].

The total Hamiltonian in terms of the new variables is

H(n,q,t) = Ho(") - ex(n,q)cos(flt).
(111.17)

The equations of motion are

/2

i a =€ cos(ﬂt)'(DHo)llzsinq/{u(D + (Dllo)l cosq] }

€ cos(fic)
a

Feol)

2
w
= [o, - (hn+3) 5300 -

cosq (LI1.18)

172

1
+ - .
(b - Ho)

{
r
2((DND) + U cosql
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It should be noted that . .: phase convention for the action-angle

variables, here, follows that of Ref. 100.

C. Results and discussion
l« One and two photon absorption about the fundamental frequency
a. Energy absorption spectra

The quantum and classical pulse time averaged energy absorption
spectra are plotted in Fig. IIl.1(a) for nonrotating HF and Fig TI1.1(b)
for rotating HF, with laser intensity 1.0 TW/cmz. The plot for
nonrotating HF is similar to plots of Walker and Preston99 for higher
intensities (> 10 TW/cmZ). At 1.0 Twlcmz, though, the quantum structure
is more resolved. The major features are a narrow two photon resonance
at T = 3879 cm-l (the v=0 to v=2 absorption), and a broad one photon
resonance at 3966 cm”} (the v=0 to v=] absorption). The classical
spectrum shows just one very broad peak with a maximum at about Vv = 3940
cm”l. While the classical spectrum does not have any of the quantum
structur+, examination of the classical state distribution does show the
presence of a small amount of two photon absorption, as the frequency is
lowered. Details of this will > given later.

For rotating HF, the spectra [Fig. III1.1(b)] are qualitatively
similar to the nonrotating case. There are three peaks in the quantum
spectrum: one broad peak near Vv = 4006 cm'I [the (v,j)2(0,0)+(1,1) one
photan resonance] with a full width at half maximum (FWHM) of ~ 50 cm'l,
and two narrow peaks near v = 3937 em”! [the (0,0)+(2,2) two photon

resonance] and 3879 em™! [the (0,0)+(2,0) two photun resonance}, each
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with a FWHM of < 10 cm™!. The classical specrum has one very broad peak
which peaks near the (0,0) + (1,0) resonmance at % = 3966 em~!. Overall,
the classical solution for rotating HF gives a general idea of the
absorprion, As in the nonrotating case, the classical result predicts
increased two photon absorption for frequencies red shifted from'the one
photon resonance, as will be seen below in Sec. C.l.b.

In Fig. II1.2, the rotating HF average energy absorption for I =
2.5 TWcm2 is shown. Qualitatively, the gquantum peaks becrme broader
and overlap more than the 1.0 TH/cm2 case. There appears to be a small
power shifting of the resonance peaks, toward higher frequencies, but it
has not been resolved {see Ref. 105¢ for a discussion of power
shifeing). Classically, the absorption also broadens relative to 1.0
TH/cm2 and the peak maximum appears to shift to lower freuencies,
indicating more multiphoton absorption.
b. Transition probabilicies

In this section, the approximate time averaged transitinn
probabilities into various states are examined qualitatively to help
show the relative amounts of one and two photon absorption. Looking at
the classical results, it is clear that classical mechanics does not
give the correct rotational state distribution. Classically, there ara
large probabilities for ending in the (0,1) and (1,0) states, which
correspond to high order processes in quantum mechanics. These
transitions are not observed to any large extent in the quantum
results. To get a meaningful comparison, only the probabilities for
ending in a particular vibrational level will be considered, i.e., a sum

is taken over rotational states within a vibrational level.
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Table III.2 shows the quantum and clasical time averaged
probabilities at various frequencies for rotating and nonrotating HF,
with I = 1,0 Tﬂlcmz. Each peak of the quarntum solution can be seen to
be either a one or « two photon absorption, with both processes observed
appreciably only where peaks overlap. At high intensities the peaks
will broaden and overlap more, but each peak will still correspond to a
particular absorption. The classical results do indicate the presdence
of some two photon absorption as the frequency is decreased. But
classically, there is a very gradual change, which results in the very
broad single peak in the spectrum (Fig. iII.1), rather than the abrupt
changes in the quantum results.

To show some intensity effects, average probabilities for rotating
HF at 2.5 TH/cm2 are given in Table III.3. For this larger intensity,
both classically and quantum mechanically, the excited states become
more populated.

c. Time behavior

The previous two sections were concerned with avarage quantities.
In this section, the energy absorption and transition probabilities as a .
function of time are examined. The quantum mechanical laser phase used
in this section was fixed at n/2. The effect of laser phase is examined
in the next section.

In Fig. 11I.3, a comparison of classical and quantum energy
absorption as a function of time is given for nonrotating HF at v = 3966
ca! (the one photon v=0 to v=1 resonance). The quantum results show
oscillations with a period of about 0.75 ps with no sign of damping out

to 1,5 ps. At this frequency and intensity (1.0 TN/cmz) the solution is
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well approximated by a two level system (i.e., the Rabi modelzh). In
contrast, the classical result oscillates with a frequgncy of about 0.4
ps and a smaller amplitude. Also, it appears as though the oscillations
may be damping.

Fig. 1I1.4 shows the classical and quantum time dependent energy
adsorption for rotating HF with ¥ = 4006 em~} [one photon (0,0) » (1,1)
resonance). The results are similar to those in Fig. IIL.3 for
nonrotating HF. 1In this case, though, the classical result appears to
level off even fas:er. The behavior of the quantum solution is again

24 The quantum solution

well approximation by the two level Rabi model.
has been followed for up to 20 ps with no clear sign of damping.

The quantum result for the two photon resonance at 3937 cm-l [Ca,0)
+ (2,2) resonance) 1s considerably different (Fig. I1I1.5). The
complicated nature of the oscillations may be contrasted with the Rabi
oscillations of Fig IIl.4. From Fig. ILLI.5, it can be seen that the two
photon absorption is a long time process. The corresponding classical
result (Fig. 1I1.6) alsa seems to show some aspects of the slower growth
in absorption, although the solution is reasonably level by 0.9 ps.

In Figs. ITIl1.7, 8, and 9, plots are shown for some traansition
probabilities as a function of time, again for I=1.0 TN/cmZ. Here, the
classical solution is actually broken up lanto rotational levels, so that
the discrepancy with quantum mechanics can be seen. The quantum
solutions for POl and PK) are nat shown since they are very small
(¢4 10°2). Qualitatively, the probabilities show the same behavior as
the energy absorption as a function of time, i.e., the classical

solutions tend to level off more and the quantum solutions appear
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periodic. Note that in reality there are high frequency, small
amplitude oscillations that are superimposed on the quancum
probabilities. These oscilations have not been resolved on our graphs
and thus give rise to some roughness, particularly near peak maxima.

