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A systematic determination of extended atomic
orbital basis sets and application to

molecular SCF and MCSCF calculations
David Francis Feller

Under the supervision of Klaus Ruedenberg
From the Department of Chemistry
Iowa State University

The behavior»of the two exponential parameters in an even-
tempered gaussian basis set is investigated as the set opti-
mally approaches an intégral transform representation of the
radial portion of atomic and molecular orbitals. This
approach permits a highly accurate assessment of the Hartree-
Fock limit for atoﬁs and molecules.

In an effort to expedite calculations with very large
primitivevbasis sets, a procedure is described which avoids
computing the numerous, multicenter, two-electron repulsion
integrals to the same degree of accuracy as the one-center
integrals. A small, fitted basis is used to compute the multi-
center integrals. Reductions’ in the time required for integral
evaluation of from 10:1 to 80:1 are realized with a loss in
accuracy of the final computed energy within several milli-
hartrees.

The effeéts of basis set truncation on correlated calcu-

lations for the HNO system are studied as they influence the

three lowest: states of that molecule. Isomerization curves



vii

for these states are computed within the Full Optimized
Reaction Space approximation. The potential curve for the
groundstate of nitric oxide is also given within the FORS

approximation.



I. INTRODUCTION

Theoretical chemistry seeks as one of its primary goals
the ability to compute atomic and molecular properties with
sufficient accufacy to be of value in a coorainated explora-
tion of chemical phenomena with the experimentalist. For
practical purposes these properties may be divided into two
broad categories: those that involve energy or, more likely,
energy differences (such as reaction surfaces, excitation
energies or ionization potentials) and those that do not (such
as dipole and quadrupole moments or electric field compoﬁents).
This work deals primarily with the former.

Discrepancies between the true value of a physical observ-
able and the value predicted by an ab initio calculation result
from‘the neéd to invoke four main approximations which are

necessitated by the intractability of the exact molecular

- Schroedinger equation: (i) the Born-Oppenheimer approximation

which assumes the separability of the electronic and nuclear
motions; (ii) finite basis set expansion lengths for the
atomic or molecular orbitals; (iii) the single confiquration,
independent particle approximation associated with algorithms
like the Hartree-Fock (HF) self-consistent-field (SCF)
technique; (iv) neglect of relativistic effects. The first
and last of these are excellent approximations for compounds
composed of elements frpm the first and second rows of fhe

periodic table. The third approximation and various methods



for relaxing this restriction have been well;documented. The
essential decision to bé made with regard to the third item is
whether or not the problem demands the use of more sophisti-
cated techniques than HF-SCF with their substantial increase
in computational requirements. On the other hand, the adverse
effects of basis set truncations in accordance with the second
approximation is often not adequately considered. Ideally one
hopes to be able to choose a basis with the minimum flexi-
bility needed for the problem under consideration so that the
question one 1is seeking to resolve can be answered in the mbst
ecdnomical way; Such a choice must draw on the body of infor-
mation concerning basis sets which has been'accumulating since
the appearance in 1951 of C. C. J. Roothaan's [1l] work on the
formulation of the Hartree-Fock equations using finite expan-
sions of SCF orbitals in terms of analytical baéis functions.
The present work deals with the problems associated with
determining such finite basis sets for adequate approximations
in molecules.

In the first section of this paper we shall deal with the
"problem of effectively determining the exponential parameters
and expansion lengths needed for obtaining any desired devia-
tion from the infinite basis set limit in atomic or mo;ecular
calculations. A convenient contracted orbital scheme and
polarization expansion lengths will be discussed. In the
second section we shall look at a new integral approximation

which can facilitate the use of large, flexible basis sets by



~employing a-small substitute basis to generate the numerous
multicenter, electron-repulsion integrals. The final section
deals with the three lowest spin states of the HON to ﬁNO
isomerization process. The effect of basis set improvement
will be studied as it applies to both correlated and uncorre-
lated wavefunctions. Since the metastable conformation, HON,
has never been obéerved experimentally we shall further inves-
tigate a possible bi-molecular, least motion mechanism for
coﬁverting the metastable form to the stable form,

We hope' that this study will further elucidate the rela-
tionship between some physical properties and baéis sets, thus
providing additional guidelines for the individual performing

quantum chemical calculations.



II. AN OPTIMAL EVEN-TEMPERED APPROACH TO THE COMPLETE ORBITAL

BASIS

A. Justification for Even-tempered Basis Sets

If optimal perfofmance is to be achieved with gaussian
basis sets, which are.necessarily restricted in size due to
vcomputational limitations, then a better understanding qf the
relétionship between such sets and a complete set is needed.

- This understanding will make possible a mofé accurate assess-
ment of convergence rates for Various éxpectation values
derived from.vafiational calculations;

About.lS years ago Schwartz [2] wrote, "The first essen-
tiai in talking of convergence rates is to have an orderly
plan of proceduref That is, one must choose a set oflbasis
functions to be used and then gradually add more and more of ‘
these terms to the variational calculation in some systematic
manner." The even-témpered basis introduced by Ruedepberg
et al. [3] is ideaily suited for this purpose. Even-tempered
(ET)_gaussian primitives are defined in terms of two optimiz-

-able parameters per symmetry by

U

X (kgm) = N(ck)exp(—ckrz)rzsglb,¢) k 1,2,... - (2.1a)

z, = g \ | (2.1b)

While this.restriction of the orbital exponents to a

‘geometric sequence results in a small loss of variational



freedom when compared to an independently optimized set, this
loss must'be seen in perspective. For example, the first row
elements might require an additional s-type primitive or two
to obtain groundstate energies within a few millihartrees of
Huzinaga's [4] completely optimized exponent set for an (8s,
4p) basis, but the difference between the best energy obtain-
able with this set and the infinite basis set limit is several
times larger. Table 1 shows the actual total energies for the
(8s,4p) ET and independently optimized atomic basis sets on
carbon. Ail energies in this table and in the remainder of the
paper are in atomié units (1 a.u. = 1 hartree = 627.5 Kcal/

mole)'.

Table 1. Total energies for the carbon atom with ET and
independently optimized gaussian bases

Basis | Energy AE AEL
Huzinaga (8s,4p) ~-37.6798 0.0088 0.0
ET (8s,4p) -37.6681 0.0205 0.0117
ET (9s,4p) -37.6768 0.0118 - 0.0030
ET (23s,11p) -37.6886 0.0000 -0.0088

a'VAE;,C,"i.s the difference between the energy for this basis and
the HF limit energy.

kﬁE is the difference between the energy of this basis and

the Huzinaga (8s,4p) basis result.

For this particular basis the ET choice of exponents has

resulted in a 3/1 reduction in the number of nonlinear param-



eters, the independent exponents, which would have to be
varied in the optimization procedure. In larger basis sets
the savings are even greater.

In this section we shall see to what extent the ET
gaussian basis can be viewed as a finite grid for an approxi-
mate numerical integration of an exact integral representation
of the radial portion of an atomic orbitai. Next, the optimal
atomic ET parameters for hydrogen, carbon, oxygen, sulfur and
selenium as a function of basis set size will be investigated
and shown to suggest a simple rule for generating (a,B8) for
arbitrary expansion lengths. Finally, the optimal molecular
ET parameters of several moleculeé are given as a function of
basis set size and a suitable general procedure for arriving at
useful molecular basis sets is discussed.

B. Evén—temperéd Gaussian and Exponential Expansions
and Gaussian Integral Transforms for Atomic Orbitals

In order té exhibit the relationship between exact HF-AO's
and their approximations in terms of even-tempered gaussian
AO's, we note that any atomic orbital of symmetry (£,m) can be
expressed through an integral transform over gaussian radial

functions in the following manner where S? (6,¢9) is a normal~

2
s L (o -Tr
o (L0,0) = S (8,0)r S dze £, (2) (2.2)

ized spherical harmonic. 1In the present context is is con-

venient to write. this representation in the form



g (ri0,9) = [_Catng) g (gir,8,9)a (€) (2.3)
where .
-Crz 2.m
gzm(c;r,e,d)) =Ny e r Sg(e,cb) (2.4a)
with N, = {2043 28247 i ope1) 117 2y /4 (2.4D)

is a normalized gaussian-type primitive AO. If we consider for

d(L,m) exponential—type AO's of the form

X(Eir,0,0) = M, e”°F r*s™(0,¢) | (2.5a)

2243

with oM = {(20) /(28+2) 131172 (2.5b)

then the transform function ap in Equation (2.3) becomes

A ‘ _ : 2
2% (g, 0)= 1221/ (1)1 V72 11/ 2 (g2 ag) (2AH3) /4 o~ (E7/A0) (5 )

This is a generalization of a formula given by Kikuchi [5] for
éimple'exponentials. Bishop and Somorjai [6] as well as Taylor
[7] have also examined transforms of radial functions.

It has been shown by Raffenetti [8] that any HF-SCF AO can
be efficiently expanded in tefms of evethempered exponential-

type AO's of the form (2.5a),

L _ agV
om = Ebvxln#gv)' Ey T OB (2.7)



Combining such an expansion with the integral transforms for

Xqm’ We find for ¢2m the transform function

_ ex
a,m(és8) = X b, 3 (€,,2) (2.8)
where aS¥ is given by Equation (2.6). Examples of such HF-AO

2

transforms are shown in Figures la, 1lb and lc. Figure la
corresponds to the (1ls) orbital, Figure 1lb to the (2s) orbital
and Figure lc to the (2p) orbital of the HF wavefunction of the
carBon groundstate. The values for the bV and EV are taken
froﬁ Raffenetti's (6s,4p) even-tempered exponential expansion.
‘Since this is an extremely accurate wavefunction (triple zeta
in s and double zeta in p) the curves in these three figures
can be considered as very close to the daussian transforms of
the exact carbon HF-SCF orbitals.

Approximation of the integral transform (2.3) by means of
a numerical integration implies replacement of the integral by
a sum over-a number of grid points i (k=1,2,3...). Since it
is apparent that the intervals‘(;k+l—§k) should increase as Ty
becomes 1arger and larger, one reasonable choice of gridpoints
.is given by the even-tempered exponents introduced in Egquation
(2.1b), namgly Tk = aBk. ‘'This choice leads to a .set of equi-
distant gridpoints when 1ln(z) is chosen as the integration
vériable,?as has been implied in Equation (2.3). - Since the

distance between neighboring gridpoints (lngk) is 1n(B), the
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even-tempered grid approximation to the integral transform

(2.3) thus becomes

Pom = & Jom(Gx)ag (5 ) enB (2.9)

This type of approximation for HF-AO's in terms of Jom SN be
compared to those expansions that result from direct HF-SCF
calculations based on expansions of the SCF-AO's in terms of

even-tempered gaussian primitives AO's, viz.

- g _ Kk
Sem = I Iom(%k) Ckr Tk = %eBy (2.10)

where c& as well as the oy and Bi are variationally determined. -
In view of Equations (2.8), (2.9) and (2:10) one would expect

relations like

L

L . (.~ oK . ex o k '

in which bﬁ, Ev come from HF calculations in terms of exponen-

tials, whereas ci, Op s Bl come from HF calculations in terms

of gaussians. .The aix are given by Equation (2.6).

As a first example we consider the hydrogen (ls) function

(g3/m/2 et

. In this case Equation (2.11) simplifies to

| ' K
1/4 416 (408%)~5/4 o-1/408

Cr ¥ (8/m) (2.12)
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If the Ck,a,B ére determined from a six term even-tempered
gaussiap expansion (corresponding to an error in the total
energy of 0.2 millihartrees), then the agreement of the left
and right hand side of (2.12) is better than two significant
figures. For an eight term expansion (corresponding to an
enerqgy erroruof 0.01 millihartrees) the agreement is better
than four significant figures.

Next we consider the carbon ground state HF-AO's whose
integral transforms were shown in Figures la-lc. Specifically
we choose two sets of parameters with one set resulting from
an SCF calculation using a "small" basis of even-tempered
gaussian primitives and the second set resulting from an SCF
calculation with a "large" basis of even-tempered primitives,
the former being a (7s,3p) basis, the latter a (23s,1lp) basis.
In order to test the degree of validity of the_identity (2.11)
we simply plot for the three atomic orbitals the values of the
quantities (cﬁ/lns) for the appropriate abscissa values of
Ck=u8k on the curve for az(ck). The (7s,3p) values are entered
as diamonds, the (23s,1llp) values as circles. It is apparent
that not only is the agreement perfect‘for the large basis, but
it isAalso very good for the small basis. This agreement
between the direct variational cbefficients ci and the exact
transform functions shows that the variational representation
"in terms of even-tempered gaussian primitives approaches the
exact SCF solution in a systematic manner. The integral trans-

form acts as it were a "slidewire" with the coefficients for
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finite expansions behaving like beads on the wire. The grid-
points of a particular expansion merely determine the positions
of the beads on ﬁhe wire and these positions can be altered
without departing from the wire. We have~noticed similar |

" behavior for expansions of molecular orbitals. |

Another interesting aspect of the discussed resdlts is

4 that they establish a clear relation between the expansion of
an atomic orbital in terms of gaussian primitives and its
expansion in terms of exponential-type primitives. Equation
{(2.11) shows how to obtain the coefficients of the even-
tempered gaussian expansion when the gaussian and exponential
exponents and the exponentiai coefficients are known. However,
it is also possible to invert the process. Since gaussian
expansions are always substantially longer than exponential-
type expansions of equal quality, it is apparent that the
number of coefficient54c£ for which (2.11) applies is larger
than the number of terms in the summation over v. ‘If it is
more than twice as large, then there are sufficient equations
available to determine the values of the parameiers for the
exponential expansion when the gaussian parametérs cﬁ, o, B,
aré known. This can be accomplished by a {(partly 1inear;
partly nonlinear) least-squares calculation based on mini-

mizing the quantity

. ]}é [Ci‘ - f%(bg’;b%,...;ElrEZ’...)]Z
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with respect to the parameters bﬁ and £, Here the fi are the

functions defined by the righthand side of equation (2.11) and
the values of ci,a,B are supplied by the gaussian expansion.

