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1» Introduction 
Analytical estimation of perturbations to optical properties 

or a circular machine U a well-studied subject. However, the 
situation is different for a transport line. There are three major 
reasons to account lor the lack of systematic studies of optical 
perturbations Tor a beam transport line- First, usually the loca­
tion and geometry of a transport line is sufficiently constrainted 
to satisfy special requirements of ejection and Injection. There­
fore the lattice structure of them Is often quite irregular mak­
ing analytical evaluation difficult. Secondly, in the past, the 
transport lines are often used as an injection line to a circu­
lar machine, the optical perturbations incurred in the transport 
line will not translate directly into loss of luminosity or lifetime. 
Finally, there is some difference in the methodology of solving 
differential equations governing the perturbed optical functions. 

For SLC, most of the reasons mentioned above do not apply 
anymore. First of all, the lattice design of the SLC Are is a 
repetitive FODO structure of 1.6 km long in each Arc. The 
regularity of the lettice structure makes it easier for analytical 
anarysis. For that matter, any partial turn in the initial injection 
study of a big circular collider can easily be qualified as a long 
transport line and can be studied accordingly. On the matter of 
the bean quality, SLC bas to rely on every pulse for collision, 
any deterioration of beam quality in the Arc will damage the 
ultimate luminosity directly. Therefore, a carefully studied and 
well corrected Arc system is essential for physics experiment. 

About the methodology, in a circular machine, the perturbed 
solution of betatron function or dispersion function satisfies the 
periodic boundary condition in one revolution. In a transport 
line, the solution depends not only on the local field errors in 
the fine, often tune they also depends on the initial condition 
of the optical functions coming into the line. If a beam comes 
in mismatched, the optical parameters will be distorted whose 
effect overlaps with the triors generated locally to make it diffi­
culty to separate these two effects. Therefore, as a principle, the 
Incoming beam should be matched to the transport line lattice 
by tuning the unstream optics. For a matched line, the method 
of analysis is similar to that of a circular machine. 

This paper is an attempt to establish the analytical frame-
work in solving optical perturbations in a transport line in gen­
eral and will be applied to the SLC Arc as an example. The 
formulation we present here should be applicable to any trans­
port system in a straightforward way. In Section 2 the equa­
tions of motion of perturbed betatron function and dispersion 
function will be presented and the driving terms identified. In 
Section 3, the sources of possible field errors for SLC Arc sys­
tem are discussed. Finally, we will estimate the magnitudes of 
perturbations to the optical functions tor SLC Arc in Section 4-

2. Equations of Motion for Perturbed Betatron 
and Dispersion Functions 

From the equations of motion to be shown below, aay gra­
dient error modifies the betatron function and both gradient 
and bending errors modify (be dispersion function. If the gradi-
ent error is small we can decompose the focusing and betatron 
functions as follows: 
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0 = % + S0 W 
Since large changes in P will - be tolerated in any case, we can 
use an approximation that is ilid for deviations S0 which are 
small relative to 0 itself. We define 9 to be the relative deviation, 
namely a = 6010. It Is shown in Courant and Snyder1 that so 
long as o is small, it satisfies .- differential equation which fa 
particularly simple ft" we use the statron phase <j> = 1 / dtJQ as 
our Independent longitudinal coordinate. Writing j for dg/d$, 
the equation for g after linearisation Is' 

J + 4i-'j=-2i/Vo tW = //r (2) 

where 0o(<$] t» the unperturbed func: in, Mf(#) is the perturba­
tion of the focussing function K at th longitudinal position »(•*) 
and v is the number of betatron oat; ition in one fundamental 
period of the lattice structure. It i . nteresting to note that 
the perturbed betatron function oscil... M at twice the betatron 
frequency. 

Now let us look at the ease of the dispersion function,3 con­
sider that a particle or momentum pg Is launched into the Arc 
and determines some 'central' trajectory (corresponding to a 
'closed orbit' in a ring). Notice that the CT (central trajectory) 
is not necessarily the same .as the design trajectory. Let's now 
consider the trajectories that are displaced from the CT and 
let x and u be the amount of the lateral displacement. If we 
keep only terms to first order in z, jt, and Ap/po, the equations 
of motion for the transverse displacements of a nearby particle 
with respect to the CT are: 

*" = C,(Ap/p,,)-fr,x-Qi, 
y" = C r ( A p / p B ) - X r y - 0 I : 

(3) 
W 

The curvature function C(t] is proportional to the transverse 
Seld: 

