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1. Imtroduciion

Analytical estimation of perturbations to optical properties
of a circular machine is a well-studied subject. Howwver, the
situation is different for & & % line. There are thres major
reasons Lo account for the lack of systematic studies of aptical
perturbations for a beam transport line. First, usnally the loca-
tion and ofs line is sufficiently constrainted
to satisfly special requirements of ejection and injection, There-
fore the lattice strycture of them {» often quite irregular mak-
ing analytical evaluation difficult, Secondly, in the past, the
transport lines are often used as an injection line to & circu-
Iar machine, the optical perturbations incurred in the transport
line will not transiate ditectly into loss of luminosity or lifelime.
Finally, there is some difference in the methodology of solving
differential equations governing the perturbed optical functions.

For SLC, most of the reasons mentioned above do not apply
anymote. First of all, the lattice design of the SLC Arc is a
repetative FODO structure of 1.8 km long in each Arc, The
regulasity of the lattice struciure makes it easier for analytical
analysis. For that matier, any partial turn in the initial injection
study of a big circular collider can easily be gualified as a long
transport line and can be studied aecordingly. On the matter of
the beam quality, SLC has to rely on evary pulse for collision,
any deterioration of beam quality in the Arc will damage the
ultimate luminosity directly. Therefore, & carefully studied and
well correcied Arc system is essential for physics experiment.

About the methedology, in a circular machine, the pertutbed
solution of betatron function or dispersion function satisfies the
periodic houndary condition in ane revolution. In a transport
line, the solution depends not only on the local field errors in
the line, ofien time they aisc depends on the initial condition
of the optical functions coming into the line. If 3 beam comes
in mismaiched, the optical parameters will be distorted whose
effect overlaps with the errors generated Locally to make it difi-
culty to separate these two effects. Therefore, as a principle, the
incoming beam should be matched to the transport line lattice
by tuning the unstrenm optics. For a matehed line, the method
of analysis is similar to that of a clrcular machine.

This paper is an attempt to eatablish the analytical frame-
work in solving optical perturbations in a transport line in gen-
eral and will be applied to the SLC Arc as an example, The
formulation we present here should be applicable 1o any trans.
port system in a straightforward way. In Section 2 the equa-
tions of motion of perturbed betatron function and dispetsion
function will be presented and the driving terms identified. In
Section 3, the sources of possible field errore for SLC Arc sys-
tem are discussed, Finally, we will estimate the magnitudes of
perturbations to the oplical functions for SL.C Arc in Section 4.

2. Equatiops of Motion for Perturbed Betatron
and Dhspersion Functions

From the equstions of motion t¢ be shown below, aay gra-
dient error modifies the betatron function and both gradient
and bending errors modily the dispersion function. If the pradi-
ent error is smal] we can decompose the focusing and betatron

functiens as follows:
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K=HKo+4éK .
Bs 6+8f &
Since large changesin A will . * be tolerated in any case, we tan

use an approximation that is :lid for deviations §8 which are
small celative to § itsell, We deline g to be the refative deviation,
namely ¢ = §8/8. It ia shown in Courant and Snyder? that so
long as g s small, it satisfies : differential equation which ks
particularly simpleif we use the statron phase 3 = § fds/d m
out Independent longitudinal coordinate. Writing ¢ for do/de,
the equation for g after linearization ls3

§+ 4% = -2 BHK = f; (2
where Bo(#] is the unperturbed func: an, K (#) is the pertucba-
tion of the focussing function X at th longitudinal position s{¢)
and ¢ is the number of betatron ose} 3tion in one fundamenta)
period of the lattice structure. It | . ateresting to note that
the perturbed betatron function oaeil... 21 at twice the betatron
frequency.

Now let us look at the case of the dispersion function,® con-
alder that a particle of momentum py ia launched into the Arc
and determines some ‘cantral’ trajectory (corresponding to a
‘closed orbit’ in & ring). Notice that the CT (central \rajectory)
is not necessarily the same as the design traj . Let's now
consider the trajectories that are displaced from the CT and
Jet z and y be the amount of the Jateral displacement. If we
kesp only terms to first order in z, p, and Ap/py, the equations
of motion for the transverse displacementa of a nearby particle
with respect to the CT are:

=" = Gu(Ap/po) ~ Kz - Qu (3)
V" = Gy{Ap/m) - Kyy ~ Q= )

31}; curvature fonction G(s) is proportional to the transverse
eld:

a.=£a, : Gy= -is. {s)

