STRONG COUPLING QED WITH TWO FERMIONIC FLAVORS
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We report the recent results of our simulation of strong coupling QED, with non-compact action, on lattices
10* and 16*. Since we are dealing with two staggered fermionic flavors, we use hybrid algorithm to do the
simulation. In addition to the measurement of the chiral order parameter (11), we also measure magnetic
monopole susceptibility, x, throughout the region of chiral transition.

1. INTRODUCTION

In the past, QED was thought of as an effective
low energy theory. However, in the recent year, vari-

. ous ladder calculations have given QED a whole new

interpretation.l An ultraviolet fixed point exists in
the strong coupling region and it is marked by a chiral
phase transition. In addition, the four fermi interac-
tion becomes renormalizable at this particular fixed
point.2 in the most recent results from the lattice
calculation of quenched non-compact QED the chiral
phase transition exhibits non-mean field behavior.3
All these results imply that quenched QED is a non-
* trivial and non-asymptotically free field theory.

These new developments in the quenched theory
prompt us to investigate the full theory, that is QED
with dynamic fermions. Based on our past simufa-
tions on small lattices, we are particularly interested
in doing the simulation with two staggered fermions.
In these new systematic studies, we seek to answer
the following questions. Does this theory have a chi-
ral phase tran<ition? If it has such transition, can
we determine the order of the transition? What kind
of physical mechanisms drive the transition. (e.g.,
Strong/\/ector Force, Mrnopoles, or induced Fsur
Fermi)? Does the transition have anything to do
with the continuum physics?

In the second section, | will present some techni-
cal details of our simulation. Also, | will discuss the
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two physical quantities that we are measuring. In the
third section, | will present the data and discuss its
interpretation. In forth section, | will illustrate some
problems with the non-compact action. Finally, | will
draw some cunclusions.

2. SIMULATION

The Lagrangian of non-compact QED is well
known:
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where O, is the sum of gauge fields around a pla-
quette. Since we are interested in a system with two
fermionic flavors, we use Hybrid Molecular Dynamics
as our simulation method. We do the simulations on
two different size lattice, specifically 104 and 16¢.
We measure two different quantities in our sim-
ulations.
parameter (s1). For the 10* lattice, we measure
(¥) for the following different fermion masses m =
0.03,0.02,0.015,0.01,0.005 and for the 16* lattice,
we have data for m = 0.03,0.02,0.01. The second

quantity that we measure in our simulations is the //

The first one is the usual chiral order
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their empioyoes, makes any warranty, express or implied, or
assumes any Jegal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.
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magnetic monopole susceptibility x.S Itis a good pa-
rameter for monitoring the activity of monopoles on Figure 2: (1) for the 16% lattice.
lattice. When the monopole density reaches the crit-
ical value, at which the large monopole loops start to
form, y reaches its maximum value. For the 10* lat-
tice, we measure x for fermion mass mn = 0.005. For
the 164 lattice, we measure x for all three different
fermion masses.

The choices of the other parameters of our sim-

ulations are as follow. The time step di for the 104 10* QED
.latticerangesfrom0.02t00.0025and;thetimestep 0.5 :T"'"'"l‘;"[""l""l""

for the 16 lattice ranges from 0.02 to 0.01. The F ]
residue for the conjugate gradient is 0.001 per site. 0.4 | -
However, it is adjusted for the lowest fermion mass. [ ]
For both lattice sizes, our simulations cover § val- I J

. 0.3 I~ -
ues ranging from 0.26 to 0.19. For each j3 and m, i ’
we obtain at least 200 trajectories and each trajec- j C ]
tory consists of 1/dt sweeps. Moreover, for the 16* 202 [~ "
lattice, we use a random refreshment interval to im- X :
prove the decorrelation time. 0.1 :- 'j

- b < ]
3. DATA AND INTERPRETATION Y B SR P FUUUL FEEEE Ta_Se S

In Fig. 1, we present part of the 104 (1) data. .0.14 0.16 0.18 0.2 0.22 0.24 0.26