1 are

The classical probabilities for rotating ‘HF at ¥ = 3937 cm™
shown in Fig. I11I.8. 1It can be seen that the v = 2 states gets
significantly populated, but the v = ] state 1s also significantly
populated. The quantum probabilities near the two photon resonance at ¥
= 3937 cn~! are shown in Fig "1I.9. The resonance probability Pzz(t)
displays a long period which essentially matches the period of (E(:)>QM
in Fig. II1.5. Another reasonably significant probability is Py» which
is not shown. Pll(t) displays a higher frequency oscillation and can
reach a maximum of ~0.l3. The other two photon resonance at v = 3879
cm_1 is not plotted here. Qualitatively, the classical results for this
frequency show much less excitation tham for 3937 em L. There is a
small amount of v = | excitation and no v = 2 excitation. Essentially
no rotational excitation is seen iIn the classical results for this
frequency. The quantum results for 3879 em™ ! show somewhat less
excitation into the (1l,1) state than foe 3937 cm'l, and again the
resonant probability Py, displays a long period.

d. Laser phase effect

Based on the classical and quantum equations of motion [Egs.
(II1.3) and (I1I1.8)] without additional approximations, one would expect
the solution to be dependent on the choice of laser phase §. Without

allowing for the details of how the field is turned om, complete study

should involve averaging over the laser phase to obtain the most



meaningful results!1®,
The laser phase dependence, however, disappears from the quantum

24’119, as shown in Appendix

equations in the rotating wave approximation
I11.B for the two state model. However, for sufficiently large field
strengths or de-tuning of w from resonance, the rotating wave

ll9b' Thus, for example, Moloney and

approximation will break down
Mea:h118 have shown the laser phase dependence of probabilities as a
function of time for a two state model. They found increasing phase
effects for larger field strengths and at multiphoton resonances.

The situation 1s not quite as clear in the classical analysis.
However, 1f only the relative difference hetween laser phases is
important, then it would be sufficient to average only over the
vibrational phase, without averaging over the laser phase, i.e., the
laser phase would not matter. The conditions for this to be true
probably include @ be close to resonance.

To assess the effects of laser phase 8§ on the present problem,
consider first nonrotating HF. For an intensity of 1.0 TW/cm? and
frequencies of 3966 and 3879 cm—l, the classical solutions were obtained
for fixed 8§ of O and 7/2. 500 trajectories were run for each solution
to insure no statistical error. Over the entire 1.5 ps range, <E(c)>CL
for the two phases agreed to between two and four significant figures.
The quasiclassical probabilities also were Iin excellent agreement.
Similarly, the nonrotating quantum results for the same conditions
showed little phase dependence.

We also examined rotating HF at 1.0 TW/cm? Eor the possibility of

phase effects. Within the Monte Carlo error (£ 15%), no clear phase
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effect can be distinguished in the classical results. However, slight
discrepancies in the time dependent quantum solutions may be seen, since
no statistical error is present., Table III1.4 lists some relevant
probabilities and the energy absorption both as a function of time for §
=0 and /2, at V= 4006 cm‘l. Other phases phases between ) and © were
also examined, but the largest differences were found between & = 0 and
8§ = n/2. Despite V being almost exactly on resonance, slight
differences may be noted, particularly in the probabilities. These
diferences become larger near peak maxima and can be as much as 4%.
However, such differences are comparable in amplitude to the high
frequency oscillations that are superimposed on the Rabi oscillations,
and do not appreclably affect the overall behavior. Notice that
<E(t)>QM is not affected much by these differences, indicating that the
differences of the other probabilities, which are smaller and not
listed, tend to compensate. Table III.5 presents similar results for ¥
= 3937 cm-l. Although this is a two photon resonance, the discrepancies

1 results. Thus,

due to laser phases are comparable to the ¥ = 4006 cm
for intensities ~ 1.0 Tw/cmz, and the present frequency range, the
effects of laser phase is small and can be neglected for most practical
purposes.
2. Multiphoton absorption

Here we examine the absorption of nonrotating HF when the laser
frequency is fixed at v = 3922 em™t (44 em™! lower than the v=0 + v=1
resonance frequency), and the initial vibrational state is varied. This

is an interesting problem from the point of view of a quantum and

classical comparison since, as will be shown in a later section, the
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region of classical phase space examined includes a l:1 resonance, a 1:2
:;sonance, and a region of overlapping higher order resonances with
chaotic trajectories.

Figure III.10 shows a quantum and classical comparison of pulse
time averaged energy absorbed for initial states 0 - 10, The agreement
throughout this region is extremely good except for v = 9, 10 where the
discrepancy may be partly due to the lack of continuum states in the
wave function expansion. 1In light of our results in section C.! at 1.0
TW/cm2 laser intensity which showed moderate agreement for initial state
v = (0 at this frequency, this agreement is a little surprising. The
behavior of the time averaged energy absorbed (i.e., the sharp dip
followed by the slow rise to zero then the sharp increase) can be
explained qualitatively for both the quantum and cléssical results. The
classical results are due to a classical 1:1 resonance at lower actions
and a region of overlapping resonances at higher actions. This will be
discussed in detail in section C.4 where the surface of section is
shown. The dominating features of the quantum results are overlapping
resonances which result in many states becoming populated. The loss of
energy for initial vibrational states 2, 3, and 4 results from being
more in resonance with stimulated emission than absorption. At
intermediate initial states (5, 6, 7, 8), all states are further off
resonance, So there are less transitions out of the initial state. At
high initial states (9, 10) overtone transitions begin to become
significant., This domination of overlapping rescnances is in contrast
with the two state resonances of sections C.l and C.3. For comparison,

interesting model calculations have been carried out by Eberly et.



5&,120 showing the time evolution of the_populations of groups of states
which are off resonance by varying amounts.

Table III.6 shows the time averaged transition probabilities which
corregspond to the zveraged energies plotted in Fig. III.10. Again the
agreement between the quantum and clasgical results is fairly good. For
initial vibrational states ) ~ 4, the agrcement is essentially exact.

At intermediate initial states where absorption and desorption are
approximately equal, there are fewer transitions from the initial state
in the quantum results. For initial states 9, 10 there is greater
discrepancy which may be due, as stated above, to the lack of continuum
states in the wave function expansion.

3. Overtone spectra

a. Time averaged energy absorbéd

For both rotating and nonrotating HF the classical and quantum time
averaged energy absorbed are plotted vs laser frequency in Figs. III.ll
and II1.12. For nonrotating HF both a linear and quadratic dipole
function are used. In all the cases, the distinguishing characteristics
between the quantum and classical results are (1) a shift of the
classical peak by 100-200 cm—1 toward higher frequencies, and (2) the
classical peaks are lower and broader than the corresponding quantum
peaks. The quantum peaks, within the resolution of our graphs, are near
where they are expected from the v=0 * v=2 resonance frequency. There
probably are small; unresolved power shi1£ts105¢ {n the peaks which are
not significant for our considerations here. The classical spectra,
with the linear dipole function, peak at nearly twice the v=) + v=]

absorption frequency. Wicth the nonlinear dipole function the classical
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spectrum peaks closer to the quantum result, but is still shifted by
over 100 cm_l. It should be noted that both the quantum and classical
results show greater absorption with a nonlinear dipole function. The
quantum peak becomes about twice as broad, and the classical peak
becomes 50% higher and somewhat broader, The maximum of all the quantum
peaks approximately equals the expected value from the two state Rabi
modelza, as we found for the v=0 + v=] resonance and two photon
absorption in Sec. IILI.A.