It is fhus_poséible to deduce the complete even-tempered
exponential-type expansion from sufficiently large even-

- tempered gaussian expansions! This procedure works quite well,
as the results shown in Table 2 for the carbon ls and 2s

orbitals attest. As for going from the exponential-type to

Table 2. Comparison between the fitting coefficients derived
from an ET gaussian basis and the SCF orbital coeffi-
cients with an ET exponential basis for carbon

Fitting Coefficients From a (19s,9p) ETG Basis
With a = 0.702 and b = 1.666

Cc(1) C(2) C(3) C(4) C(5) C(6)

1s -0.003 0.010 -0.002 0.922 0.080 0.002
28 -1.250 . -0.060 0.524 0.118 -0.004 0.007

SCF Orbital Coefficients From a (6s,4p) ETE Basis
With a' = 0.705 and b' = 1.667

‘ . C(1) C(2) C(3) C(4) C(5) C(6)
1s -0.000 0.002 0.016 0.913 0.077 0.001

2s -1.252 -0.062 0.545 0.092 -0.011 0.001

8Both basis sets gave an energy of -37.68859 Eh‘ The param-
eters a and b were determined by nonlinear optimization,
while a' and b' are the SCF optimized even-tempered exponen-
tial values of Raffenetti.
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the gaussian expansion, it was possible to predict the coeffi-
cients of a 9 term gaussian expansioh'of the 1ls and 2s
orbitals of carbon with sufficient accuracy that an energy
only 0:009 Eh~above the SCF coefficients was produced without
~actually perforhing the SCF calculation with gaussians.

Although the shépe of‘thejgaussiéh'transform is highly
independent of the basis set size, as already shown in Figures
la-lc, it is also nearly independent of the atomic number. '
Of course the Size.of fhe atomic orbitals decreases as the
nuclear charge is increased, resulting in a shift of the
transform function to higher log ¢ values for larger Z. How-
ever, by shifting the trangforms of two different elements so
that they are superimposed the similarity of the two sets is
apparent. In Figgres ld-1f the gaussian transforms for the
atomic orbitals of fluorine, shown as solid black dots, are
shifted into alignmeht with the carbon transforms. The magni-
tude of the shift is approximately 0.4 for both s and p
symmetries. The flhorine basis was (22$,llp). Only the data
points near the maximum and minimum were plotted for the ls
énd 2s. Most surprising is the excellent agreement for the
'2p AO in spite.of the additional three electrons occupying

that orbital in fluorine.
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C. Regularities in the Optimal
Atomic ETG Exponential Parameters

ﬁow~do the optimal atomic (o,B) depend on the expansion
length used in an atomic SCF calculation? In order to answer
this question, several basis sets ranging in size up to 16
s-type ana 7 p-type gaussian primitives for the first row
elements and up to 9 p-type primitives for sulfur were opti-
mized by varying (a,B8) until the lowest energy for the appro-
priate groundstate was obtained. For the s symmetry optimi-’
zations, four p-primitives were used for the 2p AO in C and O,
while six p-primitives were used in S and Se. For the p
symmetry sevenis—primitives were used for the ls and 2s AO's
in C apd O, while eighﬁ s-primitives were used in S and.Se. It
was established that the optimization of one symmetry is highly
independent of thg number of primitives in the other symmetries
so long as the other symmetry is not overly truncated. Table 3
gives the optimal values foundf

In Figures 2a-2c the 1ln{(ln(B)) for soﬁe of the optimal
parameters listed in Table 3 is seen to be linearly related to‘
the 1ln(N-1) where N is the number of primitives of that
symmetry in the basis set. This linear dependence is suggestéd
by the behavior of largest exponent, i. e. lim ln(aBN) = o

whereas individually lim 1ln(a) = -» and lim 1n(B) = 0. Thus
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Table 3., Optimal ET parameters for ground state carbon,
oxygen, sulfur and selenium

Carbon - Oxygen Sul fur Selenium

Ns Alpha Beta Alpha Beta Alpha Beta Alpha Beta

5 0.05813 5.0784 --- --- --- --- --- —--

6 0.06304 4.3406 0.11979 4.2931 -—- - --- ---

7 0.05701 3.7973 0.10763 3.7710 --- --- ~-- ---
- 8 0.05090 3.5089 0.,09469 3.4995 0.07515 3.8708 0.10891 4,1055

9 0.05019 3.2937 0.09357 3.2790 0.07917 3.5992 - -—
10 0.04989 3.1112 0.09311 3.0895 0.07982 3.3199 - -
11 0.04798 3.9032 0.08874 2.8978 0.06601 3.0920 ve.  ==-
12 0.04495 3,7647 0.07982 2.7649 0.06442 2.9667 0.08420 3.1013

13 -—- - - -——- 0.06330 2.8338 -— -
14 0,04339 3.5790 0.08032 2.5709 0.06056 2.7079 -—— —-———
15 ———  e== ——- -—- 0.05901 2.6143 -—- ——
16 .- -——- —-——- -——- 0.05829 2.5385 0.06852 2.6510
Carbon oxygen Sul fur Selenium
Np Alpha Beta Alpha Beta Alpha Beta Alpha Beta
0.04550 4.4504 0,.,08159 4.5997 -——- -—— -—— -
0.04168 3.7920 0.07205 3.8890 - -—- -—— -——

0.03523 3.0382 0.05859 3.1034 0.06446 3.4728 0.12810 3.7250
0.03229 2.8151 0.05477 2.8553 0.05263 3.1757 --- ---
--- --- --- ---  0.04859 2.9505 ~--- ---
--- --- --- ---  0.04488 2.7523 0.06941 2.9142
--- - - --- --- ---  0.04422 2.5211

TNOOdOWVE W

=

Selenium

Nd Alpha Beta

2 0,68011 4.5820
-3 057640 3.7667
4 0.44612 3.3172
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Ing must tend to zero less strongly than N tends to infinity.

This would suggest a function of the form
In(ln(B)) = k*1In(N-1) + 1 (2.13)

Figure 3 shows the approximately linear dependence of 1ln(a) on
In(B). For the larger bases this is seen to give a very close

fit to an equation of the form
In(oa) = m*1n(B) + n (2.14)

The values for the constants appearing in Equations (2.13) and
(2.14) which are obtained by least squares fitting the data

for H, C, O, S and Se are listed in Table 4. It would seem a

Table 4. Constants in the straight line approximations for the
' ET parameters

Atomic s—-symmetry p—-symmetry
Number k . 1 n n k 1 m n
1 -0.369 0.763 0.467 -3.983
6 -0.465 1.084 0.704 -3.810 -0.362 0.689 0.708 -4.163
8 -0.443 1.084 0.769 -3.269 -0.362 0.685 0.820 -3.760
16 -0.487 1.278 0.711 -3.509 -0.440 0.929 1.505 -4.640
34 -0.485 1.290 - -- - ~=0.443 0.988 - -

difficult task to a priori predict the parameters of equations
(2.13) and (2.14) from simple analytical reasoning. The

slopes of 1n(1ln(B)) as a function of 1ln(N-1) can be found by a
r-weighted least—sqﬁares fitting of accurate exponential basis

set atomic calculations [9], but the intercept of this line and
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both the slope and intercept of the 1ln(a) vs. 1n(g) line cannot
. accurately be determined in this manner.

Energy losses encountered when optimal (a,B8) values are
replaced with those values predicted from Equations (2.13) and
(2.14) vary with basis sets and are listed in Table 5. By
comparing the values in this table with the optimal ET exponen-
tial results of Raffenetti for the same atoms it can be seen
_that the ratio of the number of gaussians to exponentials
required to achieve thé same total energy is approximately 3:1
for the first row, 2.4:1 for the second row and 2:1 for the
third row of the periodic table, reflecting the fact that the
build-in advantage of the latter in describing the cusp is
- becoming less important to the total energy.

Rapid convergence of the two columns results from the
"decreasing deviation of the optimal (o,B) points from the
linearly interpolated values and from the simultaneous increase
in the flafness of the energy surface as a function of the ET
parameters. Additional optimization of the (23s,1lp) basis for
carbon confirmed the validity of the linear points at large N
values. | |

Not only is the set of optimal ET parameters a smooth
function of the number of gaussians used fof the expansion,
but also it behgyes smoothly in going across the periodic
table. In Figure 4 the double logarithm of the optimal beta
valué$ for a (7s,4p) ETG basis, as determined by Raffenetti

[10], are plotted against the logarithm of the atomic numbers.
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Table 5. Optimal and "straight line" atomic energies
Basis Carbon oxygen
optimal str. line optimal str. line
(7s,3p) =-37.6307T42 -37.628856 -74.343343 -74.330671
(9s,4p) =-37.676799 -37.676754 -74.716530 -74,.715517
(11s,5p) =-37.685532 -37.685492 -74.791194 -74.791182
(13s,6p) =-37.687815 -37.687811 -74.804559. -74,804558
(15s,7p) -37.688380 -37.638380 -74.808117 -74.808117
(17s,8p) -37.688541 -74.808117
(19s,9p) -37.688592 -74.809266
(21s,10p) -37.688610 -74.809350
(23s,11p) -37.688614 -37.688614 -74.809381
Basis Sulfur
optimal str. line
(10s,6p) -397.26057 -397.25823
(12s,7p) -397.43035 -397.43023
(14s,8p) =-397.47966  -397.47966
(16s,9p) : -397.49538
(18s, 10p) -397.50121
(20s, 11p) -397.50352
(22s,12p) =-397.50431
(24s,13p) -397.50462
Basis Seleniua
optimal str. line
(8s,6p,1d) -238%.3307
(12s,9p,2d) =-2398. 1209
(16s,12p,4d) -2399.5044
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Discontinuities in the slope are visible for both curves. For
the s curve it occurs in going from Be to B. For the p curve

it occurs between N and O.

D. Regularity of the Total Energy for Atoms
| As the approximate SCF orbitals approach the integral

transform repreéentation of the exact atomic orbitals by means
of the systematic sequence of (q,B8) points given by Equations
(2.13) and 2.14), the total energy approaches the HF limit in
a very regular fashion. This can be seen in Figures 5a and 5b
where the beryllium energies of Schmidt [11] are used. Here
the logarithm of the difference between each energy value and
the near HF value of the (28s) basis is plotted as a function
of 1/N and l/ln(N}) where N is half‘the number of s-primitives
in the basis.

Because two different linear dependencies seem to dominate
at opposite ends of the basis size spectrum a simple analytic

expression combining the two such as

_'Log(EN—Em) = A*N/(1 + exp[—@(N—Z)]) +
: , (2.15)
B*1n (N1) /(1 + explo (N-2)1])

is capable of fitting the entire curve quite well. The
~constants A and B are determined linearly while E_ and a are
determined nonlinearly by minimizing the standard deviation of

the fit. The constant 2 appearing in (2.15) may also be varied,



31

l/Iog (EN- E28$) A

| T 1 | T T 1 T
-0.04} -
0l2k "Straight Line" Approach to _
: , @——26s the Integral Transform for
| %, . Beryllium |
-0.20r : °\o _ ' -
-0.28}1- _ \o\ ]
-036F °\ =l
-044F i
. O, ;
-0.52 _ | - : =
-060F N 4
-0.681 3 5~ 65 ]
-0.76 : v
] 1 1 L | |- i
005 O0lI0 .O.|5 020 025 030 035
1/N

Figure 5a. Dependence of the error in the total energy as
an inverse function of the number of basis

functions



32

T T l T T
-004 |- | | .
o2 - ' "Straight Line" Approach to .
‘ %——- 26s the Integral Transform for
- Beryllium
-0.20F 3\ : =
| A\ |
C w028k N S | B
W -0.36} _ . —
z o ' ‘
W | | -
S -044+ S o . -
S ,
-0.52 - - | : | .
-060 ' “ -
-068 |- | -
| o~——06s
076 | | \ i
| | ] | | 1

Ol0 020 030 040 050 060
1/In(N!)