The focusing strength K, and K, are proportional to the
quadrupole strength:
e 4B,
Ke= ;—a;! H ffg = -, ()

and the coupling term Q is proportional to the skew quadrupole
sirength:

o £ 95
=0 G

The fields and derivatives are ali 10, b¢ evaluated ot the CT.
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The ofl-energy function is a particular trajectory for which
z = n:{Ap/po) Bnd y = ny(Apfpo) — with suitable initial con-
ditions. Using Eq.s (3) and (4), we see that  will satisly

'7;’+K:'7= =Gz — Q'Ty (8)
ny+Kymy = Gy — Qns (9}

The eta-functions are ‘betatron-like’ oscillations driven by (a}
curvature and (b) by coupling from the eta-function in the other
coordinate.

Kow, suppose that in any one achromat the design trajectory
is defined by G: = Go, Gy = 0, K; = Ko and @ = 0. {Local
coordinates are used.) And, with respect to this trajectory, the
off-energy functions are no; and no,. Now the CT of the real
machine will have different fields and derivatives and a different
n. Let's define the perturbed orbit functions wath respect to the
CT by

G, = Go + 4G, G, =Gy (10)
K=Ky+6E Q=450 (11)

They will give a perturbed off-energy function
e =Tz + T, 5 Ny =Mop ety (12)

The overline on 6K and 6@ is to emphasize thal they apply to
values taken on the disturbed CT. Note that we have chosen to
write the ekange in 1 as 7 (rather than as 67).

If we now insert {10),(11} and (12} into (8) and (9), we find
that the anomaly 7 satisfies

l-il; + Kzii_= 6E: — Moz 6?: - ’10,65 =f; [13)
ﬁ;’ + K'ﬁ = 6‘6‘, — 7oy J—R—' - flu56 = fv (14]

with 6K, = 6K = —6K,. The perturbation %, is again a
betatron-like oscillation, driven now by f; which is a sum of
three parts: a perturbed field term §G, a perturbed gradient
terin 706K and a coupling term 506Q, and similarly for 7.

If the Seld perturbations are known, Egs. (13) and (14) can
be solved to get the anomaly 7.

8. Field Errors Due to Trajectory Variation

There are many possible sources of field errors, but for SLC
the dominant source in due to the trajectory variation, when the
CT does not go through the center of a magnet. At a point
whose horizontal and vertical distances from the ideal axis of an
arc magnet are X and Y, the magnetic field of the Arc magnet
is given by

_ loryz 1
By = By +kaX + 2S()f Y ) (15)
B;=kY+5XY
with
_ 4By _£8,-
it > S ) te)

are the quadrupole and setopole components. At the design
energy of 50 GeV\ the field values are-Bq = 597 KG, ko = £7.02
KG/cm and 5% 1.63°KG/cih? for focus and ~2.70 l'{G/r:m2 for
defocus magnets. If the CT passes through such a magnet at the
displacement 5%, 5y from the axis, the disturbed field functions,

to first order in 6z and by , are

E,.=Bo+k03-z-
§x=k05—y

aE, —
(5)_-k+sw a7)
3B\ o
() =55

making use of Eqs. {5) and (6), we find that

85 = Ko 6z
8G, = — KHoby
¥ _D v (18)
0K; = ubz = —56K,
6Q = ~pdy

where p = (e/pg)S is the normalized sextupole strength. Here
we want to remind the reader that the coordinate of a particle
from magnet centerline X is made up by the distance of the
particle to CT, z, and the distance from CT to magnet centerline
6z. Inother words, X =8z +zand ¥ =6y +y.

Hence the driving functions f; and f, of Eqs. (13) and (14)
due to orbit errors §z and Jy are

(19)
{20)

fr = (Ko — nos #)8% + 7o, u 8y
— (Ko — noz B)by + noy 1 6z

In the SLC design the sextupole strengths p of the arc mag-
net have been chosen to make an achromatic system for which, it
turns out, the expression {Ko — no; #) that appears in Eqgs. (19)
and (20) is, when averaged over a magnet, very closely equal to
zero.! So, for the arc magnets, the resulting driving terms for
reduce to

Iz = (noyw) 8y (21)
fv = ['703‘4) 5z (22)

Our important conclusion is that alignment etrors will drive
errors in both 7, and %, in any region of the arcs in which the
design vertical eta, 7oy Is not zero. Since the design of the a.rcs
calls for rolled achromats in which there is a rather large ﬂo;,,
we must expect to find an anomalous eta driven by alignment
errors.