These results are interesting considering that we found better
agreement between the quantum and classical results for v=Q + v=]
absorption (section C.1) and the multiphoton results at ¥ = 3922 cm_l
(section C.2). One would expect best agreement between quantum and
classical results for averaged quantities since quantum effects tend to
be averaged over. Even so, it is clear that in at least some
circumstances, it would be misleading to look exclusively at the
classical results even for an averaged quantity as the time averaged
energy absorbed without accounting for possible discrepancies with the
quantum mechanical results, More discussion of this will follow in the
summary. /

b. Time averaged transition probabilities

Table II1.7 shows the approximate time averaged vibrational
transition probabilities with a linear dipole function (rotating and
nonrotating HF) and a quadratic dipole function (nonrotating HF). For
rotating HF, the transition probabilities in Table III.7 are summed over
rotational states, One can see quite dramatically that the

quasiclassical results do not describe the transition probabilities of



the v=0 + v=2 overtone absorption correctly. For both rotating and
nonrotating HF the classical calculations with the linear dipole
function show no excitation above the v = ] level., But for all the
quantum results there is basically a coherent two state excitation (Rabi
oscillation)za between the v = 0 and v = 2 levels. Even with a
nonlinear dipole function for nonrotating HF, while there is some
quasiclassical absorption into the v = 2 state, most of the absorption
is still into the v = | state.
¢. Energy absorbed as a function of time

It is important to consider molecular properties as a function of
pulse time since these should be important for comparison with
experiment. In Figs. III.13 and III.14 the time evolution of the
energy absorbed 1s shown for nonrotating HF with a linear dipole
function. Figures III.15 and II1.16 show the time evolution of the
energy absorbed for rotating HF. The quantum results show the
characteristic sine squared shape of a Rabl oscillation. The classical
results have a much smaller oscillation with a larger frequency which
appears to be possibly damping out at longer times, more quickly for
rotating HF. These results are closely analogous to the results in
section C.1 obtained about the fundamental frequency. The results for
nonrotaitng HF with a quadratic dipole function are not shown since they
are qualitatively the same as those with a linear dipole. The ounly
significant differences are a shorter period of the oscillations of
slightly more than a factotr oF 2 for the quantum results and slightly
legs than a factor of two for the classical results,

d. Transition probabilities as a function of time
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The time evolution of the transition probabilities for rotating HF
are displayed in Figs. III.17 and 111.18. The equivalent graphs for
nonrotating HF are not shown since they give essentially no new
information. The interest for rotating HF comes from the rotational
excitation of the va=0, j=1; v=2, }=0; and v=2, j=2 states in the quantum
results. This is quite surprising considering that these states are far
off resonance. The classical results which have a few small
oscillations that appear to damp out are again quite reminiscent of the
results near the fundamental frequency (section C.l1). Classically, the
v=], j=0 state becomes most populated with some excitation into the v=0,
j=1 and v=l, j=1 states.

A simple numerical experiment shows that the apparent quantum
rotational excitation 1is just that. For example, if a numerical
calculation is carried out ﬁith only the v=0, j=0 and v=0, j=1 states in
the expansion, there {s absorption with the correct frequency and
inagnitude that would be expected from the high frequency oscillations of
Fig. 1I1.17. The dynamics displayed in Fig. III.17 can be described as
a high frequency oscillation between different rotational states within
a vlbra:iénal manifold superimposed on a low frequency near resident
oscillation between the v =0 and v = 2 levels. These can be thought of
independently because of the differences in time scales and the near
equivalence of the matrix elements for vibrational transitions of the
different rotational states. In Fig. IIT.19 the quantum tranition
probabilities summed over all rotational levels for rotating HF are
plotted as a function of pulse time. It shows an amazingly smooth

oscillation.
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The oscillation between the different vibrational levels, as shown
in Fig. III.19, can be described quite well by a Rabl two state
modelzl‘. Assuming the frequency is on resonance, the Rabl model would
predict a period of 1.85 ps for the v=0,j=0+v=2,j=] transition and
va(,j=1 + vw2,§=0) transition, and 2.07 ps for the v=0,j=]1 + v=2, j=2
transition, The transition probability into the v = 2 level never
reaches unity which can be due to a breakdown of the two state model, or
a dreakdown of the Rabl model which assumes the rotating wave
approximationza’llg. The same is not true of the rotational
transitions. For the v=0,j=0 + v=0,j=] transition, the Rabi model
predicts a maximum absorption of about half of the observed value and an
oscillation frequency of about a factor of 7 too large. This is not
surprising since one of the assumptions in the rotating wave
approximation is that the transition Is near the resonance. Since the
rotational transitions are nowhere near resonance, the rotating wave
approximation, and therefore the Rabi model, should not be valid.
4. Poincaré surfaces of section

In this section we use surfaces of section to understand the nature
of the classical solution for nonrotating HF with a linear dipole
function, First we examine the surfaces of section for the overtone
absorption of section C.3, followed by the multiphoton results of
section C.l. Many excellent reviews of nonlinear classical mechanics
exlst,988'121’122 so much of the background is omitted for brevity.
a. Overtone absorption

In Fig. II1.20 we show two surfaces of section for overtone

absorption, the first at the quantum resonance frequency V = 7757.8 em”!
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and the second at the frequency of maximum classical energy absorption v
= 7980 cml. At both frequencies the solutions are all regular in the
region of phase space examined up to a time of 100 periods of the laser
field, about 0.43 ps. It should be restated that the surface of section
is generated by the mapping discussed in section B.4 and is not an
actual trajectory. For illustration, there is one actual trajectory for
two periods of the laser field, in Fig. II11.20{(a) shown as a dashed
line. With more oscillations of the field the trajectory will touch all
of the points on the ellipse. Both surfaces of section display a large,
isolated 1:2 classical resonance. The fixed points of the mapping are
clearly marked, and the separatrix connects the unstable fixed points.
The stable fixed points r;sulc from a strictly periodic trajectory where
the molecule oscillates one period per two oscillations of the field.