(3) <3, = U, , G,= -±B, 
The focusing strength K, and K, are proportional to the 
quadrupole strength: 

K -±Hi - sf , _ , f (6) 

and the coupling term Q is proportional to the skew quadrupole 
strength: 

The fields and derivatives are all to, bt evaluated at Me CT. 
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The off-energy function is a particular trajectory for which 
x = >ji(Ap/po) and y = n>(Ap/po) — with suitable initial con­
ditions. Using Eq.s (3) and (4), we see that i) will satisfy 

l"+ KzVz = GX- Qr,, (8) 
(9) 

The eta-functions are 'betatron-like1 oscillations driven by (a) 
curvature and (b) by coupling from the eta-function in the other 
coordinate. 

Now, suppose that in any one achromat the design trajectory 
is defined by Gx = G0, G$ = 0, Kx = Kq and Q = 0. (Local 
coordinates are used.) And, with respect to this trajectory, the 
off-energy functions axe no* and 170̂ . Now the CT of the real 
machine will have different fields and derivatives and a different 
n. Let's define the perturbed orbit functions with respect to the 
CT by 

GX~G0 + &GZ Gu = vGjf 

Q = 6Q 

They will give a perturbed off-energy function 

Hi = IDJ + fj, ; n» = not + <ty 

(10) 

(12) 

The overline on 6K and 6Q is to emphasize thai they apply to 
values taken on the disturbed CT. Note that we have chosen to 
write the change in r/ as rj (rather than as 6rj). 

If we now insert (10),(11) and (12) into (8) and (9), we find 
that the anomaly fj satisfies 

rfl + KIf) = 6G*-noz6Kz-ri0,6Q = / , (13) 
fft + K,ij = SG, - jjn, SK, - V„6Q = fy (14) 

with SK? — SK = —SKy. The perturbation rj3 is again a 
betatron-like oscillation, driven now by fx which is a sum of 
three parte: a perturbed field term_£G, a perturbed gradient 
terka JjoSK and a coupling term IQSQ, and similarly for rjt. 

If the field perturbations are known, Eqs. (13) and (14) can 
be solved to get the anomaly ij. 

3 . Field Errors D u e t o Trajectory Variation 

There are many possible sources of field errors, but for SLC 
the dominant source is due to the trajectory variation, when the 
CT does not go through the center of a magnet. At a point 
whose horizontal and vertical distances from the ideal axis of an 
arc magnet are X and V, the magnetic field of the Arc magnet 
is given by 

S , = B0 + k0X + i s ( X » - y ' ) 

Bx = koY + S XY 

with 

*° dX' 
d*B, • 
dX* 

(15) 

(16) 

are the quadrjjpole and aetopole components. At the design 
energy of SO GiV, the field values areBo = 5:87 KG, *o = ±7.02 
KG/cm and S-= *.63*KG/cmHor iocus and ^2.70 KG/cm 1 for 
defocus magnets. Jf the CT passes through such a magnet at the 
displacement Sx, 6y from the axis, the disturbed field functions, 

(17) 

(IB) 

to JTrsf order in Sz and Sy , are 

By = Bo + koTi 
Bz = ko6y 

making use of Eqs. (5) and (6), we find that 

SOz = Kate 
SG, = - Koiy 
6Kj = pli = -SKV 

SQ = -ftli 

where p — [e/po)S is the normalized sextupole strength. Here 
we want to remind the reader that the coordinate of a particle 
from magnet centerline X is made up by the distance of the 
particle to CT, x, and the distance from CT to magnet centerline 
S~i. In other words, X = Sx + x and V = Jy + y. 

Hence the driving functions ft and / , of Eqs. (13) and (14) 
due to orbit errors tx and by are 

h = (#o - loi li)ix + nQll fiiy (19) 

ft = ~ ("o _ Wi *«)*» + noy M 6x (20) 

In the SLC design the sextupole strengths p of the arc mag­
net have been chosen to make an achromatic system for which, it 
turns out, the expression {Ko — f?oz i*) that appears in Eqs. (19) 
and (20) is, when averaged over a magnet, very closely equal to 
zero.* So, for the arc magnets, the resulting driving terms for fj 
reduce to 

fz = (I?O»M) iy 

U = ("011*0 *r 

(21) 
(22) 

Our important conclusion is that alignment errors will drive 
errors in both Tjj and r)y in any region of the arcs in which the 
design vertical eta, Vov is not zero. Since the design of the arcs 
calls for rolled achromats in which there is a rather large noj, 5 

we must expect to find an anomalous eta driven by alignment 
errors. 