Again, if the sources of random gradient errors are the ran-
dom trajectory deviations, the driving term for the perturbed
betatron function shown in Eq. (2) becomes

fpz = -2 ViF}, 6Ky = —207ff pbz
fay=—2 30}, 6Ky = 278 pbz

(23)
(24)
In the next section, we estimate the magnitude of the per-

turbed betatron function and anomalous eta under random
alignment errors.

4. Numericel Estimates and Discussions

Suppose then that we have an impulse perturbation of
strength § KAd located at some betatron phase $;. It will pro-
duce a small disturbance Ag with an oscillation at twice the
betatron frequency and with some amplitude, say AA,, namely

Ag=AA;sin2v(d— di); (6> ¢} - (25)

The initial slope Ag of this oscillation is just 24; which must,
by Eq. (2), be equal to —2836 KA.

3i(d) = WAA, = -2 KAS . (26)

Consider now the value of ¢ at the end of the arcs. Under the
assumption of small errors, it will be the sum of the contribution
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from each magnet in the arc. Namely

N
gL = Z AA sinv{dr — &) (27)

=]

where ¢ is the {(undisturbed) betatron phase at the exit of the
arc. Let’s now that all foc are equiva-
lent and give an r.m.s. contribution AAF. and. similarly for the
defocussing maugnets, for which we have aa t.m.s. contribution
AAp.

The contributions of separate magnets combine as the
squares. The contribution of each focussing magnet is

(AA?sin® Agly = AAT(sin® Ad)r (28)

where A¢ is the phase change from each magnet to the exit.
And similarly for the defocussing magnets. It turns out that the
average of sin® Ad for both F and D magnets is just 1/2. (This
average actually applies to one schromat.} Let N be the total
number of magnets (N /2 of each type). Then the mean square
g at the exit is

o = g(a AL +A4Y). (29)

If we assume the usual alignment tolerance of 100 pum, and
the usual orbit correction scheme, we know that the orbit will
have a random offset in tile magnets of zbout 150 um.5® Such
displacements translate to r.m.s. focusing errors of

SKp=15x10"m™% §Kp=24x103m™ %

Furthermore, for the arcs, N = 450 and £ = 2.5 m, using these

values, we find that
‘/(gi) = 0.35

(aﬂfﬂ\l )
B /.

8 Brms _
(-ﬂ—)r = 0.55

Similarly, given the driving terms in Eqs. (23) and (24), the
final perturbation of the dispersion function at the end of the
arc have been shown to be?

it

(30)

(ﬁz)"’ll = \/gt €2 [ﬁOy)rrru m (31]
(%y)"‘" = v@l Sy (ﬁo’]ml EZoms (32)

where £ is the length of one magnet and

= (ﬂzﬂll‘z)iu (33)
= (B “’ eell (34)

Notice that ¢, is significantly different from ¢-.

From design parameters given in the SLC Design Book,” we
have
Gx49m™2, =8Tm™?

and
(7oyYrmas == 28 n

Again, if we sssume the standard _zlignment tolerance of
10~* m, the rms displacements 5z and 5y are 1.5 x 10~ ;. We
then get the following estimates for the expected anomaloys et2:

(Redems =B mm,  (Fylrms = 14 mm (33)
if expressed in terms of the percentage deviation from the design
maximum etas, they are

(#3)'"!!/".01 = 19% and ("‘I)rml/ﬁﬂ, = 32% (35)

The number we estimate here is for 100 pm random misalign-
ment. As long as the error is less than 300 um, the periurbetion
is small and linear and the analysis is still valid and the eflects on
optical functions should scale roughiy linearly with the amount
of misalignments. We only show the field errors that arise from
trajectory deviations. Any other random filed or energy errors
can be studied by the same formulation.

The estimates of both the perturbations of betatron func-
tions and dispersion functions are in good agreement with the
results of computer simulation done by T. Fieguth, K. Brown
and R. Servranckx.’ Methods to correct the optical perturba.
tions are under study by the Arc group.

In the above analysis, we work out the solutions for random
field errors. If the field errors are systematic, perturbed solu-
tions satisfying proper initial conditions have been worked out
in Ref. 2. The magnitudes of the pertubations have been esti-
mated and feund to be small for possible systematic ersrors of
the Arc.
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