It is easy to infer the magnitude of the time averaged energy
absorbed from these plots. Following the usual quasiclassical
procedure, initial conditions are chosen using a fixed action and a
range of angles between O and 2%. One can see from Fig. III1.20(a) that
if a trajectory is started with zero initial action and any angle, the
trajectory averaged over time will gain or lose little energy since
after every laser period, the action remains near zero. In Fig., III.21,
the time averaged energy absorbed is plotted as a function of iInitial
actions for v = 7757.8 cm”l. This shows that starting near the bottom
of the resonance stucture, energy is gained on the average; but staring
near the top of the resonance structure, energy is lost. At V = 7980
em”! the resonance structure is pushed to lower actions than at ¥ =

7757.8 em~!. This explains why there is classical absorption at Vv =



7980 cm-l. The narrowness of the resonance explains why there is no

quasiclassical absorption into the v = 2 states, (The top of the
resonance has an action of less than 1.2,) The semiclassical nature of
the classically forbidden overtone transition in this case may be
interpreted in a fashion analogous to that which leads to certain local
mode energy splittingleS as discused by GraylZA;
b. Multipheten absorption

The surface of section for v = 3922 cm~! in Fig. 111.22 displays a
more interesting behavior. At low actions there 1s a dominating,
isolated 1:1 resonance. From the plot one can see that there is strong
absorption from the N, = 0 inicial state, and that the absorption
populates states as high as Nv = 4. The classical dynamics at other low
of intermediate levels can be comparably understeood. The more
interesting region of the phase space occurs at actions greater than
N, = 8. The first interesting feature of this region is a 2:3 secondary
resonance. Clearly visible about this resonance 1s a chain of tertiary
islands. These islands can be understood from the viewpoint of
classical secular perturbation theory as described in Ref. 122 pn even
finer structure of higher order islands is on a scale too {ine to see.
The size of these higher order resonances depends on the magnitude of
the perturbation {in this case the field strength). A manifastation of
this complicated structure, even if the higher order resonances cannot
be directly observed, is the growth of a stochastic layer around the
separatrix of the secondary resonance which is separated from the

122

regular regions by KAM structures . The random points near the

hyperbolic fixed points of the 2:3 resonance were generated by a
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trajectory which began approximately on the separatrix. This is
evidé;Ee for a stochastic layer around the separatrix.

At actions above the 2:3 resonance, the secondary resonance
structures become large enough that they begin to overlap. Overlapping
resonances can be related to the growth of global chaoslzl. Noid and
St:ineloza have speculated on the role of overlapping resonances in the
dissociation of a diatomic molecule with two lasers. This growth of
global chaos can be seen surrounding regions where there are parts of
resonance structures corresponding to 5:7 and 3:5 secondary
resonances. Immersed in this chaotic region, parts of the primary 1:2
resonance are clearly visible. In the chaotic region the points of the
surface of section are generated by two dissociating trajeccories and
one nondissociating trajectory. The surface of section Ef the
trajectories in the chaotic region seem to follow the vague cori of
Shirts and Reinharde!23. The points generated by a chaotic trajectory
appears to be ronstrained to a particular resonance structure for
several intersections of the mapping. Then the mapping carries the
trajectory near the intersection of two resonances where it can move to
the other resonance. The dissociating trajectories became associated
with the 1:2 primary resonance where they were carried to large
actions. It appears that there could be another unresolved resonance
structure which is affecting the motion of the nondissociating
trajectory.

We also performed a few calculations with the exponential form of
tne dipole used by Davis and HyattIOI, and obtained similar interesting

behavior and dissociatior at higher actions.
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D. Summary and Conclusions

We have performed guantum and classical calculacions for one and
two photon absorption about the fundamental (v=0 + v=1) frequency on
rotating and nonrotating HF, for overtone (v=) + v=2) absorption on
rotating and nonrotating HF , and for multiphoton absorption at a fixed
frequency near the (v=) + v=1) fundawmental with different initial states
on nonrotaing HF. Fcr the one and two photon calculations, it is found
that classical mechanics does not pridict the correct rotational state
distributions. Also, the time behavior of the classical solution is
qualitatively different from the quantum onc¢. Classical mechanics does
give the corvect magnitude of pulse time averaged quantities, but does
not give the detailed resonance peaks for two photon absorption.
Classical mechanics does correctiy indicate more two photon absorption
as the frequency is red shifted from the one photon resonance, but it
predicts far too little such absorption. The quantum results as a
function of pulse time have oscillations characteristic of two state
resonances, The classical results as a function of pulse time have
small, high frequency oscillations which appear to possibly damp out,
For these transitions the laser phase has been shown to be essentially
unimportant for the intensities examined, although it could conceivably
be important for much higher iatensities.

At the overtone frequencies we have found a shift of about 200 et
between quantum and classical absorption maxima for both rotating and
nonrotating HF. Also, ;he maxima and widths of the peaks are

qualitatively different. Inclesion of a quadratic term in the dipole
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function increases both quantum and classical overtone absorption
significantly indicating that a reascnable fit to the dipole will be
needed to get quantitatively accurate results. All of the quantum
overtone results can be analyzed in terms of two state resonances. The
quasiclasgical vibrational transition probabilities do not show
significa?t absorption into the v = 2 level as the qu;ntum resulcs do.
Classically, absorption is into the v = 1 state. As for the one and two
photon absorption near the fundamental frequency, we found that the
rotational state distribution for the classical results were
qualitatively different from that for the quantum results.
Interestingly, though, we find that pure rotationmal excitation was
signifiacnt for the quantum results even though rotational absorptions
are far from resonance. The time dependent behavior at overtone
frequencies is quantitatively the same as that near the fundamental
frequency.

In contrast to the generally poor quantum and classical agreemeat
near the overtone frequency, there was very good agreement for the
multiphoton absorption of nonrotating HF at a frequency v = 3922 cm_l
with different initial states for the time averaged transition
probabilities. The quantum and classical agreement is best for low
initial states and becomes somewhat worse for higher initial states.
The quantum results in the case are characterized by overlapping
resonances with the corresponding population of many states.

To becter understand the classical results, we constructed surfaces
of section corresponding to the overtone and multiphoton results. At

the overtone frequency, the surfaces of section are dominated by an
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isolated 1:2 resonances. We show how this resonance shifts at a
different frequency, and how this explains the observed results. The
surface of section at V= 3922 cm ! also explains that set of results.
In this case the phase space is characterized by an isolated 1:l
resonance, a 2:3 secondary resonance with a chaotic layer around its
separatrix, a region of chaos, and within this region of chaos, 5:7 and
3:5 secondary resonances and a 1:2 primary resonance which the secondary
resonances surround, As expected, dissoclating trajectories are found
to be assoclated with the region of overlapping resonances.

From our results, one can see that erroneous conclusions can be
reached if purely classical calculations are done. Our multiphoton
results, though, show that there is still hope that classical
calculations may be of some use in studying these problems. Not too
surprisingly, the classical and quantum results differ mocst when there
are essentially two state quantum resonancez. It would be very useful
if some relationship could be found between the nature of the classical
phase space and the agreement with quantum mechanics. We have found one
example where a chaotic region of classical phase space corresponds to
overlapping quantum resonances, and reasonably good agreement between
the classical and quantum mechanical results. GraylZA has also
performed some interesting ‘miclassical calculations on nonrotating HF
and additional semiclassical calculations would give more insight into
this problem.