Figure 5b. Dependence of the error in the total energy as
an inverse function of the factorial of the
number of basis functions



33

however, E_ is quite insensitive to its value. The nine Be
points were fit with a maximum deviation of 0.0002 and a
typical deviation of 10**(-6) for the larger basis set points
with E_ = -14.573023, A = -0.551292, B = —0.664424 and alpha =
0.25. Althéugh this technique provides an extrapolation to the
HF limit from a limited segment of the converging curwve, its
usefulness is limited to an improvement no better than one .
order of magnitude beyond the last computed value employed in
the fit. . For atoms this degree of improvement is not too diffi-
cult to obtain by merely performing the indicated calculations
_ with a larger basis set. The novelty of Equation (2.15) lies
in being able to accurately fit energies from such a wide range
of basis sets with a two term expansion, and with the help of
such a fit, to predict, with confidence lower bounds as well as
upper bounds for the exact limiting values. This will be elabo-
rated on in a forthcoming paper by Schmidt and Ruedenbery [12](
Our basis sets are sufficiently large and the energy
values sufficiently regular that with the use of Equation (2.15)
we can accurately estimate the HF limit for three of the atoms
investigatcd. In applying Equation (2.15) we identify N with
N(p), noting that N(s) = 2N(p) + 1 in carbon and oxygen, and
N(s) = 2N(p) - 2 in sulfur. The limits are: carbon -37.688617
E,, oxygen -74.809397 Eh and sulfur -397.50488 E,- The uncer-
tainty in these values is #2 in the last digit. These values
for the HF limit are in disagreement with the 1968 numerical

Hartree-Fock energies of Fischer [13] by 0.00019, 0.00024 and
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0.00122 for C, O and S respectively, all lying above the
Fischer values. Subsequent numerical calculations [14] are
much closer to our estimates of the lower bound.
E. Optimal ET Molecular Parameters
from Uncontracted Calculations

Since tﬁe reason for choosing a gaussian primitive basis
as opposed fo a set of exponential functions is the speed
advantage the former gives in molecular multi-center inteéral
evaluation a more pertinent aspect of the ET choice is that
optimal ET molecular exponents are derivable from the atomic
{a,B) with relative ease. Uncontracted optimizations of the
ET (o,B) pairs in the molecules carbon monoxide, methane and
acetylene with gaussian basis sets of (6s,3p) up to (14s,7p)
demonstrated that the energy differences between the optimal
atomic and molecular (o,B) values for large sets were gener-
ally less than a millihartree in size. Moreover the optimal
ka,B) values for the s-type primitives were very nearly iden-
tical for the atom and the molecule after 1lls. To a large
extent this is to because the majority of primitives for this
symmetry are needed to refine the cusp. As these large
exponent functions become an increasing percentage of the
basis set the (o,B) values which are optimal for the atomic
cusp tend to dominate. This domination is aided by the near
saturation of the valence region with sufficient functions
such that exponent values can deviate considerably‘from the

optimal ones without substantial effect on the total energy.
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Optimai.(als) pairs for p-symmetry in molecules are not
»observed to converge to the optimal atomic values as rapidly
as the s-symmetry, but they do lie within a small region of
‘the atomic values.

Accurate basis sets at the atomic limit are only a minimal
requirement for accuracy in molecules. Uncontracted calcula-
tions on CO with optimal atomic even-tempered exponents show
~that there exists an fadditional molecular error" beyond that
which would be expected from the sum of the atomic errors seen .
in Table 5. This is illustrated in Table 6. Here the "addi-
tional molecular error" is defined as the difference between
the error due to basis set truncation.within each orbital sym-
metry for the molecule and the error due to basis set trunca-
tion within each orbital symmetry for the two atoms. It is
- seen that the error generally decreases with ingreasing basis
set size. The magnitude of the molecular error also depends on
the particular eiements involyed_and the internuclear separa-
tions. The HF limit for CO comes from-.a hartree extrapolation
of the total energies resulting from the largest three bases.

Even with the éimplifications inherent in the even-
tempered approach, molecular optimization is still very time
consuming. Moreover the set of optimal atomiciparameters are
easily predicted for any size basis while the molecular set is
quite unpredictable for small to medium size bases. Because of

the similarity between atomic and molecular (a,B) pairs it was
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Table 6. Molecular errors for carbon monoxide

(a) Optimal atomic even-tempered parameters

Basis Energy (a.u.) Total Molecular Addit. Molecular

Error Error

4s,2p | ~-110.49971 2217.0 17.8
6s,3p -112.36763 349.1 5.1
8s,4p -112.64166 75.0 3.5
10s,5p -112.69584 20.9 3.8
12s,6p -112.71028 ' 6.4 1.8
1l4s,7p -112.71478 1.9 0.8
l6s,8p -112,.71579 1.0 0.5
0.00 0.00

HF-limit -112.7167

(b) Optimal molecular even-tempered parameters

Basis -Energy(a.u.) Total Molecular Addit. Molecular

Error Error
4s,2p -111.02170 1695.0 - 527.7
6s,3p -112.39190 324.8 -24.7
8s,4p -112.64635 70.4 -4.9
10s,5p - =112.69801 18.7 -2.5
12s,6p -112.71176 4.9 -1.5
14s,7p ~112,.71556 1.1 -0.8
16s,8p -112.71600 0.7 -0.3
0.00 0.00

HF-limit -112.7167

therefore decided to use the atomic sets in the present investi-

gation.

F. Effective Contracted Orbitals for S and P Symmetries
Having determined the size of the primitive basis set, we
must choose a suitable set of contracted orbitals. For this
purpose the HF-AO's and the set of unoccupied (virtual)

orbitals which result from the LCAO formalism serve quite well.
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Using a technique developed by Ruedenberg, Bardo and Cheung
f15] for deriving from uncontracted molecular calculations
that.set of contracted orbitals which optimally reproduces the
uncohtracted results we investigated the overlap of the space
spanned by the atomic SCF AO's (occupied and virtual) with the
optimal contracted space. Our investigation involved ET basis
sets ranging in size from (6s,3p) to (l4s,7p) on the molecules
Cco, CH4, C2H2 and H2CO. In all cases studied the épace of the
1s, 2s, 2p plus the first several virtual SCFAO's overlapped
the space of the most important optimal contracted orbitals to

better than 0.995 as shown in Table 7.

Table 7. Transformation matrix between the HF atomic SCFAO's
(occupied plus first virtual) and the optimal con-
tracted orbitals of CO.

6s Basis l4s Basis
Opt. Contr./AO Opt. Contr./A0
1s 2s 3s 1ls 2s 3s

0.476 0.878 0.006
0.879 -0.476 0.010
0.009 0.043 -0.992

1 0.974 0.228 0.008
2. -0.229 0.974 0.011
3 0.005 = 0.012 -0.991

wN -

6p Basis

Opt. Contr./AO
2p 3p 4p

1 0.979 0.178 0.105
2 -0.196 0.631 0.750
3 0.015 -0.722 0.612
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Since the virtual orbitals tend to span the continuum of
the atomic HF eigenvalue problem, the energy df these orbitals
increases monotonically with their kinetic energy. The lowest-
energy virtual orbitals have the lowest kinetic energies. On
the other hand, since the most diffuse primitives have the
smallest kinetic and potential energies of all primitives, it
turns out that the lowest-energy virtuél AO's essentially
consist of the most diffuse primitives orthogonalized to the
occupied SCFAO's. This orthogonalization is unnecessary,
however, if the object is merely to span the same space. 1In
fact, Raffenetti [16] was the first to compare a set of HF-AO's
plus a diffuse primitive to Dunning's [17] contracted orbitalé
on the nitrogen molecule and water. He found them to be
slightly better than Dunning's. Because of the ease of gener-
ating this set and because of their similarity to the HF-AO-
virtual space we shall employ this type of basis in the rest of

this paper. Table 8 lists the energy losses incurred with this

Table 8. Energy,ldsses with respect to an uncontracted (1l6s,
8p) basis for a HF-AO-diffuse primitive contraction
on CO

Contracted Basis Energy Loss (millihartrees)

O O &

(6s,5p)

(5s,4p)

(4s, 3p) B
(3s,2p) 3
(2s,1p) 14

OO
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contracted basis for a (16s,8p) primitive basis on CO. The
quality of this contraction scheme depends slightly on the
internuclear distances involved since the exact separated

atoms' coefficients are built in. .

G. A Minimal Basis Set Function for Hydrogen

The hydrogén atom basis deserves special attention not
only because of its ubiquitous appearance‘throughout chémistry
but, more importantly, because of the substantial energetic
effect which results from scaling its minimal basis function.
Even though several contraction schemes now in use provide
results within a fraction of a millihartree when two or more
basis functioﬁs are used, it is nevertheless of interes£ to
know which contraéted function is most effective when used as
a single minimal‘basis A0,

A common practice is to take its coefficients from the
atomic 1s orbitalvahd then determine the optimal scaling factor
from the hydrogen molecuie. A sbmewhat better single function
is obtained by preserving the primitive exponents from the
isolated atom and taking as contraction coefficients those
which yield.the H, molecular orbital resulting from an uncon-
tracted SCF calculation. Also when used in other molecules,
this minimal basis function yields a lower energy error per H
‘atom than the scaled ls AO. This is illustrated in Table 9

which lists the errors for calculations on methane, H2 and
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Table 9. Errors per H Atom in various molecules for hydrogen
minimal basis set calculations with respect to an
uncontracted H 6s primitive basis?

Scale Factor

H2 C2H2 CH4

1. Coefficients of H minimal basis A0 from atomic 1ls AO

1.00 18.7 24.9 20.9
1.19 0.1 4.5 3.6
1.29 4.9 2.6 1.8
1.35 13.0 1.7 2.4
2. Coefficients of H minimal basis AO from uncontracted H2 SCF
MO :
1.00 0.0 4.1 3.1
1.08 5.0 1.3 1.1
1.10 7.0 1.0 1.1
1.13 11.9 0.9 1.2
1.l5 17.2 1.2 1.5
3. Coefficients of H minimal basis AO from unéontracted SCF
calculations on C2H2
1.00 0.5 1.9
4. Coefficients of H minimal basis AO from uncontracted SCF
calculations on CH4
1.00 2.2 0.4

a . . iy s
All errors are given in millihartrees.

acetylene made with various hydrogen minimal basis set orbitals

contracted from six s-primitives, with respect to calculations

made with the uncontracted hydrogen 6s basis.

In addition to

the two contracted orbitals just mentioned the Table also lists

some results using minimal basis sets that yield optimal
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results in C2H2 apd CH,. The carbon basis in these calcula-
tions is a4(65,3p) basis. The degree of contraction of the
carbon basis influences the errors in Table 9 to less than 0.1
millihartrees.

Since acetyleﬁe and mefhane are usually found at opposite
ends of the scaling range, the error in other hydrocarbons are
presumably no larger. For use as a single basis function the
minimal basis No. 2 with a scaling factor of 1.08 would seem to
represent an optimal compromise.

In cases where a hydrogen atom will dissociate from the
molecule or where additional accuracy is required, some diffuse
primitives must be édded to increase the flexibility of the

basis. The quality of various basis sets of this type is

illustrated in Table 10. The coefficients of the minimal basis

Table 10. Atomic and molecular hydrogen errors with the
optimal H, contracted orbital and diffuse primitives
for a 6s Basis?

Scale Factor = Contracted Basis Atomic Molecular
1.00 one s orbital 18.6 0.4
1.00 two s orbitals 1.9 0.4
1.00 : ‘three s orbitals 0.2 0.4
1.00 uncontracted basis 0.2 0.4
21.10 one s orbital 48.5 14.4
1.10 two s orbitals 2.7 1.7
1.10 three s orbitals 0.3 0.5

- 1.10 ‘uncontracted basis 0.3 0.5

a » . . .
All errors are in millihartrees.
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orbitAI are those from case 2. of Table 9 (i.e., from an
uncontracted H, célculation with the scale factor unity). The
second and thifd 6rbital, where present, are the one or two
most diffuse single gaussian primitives. The error listed is
with respect to the exact value in the atom and with respect to

the s-limit of the SCF approximation in the H, molecule.

2
It is apparent that, when at least two s orbitals are
used, the choice 6f a scale factor of unity will give equally
satisfactory results, within a millihartree, for the free H
atom as well as for the H orbital in a molecule. Ffom the data
given in Table 9 for case 2., it can be inferred that this

choice will also give millihartree accuracy for hydrogen in

other molecules. .

H. Polarization Functions

In ordcr to conctruct symmctry orbitale for uee in
molecular calculations, admixtures of all primifive'functions
(or combinations of primitives transforming according to the
irreducible representations of the molecule's point gfoup)
should be included in the algorithm. While for atoms in the
first and second rows this restricts the primitives to be of s
or p symmetry, functions of higher angular momentum may mix in
for molecules. Such functions allowlthe MO's to polarize in
the direction of the bond and were initially suggested by
Neébet [18]. Polarization functions are known to provide a

substantial energy lowering and improvement of expectation
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values when compared with similar calculations without such
functions. In the COlmolecule, approximately three or four
sets of even-tempered 4 primitives are required in order to
attain millihartree deviations from the s, p, d basis set limit.

Table 11 shows the energy lowering with the inclusion of 4

Table 11. Optimal ET d-symmetry parameters and energies for CO

Basis® ‘ Carbon Ooxygen
Alpha Beta Alpha Beta Energy

(10s,5p/5s, 3p) -- - - -— =112.6958
(10s,5p,1d/5s,3p,1d) 1.00000 1.09660 1.00000 1.03890 -112.7619
(10s,5p,2d/5s,3p,2d) 0.06588 3.89619 0.03088 5.87085 -112.7680
(10s,5p,3d/5s,3p,3d) 0.06856 3.81904 0.04689 4.22070 -112.7704
(10s,5p,4d/5s,3p,4d) 0.06050 3.62110 0.02814 4.11723 =112.7712

4contracted orbitals are the optimal contracted orbitals for
10s, 5p. . ‘

functions optimizéd for the CO molecule. The 1d and 24 expo—'
nents were optimized with a (6s,3p) and (8s)4p) respectively,
instead bf.with the'(108,5p) basis. Although a satisfactory
dceoription of some properties may be obtained without such
functions, others, like the internal rotation4in-hydrogen
peroxide, require that they be present in the basis set. They
likewise have a strong influence on the potential energy
surfaces of the HNO system as will be seen in section II of
this work. A recent study by Poirier and Kari [19] indicates

that for the computed one-electron properties of first and
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second row hydrides there is no economic justification for
including f-symmetry pblarization functions. For CO they lower
the total energy by‘at most 6 millihartrees, since the actual
restricted HF limit for CO lies within a couple millihartrees
| of -112.7892 Ep obtained with a vefy large s, p, 4, f Slater-
type orbital (SfO)ﬁbasis [20].