Again, if the sources of random gradient errors are the ran­
dom trajectory deviations, the driving term for the perturbed 
betatron function shown in Eq. (2) becomes 

f0I = -2 ulfilt SKz = -2v*0l )Oi (23) 
f0, = -2 * X SKy = 2V'0* pTx (24) 

In the next section, we estimate the magnitude of the per­
turbed betatron function and anomalous eta under random 
alignment errors. 

4. Numerical Est imates and Discussions 

Suppose then that we have an impulse perturbation of 
strength GKAtfr located at some betatron phase ,̂-. It wilt pro­
duce a small disturbance Ag with an oscillation at twice the 
betatron frequency and with some amplitude, say AA,, namely 

A j = AA\sin 2j/f> - 4>i)i (# > <t><) • (25) 

The initial slope A j of this oscillation is just 2A, which must, 
by Eq. (2), be equal to -2^6KA<p. 

&{&) = luAAi = -1vx$lSKA4>. (26) 

Consider now the value of g at the end of the arcs. Under the 
assumption of small errors, it will be the sum of the contribution 

Z 
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from each magnet in the arc. Namely 

flj. = 5 3 fl-*isin"Wl. - *•) (27) 

where d>L is the (undisturbed) betatron phase at the exit or the 
arc. Let's now assume that all focussing magnets are equiva­
lent and give an r.m.s. contribution &AF, and similarly for the 
dcfocussing magnets, for which we have an r.m.s. cpnlribulion 
AAp. 

The contributions of separate magnets combine as the 
squares. The contribution of each focussing magnet is 

{&A'*in*&4)y = AA^'sin 1 &4)F 
(28) 

where i<* is the phase change from each magnet to the exit. 
And similarly for the defocussing magnets. It turns out thai the 
average of sin 1 £>i> for both F and D magnets is just 1/2. (This 
average actually applies to one achroraat.) Let N be the total 
number of magnets (A';2 of each type). Then the mean square 
g at the exit is 

N bl)m '7l&Ar+>LA*D). (29) 

If we assume the usual alignment tolerance of 100 (im, and 
the usual orbit correction scheme, we know that the orbit will 
have a random offset in t je magnets of about 150 ( i m . s s Such 
displacements translate to r.m.s. focusing errors of 

IKr - 1.5 * KT J m - 3 ; 6KD = 2.4 x 10" 3 rrT 2. 

Furthermore, for the arcs, N = 450 and t = 2.5 m, using these 
values, we find that 

(30) 

Similarly, given the driving terms in Eqs. (23) and (24), the 
final perturbation of the dispersion function at the end of the 
arc have been shown to be 3 

[W 
("[)rmi ~ U - r ' U (^0»)rini *yrmj 

,. [W . 
(ny)rmi = y -z-4 ft ('Mj)rim fZrmt 

where I is the length of one magnet and 

Notice that J, is significantly different from U-

(31) 

(32) 

(33) 

(34) 

From design parameters given in the SLC Design Book, 7 we 
have 

fe =s 49 m~ J , f, w 87 m~* 

and 
("Jclrm. == 28 rom 

Again, if we assume the standard alignment tolerance of 
\Q~* m, the rms displacements 6x and Sy are 1.5 v 10~ 4 m. We 
then get the following estimates for the expected anomalous eta: 

( ^ j n u = 8 mm, (rj„)rm. = 14 mm (35) 

If expressed in terms of the percentage deviation from the design 
maximum etas, they are 

fo)™/*)! = 1°% and (rf)rm./i5o» = 33& (36) 

The number we estimate here is for 100 pm random misalign­
ment. As long as the error is less than 300 um, the perturbation 
is small and linear and the analysis is still valid and the effects on 
optical functions should scale roughly linearly with the amount 
of misalignments. We only show the field errors that arise from 
trajectory deviations. Any other random filed or energy errors 
can be studied by the same formulation. 

The estimates of both the perturbations of betatron func­
tions and dispersion functions are in good agreement with the 
results of computer simulation done by T. Fieguth, K. Brown 
and R. Servranckx.5 Methods to correct the optical perturba­
tions are under study by the Arc group. 

In the above analysis, we work out the solutions for random 
field errors. ]f the field errors are systematic, perturbed solu­
tions satisfying proper initial conditions have been worked out 
in Ref. 2. The magnitudes of the pertubations have been esti­
mated and found to be smallior possible systematic errors of 
the Arc. 
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