It is difficult to extend these conclusions to polyatomic
syscemslz6 altough hopefully a good framework has been established for

working on these systems. It is possible that future work will clearify
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the general nature of the agreement between classical mechanics and
quantum mechanics not only for molecules in a laser field but for any

excited molecular system.



Appendix III.A: Inicial and final conditions for a dlatomic molecule in

the rotating Morse oscillator approximation

To classically determine probabilities, it is necessary to average
over initial conditions. For an isolated diatomic molecule, one can
change variables to action-angle variab1e5113 (Nv'Qv)’ (J,QJ), and
(M,QH) such that ﬁv =j=M=0 , with N, being the vibrational actionm,
J the rotational action or angular momentum, and M being the projection
of the angular momentum onts the z axis. These variables allow a
connection with quantum mechanics to be easily made. The probability P
of some event may be obtained by averaging over the initial angle
vabiables Q,, QJ, QM for fixed N,y J» and M,

b= o= [T, [T aqy 57 aqy n (Q, 0 gy,
v (A1)
where X = 1 if the event occurs and 0 if it does not occur for the given
initial conditions. Usually, the angular momentum is randomly oriented

in space, so an average may be taken over M,

Bafl amp/f am -ﬁj" aM P,
-7 -7 ~J (a.2)

To do the Monte Carlo integration127' the variables of integration

are changed to £, with 0 € £ < 1, such that

2€l - 1= MJ =},

B
21§, = Q,,

3 (4.3)
e, = Qe

103



104

Equation (A.2) then becomes
N

= 1
P=1lim< I (E).
yom N Xuv.m

(A.4)
That is, one averages X over N random evaluations of £ (each component
of £ is taken to be a pseudorandom number for a given evaluation).
Approximate relations between the action-angle variables and
ordinary molecular coordinates have been given by Porter, Raff, and

Mt1ler!!3 for a rotating Morse oscillator. The orbits given by them

for 8 and ¢ are not strictly correct, The corrected orbits are

o(t)
6(t) = arccos[#l = A< 9os(ubt + QJ + sign(pr) JAJ)].

(X cot[B(t)])
VT - X2 (A.S5)

r - % in{(-2a)[b + ¥BZ - 4ac sin(ur + QN)]},

e

#(t) Qy * sign(pe) arccos

vhere the formulas for a, b, ¢, w , uh, and A may be found in Ref. 113

N J

and are not repeated here. The errcors in the angular orbits arose from
omission of a sign(p,) and sign(pg) factor in the generators W,  and Wg,
respectively [Eqs. (8a) and (8b) of Ref. 113}]. Another slight error is

2

in Eqs. (30b) and (30c) of Ref. 113. Here, the factor r° should be

2 yiven in their Eq. III.3.

replaced by the expansion for r

Thus, to generate the initial conditions for a diatomic we first
pick A, Qr Qs and Qu randomly according to Eqs. (A.3). Then, since
the calculations are to be made in spherical coordinates, r, 6, and ¢
are calculated from Eqs. (A.5). prs and pg may be obtained by either
conservation of energy and angular momentum, or by differentiation of

Eqs. (30) of Ref. 113. This procedure is completely equivalent to the

more standard approach of randomly orienting the molecule and its



angular momentum vector, and picking only r and p_. from the action-angle
variable formulas. Thus, the present approach offers no technical
advantage over the ordinary approach for most applications, including
the present one, except when the rotational variables play an important
role, as in some semiclassical applications,

The vibrational action N, is calculated at a time t from the

approximate formula of Ref. 113,

T P T )

v ¢ 2 /= (A.6)

and only depends on the molecular energy and angular momentum state

J(J+R) = (p% + pi/sinze). Nv was calculated numerically

as a check on Eq. (A.6) and, for all N, and J wich J<I10, N, from Eg.
(A.6) is accurate to three significant figures. Thus, essentially no

error is introduced by the use of Eq. (A.6) for N, in the present study.
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Appendix III.B: Effect of laser phase on the two state model
For a two state model with states labeled A and B Eqs. (III.8)

become (h = 1)

hd (o]
iCA = CAEA + CBDABEosin(w:+6) + cADAAsosin(w:+5),

o

1CB = CBEB + CAD Eosin(mt+6) + C

D
AB B

Eosin(wt+6).

B BB

(B.1)

If one now replaces CA and CB by SA and SB such that
C, = S, exp(-1ESt)
A T Op EXPLTIELT),

o
Cc, = SB exp(-iEB:),

B
(B.2)
one obtains (E,g = EX - Eg)
éA = % {SBDABEO{exp[-i(EAB+m)t] exp(-198)
- exp[-1(E, -w)t] exp(16)}
AB (8.3)
+ SAEODAA [exp[—i(mt+6)] - exp[i(m:+6)]},
Sy --;— {5,D45E, {expl1(E,-u)e] exp(-16)
- exp[i(EAB + w)t] exp(ié)}
+ SBEODBB {exp[—i(m:+6)] - exp[i(mt+6)}}.

The rotating wave approximation involves omitting the highly

oscillatory terms involving exp[ii(EAB + w)t] and exp(*iw). Thus,



. 1
S, = =7 SyDapE, exp[-i(E,, - w)t] exp(id), (5.4)

] 1
SB 2 SADABEO exp[i(EAB w)t] exp(~1§).

Within this approximation, it can easily be shown that the effect
of the laser phase § 1s not fmportant. To see this, the substitution

-

Sg = Sz exp(16) is made, so that Eq. (B.4) becomes

s l .-
SA =-3 SBDABEO expl i(EAB wt}l,

(B.5)
S 21 S)DygF, expl1(E,, - wkl,
l.e., S, and SB‘ may be obtained by solving Eq. (B.5) and the
probabilicies P, = ISA'Z and PB = ISBIZ = ISﬁlz have no phase
dependance, Alternatively, Eq. (B.4) can be expresséd as a second order
equation in which the radiation phase does not appear.

One should note carefully that the rotating wave approximation is
valid only 1£119% (1) w = E,p and (11) @ >> DypE), D,,Eo, DggEoe The
second condition is often not stated, but is necessary if the
oscillatory terms are to be unimportant. Consider, e.g., HF in a

! with a state

1.0 TW/cm? laser near the one photon resonance at 4006 cm_
A=(0,0) and B = (l,1). Condition (i) is satisfied and, with E, =
0.00534 awsu., Dpp = 0.022 a.u., Daa ~ Dpg ~ 0, condition [ii] is 0.0182

>> 0,0001, which {s reasonably satisfied.
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Table II.l. Transition probabilities for J = 0.