'I. Regularity of the Total Energy and Dipole Moment foi 16/0)

In the case of the free atom a systematic approach to the
complete basis provided sufficient regularity in the total
energies that'extrapolation to the integral transform limit
. became feasible. ‘Similar behavior is found in the carbon mon—
oxide ﬁolecule; ‘However, the increase in basis set size in
going from an'atom to a molecule precludes the use of as large
é set as_wéé used in the atoms. Table 12 lists the results
of Hartrée'extrapolations on the total enefgies obtained with
s, p, and s, p, d basis seté,

Another commonly computed molecular property is the dipole
moment. -Since this proper£y<is rather sensitive to tﬁe basis
set's ability to ?roperly spaﬁ a region of space other than
near the nucleus it was of interest to see if the use of an
energy.optimized ET basis would allow an extrapolation of the
values obtained with some smaller bases. In Table 13 the
values of the dipole moment from polarized and nonpolarized ET

bases are reported. In some cases additional diffuse primi-



45

Table 12. Hartree extrapolations of CO total energies

Basis : Energy E(limit)
(6s,3p) -112.3919 -
(8s,4p) -112.6464 -
(10s,5p) ' -112.6980 -112.711
(12s,6p) -112.7118 -112.717
(14s,7p) -112.7156 -112.717
(l6s,8p) -112.7160 -112.716
Basis | Energy | . E(limit)
(6s,3p,14) -112.4919 -
(8s,4p,24d) -112.7231 -
(10s,5p,3d) ~112.7704 -112.783

(12s,6p,44d) -112.7815 -112.785

tives with an s exponent of 0.06 and a p exponent of.0.03 were
added to the baéis to help in describing the region of space
far from the nucleus.

Thé HF limit value is close to 0.276D and the experi-
mental value obtained by microwave spectroscopy is =0,112D.
The fact tha£ the HF value has incorrect sign is not of concern
" to us for this work. What seems evident from these results is
that the valﬁé of this property is too highly dependent on
diffﬁse primitives in the basis to allow extrapolation. Even
though basis sets A and B or C and D must converge to the same
limit they are still far enough apart in their values that a

simple extrapolation would seem of questionable merit.
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Table 13. Dipole moments from various ET basis sets on co?
Basis A Basis B Basis C Basis D
(6s,3p) -112.362 < -112.426 (6s,3p,1d) -112.491 -
0.641 0.581 0.088 -
(8s,4p) -112.640 -112.649 (8s,4p,24d) -112.723 -
0.552 ,0.567 e 0.336 --
(10s,5p) -112.696 #112.701 (10s,5p,1d) -112.770 --
- -~ 0.506 © 0.543 o 0.212 0.258
(12s,6p) =-112.7092 -- -- --

0.479

8 Every entry contains the total energy (in hartrees) in the
first row and the dipole moment (in Debyes) in the second row.
Basis set B contains the functions in Basis A plus some addi-

~tional diffuse primitives.
in Basis C plus some additional diffuse primitives.

Basis D consists of the functions
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III. A HYBRID GAUSSIAN INTEGRAL SCHEME

A. Objective

Numerous studies done at the Hartree-Fock SCF level show
the effects of basis set truncation and give an indication of
the need for large flexible sets to obtain chemical accuracy
(~1 millihartree/atom). Only large sets are capable of
reliably yielding results whiéh truly reflect the level of
inherent physical and mathematical approximations in the theory
‘employed in the calculation. When inadequate bases are used it
is difficult to ascertain whether disagreements with experi-
mental resulﬁs arise from the basis set or other theoretical
approximationé.

Since a large number of primitives are needed to describe
the cusp behavior near the nuclei, it might be hoped that the
omission of such primitives would produce an error that is
quantitatively transferable to other geometries or states. If
this were true the error would cancel fér many cases of
chemical interest. That such is not.the case, however, is
evidenced by the lack of parallelness between energy surfaces
of small diffuse primitive sets and those of large sets.
Various model potential and pseudo-potential methods are
currently being explored for circumventing the lengthy cusp

expansion.
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In the procedure developed here the AO basis for the
mélecular calculations is large enough to guarantee at least
millihartree/atom accuracy in the total energy. However, only
the intra-atomic integﬁals are actually calculated with this
large basis. Moreover, they are merely retrieved from an
atomic archive. All inter-atomic integrals are calculated
from a shorter substitute basis which approximates the large
basis sufficiently well to insure an accuracy on the order of
a millihartree. The essence of our investigation is to demon-
strate that such an approach is indeed feasible by developing
a particular. implementation for several specific systems. The
scheme is applicable at small as well as large internuclear
distances. Although our principal objective is té facilitate
ab initio calculations with large basis sets, it is also
possible to use the technique with smaller basis sets, albeit
with a smaller sa§ings in time.

Another obstacle to obtaining chemical accuracy in
molecular calculations based on analytic expansions in terms
of gaussian primitives is the computation of very large
numbers of two-electron repulsion integrals. For molecules
possessing no exploitable symmetry the number of such inte-
grals is proportional to (N**4)/8, where N is the number of
primitives. This dependency on N currently precludes high
accuracy basis sets for asymmetric molecules with more than

four first row atoms. Even with much smaller basis sets large
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. scale ab-initio calculations on medium sized molecules con-
taining eight to fwelve atoms, are only tractable with the
use of various algorithms for pretesting blocks of integrals
to'partially avoid computing those which are negligibly small
in magnitude [21-23]. This procedure can reduce the integral
problem to approximately a cubic in N, and it can, likewise,
be used in’addition to the approximation outlined in the

preceding paragraph.

B. A Fitting Procedure for the Small Basis

The conceptual formulation‘Of the integral merging scheme
is simple. A set of radial functions expanded in terms of a
small number of primitives is fitted to a set of accurately
determined HF-AO's, generally given by an expansion in terms
of a much larger set of primitives, 1In a molecular calculation
the numerous multi-center integrals would be generated with the
AO's from the small set, while all one-center integrals would
come from fhe proper set of AO's with the large primitive set.
The approximated-integralé should deviate from the "exact"
mﬁlti-center integrals by some acceptable tolerance. All
"exact" one—centerlintegrals from the large basis (compﬁted in
terms of primitives all on one center) could be generated once
and then stored. The integrals from these atomic calculations

would be merged with - the approximate multi-center integrals
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for use in molecular calculations. Figure 6 shows a diagram-

matic breakdown of which integrals would be approximated for a

hypothetical diatomic AB using this scheme.

A B
Diffuse , Diffuse
Primitives NG : g Primitives
\\\ ,,’
N Pid
N Vg
\\ 7
\(’
‘SCF AN . SCF
AO L] s ,, \\ . . AO ' S
Vi ™
7 AN
’, AN
o . . N
--- approximated

—— exacét

Integrals between AO's in each rectangle are exact.

Figure 6. Diagramatic breakdown of integrals for a diatomic
AB molecule computed with the merging technique

In order to test this idea we choose as "large" bases a
(6s) primitive basis on hydrogen, a (16s,8p) primitive basis
on carbon, nitrogen and oxygen and a (22s,12p) primitive
basis on sulfur, all of which yield approximations to the

exact atomic SCF wavefunctions with energy errors of less than
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a millihartreée. These atomic SCF calculations employed the

even-tempered parameters given in Table 14, from which the

Table 14. Even-tempered parameters used in the "large" basis

sets
Carbon Nitrogen Oxygen
Ns/Np Alpha Beta Alpha Beta Alpha Beta

‘16 0.04133 2.4255 0.05603 2.4026 0.07501 2.4177
8 0.03096 2.6642 0.04451 2.6711 0.05318 2.7374

Hydrogen Sulfur
Ns Alpha Beta Ns/Np Alpha Beta

6 0.03199 3.2577 22 0.05228 2.1914
: 12 0.03644 2.4153

expansion of the occupiéd SCF AO's are easily reproduced.

These SCF AO's are then fitted by shorter expansions containing
the following numbers of primitives: (4s,3p), (6s,4p), (7s,5p)
in ¢, N, and O and (7s,5p), (8s,6p) in S.

Coefficients and exponents for the fitting'fﬁnctions come
from a simultaneous least squares, nonlinear fitting of the
HF-AO's defined in the accurate basis set. The set of Ns AO's
is first deorthogdnalized according to the method of Raffenetti
and kuedenberg [24] to give the characteristic cuspless parts

for the 2s and 3s AO's. With a straight minimization of the
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sum of the individual deviations, one arising from each of the
AQO's, a problem of local minima is encountered. To circumvent

this problem the'quantity which was minimized was taken as:

[y (o) + 0,) = (00,1212 (3.1a)
where ; ' ~oi2'= fdrr2(¢?cc - $i)2 (3.1b)

The parameter gamma determines which of the two factors will
dominate the fitting procedure. At gamma = 0.5 the standard
deviations for the two orbitals are forced to be equal. For
gamma >>0.5 the sum of the two deviations is being minimized.
In sulfur the deviation of the ls was ignored. Once optimal
expénents were found the orthogonal set of AO's was least
squares fit. InApractice a value of gamma = 0.510 - 0.502 was
found best.

The 2p orbital was fitted with a weighting factor of
1 + (1/r)/<1/xr>. The value of <1/r> was the appropriate one
for each particular atom. In sulfur the 2p and 3p were not
weighted.

A simple leést squares fit was used for the hydrogen
fuinction. Some imprpvement was found by subsequent nonlinear
variation of the exponents so as to obtain good energies for
C2H4 and C,He. Table 15 contains the normaiized fitting

functions which have so far been tested. For hydrogen two

expansion lengths were fitted to the normalized optimal H,



" Table 15. Small basis contracted orbitals fitted to the accurate AO's

BS-Expansion

Expohients . 1s AOQ

0.148553  0.466251
0.655308 0.563014
4.427656 0.114657

4s-Expansion

Hydrogén s-symmetry

bs-Expansion

Exponents 1s kO

0. 129816 0.354942
0.441380 0.524776
1.655008 0.227469
10.337910 0.039041

Carbon s-symmetry .

" bS-BExpansion

Exponents 1s A0 2s AO Exponents 1s RO 2s AO
0.202623 -0.020u492 0.817607 0.138121 -0.001569 0.471038
0.811746 0.092856 0.290926 O0.uu4623 0.005631 0.636181
5.754027 0.697760 =-0.281€60 2.001122 0.154740 -0.033565
33.389878 0.362834 -0.073112 S. 827941 0.531046 -0.212924
20.804388 0.360747 -0.078197
113.717501 0.102334 -0.024723
7s-Expansion
Exponents 1s AQ 2s AO
0.122369 0.002238 0.3655Z6
0.354639 -0.008228 0.636622
0.977973 0.046462 0.133129
3.672232 0.410214 -0.199845
11.287713 0.462357 -0.119769
. 41.336238 - 0.19€8329 -0.0482Z9
-226.646517 0.042435 -0.008021

€S



Table 15. Continued

Carbon p-symmetry

3p-Expansion 4p-Expansion 5p-Expansion

Exponents 2p AO Exponents 2p AO Exponents 2p AO
0.147838 0.480664 0.109285 0.306434 0.089629 0.202677
0.605057 0.562737 "0.363130 0.543669 0.256613 0.470321
3.098134 0.180847 1.305269 - 0.316617 0.767172 0.386495
6.372827 - 0.071145 2.578531 0.153578
12.217748 0.028280

Nitrogen s-symmetry

Us-Expansion 6s-Expansion

14°]

Exponents 1s A0 2s A0 Exponents 1s A0 2s AO
0.329011 -0.022u18 0.923565 0.211099 -0.000723 0.523025
1.630404 0.151620 0.162535 0.680192 0.008060 0.594303
9.597651 0.708962 -0.291192 3.702469 0.291556 -0.104707
55.385702 0.297975 -0.056177 11.450813 0.525890 -0.190281
41.979337 0.266764 -0.056515

7s-Expansion

Exponents 1s AQ 2s AO

0.137648 -0.000603 0.213538
0.368286 0.002022 0.623866
1.061993 0.009878 0.322098
3.869077 0.306304 -0.167548
11.908892 0.519810 -0.161337
43,634667 0.256764 -0.062001
1237.621933 0.058217 -0.013066

230.153400

0.060764

-0.015497



Table 15. Continued
- Nitrogen p-symmetry
3p-Expansion 4p-Expansion Sp-Expansion
Exponents 2p AO Exponents - 2p AO Bxponents _ 2p AO
\ N \
0.208183 0.472236 0.161404 0.316113 0.116362 0.167814
-0.894184 0.577238 0.546277 0.537646 0.336080 0.451520
4.614036 0.1803851 1.965535 0.316878 1.005332 0.412265
' 9.459355 - 0.071462 3.358313 0.181068
‘ 15.664872 0.03u4607
Oxygen s-symmetry
4s-Expansion 6s-Expansion
Exporents 1s AQ 2s AO Exponents. 1s A0 2s A0
0.386277 -0.019023  0.803408 0.257402 0.000011 0.453908
1.545005 0.093029 0.312281 0.843619 0.002122 0.649143
"10.509882 0.694443 <~0.291847 3.416036 0.143546 -0.011381
60.314388 0.364047 -0.081221 10. 465813 0.540072 -0.231562
37.621872 0.364914 -0,.086041
206.035910 0.101639 -0.,026007
Ts-Expansion
Exponents 1s A0 2s AO
0.226946  0.002105  0.343596
0.667978 -0.007057 0.637572
1.868227 0.048697 0.158121 -
6.300774 0.410281 -0.206522
20.764500 0O.461482 =-0,.,130158
75.689975 0.195948 -0.050462
414,465533 0.041555 -0.0085449

S§



Table 15, Continued

3p-Expansion

Exponents 2p A0

0.268528 0.476345
1.183311 0.569557
6.129938 0.195015

Oxygen p-symmetry

4p-Expansion

Exponents 2p AO

0.193895 0.305329
0.685443 0.532386
2.513505 0.337723
11.989289 0.080587

Sp-Expansion

Exponents 2p AO
0..157876 0.203772
0.468683 0.u484734
1. 425085 0.400592
4.766168 0.177319
22.046385 0.033475

96



0.166538

Table 15. Continued
' ' sulfur s-symmetry
7s-Expansion
. Exponents 1s AO 2s A0 3s A0
0.114570 0.001923 0.004073 0.249590
0.251073 -0,007188 -0.017052 0.560886
0.516087 0.010630 0.047910 0.389115
2. 124309 -0,025737 0.563349 -0.381585
- 5.304948 0.065939 0.527235 =0.216545
35.887364 0.606993 -0.286144 0.089537
167.934566 0.460702 -0.156889 0.045704
8s-Expansion
BExponents 1s AO 2s AO 3s AO
0.114570 0.054160 0.003055 0.242476
0.251073 -0.016544 -0.011412 0.594288
0.550208 0.021989 0.041373 0.373527
2.074844 -0.037735 0.544466 -0.386120
5.226022 0.073224 0.548925 -0.222491
33.615957 0.529467 -0.256656 0.079678
123.620370 0.447169 -0.158888 0.046966
677.015440 0.123568 -0.033874 0.009872
Sulfur p-symmetry
Sp-Expansion 6p-Expansion
Exponents 2p AO 3p a0 Exponents 2p RO 3p AO
0.088020 0.032336 0.207422 0.088020 0.008009. 0.,206883
0.212592 -0.084300 0.502224 0.212593 -0.021284 0.505160
0.587405 0.15€6428 0.426991 0.598660 0.063398 0.434205
4.216851" 0.704031 -0.174541 2.799767 0.487347 -0.105775
19.004673 0.377793 -0.108104 9.196934 0.501222 -0.149470
35.452004 -0.040729

LS
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function. Although if was possible to generate fitted func-
tions with less than four s-primitives which gave less than a
millihartree error for Hy, these were not optimal for C-H
bonds.