There are some slight fluctuations in the data for g

the lowest fermion mass. This is caused by the ex-
ceedingly long corvelations around the transition. In
Fig. 2, we present the 16% (i3) data. By com-
paring with Fig. 1 we conclude that the finite size
effect is very small. In Fig. 3, (¢9) in limit of

Figure 3: (¥%) in the limit of m =0
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Figure 4: x for the 104 lattice.

m = 0 is plotted. It is obtained from measurements,
on the 10* latiice, at m = 0.005,0.01,0.015, by a
(D) (m = 0) = a+ bm + cm® extrapolation at each
. . We do not make any extrapolation on the 16*
data because the fermion masses are still too large.
It is very clear from our data that there exists a chiral
phase transition. The transition occurs most prob-
ably around B = 0.225. Due to the long correction
time around the transition, it is very hard to deter-
mine the order of the transition. It may be second
- order. ' '

.. In Fig. 4, we plot the monopole susceptibility, x,
verse f for the 10% lattice. We see that x peaks at
B =0.225. In Fig. 5, we plot x verse 8 for the 164
lattice. We find that the peak of x is independent of
the fermion mass; again it is located at § = 0.225.
The locations of the various peaks are the same for
two different lattice sizes. Only the magnitudes of
the peaks depend on the lattice sizes. In Fig. 6, we
rescale x so that it can be ploted in the same scale
as (Py)(m = 0) for the 10% lattice. One clearly
sees that the monopole susceptibility peaks at the
chiral critical point. Therefore lattice monopoles are
important at the critical point. Lattice monopoles
drive the chiral transition at least in part.

Based on the data that we present, we believe
that non-compact lattice QED’s chiral phase tran-
sition has no continuum analogue. The reasons for
this are very simple. First, the chiral transition is
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Figure 5: x for the 164 lattice.
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driven in part by monopoles, which are lattice ar-
tifacts. not by the strong vector force. In other
words, since the U(1) monopole condensation oc-
curs at the critical point, the U(1) gauge group
is relevant at the critical point instead of the R
gauge group of the continuum theory. In addition,
at B, = 1/e? = 0.225, the coupling constant is
a ~ 0.3537. The Callan-Symanzik beta function

up to forth order® is

plog =3 (%) +3 (%)

At this a, the second order contribution is 0.15 and
the forth order contribution is 0.02536. Therefore
we expect that the perturbative QED will work rea-
sonably well. We conclude that we cannot use the
non-compact lattice action to discuss the possible
triviality of QED.

4. PROBLEMS WITH NON-COMPACT QED

The first problem is associated with the
fermionic part of the action which contains a U(1)
phase. This U(1) phase will eventually induce com-
pact terms back into the action. Let uslook at a sim-
ple illustration. At strong coupling and large fermion
mass, one can integrate out the fermion fields and
obtain an effective action for gauge fizlds. The low-
est order contribution is proportion to.

e
P

Therefore a compact term is induced. In sum, the
present of dynamic fermions enhance the importance
of monopoles.

The second problem is associated with the sim-
ple gauge field action which will induce an effective
four fermi interaction. As an illustration, we look
at the simple single photon exchange interaction. In
continuum, the photon propagator is just 24, How-
ever, on the lattice, the inverse photon propagator
is D71(k) ~ £,{1 — cos(k,)}. In the low k limit,
the lattice photon propagator is a good representa-
tion of the continuum propagator. However, in the
high k limit, the lattice photon propagator is just a
constant. Thus the single photon exchange inter-
‘action behaves like a four fermi interaction. Since

QED is not an asymptotically free field theory, this
effect is large and it does not go away as the lattice
spacing goes to zero. This effect is a very plausible
mechanism for driving the chiral transition.

5. CONCLUSION

Non-compact lattice QED is an interesting lat-
tice theory with many structures. However we be-
lieve that this theory has no continuum analogue.
Thus we can not use it to draw any conclusion about
the triviality of the continuum QED. It would be in-
terested to repeat the same study for four fermionic
flavors. The most important problem is associated
with the U(1) phase in the fermionic part of the ac-
tion. Therefore, in order to continue the study of
continuum strong coupling QED, one needs a new
lattice QED action which will better match the con-
tinuum action.
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