Number of states (DWBA)®

Total energy (ev)P 16 18 22 ECC
0.3 9 0200 1.66(~14)¢ 1.50(-14)
00+01 3.07(-15) 3.07(-15) 2.76(=15)
01+01  5-53(-16) 5.53(-16) 5.12(-16)
0,35 PDD’UO 5.82(-10) 5.22(-10)
00+01 5.46(-10) 5.46(-10) 4.87(-10)
o1+01  5-15(=10) 5.15(-10) 4.55(-10)
0 .40 PUO’GO 2.724(- 7) 2.63(- 7)
00+01 3.39(- 7) 3.39(-7) 3.31(- 7)
POl’Ol 3.33(=7) 3.24(-7) 4,17(- 7)
0.45 POO*OO 1.92(~ 5) 1.81(- 5)
POD*OI 2.70(- 5) 2.70(~ 5) 2.58(- 5)
Pgieg;  3+83(= 5) 3.83(- 5) 3.68(- 5)
0.50 Pyg+00 4.41(- 4) 4.54(~ 4)
0osor  6-82(- &) 6.82(- &) 7.14(- &)
POI’Ol 1.05(= 3) 1.05(- 3) 1.06(- 4)
0.55 POO*OO 4.99(- 3) 4,83(- 3)
oowg1  8-26(= 3) 8.24(- 3) 8.11(- 3)
01401 1.36(- 2) 1.36(- 2) 1.30(- 2)
0.60 PDO*OO 2.96(- 2) 3.01(- 2) 2.49(- 2}
gos01  5+30(- 2) 5.26(- 2) 4.19(- 2)
01401 9.29(- 2) 9.28(- 2) 7.13(~ 2)
0.65 POO*OO 7.50(= 2) 7.49(- 2) 5.52(~ 2) 4.34(- 2)
00+01 1.45(= 1) 1.40(- 1) 1.02(- 1) 8.02(- 2)
01+01 2.62(- 1) 2.59(- 1) 1.B3(~ 1) 1.50(- 1)

“The particular basis sets used were 16 states: 4,4,4,4; 1B states;
5,5,4,4; 22 states: 5,5,4,4,4 where each number is the number of
rotational states within a paritcular vibrational level. Each
successive number represents the next vibrational level. For example,
5,5,4,4 means four vibrational levels; v = 0,1 have five rotational
states, v = 2,3 have four rotational states. The even - odd decoupling
of rotational states 1is used, so if four rotational levels are
specified, the states are all of either even or odd symmetry as
described in section B.2.ds This notation is used throughout the paper.
The zzro of energy is the bottom of the reactant diatom potential well.
CFrom Ref. 16.

The probabilities given represent examples of each of the combinations
of even - odd symmetry decoupled results.

©The number in parenthesis is the power of ten chac the preceding number
should be multiplied by.



Table 1I.2.

Integral cross sections at several energles.?

E=0.4 ev E=0.5 eV E=0.6 eV

DWBA - CS P DWBA — CC DWBA -~ CS EQ® DWBA - CS EQ®
Qugrgr  0-878(-6) 0.667(-6) 0.139(-2) 0.137(-2) 0.124(-2) 0.958(-1) 0.780(-1)
Qgrgz  ©-160(<6) 0.114(-6) 0 .644(-3) 0.532(-3) 0.473(=3) 0.496(-1) 0.437(-1)
Qugegz  ©0-108(-8) 0.137(-8) 0.899(-4) 0.484(~4) 0.553(-4) 0.962(~2) 0.983(-2)
Q0 0.352(~5) 0.252(-5) 0.594(-2) 0.570(-2) 0.501(~2) 0.420 0.352
Q, 0.162(-5) 0.120(-5) 0.350(-2) 0.312(-2) 0.306(=2) 0.255 0.228
Q,, 0.239(-6) 0.186(~6) 0.113(~2) 0.844(~3) 0.806(~3) 0.872(-1) 0.843(-1)
Q5 0.246(~8) 0.333(~8) 0.149(-3) 0.717(-4) 0.98(-4) 0.140(-1) 0.166(-1)

3Cross sections are summed over final angular momentum projection quantum numbers and averaged over initial

angular momentum projection quantum numbers.,

preceding number should be multiplied by.

b The exact quantum results are from Ref, 16.

The number in parenthesis is the power of ten that the

L1
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Table IIXI.3. Convergence of collinear exact H + H, reactive scattering

transition probabilities, v=) + v'=0, with respect to basis size.?

Total
Energy Number of channels
(eV) 1 2 3 4 5 6

0.3128  4.10(-9) 8.30(-9)  9.65(-9)  9.84(-9) 1.32(-8) 1.45(-8)
0.3628 1.46(-5) 3.31(-5) 3.86(=5) 4.01(~5) 4.81(-5) 4,67(-5)
0.4028  7.23(-4) 1.91(-3)  2.26(~3) 2.36(-3) 2.62(-3) 2.61(-3)
0.4334  6.55(=3) 2.02(-2) 2.43(-2)  2.52(-2) 2.73(-2) 2.69(-2)
0.4546  2.26(~2) 7.73(-2) 9.28(-2) 9.0 (-2) 1.02(-1; 1.01(-1)
0.4826 B.56(-2) 3.02(-1) 3.50(-1) 3.68(-1) 3.70(-1) 3.70(-1)
0.5000 1.64(=1) 5.22(-1) 5.78(-1) 5.97(-1) 6.01(-1) 6.0 1(-1)
0.6000  8.34(-1) 9.97(-1)  9.97(-1) 1.00 1.00 1.00
0.7000  9.91(-1) 9.93(-1) 9.92(-1) 9.91(-1)  9.91(~1) 9.90(-D)
0.8000% 9.96(-1) 9.68(-1) 9.47(-1) 9.50(-1) 9.51(-1) 9.49(-1)
0.8706  9.78(-1) 8.56(-1) 2.72(~-1) 1.78(-1) 1.92(-1) 1.66(-1)
0.8976  9.72(-1) 4.95(-1) 6.28(-1) 6.78(-1) 6.56(-1) 6.70(-1)
1.2026  8.27(-1) 3.52(-1) 2.08(-1) 2.33(-1) 2.07(-1) 2.28(-1)
. 1.3966%  7.07(-1) 1.73(-1) 1.42(~1) 1.36(-1) d 1.32(-1)
1.6466  5.44(-1)  3.37(-2) 8.08(-2) 7.86(-2) d 7.39(-2)

4The number in parenthesis is the power of ten that the préceding number
should be multiplied by.

bThe second channel has become open.

SThe third channel has become open.

dThere were some numerical problems with these calculations which are

still being investigated.



Table Il.4. Convergence of collinear exact H + HZ reactive scattering
transition probabilities, v=0 + v's), with respect to the number of grid

points for the integration to obtain the S matrix.?

Total

Energy Number of Grid Points

(eV) 41 45 51 56 61
0.4546 1.09¢-1) 1.02(-1) 1.01(-1) 1.01(-1)
0.6000 9.99(-1) 2.99(-1) 9.99(-1) 1.00
0.8706 1.61(-1) 1.62(-1) 1.64(-1) 1.66(-1) 1.67(~1)
1.3966 1.34(-1) 1.33(~1) 1.32(~1) 1.32(-1)

3Al11 these calculations have 6 channels in the basis. The number in
parenthesis Is the power of ten that the preceding number should be

multiplied by.



Table II.5. Comparison of our exact quantum scattering reaction

probabilities, v=0 + v'=0 with previous calculations.?