For all the fitting basis sets a limited amount of addi-
. tional nonlinear variation of the exponents was made at the
equilibrium geometry and at a point on either side of the
equilibrium point to see if a better fit could be obtained.
Generally the final exponents were close to those obtained by

the procedure described earlier.

C. Minimal Basis Set Results

Extensive tests were conducted on CO and N, with the
integral merging technique. Both minimal and augmented basis
sets were employed. The minimal basis setrcélculations
involved six runs af various internuclear separations with all
integrals computed exactly and with the two-center ones
approximated by use of the merging scheme. A (16s,8p) ET basis
was used for the exact calculations and for the one-center
integrals which were stored for use with the merging technique
calculations. At each point the deviation in total energy, one-
and two-electron components of the total energy, kinetic and
potential energies, and the orbital energies were determined.
In addition, the average deviation between the two sets of co-
efficients was computed. The values found for CO are contained

in Table 16, those for N, are listed in Table 17.

2
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Table 16. Energy and orbital coefficient differences between
merged and exact minimal basis set calculations on
CO with a (16s,8p) ET basis

R E E1 E2 T v 3s 4s 5s 1pi
1.90 0.0 =-2.0 2.0 boy =-4.4 0.4 0.1 -0.2 0.1
3.3 4.3 6.7 0.5

0.7 2.“ "1.7 1.5 -009 0.5 -0o6 0.“ 0-0
3.6 4.9 8.2 7.8

4.5 =-20,0 24,6 55.7 -50.7 4.7 1.9 -4,5 2.4

68,2 12.4 12. 4 8.0

2013 0.0 -105 105 3-3 -3¢3 Oo3 "0.1 -001 0.1
2.4 3.1 3.6 0.9

0.9 2.3 -=1.4 0.3 0.6 0.0 ~0.3 0.5 0.1

3.1 4.6 10.5 2.6

2.0 -11.0 13.0 23.8 -21.8 3.5 -0.3 -3.7 1.5

51.2 65.8 70.5 7.4

2.30 0.1 -1.2 1.3 2.7 -2.6 0.3 -0.1 0.0 0.1
2.1 2.7 1.6 0.9

0.5 0.9 -0.4 0.6 =-0.1 0.0 -0.1 0.4 0.1

3.2 4.8 7.9 4.2

008 -5.9 6o6 uo1 -3ou 3.2 "1-“ -3.5 1.0

46.8 41.4 35.6 8.1

2,50 0.1 =-1.0 1.1 2.1 -=2.0 0.2 -0.1 0.1 0.1
_ 2.1 2.4 2.9 0.4

-0.1 -105 1.“ 1.9 -2.0 0.0 0.2 0.1 -0.1

4.0 4.8 4.7 5.1

0.1 0.6 0.5 -15,0 15.1 2.9 -2.2 -3.3 0.6

- 45. 4 22.6 16.8 8.7

2.70 0.0 -1.0 1.0 1.7 -107 0.2 0.0 0.1 0.’
2.2 2.3 1.9 0.5

-0.5 =2.2 1.8 2.2 =2.6 -0.1 0.2 -0.1 0.1

: 5.0 6.1 5.7 3.3

1.0 5.0 =6.0 -22.1 23.1 2.5 -2.0 -3.1 0.4

44,8 26,7 27.8 9.0

All energy deviations are in millihartrees. The basis sets are
given in the order (7s,5p), (6s,4p) and (u4s,3p) top to bottonm.
Each entry in the four righthand columns contains the orbital

energy deviation on top and the standard deviation in the or-

. bital coefficients X(10#**4) beneath it for the three sigma

and 1pi occupied valence orbitals. The five lefthand columas

are total,

one~, two-electron, kinetic and potential energies.
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" As was noted previously the fitting procedure describes
the near nuclear regions poorly. Thus the accuracy of the
merging technique generally will decrease with decréasing
internuciear separations. As‘R———>°° the error will tend to zero
~since only the exactly computed one-center integrals will be
left. Multiple bonding, such as in CO and N,, represents a
difficult test of the technique since the equilibrium bond
lengths are so short, 2.13 and 2.07 bohr respectively. Some
singlé C-0 bonds distances, as in methanol, are as large as 2.7
bohr while some N-N bond distances, as in N2H2, are nearly 2.8
bohr.

An integral by integral analysis of the 319 two-center
integrals for minimal basis set CO calculations shows a‘totai
absoclute difference between the exact and approximated sets
ranging from 0.013 Eh for the (7s,5p) to 0.195 Eh,for the (4s,
3p). The total difference was 0.005 for the (7s,5p), and
-0.012 for the (4s,3p). Only 38 integrals had an error larger
than 0.0001 a.u. for the (7s,5p), the maximum being 0.0008 a.u.
For the (4s,3p), 34 integrals exceeded 0.001 a.u. in error, the
maximum being -0.006 a.u. The greatest difficulty seemed to
lie with hybrid integrals involving the 1s function. This is
probably a result of the poor description of the cusp. Of
course each integral enters the Fock matrix multiplied by some
element of the density matrix. Therefore no straightforward
connection exists between the error in a givep integral and

the final error in the total energy. As is evident from the
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results in Tables 14 and 15 the procedure utilizes the devia-
tions which do exist in the integrals in such a manner that a
high degree of cancellation of error occurs. In most instances
the total and orbital energies are an order of magnitude more
accurate than the one and two electron components of the total
energy.

Tests of the 3s and 4s fittings of.the optimal contracted

orbital from H, are shown in Table 18 for scale factors of 1.10

2
and 1.14. Although the differences in total energy are nonzero
for the 4s fit, as mentioned earlier this choice of exponents

gave good C-H bond results. The error which does exist is

quite stable over a wide range of internuclear distances.

Table 18. . Minimal basis set total energy differences between-
merged and exact calculations on H, with a 6s basis

R Scale Factor = 1.10 . Scale Factor = 1.14
1.2 0.5 - 0.5
1.8 1.9
1.4 0.5 0.5
0.9 0.7
1.6 0.5 0.5
-0.2 -0.6
1.8 0.5 0.4
-0.9 -1.2

aTop entry is from the 4s fit, bottom is from the 3s fit. All
entries are in millihartrees.

For sulfur a (7s,5p) fit was made of a (22s,12p) ET set of

.AO's. The deviations in total energy, one-electron component
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of the total energy, and orbital energies for this fit are

listed in Table 19.

Table 19. Minimal basis set differences between merged gnd
exact calculations on 82 with a 22s,12p basis

R Ep El 3s 4s . 5s 9s lpi 2pi 7pi
3.4 -0.4 -9.4 1.2 -0.9 =0.3 -0.6 0.4 0.0 -0.7
3.6 -0.1 1.0 0.4 -0.6 1.0 -0.5 -0.2 =-0.2 -0.9
3.8 0.1 -4.4 -0.2 -0.6 0.9 -0.4 0.1 -0.1 -0.7

aa11 energies are in millihartrees.

In an effort to judge the accuracy of the method on poly-
atomic molecules further minimal basis set calculafions were
run on formaldehyde, ethylene and ethane with all the fitted
basis sets. Although the error found for these systems with
the smallest fitting bases were significantly larger than in
the diatomic cases the error were constant in going from ethane
to ethylene. This suggests that heats of reactions for similar
systems may be predicted fairly well with this small basis.

The deviations in total energy and the average absolute devia-

tions in the orbital energies are listed in Table 20.

D. Extended Basis Set Results
"When the contracted basis set is larger than the minimal
AO set, then the merging techniqﬁe uses the most diffuse primi-
tives from the fitting basis sets to augment the atomic . |

orbitals. Generally these primitives are not contained in the
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Table 20. Minimal basis set differences between merged and
exact calculations on formaldehyde, ethylene and

ethaned

Basis ‘ ) AE . . orbital dev.

(4s,3p/3s) -0.1 2.5

’ -8.0 3.5

-8.9 4.7

(4s,3p/4s) -5.0 2.1

' -6.7 2.5

-6.4 3.1

(6s,4p/3s) .3 0.5

2.2 0.8

2.0 1.2

(6s,4p/4s) A -0.2 0.3

‘ 1.8 0.3

2.0 0.2

(7s,5p/3s) 0.3 0.7

-0.2 0.9

-0.9 .1'7

(7s,5p/4s) 0.0 0.2

: 0.1 0.3

0.0 0.3

2a11 energies are in millihartrees.

original large basis sef so that additional primitives must be
added to the large basis in order to run a check on the
accuracy of the merging technique. For example, the (3s,2p)
contraction on CO with the large (l6s,8p) basis wouid require

~ One additional s-primitive and one set of p-primitives per atom
to test the merged calculations against. In the largest case

the (5s,4p) contraction was tested against a full ab initio
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calculation done with (19s,1lp) primitives. Table 21 shows the

energy losses with various contractions using the merging

Table 21. Energy losses for gontracted basis set merged
calculations on -CO

(3s,2p) Contr. (4s,3p) Contr. (5s,4p) Contr.
R(bohr) AET AET AET ’
2.0 0.4 -0.3 ) 0.2
1.0
11.3
2.13 0.3 -0.1 0.1
0.9 -0.4
8.5
2.2 0.2
0.7
6.7
2.5 0.2
0.3
3.2

aa11 energies are in millihartrees.

technique. The relationship between thé uncontracted (16s,8p)
”CO energy and the energy obtained with various HF-AO contrac-
tion lengths using the diffuse primitives from the fitting
basis sets is given in Table 22. All values given in this
table are from full ab initio calculations.

In an effort to expedite extended basis set calculations
on sulfur the two most diffuse s- and p-type primitives from

the (225,12p) set were used as the most diffuse primitives in
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Table 22. Energy differences between an uncontracted (l6s,8p)
ET basis and the HF-AO-diffuse primitives contrac-
tion scheme on CO with diffuse prlmltlves from the
flttlng basis sets?®

. . Fitting .
Contraction Basis E(total) 3s 4s 5s . 1pi
(5s,4p) (7s,5p) -1.9 0.2 0.4 -0.1 0.3
(5s,4p) (6s,4p) -3.4 -0.4 1.2 0.2 1.1
(4s, 3p) (7s,5p) -5.0 0.9 2.5 0.2 1.7
(4s, 3p) (6s,4p) -6.2 -1.1 1.6 -0.5 0.5
(4s,3p) (4s,3p) - =20.1 0.7 -0.4 -1.3 -0.5
(3s,2p) (7s,5p) -27.0 32.5 6.1 -4.2 7.3
(3s,2p) (6s,4p) -19.1 19.4 3.1 -5.0 3.5
(3s,2p) (4s,3p) -25.5 8.8 0.7 ~-2.8 0.5
(2s,1p) none - =~149.9 194.2 53.0 36.4 54.3

3a11 entries are in millihartrees. The four columns on the
right contain the deviation in the orbital energies.

the fitting set. Thus, for contractions equal to or less than
5s,4p no new additional primitives need be added to the larger
set in doing'the one—center,integrals. If this had not been
done the large basis set wouid have ballooned to (24s,14p) or
larger in the case of some extended basis set calculations.
The inclusion of d-symmetry primitives in the basis does not
present any unusual problems for the technique. When such
functions were added to the basis on CO a merged calculation
gave little additional error.

As a further test of the accuracy of the sulfur functions,
calculations were done on the SO2 molecule in its ground state.

' Two contractions, a (3s,2p/2s,lp) and a (6s,4p/4s,2p), were
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chosen. The ab initio values of the total energy are
-546.7544 and -547.0035 a.u. for the two contractions
respectively. Although the (7s,5p) fitting basis for sulfur
performed adequatély at the minimal basis set level its
performance deferiorated when the additional contracted
orbitals were introduced. For this reason two extra fits were
made of sulfur, an (8s,6p) and a (9s,7p). The results for the
total, kinetic, potential, one and two-electron combonénts of
the total energy and the average absolute deviation in the

orbital energies is given in Table 23. No attempt was made to

Table 23. Minimal and extended basis set calculations on 802a

Fitting Basis Eq El E2 T v e
(7s,5p/7s,5p) ~4.2 -0.9  -3.3  26.9  -31.1 0.5
» -9.3  -11.4 2.1 39.7  -49.0 0.6
(85, 6p/7¢,5p) ~0.4 7.0  -7.4  =5.9 5.5 0.2
“1.8 ~3.1 1.3 13.8  =-15.6 0.2
(9s,7p/7s,5p) 0.3 0.7  -0.4 4.5 ~4.2 0.1
-0.5 ~4.1 3.5  27.3  =-27.3 0.1

@A11 entries are in millihartrees. The top entry for each
basis corresponds to miminal basis set calculatlon, the bottom
to the (6s,4p/4s,2p) calcuation.

improve these last two fits with any further optimization of
the exponents with regard to the 802 energy values. Our desire
was to determine in a rough fashion how rapidly the merged

basis calculations would improve as the size of the fitting
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basis was enlarged. It can be seen that the kinetic and
potential energies of the (9s,7p) fit are worse for the longer
contraction than the (8s,6p). This situation could probably

be improved by further optimization of the (9s,7p) basis.

E. Calculations on HNO with Smaller Primitive Sets

Thus far the basis sets which were fitted contained as
many primitives as were necessary to approach within a milli-
hartree of the HF limit for the respective isolated atoms.
This followed from our initial intent to derive an economic
prdcedure for doing calculations at this level of accuracy.
ﬁbwever, such Iong primitive expansions are not a prerequisite
for the merging teéhnique.

Much'smaller basis sets may be handled in a manner almost
completely analogous to the large ones. Limitations on the
smallness of the cets to be fit arise from the rapidly
decreasing flexibility of the even smaller fitting basis and
£he lack ongaussians in the large set with a sufficiently large
exponent to be classified as essentially "near nuclear" in
nature. For example, if only three p-type primitives are used
for a second row atom the largest exponent in the energy
optimized ET set has a value in the range 3-10. This corre-
sponds to an <r> of ~0.6-0.2 a.u. These are fairly difficult
to approximate with the merging procedure. For practical
purposes the lower limit of usefullness for the merging pro-

cedure falls around (8s,4p) for the basis set to be approximated.
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If diffuse primitives are to be used in the approximate
calculation, they will always be the most diffuse primitives in
the fitting basis. However, as noted earlier in thé discussion
on CO, two choicés preseht theméelves with regard to how the
‘exponents of these diffuse primitives can be determined. The
most effective.Choice is obtained if all functions in thé
fitting basis are determined by optimélly appfoximating the
" atomic SCF'orbitals, thus also determining the diffuse primi-
tives. The only drawback of this procedure is.that in com-
parison calculations with the large basis the diffuse fitting
‘primitives must be added to the primitives of the large basis
to obtain the correct extended basis. This might unduly
increase the number of primitives in an already large basis.
This inconvenience can be évoided by choosing as diffuse primi-
tives those of the large basis. But this implies that the most
diffuse primitives in the fitting basis are predetermined, thus
limiting the flexibility of the fitting basis and reducing its
ability to approximate the large basis accurately.

| In general we find that a (6s,3p) fitting basis is needed
.to insure that errors in the total energy will remain on thé
millihartree levél when the geometry is changed or when one
progresses from a minimal basis set calculétion to an extended
basis set calculation. If we restrict ourselves to a minimal
number of contracted orbitals then only a (4s,3p) fitting
basis is required. The reduction in the number of primitives

from (8s,4p) to (6s,3p), while not as spectacular as that for
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a larger basis, still provides a 3:1 reduction in the number of
integrals over primitives if the N**4 dependence holds true.
Obviously this could be a considerable savings if an energy
surface was being computed.

We chose the HNO system to test the accuracy of the
merging technique for small bases with the exponent restric-
tions mentioned_above. We had previdusly performed calcula-
tions on this molecule in various geometries with an (85,4p/4s)
quality basis, both with and without polarization functions.
Three geometries were chosen, one corresponding to a meta-
stable O-H bond, one corresponding to a barrier with a three
center bond, and one near the singlet ground state. The
barrier height is ~80 millihartrees and involves relatively
close internuclear distances. This represents the most diffi-
cult situation for the merging procedure. The metastable state
is éome 50 millihartrees above the groundstate.

More accufate ab initio calculations done with'a (10s,5p,
2d/4s,1p) basis at these same geometries shows a disagreement
of ~3 millihartrees with thev(85,4p,ld/4s,lp) basis. Thus we
would like the merged calculations to be as accurate. Table 24
shows the deviations.in total energy, one and two electron com-
ponents of’the £otai energy, kinetic and potential energies, and
the average absolute.deviations in the orbital energies for the

three geometries.
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Table 24. Contracted basis set merged calculations on HNO?

N

Geometry Eq El E2 T v é
H .6 4.3 -3.7 -4.9 5.5 0.5
O-N -0.2 3.2 -3.4 -4.7 4.5 0.4
JH 0.3 -23.8 24.0 -25.3 25.5 3.2
O— -2.1 -2.7 0.6 -6.1 4.0 0.6
H 1.2 1.2 0.0 -4.4 5.6 0.4
0-N” 0.6 0.9 -0.3 -4.8 5.4 0.3

8A11 values are in millihartrees. e is the average absolute
deviation in the orbital energies. fThe two entries for each
geometry correspond to the following large basis set calcula-
tions, (8s,4p,1d/4s,1lp) contracted to (4s,3p,1d/2s,1lp) and
(8s,4p/4s) contracted to (4s,3p/2s).

'In this molecule not all of the atoms were mérged. No
attempt was made to approximate any of the hydrogen centered
functions. ‘Thus as many or as few of the multicentered inte-
grals may be approximated in any given case, a flexibility

which adds to the power of the method.
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IV. THE HNO SYSTEM

A, Objective

Many triatomics composed of hydrégen and first row
elements have been the object of study by theoreticians. From
a theoretical standpoint an obvious practical reason for the
continuing interest in this group of molecules is the oppor-
‘tunity afforded to perform highly accurate ab initio calcula-
tions. They thus serve as a testingAground for new techniques
since limitations in the new algorithms must be measured
against more elaborate calculations quite possibly approaching
the exact result within several percentage points. Justifica-
tion for the interest in HNO and a review of past experimental
and theoretical work on the molecule is presented in the intro-
duction to the work of Dombek [25]. Only the ground to excited
singiet separati&n has been measured spectroscopically, the
value being 1.63 evV. Ishiwata et al. [26] infer a triplet
separation of 0.8 eV as a consequence of a mechanism they
propose. The lowest singlet (A'-symmetry) and triplet (A"-
symmetry) states ‘for the isomerization of linear HON to linear
HNO were computed by Dombek at 13 optimal SCF geometries
arqund the NO fragment. Because of the dominance of the SCF
configuration it was implicitly assumed that the reaction path
could be adgquately determined at this level of calculation.
To obtain the final‘set of orbitals and energies she utilized

a technique known as the Full Optimized Reaction Space method
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(FORS), which consists of alternate multiconfigurational-self—
consistent~field (MCSCF) and configuration interaction (CI)
steps in an Attempt to converge to what is, in some sense, the
optimal set of configurations at each geometry expressed in.
terms of an energetically optimal set of orbitals. A (6s,
4p/4s) ETG basis set contracted to (3s,2p/2s) with exponents
optimized at various points along the reaction path was
employed. The MCSCF procedure is one developed by Cheung,
Elbert and Ruedenberg [27].

In the present work an (8s,4p,1d/4s,1lp) primitive basis
contracted to (4s,3p,1d/2s,1lp) is used to compute the ground
and first excited singlet states and the lerst triplet state
SCF energy surfaces and the corresponding MCSCF isomerization
pathways. A leastfmotion approach of'HON to another HON,Awithf
both in the doubly occupied singlet groundstate, is also
iﬁvestigated to ascertain the barrier to proton transfer. This
reaction is a possible mechanism for the conversion of meta-
stable HON to stable HNO which would circumvent the 37 kcal/mole
barrier to isomerization in the isolated molecule.. The ground-
state éinglet curve was repeated with an even larger (10s,5p,
2d/4é,lp) p;imitive basis contracted to (5s,4p,2d4/2s,lp) in an
attempt to determine how close the (8s,4p,1d/4s,1p) basis is to

SCF limit convergence,
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B. SCF Calculations and Geometry Optimization
In Dombek's work on the isomerization curves an elliptic

coordinate system (R n, &) was chosen for the geometry opti-

ON’
mizations since an ellipse approximates the path taken by the
hydrogen as it travels around the NO fragment. Here n =

[R(OH) - R(NH)]/R(oﬁ) and £ = [R(OH) + R(NH)]/R(ON). Thirteen
values of n were chosen at which geometry optimizations Qith
respect to the other two variables were performed. These
geometries for the ground and first excited triplet states and
the next highest singlet excited along with their SCF energies
are listed in Table 25. The SCF electronic configurations for
these states are given by properly antisymmetrized functions of

the following space products with appropriate spin functions to

make a singlet or triplet:

La - is)*an?an?;anean?ran?am?  (4.1a)

1

(i) 4 (3012 (40) 2 (50) 2 (1mx) 2 (1my) 2 (4.1b)

A (linear)
[ (2rx) 2= (2my) 2]

3pn = (is)4£3a')2(4a')2(5a')2(6a')2(7a') (4.1c)
(1a") (2a")
£”(linear) = (is)?(30)2(40)2(50)2 (11x) 2 (17y)? ‘ (4.1d)

3
[ (2mx) (2my)=(27y) (27x) ]

1w = (is)%3an2(4an2(san) 2 6ar 2 (7a") (4.1e)
(Ia") % (2a") |
la(linear) = (is)3(30)2(40)2(50)2 (1mx) 2 (1my) 2 (4.1f)

[ (2mx) (27y) + (27y) (2mx)]
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Table 25. Optimal geometries and SCFP energies. for the lowest
singlet, lowest triplet and excited singlet states
of HNO with the (8s,4p,1d/4s,1p) basis set

Designation/Eta State R (ON) /2 Xi Energy
A S(A') 1.200 2.47 -129.6240
(-1.0) T (a") 1.205 2.47 ~-129.7069
S(A") 1.200 2.47 -129.6487
_ St 1.200 2.47 -129.6089

B S(A') 1.179 2,40 -129.6751
(-0.9) T (A") 1.231 2. 14 -129.7413
S (A") 1.220 2.33 -129.6811
C S{aY) 1.176 2. 24 -129.7053
(=0.7) T (A") 1.259 1.98 -129.7503
S (A") 1.220 2.17 -129.7022
D ' S(A') 1. 194 2.07 -129.6868
(-0.5) v T (A") 1.259 1.98 -129.7503
- S (A") 1.238 2.00 - =129.6894
E T S(A') 1.210 1.89 -129.6477
(-0.3) T (A") 1.262 1.81 = -129.7161
S (A") 1.242 1. 86 -129.6572
F S(A') 1.199 1.81 -129.6207
(-0.1) T (A") 1.249 1.70 -129.6754
' S(A") 1.227 1. 81 - =129.6267
M S(a') 1.185 1. 84 -129.6243
( 0.0) T (A") 1.240 1.75 -129.6666
S (a") 1.220 1. 89 -129.6303
G S(A') 1.161 1.95 -129.6426
( 0.1) . T (am) 1.211 1.85 -129.6752
S (a") 1.232 1.92 -129.6495
H : S(A') 1. 130 2. 21 -129.7005
( 0.3) T (A") 1.202 2,07 -129.7110
S (A") 1,232 1. 99 -129.6914
I S(AY) 1115 2.30 -129.7463
( 0.5) T (A") 1. 188 2.17 -129,7389
S (A") 1.236 - 2.09 -129.7202
J S (A') 1.106 2. 47 -129.7575
( 0.7) T (A") 1,152 2, 36. -129,.7471
S(am) 1.234 2.23 -129.7247
K S(A') 1.111 2. 60 -129.7108
( 0.9) ' T (A") 1.114 2.56 -129.7326
‘ S (A") 1.132 2.55 -129.6868
L S(A') 1.121 2. 65 -129.6419
( 1.0) T (A") 1.123 2. 65 -129.7013
S (a") 1.121 2. 65 -129.6580

St 1.121 2.65 -129.6163
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where (is) represents the totally symmetric.innérshell orbitals
on O and N. One additional éinglet state, a ;Z+ combination
corresponding to the (21rx)2 + (21Ty)2 oécupancy in the linear
configuration was not included in this study, because it was
substantially higher in energy than the other states. Two SCF
calculations were perfbrmed on this state at the linear geom-
etries. These are indicatea as S" in Table 25.

The optimal path for the singlet A' state given in Table
25 is plotted in Figure 7. All three states have very similar
curves so that differences between individual paths would not
be discernible in a plot of this scale except near the midpoint
of the paths. Even here the differences are nottgreat. Varia-
tions in the NO bond length are indicated and a set of energy
contours from a fixed NO diétance of 2.20 bohr is superimposed
over the path to indicate fhe degree of latitude the'path could
have. Outer contours for the two minimas have a value of
~129.680 E,. The increment between contours is 0.010 E .
Although variations in the structure of HNO for the three states
are not large, to take point J as an example, the use of the
groundstate singlet geometry for the other two states would'
have resulted in an energy loss of 0.006 Eh for the triplet and
0.012 E, for the excited singlet. No geometry optimizations
were attempted with the large (10s,5p,2d/4s,1lp) basis.