Total Our Previous
Energy Calculation® Calculations
(ev)
0.3128 1.45(=8) 1.07(-8)¢
7.3628 4.67(-5) 4.37(-5)¢
0.4028 2.61(-3) 2.46(-3)¢
0.6336 2.69(~2) 2.65(-0)F 2.7 (-2)8
0.4546 1.01(-1) Lou-nf
0.4826 3.70(~1) 3. (=D 372¢-D swee(-nd 3a-nf
0 .5000 6.01(-1) 6.01(-D)k
0.6000 1.00 9.99(~-1)k
0.7000 9.90(~1) 9.91(-1)k
0.8000¢  9.49(-1) 9.50(-1)¥ .
0.8706 1.66(-1) 1.83¢-1"  1e0(-1! 1.89(-1I
0.8976 6.70(-1) 6.62-1D"  6.e8(-1D1  e.69(-1)F  6.66¢-1)1
1.2026  2.28(-1) 2.29(-0"  2.3(-D  2.00(-13  2.28(-D)!
1.39669  1.32(-1) 1L31-D" 1ae-ni
1.6466 7.39¢-2) 8.0 (200 g.94(-2)1

3The number in parenthesis 1s the power of ten that the preceding number
should be multiplied by.

bAll calculations have 6 states In the basis and are converged to 1 - 2%
in the grid size.

“The second channel becomes open.

dThe third channel becomes open,

®Hubbard, Shi, Miller3® 1ist these results (which agree within | - 2% of

their DWBA results) but do not reference them.

fReference 79. Bpeference 72. Mpeference 73,
1Reference 77. JReference 69. kReference 71.
1

Reference 74,
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Table IIl.l.

Relevant energy levels for HF, according to

the rotating Morse oscillator approximation.

E°
vi
v j a.u, em”!
0 0 0.0093309 2048
0 1 0.0095187 2089
0 2 0.0098941 2171
1 0 0.0274001 60 14
1 1 0.0275819 6054 .
1 2 0.0279454 6133
2 0o 0.0446793 9806
2 1 0.0448551 9845
2 2 0.0452065 9922




Table TIL.2.

Approximate time averaged probabilities for vibrational

transitions of HF in a 1.0 TW/cm? laser.

Nonrotating Rotating
Wen ) P, P, P, P, P, P,
3850 0.88(qM) 0.08 0,04 0.99 0.01 0.00
1.00(CL) 0.00 0.00
3879 0.47 0.08 0.45 0.53 0.03 0.44
0.88 0.12 0.00 0.99 0.01 0.00
3900 0.83 0.11 0.06 0.96 0.03 a.anl
0.73 0.19 0.08 0.94 0.04 0.02
3937 0.69 0.28 0.03 0.47 0.07 .46
0.69 0.24 0.06 0.67 0.27 0.06
3966 0.51 0.47 0.02 0.87 0.12 0.01
0.63 0.36 0.01 0.58 0.40 0.02
4006 0.69 0.3 0.01 0.50 0.49 0.01
0.68 0.32 0.00 0.66 0434 0.00
4085 0.93 0.07 0.00 0.95 0.05 0.06
0.90 0.10 0.00 0.88 0.12 0.00
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Table III.3. Approximate time averaged vibrational
transition probabilities for rotating HF in a 2.5

TW/co? lager.®

Wenl
Wem ©) P, P, Py
3879 0.51(QM) 0.07 0.42
0.88(CL) 0.07 0.05
3900 0.9 0.05 0.05
0.67 0.17 0.16
3937 0 .48 0.10 0 .62
0.50 0.31 0.19
3966 0.77 0.18 0.05
0.52 0.39 0.09
4006 0.52 0.45 0.03
0.61 0.37 0.02
4085 0.89 0.11 0 .00
0.78 0.20 .00

2The classical results shown for V = 3879 and 3937
co”! were actually run at 3870 and 3927 em”!,
respectively, The probabilities will not vary much
since the classical peak is broad. It was displayed
in the table this way to avoid confusion since the

overall trends are still clear.
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Table IIL.4«

Quantum mechanical transition probabilities and energy

absorbed as a function of pulse time for laser phases of 0 and /2 at

V= 4006 co ) and I = 1.0 TW/cmZ.

Poo Py <E(t)QM(a.u-)
t(ps) §=0 §=n/2 § = §=n/2 §=0 §=m/2
0.0 1.00 1.00 0.00 0.00 0.0000 0.0000
0.4 0.% 0.32 0.63 0.66 0.0125 0.0126
0.8 0.13 0.14 0.81 0.83 0.0156 0.0158
1.2 0.9 0.95 0.05 0.05 0.00 10 n.0009
1.6 0.51 0.53 0.44 0.45 0.0084 0.0n86
2.0 0.03 0.03 0.92 0.92 0.0177 n.0179
2.4 0.81 0.81 0.17 0.17 0.0034 0.0033
2.8 0.73 0.73 0.24 0.24 0.0047 0.0048
3.2 0.01 0.01 0.95 0.94 0.0180 n.0182
3.6 n.62 0.62 0.36 0.36 0.0068 0.0069
4.0 0.88 0.90 0.09 0.09 0.0018 0.0017
4.4 0.08 0.09 0.87 0.88 0.0167 0.0169

124



Table III.5.

Quantum mechanical transition probabilities and energy

absorhed as a function of pulse times for laser phases of 0 and 7/2 at

V= 3937 e~} and T = 1.0 TW/cm?.

Poo Py CE(t)>gy(a.u.)
t(ps) §=0  &=n/2 §=0  &=u/2 §=0 §=n/2
0.0 1.00 1.00 0.00 0.00 0.0000 0.0000
0.4 0.93 0.93 0.05 0.05 0.0021 0.0019
0.8 0.78 0.8 0.19 0.19 0.0072 0.0n71
1.2 0.57 0.58 0.37 0.38 0.0142 0.0144
1.6 0.36  0.37 0.57 0.57 0.0218 0.0219
2.0 0.18 n.l1s 0.71 0.74 0.0282 #.,0284
2.4 0.05 0.05 0.83 0.81 0.0320 0.0324
2.8 0.00 0.00 0.83 0.86 0.0333 0.0338
3.2 0.03  0.03 0.80 0.40 0.0322 0.0324
3.6 0.l4 0.13 0.69 0.71 0.0283 0.0287
4.0 0.27 0.29 0.56 0.57 0.0231 0.0233
4.4 0.47 0.47 040 0.40 0.0169 0.0170
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Table III.6. Classical and

probabilities at Vv = 3922 cm

qTantum time averaged vibrational

(in percent).