The geometries of Table 25 can represent the_“standard"‘

reaction paths corresponding to the steepest descent from the

barrier top only to the extent that the latter approximate
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Figure 7. SCF geometry optimized path for the hydrogén atom around the
NO fragment for the groundstate of HNO
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elliptic curves in the vicinity of the thirteen n values
chosen for thislseries of calculations. In the cases where
this approximation holds a determination of the & coordinate
would amount to an energy optimization along é coordinate ortho-
gonal to the reacfion path. How close the geometries of Table
25 are fo £he standard path can be approximately inferred from
Figure 8 where contour and perspective plots of the lowest
singlet state for a constant R(ON) value of 2,20 bohr are
'shown. While the true reaction path is a function of all three
geometry variables, a good indication of its position is
obtained by looking at a slice of this three dimensional hyper-
surface which corresponds to a fixed R(ON) value. An ellip-
ticai path would be represented by a horizontal line in Figure
8 approximately connecting the two minima. The particular
choice of the N-O bond length is a near optimal value from the
stable geometry minimum. Contour increments are 0.012 E, for
the contour plot. The lowest contour has an energy of -129.757
Eh for the HNO side. Although a single configuration wave-
function, as was used for these figures, cannot correctly
describe the'dissociation of groundstate HNO -> H + NO, the
paths for this reaction are clearly visible as valleys leading
up from the two minimas. Eventually, as the length of the
bond to hydrogen increases, the energy surface becomes planar
with a value equal to the SCF dissociation energy.

Variation in the total energy as a function of n for the -

values listed in Table 25 is plotted in Figure 9. Since
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HNO-NOH "A” SCF
ISOMERIZATION SURFACE

CONTOUR AND PERSPECTIVE PLOTS IN
ELLIPTICAL COORDINATES
AT CONSTANT Rgp = 2.20 ag
CONTOUR INCREMENT= 0.012 a.u.
LOWEST HNO CONTOUR = —129.757 a.u.
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I
earlier calculations with a much smaller basis yielded an

inverted order for these states at geometry J compared to the
values in this table, i.e., the triplet state was lowef in
energy than the groundstate singlet and the open shell singlet
was almost equal in energy to the closed shell singlet, it was
desirable to further investigate the effect of the basis set
size on these curves. 1In Figures 10a and 10b the relative
similarities of the groundstate and lowest triplet curves are
demonstrated by plotting the difference between the rest of the
curve and point J for a (6s,3p/3s), (8s,4p/4s), (8s,4p,1d/ds,
lp) and (iOs,Sp,Zd/4s,lp) basis set. Along with the vertical
~excitation energies this is a more significant indication of
the quality of a basis set than the absolute magnitude of the
total energy. If extra basis functions merely lowered the
curves by a constant amount they would be an expendable luxury
for chemists.

Several effects are noticeable. The most dramatic of these
is the large destabilization of the linear configurations with
respect to the rest of the curve. Part of this is due to the
fact that more d-primitives are of the proper symmetry to con=-
tribufe to the occupied MO's for the nonlinear geometries than
for the linear. The rest of the change seems due to the
increase in s- and p-primitives. A barrier height reduction of
24 millihartrees (15 kcal/mole) is also obtained in going from
the small to the large basis. This could conceivably be

reduced even further by enlarging the hydrogen basis set.
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A review of past and presen£ HF-SCF calculations at the
optimal gedmetry and near the experimentally determined‘geom—
etries for the two singlets is given in Table 26. Using flash
photolysis Dalby [28] gives the experimental geometry for the
groundstate as R(NH) = 2,007 a.u., R(ON) = 2,288 a.u. and
<HNO = 108.5°% and the excited state singlet geometry as R(NH) =
1.958 a.u., R(ON) = 2.345 a;u. and <HNO = 116.2°. 4The geo-
metries listed for the current work are either the optimal
geometry for the indicated basis or the experimental geometry
for the groundstate. The latter SCF energies were required for
Athé vertical excitation energy determination. Although the
groundstate geometry is predicted quite well, the excited
singlet state's NO bond length is larger than the experimental
value and the bond angle is predicted to be smaller than that
of the groundstate in disagreement with the experimental

‘ordering.

C. The Full Optimized Reaction Space Curves for HNO

Most chemically interesting phenomena can be adequately
described, at least gualitatively, by methods capable of
recovering a substantial fraction of the valence correlation
energy. The orbitals involved are those which are occupied at
the HF level along with some low lying virtual orbitéls. To
meet the above requirement and to facilitate the interprétation
of orbital changes which occur during the isomerization reac-

tion, Dombek and Ruedenberg chose to restrict themselves to an



Table 26. Hartree-Fock SCF results near the groundstate geometry for HNO

State R (NH) R (NO) <HNO Basis Energy Ref,

singlet 2. 109 2.311 105.1 Minimal-STD -129.3359 (29]

(A*) 1.962 2.496 110.4 (7s,3p/Us,1p) -129,.5880 {30]

exp. - exp. 109.0 gaussian lobe (-129.695) [ 31]

exp. exp. exp. gaussian lobe -129.,7344 [ 32]

1.871 2.305 109.5 6-31G -129.7843 [33]
exp. expe. exp. (6s,3psus) -129.3497 this work

1.945 2.360 108.9 -129.3522 " "

exp. exXp. exp. (8s,4p,1d/4s,1p) =-129.7555 " "

1.959 2.224 108.6 : -129.7589 " "

exp. 2XpP. exp. (10s,5p,2d/4s,1p) -129.8209 non»

1. 959 2.224 108.6 =-129.8254 " "

triplet 2.007 2.288 124,.0 gaussian lobe (=129.700) [31]

ar) 2.007 2.288 120.,0 gaussian lobe (-123.734) [32]
2.007 2.288 108.5 (6s,3p/uUs) -129.3491 this work

1.947 2.618 106.1 (6s,3p/Us) -129.3730 " "

2.007 2.288 108.5 (8s,4p,1d/4s,1p) =-129.7466 " "

1.922 2,201 106.2 -129.7496 " "

singlet 2.007 2,288 120.0 gaussian lobe (-129,.703) [32]
(A") 2.007 2.288 108.5 (8s,4p,1d/4s,1p) -129.7171 this work

1. 925 2.460 - 104.1 -129.7265 n "

Energies within parentheses are estimated from plots contained in the
referenced work. These numbers are probably accurate to wlthln a fevw
millihartrees.

S8
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orbital space obtained by considering only those orbitals in
the valence shell of the isolated atoms. This formal minimal
basis consists of the 1ls, 2s and sp orbitais for nitrpgen and
oxygen and the 1ls for hydrogen. These eleven functions are

divided into nine MO's of A' symmetry,and two of A" symmetry,

but the two inner shell orbitals, corresponding to the 1ls on
nitrogen and oxygen, will be kept doubly occupied throughout
all calculations. We are interested in obtaining the best

possible wavefunction within this space.

The procedure followed here is the same as that used by
Dombek. A complete CI in the space of these nine orbitals is
performed. The CI spaces are of dimension 1316, 1722 and 1204
for the groundstate singlet, triplet and excited state singlet
respectively. Then based on the expansion coefficients in a
natural orbital expansion of this wavefunction the dominant 7-9
configurations are selected for use in an MCSCF calculation
to optimize the orbitals in the space of the full AO basis set.
Although more configurations could be used, the total energy of
the full CI is rather insensitive to any additions. Following
this, a second CI is done to see if the important configura-
tions have changed as a result éf the MCSCF orbital optimiza-
tion. If the impo:tant configurations have changed from the
previous CI, a second MCSCF step on this new list of configura-
tions is done. A final full CI is performed. Since the
original HF calculation does not occupy all eleven orbitals a

preliminary small MCSCF calculation, with the occupied SCF
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orbitals frozen, is used to provide an approximate initial
guess for the remaining orbitals in the first CI. The twelve
configurations used in this small MCSCF are some obvious ones
which provide left-right correl&tion in the three bonds.
Total energies in the FORS approximation using the (8s,

4p,id/4s,lp) basis are listed in Table 27. ©Not all of the

Table 27. Total energies in the FORS approximation for HNOa

Point gs(a') T(A") S(A") Point S(a') T (A") S(A")

A -129.7226 .7674 .7226 G -129.7851 7778 (.751)

B -129.7814 (.811)%  .7587 H (-129.837) (.804) (.781)

C -129.8170 .8363 .7811 I -129.7574 .8216 .8043
D \(—129.808) (.824) (.772) J -129.8844 .8364 .8105
E (-129.783) (.802) (.756) K -129.8317 .8205 .7899
F ~129.7633 ‘.7791 .7330 L -129.7583 .7908 .7583

M -129.7698 . 7751 .7358

qThose energies enclosed in parentheses are estimated from the
adjacent correlation energies.

thirteen points were actually computed. In an effort to mini-
mize the computational load the correlation energies for
several of the geometries were estimated from an average of
the values computed at adjacent points. This estimate is
probably accurate to a few millihartrees. Energy curves from

this table are shown in Figure 1l. Compared to the SCF curves
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of Figure 9 the linear geometries are even higher in energy
with respect to the groundstate while the barrier to isomeri-
zation is lower. Compared to the FORS curves of the (6s,4p/4s)
basis the groundstate singlet barrier is reduced from 37.8
Kcal/mole to 33.7 Kcal/mole. The triplét barrier is reduced
from 46.9 Kcal/mole to 38.4 Kcal/mole.

In order that a direct comparison between the small and
large basis set curves could be made the curves are super-
imposed at point J in Figures l2a and 12b. The actual differ-
ence .in total energy for the (6s,4p/4s) and (8s,4p,1ld/4s,1lp)
basis sets is approximately 0.24 Eh' ,A surprising feature of
the‘FORS plots is the lack of any significant reduction in the
barrier since in the SCF approximation the reduction in going
from a small basis to a large basis was almost 15 Kcal/mole.

In previous studies of the effects of basis set truncation at
the CI level, changes in the total. energy curves were larger at
the CI level than at the SCF level. If similar behavior could
be expected for the FORS curve the 34 Kcal/mole A' singlet
barrier would be reduced to about 19 Kcal/méle.l Figure 13
shows how the correlation energy recovered varies over the
reaction path for the two basis sets. On the HON side of the
cﬁrve the two are iﬁ near quantitative agreement, while at the
barrier they differ by about 15%.

On the whole the final natural orbital CI in the large and
small basis sets showed a grea£'similarity with respect to the

ordering of configurations. About the only exception occurred
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near thé.groundstate‘gedmetry~for the A' state where the third
'andAfourth'host important configurations with expansion co-
efficients of 0.12 and -0.08 in the small basis do not appear
‘ in the top ten configurations for the large basis.

The reason for the unexpected similarity of our FORS
results with both basis sets could lie with the use of the
conceptual minimal basis set space. In calculations on H2, LiH
and.NZ; where an accurate estimate of the entire valence corre-
lation energy was available, this minimal basis set space has
recovered from 45%-83% of the valence correlation energy.

Since the minimal basis for hydrogen is a singie function,
compounds containing hydrogen will generally recover a smaller
percentage of the correlation energy than compounds without it.
An MCSCF-CI calculation by Benioff [34] on NO,, with the minimal
basis set space yielded about 66% of the estimated valence
correlation energy.l If might be argued that 60%-70% is still
too small a.fracfion to reflect the true effect of altering the
size of the basis. 6n the other hand, perhaps this particular
choice of configuration generating orbitals is truly capable of
giving quantitétive results which are somewhat insensitive to
basis set truncation.

A semi~-quantitative representation of the groundstate
singlet A' FORS energy surface is given in Figure 14. The NO
bond distance is fixed at the same value as that_chosen for

the SCF surface in Figure 8, namely 2.20 bohr. Since an entire

grid of points would have been prohibitively expensive, eight
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FORS calculations were distributed in a roughly even fashion
~over the surface. The correlation energy at these eight points
was intérpolated to obtain an estimate of the correlation
energy at the remaining grid points. These estimates were
added to the computed SCF energies to fill in the grid.
Judging from the magnitude of the change in correlation energy
as a function of geometry on this grid, the linear interpola-
tion is probably accurate to 10 millihartrees. Even though
the coefficient of the SCF configuration in the natural orbital
expansion of QI wavefunction, which is an indication of the
configuration‘s importanée, doesn'£ drop below 0.9, the differ—.
ences in the two surfaces are quite substantial. 1In the transi-
tion from an SCF to an MCSCF-CI description of this surféce the
large barrier separating the HON minimum from the HNO minimum
is greatly reduced. More importantly, the barrier to dissocia- .
tion from HON to H + NO is completely eliminated. The sum of
the energy for NO in the identical FORS approximation, given in
Table 31 at R = 2.1747 as -129.324 Eh and the energy of the
hydrogen atom in this basis, -0.4965 E., is -129.821 E,. This
is 0.004 Eh lower than the energy of HON at geometry C listed
in Table 27, namely -129.817 Eh.
Inélusion of p-orbitals on the hydrogen in the configura-
tion generating MO's would seem like the next step in allevia-
ting the deficiencies in the formal minimal basis set. This

inclusion could substantially lower the HON state with respect

to dissociation since such functions would not contribute to
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the isolated hydrogen atom. The total correlation energy for

a single O-H bond is in the range of 0.23 Ep from large calcu-
lations on the water molecule. The total valence correlation
for the hydrogen molecule is 0.041 Eh' A two configuration
FORS calculationArecovers 45% of this. Adding p orbitals to
the configuration generating space increases this to about 75%.
If similar behavior could be expected in HON, the moiecule
would again be predicted to be stable, quite possibly by some
tens of kilocalories per mole. The barrier to intramolecular
isomerization would be furllie: reduced.