N, Initial 0 1 2 3 4 S [ 7 8 9 10
Final 0 42(CL) 21 16 16 5
39¢QM) 22 19 16 3
L 22 36 24 12 8
21 39 21 14 4
2 16 25 31 16 11
18 21 31 19 10 2
3 17 12 16 28 17 13
17 14 17 24 22 7 1
4 4 6 12 17 31 21 9
3 4 11 21 34 22 4
5 2 11 21 37 22 6
2 7 22 44 20 3
] 8 23 40 24 5
4 22 52 13 3
7 ] 24 39 23 6
3 19 55 16 3 2
8 5 22 39 26 6
2 18 60 14 3
9 8 28 33 19
3 16 59 7
10 6 17 23
1 2 11 30
11 4 10
1 5 8
12 2 5
2 10
13 1 4
1 6
14 4
2 21
15 2
. 1 3
16 1
2
17 1
7
Dissociate(CL) 7 24
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Table III.7. Classical and quantum time averaged

vibrational transition prcbabilities ir the overtone

frequency range (in percent).

Wen™ D) Fy Py 7
Nonrotating HF
linear dipole
QM) 7200 81 0 19
7757.8 50 0 50
7800 82 18
(cL) 7900 90 10 N
7990 76 24 0
8080 91 9 0
nonlinear dipole
QM) 7680 82 0 18
7757.8 51 0 49
7840 80 0 20
(cL) 7750 90 8 2
7900 66 25
8100 78 22 0
Rotating HF
linear dipole
(QM) 7780 73 Q 27
7800 52 0 48
7820 81 0 19
(cL) 7950 85 15
7987.5 69 31
8050 88 12 0
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Fig. 11.l. Transition probability from v =0, j = 0 tov' =0, j'

=0
as a function of vibration-rotation basis set at E = 0.65 eV, J = 0.
The symbols on the plot indicate the number of vibrati-nal states; (®)
four vibrational states, (O) five, (A4) six, (A) seven, and (@) eight.
This clearly shows the c-:mvergence problem at higher energies as the

number of vibrational states is increased.
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109,45 Poo—o

Fig. 1I.2. Transition probabilities v = 0, } = 0 +v' =0 summed over
final rotational states with J =0 as a function of total emergy. The
solid line indicates the exact quantum results, and the dots are the
DWBA results. The DWBA results are calculated using 18 vibraional -
rotational states, 5,5,4,4. See Table 11.1 for more explanation of basis

sets.
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Fig. I1.3. The transition probahilities multiplied by (2J+]1) as a

function of J for total emergy E = 0.5 eV. The solid line indicates the

exact quantum results. The DWBA-CC and DWBA-CS tesults are plotted

using the indicsted dots. For these results a basis of 4,4,3,3 (this

notaiton is explained under Table I1.1) is used with all of the allowed

proiection quantum number Q states. Accounting for even and odd

decoupling, a maximum of 1l4 states was used.
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Fig. 11.4. The transition probabllities multiplied by (2J+l) as a

function of J for total energies E = 0.4 eV and E = 0.6 eV. The solid

lines indicate the exact quantum results, and the DWBA-CS results are

shown as dots. As indicated, the E = 0.4 eV results are multiplied by

IOA before being plotted. For the DWBA results 14 basis functions,

4,4,3,3 are used. See Table 1I.1 for an explanation of basis sets.
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Fig. 11.5. Differential cross sections as a function of scattering

angle BR = 180 ~ 8 at total enetrgy E = 0.5 eV.

exact quantum results.

using the indicated dots.

The solid line is the

The DWBA=CC and DWBA-CS results are plotted

See Fig. I11.3 for a description of the basis.
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Fig. 11.6. Differertial cross sections as a function of scattering
angle BR a }B) - 8 for total energies 0.4 and 0.6 eV. The solid lines
indicate the exact quantum results, and the dots are the DWBA-CS
results. As indicated, the E = 0.4 results are multiplied by 5 x 10['
before being plotted., See Fig. 4 for a description of the basis.
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Fig. III.1(a).

absorption for nonrotating HF in a 1.0 TW/cm? laser.
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Fig. IIl.1(b). Classical and quantum mechanical time averaged energy

absorption for rotating HF in a 1.0 ‘I'w/cm2 laser.
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Fig. II1.2. Classcial and quantum mechanical time averaged energy

absorption for rotating HF in a 2.5 Tw/cm2 laser.
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Fig. 1I11.5. Quantum mechanical time dependent energy absorption for
rotating HF with ¥ = 3937 em™! and I = 1.0 TW/cmZ. Note that the

jaggedness here and in Figs. III.7 and III.9 are due to poor resolution

of the high frequency oscillations.
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Fig. I11.9. Quantum mechanical probabilities Py, and P,, for HF with
T = 3937 cn ! and 1 = 1.0 TW/cm?.
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Fig. III.10. Quantum and classical time averaged energy absorbed as a

function of initial vibrational state for nonrotating HF at

%= 3922 em”l.
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Fig. l1l.11(a). Quém:um and classical time averaged energy absorbed as

a function of frequency for nonrotating HF in the overtone frequency

range with a linear dipole.

145



146

0.020r T T T T T T T T T Y - T
(b)
0.015}- -
3 e Quantum
S o Classical
w 0.010- i
o.oos}- o |
&£ T
,I \&\
I B Y 1 S 1 R LA,\Y

7600 7750 7900 8050 8200
7 (cm™")

Fig. 1I1.11(b). Quantum and classical time averaged energy absorbed as
a function of frequency for nonrotating HF in the overtone frequency

range with a quadratic dipole (note the different frequency scale from

Fig. (a)).
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function of frequency far rotating HF in the overtoane frequency raange.
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Fig. 111.13. Quantum energy absorbed as a function of pulse time for
1

nonrotating HF at v = 7757.8 cm .
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Fig. I11.15. Quantum energy absorbed as a function of pulse time for

rotating HF at v = 7800 em 1,
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Fig. I1T.16, Classical energy absorbed as a function of pulse time for

rotating HF at © = 7987.5 cm~
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Fig. IIL.17. Quantum transition probabilities as a function of pulse

time for rotating HF at ¥ = 7800 em !,
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Fig. 1I1.19.

Quantum tansition probabilities summed over rotational

states as a function of pulse time for rotating HF at © = 7800 ecm !,
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Fig. 111.20(a). Poincaré surface of section at v = 7757.8 en”! for
nonrotating HF, (©) denote elliptiec fixed points and (*) denote

hyperbolic fixed points; the dashed line is an actual trajectory.
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Fig. 111.20(b). Poincaré surface of section at Y= 7980 cn ! for
nonrotating HF, (0) denote elliptic fixed points and (+) denote

hyperbolic fixed points.



157

0.006 , , : , ,
0004 _
0.002 4
S
K
[#7] 0
-0002¢- : .
-0.004- : i
1 { 1 ] 1
0 1.0 2.0
NV (t = O)

Fig. 111.21. Classical time averaged energy absorbed as a function of

the initial action for nonrotating HF at V = 7757.8 em L.



Fig. 111.22. Polncar€ surface of section for nonrotating HF at ¥V = 3922
cm_l; (0) denote eliptic fixed points and (@) denote hyperbolic fixed

points. The dashed lines indicate separatrices.
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