Even with quite large s,p basis sets, such as the (10s,5p),
the singlet A' and triplet A" states, as determined by HF-SCF,
lie within a few millihartrees of each other near the experi-
menﬁal geometry. The inclusion of polarization functions seems
' necessary.to provide a quantitatively correct spacing of the
levels from a HF-SCF calculation. The triplet differs from the
closead she11 sing1et in tnét one electron from the a' irrep is
excited into the a" irrep. However, only one third as many of
the polafization functions are of a" symmetry. Thus the ground-
state benefits more frqm the inclusion of polarization functions
to the basis.

The experimental vertical excitation energy from the
groundstate to the excited singlet is 1.63 eV [26]. Although
the phosphorescent emission from the triplet has never been
observed, some experimentalists have estimated it to be in the

neighborhood of 0.8 eV from certain kinetic considerations. Our
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vertical excitation energies are 0.24 eV and 1.05 eV for the
triplet and excited singlet at the HF-SCF level and 1.23 eV
and 2.16 eV at the FORS level. Both values seem high by about
0.5 eV,

A previous CI calculation of this spectrum by Wu, Buenker
and Peyerimhoff [32] would appear fortuitously close, reporting
a singlet-singlet separation of 1.60 eV and a singlet-triplet
yseparation of 0.7l'eV..‘This almost certainly results from
their particular choice of basis set which yields anASCF sépa—
ration for these thfee states comparable to our (8s,4p/4s)
basis without polarization functions. The correlation energy
recovered by the two basis sets used for the FORS calculations
does not change drastically, so that a good estimate of how
Amuch correlation energy would be recovered with the (8s,4p/4s)
can be made. If this estimate is added to the SCF vertical
excitation spectrum for this basis a final éeparation guite
close to the Wu, Peyerimhoff and Buenker value is obtained.
The small basis tends to underestimate the energy differences
while the larger basis tends to overestimate with respect to

the currently accepted experimental value.

D. Bimolecular Reactions
Although extensive efforts have not been made to experi-
mentally observe the HOM state, the absence of any experimental
evidence fdr the existence of this geometry, when theoretical

results indicate that it should be quite stable with respect to
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dissociation to H + NO, suggest the possibility of a mechanism
for converting this geometry into the more stable HNO. The
intramolecular isoﬁerization has been discussed earlier in
this work. Perhaps the next simplest process would involve
the conversion of two HON molecules to two. HNO facilitated by
the formation of some hydrogen bonds.

If one HON molecule is‘approached by a second HON molecule
lying in the same plane as the first and oriented such that the
N-O bond of the second is parallel to that‘of the first with
the oxygen atoms across the diagonal from each other the system
possesses C2h symmetry and is in an ideal orientation to simply
pass the two protons from one to the other. This involves the
breaking of two O-H bonds and the formation of two N-H bonds
but no pairs of electrons need be broken apart since the bond
pairs simply.transform into lone pairs. The reaction is in
fact a proton transfer.

Like previous studies of multiple proton transters [35] we
find a multiple minima situation on the energy surface. Figure
15 shows the two minima connected by a‘barrier of approximatély
0.017 E;y (10.7 Kcal/mole). The surface shown in this Figure
corresponds to an O-N bond distance of 2.52 bohr and a fixed
H(z)_of 1.96 bohr. A small (6s,3p/4s) basis was used to gener-
ate the SCF surface in this Figure, but the accuracy of the
results wefe checked against the large (8s,4p,1ld/4s,1lp) basis
in the region of the barrier. Energy values on this surface are

given in Table 28. The surface was constructed by fitting two
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Table 28. HON-HON energy differences with respect to the top
of the barrier for the surface in Figure 15

R H(x) H(y) Es El

R H(x) H{(y) Es E1l
5.0 1.50 3.50 0.009
1.70 3.30 0,033 0.041
2,00 3,00 0.017
2.50 2.50 0,000 0.000
3.00 2.00 0.044 0,040
3.20 1.80 0,052
3.50 1.50 0.025
6.0 1,50 4,50 0.000
1.70 4.30 0.023
2.00 4,00 -0.,002
3.00 3.00 -0.109
4.00 2.00 0,044
4.20 1.80 0.051%
4.50 1.50 0.004
4.0 1.00 3.00 -0.502
1.50 2.50 -0.097
2.00 2.00 =-0.,070 -0.055
2.50 1.50 -00095
3.00 1000 "0058“

The large (8s,4p,1d/4s,1p) basis gave a barrier of =-259.367

Hartrees.
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overlapping regions of the coordinate plane with a least

squares quartic procedure and then piecing the two fits

together along the line passing through zero with slope one.
Table 29 gives the optimal geometries of the HON-HON

system as the distance between the N-O bonds decreases. All

'R R(ON) H(x) H(y) H(z) Energy AE@

Predominantly HON:

infinite 2.580 infinite 1.69 1.98 -258.6520  32.8
8.0 2.571 6.31 1.69 1.97 -258.6527 32.3
6.0 2.560 4,30 1.70 1.99 -258.6722 20.1
5.0 2.522. -3.30 1.70 1.96 -258.6756 17.9
4.7

2.440 - 2.35 2.35 1.83 -258.6588 28.5

Predominantly HNO:.

4.7 2.440 2.35 2.35 1.83 -258.6588 28.5
5.0 2.381 1.81 - 3.19 1.88 -258.7102 -3.8
6.0 2.360 - 1.84 4.16 1.85 -258.7161 -7.5
8.0 2.370 - 1.83 6.17 1.82 -258.7030 0.8
infinite 2.360 - 1.84 infinite 1.81 -258.7042 0.0

Ak = E(R) - ZE(HNO) in Kcal/mole.

geomgtrical parameters were optimized for fixed R and under £he
constraint of Czh symmetry. H(x) and H(z) are the .cartesian
coordinates of one hydrogen atom with respect to an origin .
centered along the N-O bond. The second hydrogen's position is
obtained by rotating the position of the first by 180 degrees

"about the C2 axls, as seen in Figure 16.
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The barrier seen in Table 29 is much smaller than that of
the intramolecular isomerization and provides a possible con-
version mechanism. It should also be noted that the actual
energy surface will be somewhat more complex because the singlet
A' state in the HON metastable geometry is above the triplet A"
and then crosses over to become the groundstate for the HNO
geometry.' Hence there will be an avoided crossing of the energy
surfaces which results from the singlet coupling of the two
triplets. There will also be a triplet and a quintuplet
coupling for the two triplets, but only the singlet has a possi-

bility of interacting with the singlet calculated here.
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However, this approach of the two molecules requires a
rather restrictive orientation of the t&o HON fragments; If
the C2h symmetry is relaxed and we bring the HON's together in
such a fashion that the O-H--N-O portion of the system lies in
a straight line, another strong hydrogen bond is observed.

Table 30 gives the results of a series of SCF calculations with

Table 30. SCF energies for the in-line HON-HON reaction

Distance between HON's Total Energy
2.00 ' -258.6032
3.00 -258.6515
4.00 -258.6580
'5.00 -258.6547
6.00 -258.6525
8.00 -258.6513

the small (6s,3p/4s) basis for various internuclear distances
betweéen the fragments. The geometries of the individual HON:
units were frozen at the optimal isolated molecule geometries
and the two atoms nof lying on the line (N and H) were trans to
each other. Once the first hydrogen bond is formed, the system
has a greater chance of the second hydrogen coming within range
to transfer both>hydrdgens, thﬁs performing the conversion of

two HON to two HNO.
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E. Thé Groundstate of Nitric Oxide

As indicated in the FORS energy surface of the singlet A'
state, dissociation of the HON metastable geometry to H and NO
with subsequent formation of HNO appears to be the energeti-
cally favored route for uni-molecular isomerization. In order
to quantitatively describe this dissociative process it is
nécessary to compute an FORS wavefunction for the NO molecuie
using the same (8s,4p,1d) basis set as was used for HNO.
Besides ité relevance to the HNO system, nitric oxide is of
interest in its own right, since it is an important atmospheric
emitter. Previous work on this molecule includes a 200 con-
figuration CI calculation using the Iterative Natural Orbital
(INO) technique. This was done by Green [36-37] at the experi-
mental equilibrium distance. A 20 configuration optimized
Valence configuration (OVC) MCSCF calculation followed by a 40
configuration CI élong the energy curve was reported by
Biliingsley [38] using the same large STO basis as Green.
Billingsley alsolreported several expectation valueé, such as
the dipole moment, as a function of the internuclear distance.

To generate the list of configurations needed for the FORS
wavefunction we proceed as we did for HNO. Within the formal
minimal basis set space of six sigma and four pi orbitals we
generate all possible space-spin products consistent with the
doublet pi nature of the groundstate. The SCF configuration is

2 = 1002 2002 (30)2 (40)? (5002 (1md2n? (4.2)
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There are 126 space products and 5 spin functions which yield
252 space-spin products when appropriately combinéd.

With these 252 configurations we have performed an FORS
calculation on NO at the experimental bond distance of 2.1747
bohr with the same quality basis as that uséd by Green and
Billingsley, although the mixture of sigma and pi orbitals was
slightly different. Our (1l4s,7p,2d) ETG priﬁitive basis was
contracted to (5s,3p,2d) to give 24 sigma and 10 pi AO basis
functions as opposed to 20 sigma and 12 pi in the STO basis of
Green. Both sets yielded SCF enefgies within a millihartree of

each other, the ETG energy being -129.289 E An even larger

he
calculation by Green with a near HF limit basis yielded an
energy only 5 millihartrees lower. The final FORS energy was

-129.406 E. as contrasted to Billingsley's -129.368 Eh'corre—

h
- sponding to an increase of:almost 50% in the quantity of corre-
'létion energy recévéfed. Sincé the.FORS energy of the sep-
arated atoms lies within less than two millihartrees of the
corresponding SCF energy, as shown in the subsequent paragraph,
D, will be the difference between the sum of the atomic SCF'
energies in tﬁis basis, —129.209 Eh’ and the moiecular FORS
energy. _This Valﬁe is 0.197 Eh<(5.36 eV) or rouéhly'BO% of the
‘ Jexperimental”vaiue-of56;61 eV [39].  Billingsley obtained 0.159
E, (4.33 ev).
_‘However, since we are particularly interested in the dis-

sociation of HON to H and_NO we made more detailed calculations

with:the same basis.as was used for the calculations on HON,
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namely the (8s,4p,1d) basis. Sincevone_éoal of the work by
Billingsley was to accurately determihe vibrational energy
levels up to v=17 .we computed a portion of the potential
curve with this basis so as to judge the parallelness of the
two curves. The sum of the atomic energies in this smaller

basis is- -129.126 E The largest expansion coefficients from

he
the final natural orbital CI in the FORS calculation and the
total energies at the three internuclear distances chosen by
Billingsley are given in Table 31 for our (8s,4p,1ld) basis.
Orbital occupancieé for the valence sigma and pi orbitals in

the configurations listed assume that the first through third
sigma orbitals -are doubly occupied.-

At a distance of 10 bohr all of the FORS occupied orbitals
with the exception of the fifth and sixth sigma orbitals cleanly
separate into isoclated atomic orbitals on nitrogen and oxygen.
‘These two natural orbitals remain a plus-minus combination of
the two p(z) AO's. Since no such separation occurs in
Billingsley's wavefunction, his final CI expansion ﬁas a great
many more nohzero terms than the FORS wavefunction. If the two-
remaining'nonlocalized néturallorbitals are replaced by local-
ized p(z) orbitals the FORS-CI expansion would contain only
three terms in the dissociation limit. The groundstate poten-
tial energy curve is shown in Figure 17.

The difference in energy between R = 2.1747 bohr and R =

3.0747 is 0.127 Eh in the current work and only 0.118 Eh in the
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OVC calculation. This discrépancy could affect the computed

vibrational levels.

Table 31. CI expanéion coefficients of the leading natural
- orbitals and total energies for the ground state
of NO .

' Orbital Occupancy o, o Expansion Coefficients
4s . . 5s 6s im . 2w spin R=2.1747 R=3.0747 R=10.00

0.966 0.840 0.000

NN

2 0 4 1 1
0 2 4 1 1 -0.059 -0.130 0.000
2 0 2 3 1 -0.143 -0.272 0.000
2 0 3 2 1 -0.040 0.258 0.500
2 -0.011 0.096 0.289
2 0 2 3 2 1 0.002 -0.055 -0.500
2 0.000 -0.011 -0.289
2 2 0 2 3 1 -0.092 -0.178 0.000
2 -0.093 -0.099 0.000
2 2 0 1 4 1l 0.071 0.105 0.000
2 1 1 3 2 1. 0.044 0.058 0.000
2 0.082 0.117 0.000
3 0.010 0.056 0.408
4 -0.010 -0.063 -0.408
0 2 .0 4 -3 1 -0.059 -0.046 0.000
SCF Energy : - -129.208 -128.979 -128.868
FORS Energy , -129.324 -129.197 -129.128
8The 5 electron spin functions are defined (using 8_ = (aB-Ba)/
V2, 8, = (aB+Ba)/ V7)) as |
el =0 _0_a. 3
6, = 6_{6 a-V 2008}/ V3.
0, = {8+6_a-yr§aa6_8}/if§.

6, = {aaBB+BBaa - 1/2 0,8,}a/V 3,
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The dissociation énergy for the (8s,4p,1d) baéis is essen-
tially the same as that Obtéined with the larger (l4s,7p,2d)
basis. The computed equilibrium distance is 2.214 bohr,
slightly too large. Most of this error would be eliminated by
using the larger basis since the calculated equilibrium
distance at thé'SCF level is shorter by 0.02 bohr for this

basis.
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